1
|
Alshahrani AS, Saber S, Alruwaili OS, Al-Majdoub ZM, Hamad RS, Abdel-Reheim MA, Khaled BEA, Alibrahim A, Ramadan A, El-Kott AF, Alshehri AS, Negm S, Elmorsy EA, Khalifa AK, Abdelhady R. Modulation of FOXO3a Nuclear Localization by Linagliptin (BI-1356) reveals a new therapeutic target in chronic ulcerative colitis. Eur J Pharm Sci 2025; 209:107100. [PMID: 40221059 DOI: 10.1016/j.ejps.2025.107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Globally, the incidence and prevalence rates of ulcerative colitis (UC) show a rising pattern. The limited efficacy and significant adverse effects associated with current treatment options underscore the need for novel therapeutic approaches. It has been found that linagliptin, a dipeptidyl peptidase-4 inhibitor, activates AMPK in different disease conditions. The main objective of the present work was to elucidate the potential implications of the AMPK/FOXO3a mediated by linagliptin in rats with chronic colitis. The findings of the current report revealed the first robust in-vivo evidence advocating the coloprotective effect of linagliptin against dextran sodium sulfate-induced chronic UC in rats. It has demonstrated potential beyond its antidiabetic effects by modulating FOXO3a localization. By shifting FOXO3a from the cytosol to the nucleus, linagliptin enhanced the transcription of genes involved in attenuation of pro-inflammatory events and restoration of redox homeostasis. Nuclear FOXO3a also impacted NFκB activity, reducing inflammation. This conclusion was fundamentally supported by the documented improvements in histopathological changes evidenced by reduced inflammation, edema, crypt atrophy, and submucosal fibrosis. Moreover, decreased colon weight/length ratio, as well as reduced scores of disease activity and macroscopic damage indices, were observed. Furthermore, it corrected body weight loss during the time frame of the experiment. These findings underscore the anti-inflammatory potential of therapies that promote the nuclear localization of FOXO3a in inflammatory conditions. Linagliptin's ability to modulate FOXO3a localization might be particularly useful for diabetic patients suffering from inflammatory bowel diseases. However, further molecular investigations are required to validate the findings and to assess the clinical application of this approach as a valid tool for alleviating UC.
Collapse
Affiliation(s)
- Abdulaziz Saad Alshahrani
- Department of Internal Medicine, Medicine and Gastroenterologist Consultant, Najran University Hospital, Najran University, Saudi Arabia.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | | | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia.
| | | | - Bahaa Eldin Ali Khaled
- Anatomy Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia; Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Alaa Alibrahim
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia.
| | - Asmaa Ramadan
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Egypt.
| | - Ali S Alshehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.
| | - Sally Negm
- Applied College, Health Specialities, Basic Sciences and Their Applications Unit, Mahayil Asir, King Khalid University, Abha, 62529, Saudi Arabia.
| | - Elsayed A Elmorsy
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, 51452, Saudi Arabia.
| | - Amira Karam Khalifa
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Nahda University, New Beni Suef 62521, Egypt.
| | - Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Chinese University, Cairo, Egypt.
| |
Collapse
|
2
|
The Impact of Binge-Like Palatable Food Intake on the Endogenous Glucagon-Like Peptide-1 System in Female Rats. Behav Brain Res 2022; 428:113869. [PMID: 35378108 DOI: 10.1016/j.bbr.2022.113869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022]
Abstract
Binge eating involves consumption of large amounts of food and a loss of control over the amount consumed. The incidence of binge eating disorder is higher in females than males, hinting at important sex differences in binge eating behavior, but the neural underpinnings of binge eating still remain unresolved. Recent work in male rats has shown that a history of binge-like palatable food intake suppresses hindbrain expression of preproglucagon (PPG), the precursor for glucagon-like peptide-1 (GLP-1). Given the roles of GLP-1 in reducing feeding and food reward, this could be a mechanism underlying binge-like eating in rodents. However, whether similar effects occur in female rats is unknown. Here, we tested the hypothesis that a history of binge-like palatable food intake in female rats would reduce PPG expression in the nucleus tractus solitarius (NTS), a key central site of GLP-1 production. Female rats given access to vegetable shortening every fourth day (4D) engaged in binge-like feeding, demonstrated by consuming significantly more shortening during the first hour of fat access compared to counterparts with ad libitum (AL) fat access. After several weeks of fat access under these schedules, PPG and GLP-1 receptor (GLP-1R) expression were measured in the NTS and ileum. Surprisingly, and in contrast to previous findings in male rats, there were no significant differences in expression of PPG or GLP-1R in either site in 4D versus AL rats, nor were there effects on plasma GLP-1 levels. These findings highlight key differences in the effects of binge-like intake on the central GLP-1 system in female compared to male rats.
Collapse
|
3
|
Huang J, Pham M, Panenka WJ, Honer WG, Barr AM. Chronic Treatment With Psilocybin Decreases Changes in Body Weight in a Rodent Model of Obesity. Front Psychiatry 2022; 13:891512. [PMID: 35664477 PMCID: PMC9157591 DOI: 10.3389/fpsyt.2022.891512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND There are currently relatively few effective pharmacological treatments for obesity, and existing ones may be associated with limiting side-effects. In the search for novel anti-obesity agents, drugs that modify central serotonergic systems have historically proven to be effective in promoting weight loss. Psilocin, which is rapidly metabolized from psilocybin, is an agonist at multiple serotonin receptors. In the present study we assessed the effects of psilocybin and a positive control (metformin) on changes in body weight in a rat model of obesity. METHODS Five groups of adult male rats were pre-conditioned with a cafeteria diet until obese (>600 g) and then treated with either psilocybin (0.1, 1, or 5 mg/kg, i.p.), metformin (300 mg/kg, p.o.) or vehicle control. Treatments were for 27 consecutive weekdays, and body weights and high calorie food intake were recorded daily. Fasting glucose levels were recorded after 11 days of treatment. At the end of treatment rats completed a glucose tolerance test, and multiple fat pads were dissected out to assess adiposity. RESULTS The medium dose psilocybin group had to be terminated from the study prematurely. Both the low and high dose psilocybin groups caused a significant decrease in changes in body weight compared to controls. The metformin group produced a greater decrease in change in body weight than either psilocybin groups or controls. Both high dose psilocybin and metformin decreased consumption of the high calorie diet, and exhibited decreased central adiposity. CONCLUSION Psilocybin demonstrated modest but significant effects on weight gain. Further study is recommended.
Collapse
Affiliation(s)
- Joyce Huang
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Pham
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - William J Panenka
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Mental Health & Substance Use Services Research Institute, Vancouver, BC, Canada
| | - William G Honer
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Mental Health & Substance Use Services Research Institute, Vancouver, BC, Canada
| | - Alasdair M Barr
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Mental Health & Substance Use Services Research Institute, Vancouver, BC, Canada
| |
Collapse
|
4
|
Hulverson MA, Choi R, McCloskey MC, Whitman GR, Ojo KK, Michaels SA, Somepalli M, Love MS, McNamara CW, Rabago LM, Barrett LK, Verlinde CLMJ, Arnold SL, Striepen B, Jimenez-Alfaro D, Ballell L, Fernández E, Greenwood MN, las Heras LD, Calderón F, Van Voorhis WC. Repurposing Infectious Disease Hits as Anti- Cryptosporidium Leads. ACS Infect Dis 2021; 7:1275-1282. [PMID: 33740373 DOI: 10.1021/acsinfecdis.1c00076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New drugs are critically needed to treat Cryptosporidium infections, particularly for malnourished children under 2 years old in the developing world and persons with immunodeficiencies. Bioactive compounds from the Tres-Cantos GSK library that have activity against other pathogens were screened for possible repurposing against Cryptosporidium parvum growth. Nineteen compounds grouped into nine structural clusters were identified using an iterative process to remove excessively toxic compounds and screen related compounds from the Tres-Cantos GSK library. Representatives of four different clusters were advanced to a mouse model of C. parvum infection, but only one compound, an imidazole-pyrimidine, led to significant clearance of infection. This imidazole-pyrimidine compound had a number of favorable safety and pharmacokinetic properties and was maximally active in the mouse model down to 30 mg/kg given daily. Though the mechanism of action against C. parvum was not definitively established, this imidazole-pyrimidine compound inhibits the known C. parvum drug target, calcium-dependent protein kinase 1, with a 50% inhibitory concentration of 2 nM. This compound, and related imidazole-pyrimidine molecules, should be further examined as potential leads for Cryptosporidium therapeutics.
Collapse
Affiliation(s)
- Matthew A. Hulverson
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Ryan Choi
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Molly C. McCloskey
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Grant R. Whitman
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Kayode K. Ojo
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Samantha A. Michaels
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Mastanbabu Somepalli
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Melissa S. Love
- Calibr, a division of The Scripps Research Institute, La Jolla, California 92037, United States
| | - Case W. McNamara
- Calibr, a division of The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lesley M. Rabago
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Lynn K. Barrett
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | | | - Samuel L.M. Arnold
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| | - Boris Striepen
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dolores Jimenez-Alfaro
- Medicines Development Campus, Global Health Pharma Unit, GlaxoSmithKline, Tres Cantos, 28760, Madrid Spain
| | - Lluis Ballell
- Medicines Development Campus, Global Health Pharma Unit, GlaxoSmithKline, Tres Cantos, 28760, Madrid Spain
| | - Elena Fernández
- Medicines Development Campus, Global Health Pharma Unit, GlaxoSmithKline, Tres Cantos, 28760, Madrid Spain
| | - M. Nicole Greenwood
- Academic Liaison, GlaxoSmithKline, Upper Providence, Pennsylvania 19426, United States
| | | | - Felix Calderón
- Medicines Development Campus, Global Health Pharma Unit, GlaxoSmithKline, Tres Cantos, 28760, Madrid Spain
| | - Wesley C. Van Voorhis
- Department of Medicine Division of Allergy Infectious Disease Center for Emerging Reemerging Infectious Diseases, University of Washington, Seattle, Washington 98109, United States
| |
Collapse
|
5
|
Hansen HH, Grønlund RV, Baader-Pagler T, Haebel P, Tammen H, Larsen LK, Jelsing J, Vrang N, Klein T. Characterization of combined linagliptin and Y2R agonist treatment in diet-induced obese mice. Sci Rep 2021; 11:8060. [PMID: 33850212 PMCID: PMC8044192 DOI: 10.1038/s41598-021-87539-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 02/01/2023] Open
Abstract
Dipeptidyl peptidase IV (DPP-IV) inhibitors improve glycemic control by prolonging the action of glucagon-like peptide-1 (GLP-1). In contrast to GLP-1 analogues, DPP-IV inhibitors are weight-neutral. DPP-IV cleavage of PYY and NPY gives rise to PYY3-36 and NPY3-36 which exert potent anorectic action by stimulating Y2 receptor (Y2R) function. This invites the possibility that DPP-IV inhibitors could be weight-neutral by preventing conversion of PYY/NPY to Y2R-selective peptide agonists. We therefore investigated whether co-administration of an Y2R-selective agonist could unmask potential weight lowering effects of the DDP-IV inhibitor linagliptin. Male diet-induced obese (DIO) mice received once daily subcutaneous treatment with linagliptin (3 mg/kg), a Y2R-selective PYY3-36 analogue (3 or 30 nmol/kg) or combination therapy for 14 days. While linagliptin promoted marginal weight loss without influencing food intake, the PYY3-36 analogue induced significant weight loss and transient suppression of food intake. Both compounds significantly improved oral glucose tolerance. Because combination treatment did not further improve weight loss and glucose tolerance in DIO mice, this suggests that potential negative modulatory effects of DPP-IV inhibitors on endogenous Y2R peptide agonist activity is likely insufficient to influence weight homeostasis. Weight-neutrality of DPP-IV inhibitors may therefore not be explained by counter-regulatory effects on PYY/NPY responses.
Collapse
Affiliation(s)
| | | | - Tamara Baader-Pagler
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co., Biberach, Germany
| | - Peter Haebel
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co., Biberach, Germany
| | | | | | - Jacob Jelsing
- Gubra, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Niels Vrang
- Gubra, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Thomas Klein
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co., Biberach, Germany
| |
Collapse
|
6
|
Eren-Yazicioglu CY, Yigit A, Dogruoz RE, Yapici-Eser H. Can GLP-1 Be a Target for Reward System Related Disorders? A Qualitative Synthesis and Systematic Review Analysis of Studies on Palatable Food, Drugs of Abuse, and Alcohol. Front Behav Neurosci 2021; 14:614884. [PMID: 33536884 PMCID: PMC7848227 DOI: 10.3389/fnbeh.2020.614884] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 11/15/2022] Open
Abstract
The role of glucagon-like peptide 1 (GLP-1) in insulin-dependent signaling is well-known; GLP-1 enhances glucose-dependent insulin secretion and lowers blood glucose in diabetes. GLP-1 receptors (GLP-1R) are also widely expressed in the brain, and in addition to its role in neuroprotection, it affects reward pathways. This systematic review aimed to analyze the studies on GLP-1 and reward pathways and its currently identified mechanisms. Methods: “Web of Science” and “Pubmed” were searched to identify relevant studies using GLP-1 as the keyword. Among the identified 26,539 studies, 30 clinical, and 71 preclinical studies were included. Data is presented by grouping rodent studies on palatable food intake, drugs of abuse, and studies on humans focusing on GLP-1 and reward systems. Results: GLP-1Rs are located in reward-related areas, and GLP-1, its agonists, and DPP-IV inhibitors are effective in decreasing palatable food intake, along with reducing cocaine, amphetamine, alcohol, and nicotine use in animals. GLP-1 modulates dopamine levels and glutamatergic neurotransmission, which results in observed behavioral changes. In humans, GLP-1 alters palatable food intake and improves activity deficits in the insula, hypothalamus, and orbitofrontal cortex (OFC). GLP-1 reduces food cravings partially by decreasing activity to the anticipation of food in the left insula of obese patients with diabetes and may inhibit overeating by increasing activity to the consumption of food in the right OFC of obese and left insula of obese with diabetes. Conclusion: Current preclinical studies support the view that GLP-1 can be a target for reward system related disorders. More translational research is needed to evaluate its efficacy on human reward system related disorders.
Collapse
Affiliation(s)
| | - Arya Yigit
- School of Medicine, Koç University, Istanbul, Turkey
| | - Ramazan Efe Dogruoz
- Department of Neuroscience, University of Chicago, Chicago, IL, United States
| | - Hale Yapici-Eser
- Koç University, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
7
|
Cuijpers I, Papageorgiou A, Carai P, Herwig M, Mügge A, Klein T, Hamdani N, Jones EAV, Heymans S. Linagliptin prevents left ventricular stiffening by reducing titin cleavage and hypophosphorylation. J Cell Mol Med 2021; 25:729-741. [PMID: 33295687 PMCID: PMC7812306 DOI: 10.1111/jcmm.16122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/12/2020] [Accepted: 11/08/2020] [Indexed: 12/25/2022] Open
Abstract
The metabolic syndrome (MetS) is an escalating problem worldwide, causing left ventricular stiffening, an early characteristic of diastolic dysfunction for which no treatment exists. As diastolic dysfunction and stiffening in MetS patients are associated with increased circulating dipeptidyl peptidase-4 (DPP-4) levels, we investigated whether the clinically approved DPP-4 inhibitor linagliptin reduces left ventricular stiffness in MetS-induced cardiac disease. Sixteen-week-old obese ZSF1 rats, displaying the MetS and left ventricular stiffness, received linagliptin-supplemented or placebo diet for four weeks. Linagliptin significantly reduced obesity, hyperlipidaemia, and hyperglycaemia and improved left ventricular relaxation. This improved relaxation was related to decreased cardiac fibrosis and cardiomyocyte passive stiffness (Fpassive ). The reduced Fpassive was the result of titin isoform switching from the stiff N2B to the more flexible N2BA and increased phosphorylation of total titin and specifically its N2Bus region (S4080 and S3391). Importantly, DPP-4 directly cleaved titin in vitro, resulting in an increased Fpassive , which was prevented by simultaneous administration of linagliptin. In conclusion, linagliptin improves left ventricular stiffness in obese ZSF1 rats by preventing direct DPP4-mediated titin cleavage, as well as by modulating both titin isoform levels and phosphorylation. Reducing left ventricular stiffness by administering linagliptin might prevent MetS-induced early diastolic dysfunction in human.
Collapse
Affiliation(s)
- Ilona Cuijpers
- Center for Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
- Department of CardiologyCARIM School for Cardiovascular DiseasesMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Anna‐Pia Papageorgiou
- Center for Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
- Department of CardiologyCARIM School for Cardiovascular DiseasesMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Paolo Carai
- Center for Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
| | - Melissa Herwig
- Molecular Cardiology and Experimental CardiologyRuhr University BochumBochumGermany
- Department of CardiologySt. Josef‐HospitalRuhr University BochumBochumGermany
- Institute of PhysiologyRuhr University BochumBochumGermany
| | - Andreas Mügge
- Molecular Cardiology and Experimental CardiologyRuhr University BochumBochumGermany
- Department of CardiologySt. Josef‐HospitalRuhr University BochumBochumGermany
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Nazha Hamdani
- Molecular Cardiology and Experimental CardiologyRuhr University BochumBochumGermany
- Department of CardiologySt. Josef‐HospitalRuhr University BochumBochumGermany
- Institute of PhysiologyRuhr University BochumBochumGermany
- Department of Clinical PharmacologyRuhr University BochumBochumGermany
| | - Elizabeth A. V. Jones
- Center for Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
- Department of CardiologyCARIM School for Cardiovascular DiseasesMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Stephane Heymans
- Center for Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
- Department of CardiologyCARIM School for Cardiovascular DiseasesMaastricht University Medical CenterMaastrichtThe Netherlands
- Holland Heart HouseICIN‐Netherlands Heart InstituteUtrechtThe Netherlands
| |
Collapse
|
8
|
Cowart K, Updike WH, Lloyd A, Bullers K. Anticipatory guidance and systematic review of prescribing combination incretin therapy in the treatment of type 2 diabetes. J Clin Pharm Ther 2020; 46:28-34. [PMID: 33067896 DOI: 10.1111/jcpt.13270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/01/2020] [Indexed: 11/27/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Few studies have evaluated the efficacy and safety of combining a glucagon-like peptide-1 receptor agonist and dipeptidyl peptidase-4 inhibitor in patients with type 2 diabetes mellitus. Clinicians may frequently encounter this drug therapy combination in practice and should be aware of clinical evidence and risks associated with its use. METHODS A literature search was conducted in Embase (1947-April 20, 2020), Medline - Ovid (1946-April 21, 2020), Medline - PubMed (1946-April 21, 2020), Cochrane Library CENTRAL Register of Controlled Trials (1991-April 20, 2020) and Web of Science (1900-April 17, 2020). Databases were searched using keywords and subject headings to identify studies assessing efficacy and safety of combination incretin therapy. The search identified 1255 studies. Of these, 383 were excluded for duplicate citations. Articles were then excluded based on title and abstract screen. RESULTS AND DISCUSSION Six studies were included. A small reduction in haemoglobin A1c and weight loss was found by combining incretin therapy. Adverse effects such as hypoglycaemia, gastrointestinal upset and pancreatitis were infrequent. WHAT IS NEW AND CONCLUSION On current evidence, the small benefit in glycaemic control that may be realized by using combination incretin therapy is unlikely to be offset by the potential increased risk of pancreatitis or additional cost. Additional long-term prospectively designed studies are needed to better understand the efficacy and safety of combination incretin therapy.
Collapse
Affiliation(s)
- Kevin Cowart
- Department of Pharmacotherapeutics & Clinical Research, Taneja College of Pharmacy, Tampa, FL, USA.,Department of Internal Medicine, Morsani College of Medicine, Tampa, FL, USA.,University of South Florida, Tampa, FL, USA
| | - Wendy H Updike
- Department of Pharmacotherapeutics & Clinical Research, Taneja College of Pharmacy, Tampa, FL, USA.,University of South Florida, Tampa, FL, USA.,Department of Family Medicine, Morsani College of Medicine, Tampa, FL, USA
| | | | - Krystal Bullers
- Department of Pharmacotherapeutics & Clinical Research, Taneja College of Pharmacy, Tampa, FL, USA.,University of South Florida, Tampa, FL, USA.,University of South Florida Health Libraries, Tampa, FL, USA
| |
Collapse
|
9
|
Matos C, van Hunsel F, Tavares Ribeiro R, Nascimento do Ó D, Raposo JF. Diabetes patient’s pharmacovigilance knowledge and risk perception: the influence of being part of a patient organisation. Ther Adv Drug Saf 2020; 11:2042098620953935. [PMID: 35173953 PMCID: PMC8842126 DOI: 10.1177/2042098620953935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/23/2020] [Indexed: 11/25/2022] Open
Abstract
Objective: The aim was to assess the perception of risk for developing adverse drug
reaction (ADRs) and knowledge, attitudes and opinions regarding
pharmacovigilance in diabetic patients, and to investigate the effect of
being a member of a patient organisation for diabetes on these factors, in
comparison with other patients. Methods: A cross-sectional study looking for patients’ risk perception of experiencing
ADRs. Diabetes patients followed at the Portuguese Diabetes Association
(APDP) were included, together with two comparison groups (patients with and
without diabetes). Kruskal-Wallis followed by post hoc
Dunn’s multiple-comparison test were used to compare patients’ groups. Results: A total of 314 patients participated in the survey (104 followed at APDP, 106
with diabetes not followed at APDP and 104 without diabetes diagnosis that
used chronic medication). APDP patients presented higher risk perception
scores for medicines related to their disease compared with two groups.
Those patients affirmed that doctors explained possible ADRs on medication
to them, and showed higher intention to report ADRs in the future if serious
or unexpected. Conclusions: Patients with diabetes showed greater understanding of ADRs and higher need
to report them than patients without diabetes. They would like to have more
information about general ADRs related to anti-diabetic medication and
present higher intention to acquire information on how and when to report
compared with non-diabetic patients. Patients followed in APDP presented
higher score of risk perception, which could be influenced by the presence
of the diabetes disease in the patients’ life, by their previous experiences
using medicines, but also by information received from the patient
organisation. The two groups of patients with diabetes have different
experiences of the disease, but both present higher perception of side
effects related with medicines they use respectively in their diabetes type.
Hence, patient organisations are well positioned to be a source where
patients can obtain reliable information, changing their attitudes and
perceptions about the disease and drug treatments.
Collapse
Affiliation(s)
- Cristiano Matos
- Escola Superior de Tecnologia da Saúde de Coimbra – Coimbra Health School, Rua 5 de Outubro, Coimbra, 3046-854, Portugal
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Florence van Hunsel
- Netherlands Pharmacovigilance Centre Lareb,‘s-Hertogenbosch, the Netherlands
| | | | | | | |
Collapse
|
10
|
Kohno D, Furusawa K, Kitamura T. Anagliptin suppresses diet-induced obesity through enhancing leptin sensitivity and ameliorating hyperphagia in high-fat high-sucrose diet fed mice. Endocr J 2020; 67:523-529. [PMID: 32009061 DOI: 10.1507/endocrj.ej19-0389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Obesity is a major risk factors for type 2 diabetes, and weight loss is beneficial to diabetic patients who are obese or overweight. Dipeptidyl peptidase-4 (DPP-4) inhibitors are anti-diabetic drugs. Although it has been known that the effect of most of the DPP-4 inhibitors on body weight is neutral, several studies suggested that some DPP-4 inhibitors suppressed body weight. Nonetheless, the mechanisms underlying DPP-4 inhibitor-induced weight loss are not fully understood. In this study, the mice fed high-fat high sucrose diet (HFHSD) containing a DPP4 inhibitor, anagliptin, showed reduced food intake and body weight compared to the mice fed non-treated HFHSD, but oxygen consumption and respiratory exchange ratio (RER) were not altered. Sequential administration of leptin suppressed food intake and body weight more apparently in anagliptin treated HFHSD fed mice than non-treated HFHSD fed mice. Oxygen consumption and RER were comparable between anagliptin treated and non-treated mice after leptin administration. The number of phospho STAT3 expressed cells in the arcuate nucleus after leptin administration was increased in anagliptin treated mice compared to non-treated mice. These data suggested that anagliptin ameliorated leptin resistance induced by HFHSD and thereby decreased food intake and body weight. These effects of anagliptin could be beneficial to the treatment of obese diabetic patients.
Collapse
Affiliation(s)
- Daisuke Kohno
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| | - Kenichi Furusawa
- Medical Affairs Department, Sanwa Kagaku Kenkyusho Co., Ltd., Nagoya 461-8631, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| |
Collapse
|
11
|
Nurunnabi M, Ibsen KN, Tanner EEL, Mitragotri S. Reply to Peiretti et al.: Effect of CAGE on fat uptake and food intake. Proc Natl Acad Sci U S A 2020; 117:8249. [PMID: 32184328 PMCID: PMC7165457 DOI: 10.1073/pnas.2001030117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Md Nurunnabi
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902
| | - Kelly N Ibsen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - Eden E L Tanner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| |
Collapse
|
12
|
Ma J, Li C, Wang J, Gu J. Genetically Engineered Escherichia coli Nissle 1917 Secreting GLP-1 Analog Exhibits Potential Antiobesity Effect in High-Fat Diet-Induced Obesity Mice. Obesity (Silver Spring) 2020; 28:315-322. [PMID: 31970910 DOI: 10.1002/oby.22700] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study aimed to investigate the potential antiobesity effect of genetically modified Escherichia coli Nissle 1917 (EcN-GM) in mice fed a high-fat diet (HFD). METHODS The mice were randomly divided into six groups: a normal diet group (ND), a HFD group, a HFD + EcN group, and three HFD + EcN-GM groups. The effects of EcN-GM on body weight, food intake, fat pad and organ weight, and an oral glucose tolerance test were measured, in addition to hepatic biochemistry and histological analysis. The mRNA expression of neuropeptides related to food intake regulation in the hypothalamus was also detected. RESULTS The results showed that EcN-GM decreased body weight, body weight gain, food intake, fat pad weight, and hepatic weight of HFD mice. There were beneficial effects of EcN-GM on blood glucose, hepatic biochemistry, and hepatic histological alterations. A dramatic switch of food intake-regulating gene expression in the hypothalamus was also observed in mice. CONCLUSIONS This work has revealed that a modified live bacterial therapeutic, EcN-GM, has potential beneficial effects on obesity. This effect may be related to the regulating of the neuropeptide expression of energy intake and expenditure in the hypothalamus. This study demonstrates a successful example of engineered EcN-GM as a novel approach for weight management.
Collapse
Affiliation(s)
- Jie Ma
- Department of Research and Development, LiTong Bio-Medical Science, Chengdu, Sichuan, P.R. China
| | - Cuiying Li
- Department of Blood Transfusion, Air Force Characteristic Medical Center, Beijing, P.R. China
| | - Junrui Wang
- Department of Orthopaedics, Chengdu Second People's Hospital, Chengdu, Sichuan, P.R. China
| | - Jianwen Gu
- Department of Neurosurgery, PLA Strategic Support Force Characteristic Medical Center, Beijing, P.R. China
| |
Collapse
|
13
|
Nurunnabi M, Ibsen KN, Tanner EEL, Mitragotri S. Oral ionic liquid for the treatment of diet-induced obesity. Proc Natl Acad Sci U S A 2019; 116:25042-25047. [PMID: 31767747 PMCID: PMC6911186 DOI: 10.1073/pnas.1914426116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
More than 70% of American adults are overweight or obese, a precondition leading to chronic diseases, including diabetes and hypertension. Among other factors, diets with high fat and carbohydrate content have been implicated in obesity. In this study, we hypothesize that the choline and geranate (CAGE) ionic liquid can reduce body weight by decreasing fat absorption through the intestine. In vitro studies performed using docosahexaenoic acid (DHA), a model fat molecule, show that CAGE forms particles 2 to 4 μm in diameter in the presence of fat molecules. Ex vivo permeation studies in rat intestine showed that formation of such large particles reduces intestinal fat absorption. In vivo, CAGE reduces DHA absorption by 60% to 70% compared with controls. DHA administered with CAGE was retained in the intestine even after 6 h. Rats fed with a high-fat diet (HFD) and 10 μL of daily oral CAGE exhibited 12% less body weight gain compared with rats fed with an HFD without CAGE for 30 d. Rats that were given CAGE also ate less food than the control groups. Serum biochemistry and histology results indicated that CAGE was well tolerated by the rats. Collectively, our data support the hypothesis that CAGE interacts with fat molecules to prevent their absorption through intestinal tissue and potentially providing a feeling of satiety. We conclude that CAGE offers an effective means to control body weight and a promising tool to tackle the obesity epidemic.
Collapse
Affiliation(s)
- Md Nurunnabi
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902
| | - Kelly N Ibsen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - Eden E L Tanner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| |
Collapse
|
14
|
Zhang C, Rigbolt K, Petersen SL, Biehl Rudkjær LC, Schwahn U, Fernandez-Cachon ML, Bossart M, Falkenhahn M, Theis S, Hübschle T, Schmidt T, Just Larsen P, Vrang N, Jelsing J. The preprohormone expression profile of enteroendocrine cells following Roux-en-Y gastric bypass in rats. Peptides 2019; 118:170100. [PMID: 31212005 DOI: 10.1016/j.peptides.2019.170100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/15/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Roux-en-Y gastric bypass (RYGB) leads to rapid remission of type 2 diabetes (T2D) and sustained body weight loss, but the underlying molecular mechanisms are still not fully understood. To further elucidate these mechanisms and identify potentially novel preprohormone encoding genes with anti-diabetic and/or anti-obesity properties, we performed a comprehensive analysis of gene expression changes in enteroendocrine cells after RYGB in diet-induced obese (DIO) rats. METHODS The mRNA expression profiles of enteroendocrine cell enriched samples were characterized at 9, 22 and 60 days after RYGB surgery in a DIO rat model. Enteroendocrine cells were identified by chromogranin A immunohistochemistry and isolated by laser capture microdissection (LCM) from five regions covering the full rostro-caudal extension of the gastrointestinal (GI) tract. RNA sequencing and bioinformatic analyses were subsequently applied to identify differentially expressed preprohormone encoding genes. RESULTS From the analysis of enteroendocrine cell mRNA expression profiles, a total of 54 preprohormones encoding genes were found to be differentially regulated at one or more time-points following RYGB. These included well-known RYGB associated preprohormone genes (e.g. Gcg, Cck, Gip, Pyy and Sct) and less characterized genes with putative metabolic effects (e.g. Nmu, Guca2a, Guca2b, Npw and Adm), but also 16 predicted novel preprohormone genes. Among the list of gene transcripts, Npw, Apln and Fam3d were further validated using in situ mRNA hybridization and corresponding peptides were characterized for acute effects on food intake and glucose tolerance in mice. CONCLUSION We present a comprehensive mRNA expression profile of chromogranin A positive enteroendocrine cells following RYGB in rats. The data provides a region-specific characterization of all regulated preprohormone encoding genes in the rat GI tract including 16 not hitherto known. The comprehensive catalogue of preprohormone expression changes may support our understanding of hormone mediated effects of RYGB on diabetes remission and body weight reduction.
Collapse
Affiliation(s)
| | | | | | | | - Uwe Schwahn
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | - Martin Bossart
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | - Stefan Theis
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Afrasyabi S, Marandi SM, Kargarfard M. The effects of high intensity interval training on appetite management in individuals with type 2 diabetes: influenced by participants weight. J Diabetes Metab Disord 2019; 18:107-117. [PMID: 31275881 PMCID: PMC6582123 DOI: 10.1007/s40200-019-00396-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/28/2019] [Indexed: 12/19/2022]
Abstract
Background and purpose The connection between exercise and appetite has ramifications for acute energy balance and weight-management. Research would suggest that exercise training can transiently suppress appetite, particularly in overweight and T2D, healthy-weight individuals. However, the effect of such a transient appetite suppression on subsequent food intake may be restricted. The aim of this thesis was to investigate appetite responses to HIIT in obesity with T2D and to assess the effect of other exercise characteristics, as well as exercise intensity, in mediating these responses especially appetite hormones. Materials and methods Eighty individuals with type 2 diabetes (forty normal and forty obesity weight) performed HIIT trials, all in arandomly divided, in 8 groups (10 in each group) which included, obesity non-diabetic control, obesity diabetic control, normal weight diabetic control, obesity non-diabetic training, obesity diabetic training, normal weight, non-diabetic training, and normal weight diabetic training. Twelve-weeks HIIT sessions (each session of an interval training includes 60 s of high intensity training (85-95% of reserve heart rate)) + running for 60 s at low intensity (55-60% of reserve heart rate) were applied. Blood samples were taken at the beginning and after the fourth, eighth and twelfth week of the training. Data were analyzed using repeated variance analysis and Pearson correlation coefficient. Results The results showed that training reduced ghrelin plasma levels in obese diabetic subjects (P < 0.05). Training has reduced PYY plasma in healthy subjects (non-diabetic) with normal weight (P < 0.05). Training reduced plasma levels of PYY in diabetic patients with normal weight and increased it in obese diabetic and healthy subjects (P < 0.05). Training has increased GLP-1 plasma in obese diabetic and diabetic with normal weight groups (P < 0.05). Training reduced TNF-α in normal (non-diabetic) subjects with normal weight and diabetic and non-diabetic obese subjects. Conclusion Collectively, the studies reported here suggest that appetite hormones differ between lean and obesity participants. The finding also suggested HIIT is more likely to elicit appetite hormones responses in obesity than in lean individuals with type 2 diabetes. Therefore, with caution, it is recommended that the high intensity interval training can be beneficial for these patients.
Collapse
Affiliation(s)
- Saleh Afrasyabi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Hezar Jerib Street, P.O. Box 81746-7344, Isfahan, Iran
| | - Syed Mohamad Marandi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Hezar Jerib Street, P.O. Box 81746-7344, Isfahan, Iran
| | - Mehdi Kargarfard
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Hezar Jerib Street, P.O. Box 81746-7344, Isfahan, Iran
| |
Collapse
|
16
|
Bech EM, Voldum-Clausen K, Pedersen SL, Fabricius K, Rudkjær LC, Hansen HH, Jelsing J. Adrenomedullin and glucagon-like peptide-1 have additive effects on food intake in mice. Biomed Pharmacother 2019; 109:167-173. [DOI: 10.1016/j.biopha.2018.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 01/20/2023] Open
|
17
|
Zhang Z, Hu Y, Xu N, Zhou W, Yang L, Chen R, Yang R, Sun J, Chen H. A New Way for Beta Cell Neogenesis: Transdifferentiation from Alpha Cells Induced by Glucagon-Like Peptide 1. J Diabetes Res 2019; 2019:2583047. [PMID: 31001561 PMCID: PMC6436340 DOI: 10.1155/2019/2583047] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
Recent studies showed that alpha cells, especially immature cells and proalpha cells, might be the precursors of beta cells. Exposure to glucagon-like peptide 1 (GLP1) can ameliorate hyperglycemia in diabetic mice and restore the beta cell mass. In the present study, we adopted single high-dose (60 mg/kg, i.p.) streptozotocin (STZ) to model diabetes mellitus (DM) and randomly assigned short-tail (SD) rats to a normal group, a diabetic group, GLP1 groups (50 μg/kg, 100 μg/kg, and 200 μg/kg), a GLP1 (200 μg/kg) with exendin (9-39) group, and a GLP1 with LY294002 group. We found that the pancreatic insulin-glucagon-positive cell populations increased according to the increase in GLP1 exposure. By contrast, no insulin-amylase-positive cell populations or insulin/pan-cytokeratin cells were observed in the pancreatic sections. The GLP1 receptor antagonist exendin (9-39) and the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) family inhibitor LY294002 not only suppressed protein kinase B (Akt), pancreatic and duodenal homeobox 1 (Pdx1), forkhead box O 1 (FoxO1), and mast cell function-associated antigen A (MafA) mRNA expression but also increased MAFB expression. We concluded that treatment with GLP1 might result in beta cell neogenesis by promoting the transdifferentiation of alpha cells but not by pancreatic acinar cells, ductal cells, or the self-replication of beta cells. The regulation on the GLP1 receptor and its downstream transcription factor PI3K/AKT/FOXO1 pathway, which causes increased pancreatic and duodenal homeobox 1 (Pdx1) and MafA mRNA expression but causes decreased MAFB expression, may be the mechanism involved in this process.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yinghui Hu
- Department of International Medical Center, The First Affiliated Hospital of Xi'an Jiaotong University, Shangxi, China
| | - Ningning Xu
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjun Zhou
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Yang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rongping Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Yang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Sun
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Ojeda-Montes MJ, Gimeno A, Tomas-Hernández S, Cereto-Massagué A, Beltrán-Debón R, Valls C, Mulero M, Pujadas G, Garcia-Vallvé S. Activity and selectivity cliffs for DPP-IV inhibitors: Lessons we can learn from SAR studies and their application to virtual screening. Med Res Rev 2018; 38:1874-1915. [PMID: 29660786 DOI: 10.1002/med.21499] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 02/06/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
The inhibition of dipeptidyl peptidase-IV (DPP-IV) has emerged over the last decade as one of the most effective treatments for type 2 diabetes mellitus, and consequently (a) 11 DPP-IV inhibitors have been on the market since 2006 (three in 2015), and (b) 74 noncovalent complexes involving human DPP-IV and drug-like inhibitors are available at the Protein Data Bank (PDB). The present review aims to (a) explain the most important activity cliffs for DPP-IV noncovalent inhibition according to the binding site structure of DPP-IV, (b) explain the most important selectivity cliffs for DPP-IV noncovalent inhibition in comparison with other related enzymes (i.e., DPP8 and DPP9), and (c) use the information deriving from this activity/selectivity cliff analysis to suggest how virtual screening protocols might be improved to favor the early identification of potent and selective DPP-IV inhibitors in molecular databases (because they have not succeeded in identifying selective DPP-IV inhibitors with IC50 ≤ 100 nM). All these goals are achieved with the help of available homology models for DPP8 and DPP9 and an analysis of the structure-activity studies used to develop the noncovalent inhibitors that form part of some of the complexes with human DPP-IV available at the PDB.
Collapse
Affiliation(s)
- María José Ojeda-Montes
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Aleix Gimeno
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Sarah Tomas-Hernández
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Adrià Cereto-Massagué
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Raúl Beltrán-Debón
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Cristina Valls
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Miquel Mulero
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Gerard Pujadas
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain.,EURECAT, TECNIO, CEICS, Avinguda Universitat 1, Reus, Spain
| | - Santiago Garcia-Vallvé
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain.,EURECAT, TECNIO, CEICS, Avinguda Universitat 1, Reus, Spain
| |
Collapse
|
19
|
Holubová M, Hrubá L, Neprašová B, Majerčíková Z, Lacinová Z, Kuneš J, Maletínská L, Železná B. Prolactin-releasing peptide improved leptin hypothalamic signaling in obese mice. J Mol Endocrinol 2018; 60:85-94. [PMID: 29233862 DOI: 10.1530/jme-17-0171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/11/2017] [Indexed: 11/08/2022]
Abstract
The situation following anti-obesity drug termination is rarely investigated, eventhough a decrease in body weight needs to be sustained. Therefore, this study examined the impact of twice-daily peripheral administration of 5 mg/kg [N-palm-γGlu-Lys11] prolactin-releasing peptide 31 (palm11-PrRP31) in mice with diet-induced obesity (DIO from consuming a high-fat diet) after 28 days of treatment (palm11-PrRP31 group) and after 14 days of peptide treatment followed by 14 days of discontinuation (palm11-PrRP31 + saline group). At the end of the treatment, cumulative food intake, body weight and subcutaneous fat weight/body weight ratio and leptin plasma level were reduced significantly in both the palm11-PrRP31 group and the palm11-PrRP31 + saline group compared to the saline control group. This reduction correlated with significantly increased FOSB, a marker of long-term neuronal potentiation, in the nucleus arcuatus and nucleus tractus solitarii, areas known to be affected by the anorexigenic effect of palm11-PrRP31. Moreover, activation of leptin-related hypothalamic signaling was registered through an increase in phosphoinositide-3-kinase, increased phosphorylation of protein kinase B (PKB, AKT) and enhanced extracellular signal-regulated kinase 1/2 phosphorylation. Besides, lowered apoptotic markers c-JUN N-terminal kinase and c-JUN phosphorylation were registered in the hypothalami of both palm11-PrRP31-treated groups. This study demonstrates that palm11-PrRP31 positively affects feeding and leptin-related hypothalamic signaling, not only after 28 days of treatment but even 14 days after the termination of a 14-day long treatment without the yo-yo effect.
Collapse
Affiliation(s)
- Martina Holubová
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences, Czech Republic
| | - Lucie Hrubá
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences, Czech Republic
| | - Barbora Neprašová
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences, Czech Republic
- Institute of PhysiologyThe Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Majerčíková
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences, Czech Republic
| | - Zdeňka Lacinová
- Institute for Clinical and Experimental MedicinePrague, Czech Republic
- First Faculty of MedicineCharles University in Prague and General University Hospital, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences, Czech Republic
- Institute of PhysiologyThe Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and BiochemistryThe Czech Academy of Sciences, Czech Republic
| |
Collapse
|
20
|
Ferjan S, Janez A, Jensterle M. Dipeptidyl Peptidase-4 Inhibitor Sitagliptin Prevented Weight Regain in Obese Women with Polycystic Ovary Syndrome Previously Treated with Liraglutide: A Pilot Randomized Study. Metab Syndr Relat Disord 2017; 15:515-520. [DOI: 10.1089/met.2017.0095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Simona Ferjan
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
21
|
Duan L, Rao X, Xia C, Rajagopalan S, Zhong J. The regulatory role of DPP4 in atherosclerotic disease. Cardiovasc Diabetol 2017; 16:76. [PMID: 28619058 PMCID: PMC5472996 DOI: 10.1186/s12933-017-0558-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023] Open
Abstract
The increasing prevalence of atherosclerosis has become a worldwide health concern. Although significant progress has been made in the understanding of atherosclerosis pathogenesis, the underlying mechanisms are not fully understood. Recent studies suggest dipeptidyl peptidase-4 (DPP4), a regulator of inflammation and metabolism, may be involved in the development of atherosclerotic diseases. There has been increasing clinical and pre-clinical evidence showing DPP4-incretin axis is involved in cardiovascular disease. Although the cardiovascular outcome of DPP4 inhibition or incretin analogues has been or being evaluated by several large scale clinical trials, the exact role of DPP4 in atherosclerotic diseases is not completely understood. In the current review, we will summarize the recent advances in direct and indirect regulatory role of DPP4 in atherosclerosis.
Collapse
Affiliation(s)
- Lihua Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003 Fujian China
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
| | - Xiaoquan Rao
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
| | - Chang Xia
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
- Department of Microbiology and Immunology, Wuhan Polytechnic University, Wuhan, 430023 Hubei China
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
| | - Jixin Zhong
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
| |
Collapse
|
22
|
Rodgers R. Bench to bedside in appetite research: Lost in translation? Neurosci Biobehav Rev 2017; 76:163-173. [DOI: 10.1016/j.neubiorev.2016.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022]
|
23
|
Bojanowska E, Ciosek J. Can We Selectively Reduce Appetite for Energy-Dense Foods? An Overview of Pharmacological Strategies for Modification of Food Preference Behavior. Curr Neuropharmacol 2016; 14:118-42. [PMID: 26549651 PMCID: PMC4825944 DOI: 10.2174/1570159x14666151109103147] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/19/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022] Open
Abstract
Excessive intake of food, especially palatable and energy-dense carbohydrates and fats, is
largely responsible for the growing incidence of obesity worldwide. Although there are a number of
candidate antiobesity drugs, only a few of them have been proven able to inhibit appetite for palatable
foods without the concurrent reduction in regular food consumption. In this review, we discuss the
interrelationships between homeostatic and hedonic food intake control mechanisms in promoting
overeating with palatable foods and assess the potential usefulness of systemically administered pharmaceuticals that
impinge on the endogenous cannabinoid, opioid, aminergic, cholinergic, and peptidergic systems in the modification of
food preference behavior. Also, certain dietary supplements with the potency to reduce specifically palatable food intake
are presented. Based on human and animal studies, we indicate the most promising therapies and agents that influence the
effectiveness of appetite-modifying drugs. It should be stressed, however, that most of the data included in our review
come from preclinical studies; therefore, further investigations aimed at confirming the effectiveness and safety of the
aforementioned medications in the treatment of obese humans are necessary.
Collapse
Affiliation(s)
- Ewa Bojanowska
- Department of Behavioral Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, 60 Narutowicza Street, 90-136 Lodz, Poland.
| | | |
Collapse
|
24
|
Dipeptidyl peptidase-4 inhibition with linagliptin prevents western diet-induced vascular abnormalities in female mice. Cardiovasc Diabetol 2016; 15:94. [PMID: 27391040 PMCID: PMC4938903 DOI: 10.1186/s12933-016-0414-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Vascular stiffening, a risk factor for cardiovascular disease, is accelerated, particularly in women with obesity and type 2 diabetes. Preclinical evidence suggests that dipeptidylpeptidase-4 (DPP-4) inhibitors may have cardiovascular benefits independent of glycemic lowering effects. Recent studies show that consumption of a western diet (WD) high in fat and simple sugars induces aortic stiffening in female C57BL/6J mice in advance of increasing blood pressure. The aims of this study were to determine whether administration of the DPP-4 inhibitor, linagliptin (LGT), prevents the development of aortic and endothelial stiffness induced by a WD in female mice. METHODS C56Bl6/J female mice were fed a WD for 4 months. Aortic stiffness and ex vivo endothelial stiffness were evaluated by Doppler pulse wave velocity (PWV) and atomic force microscopy (AFM), respectively. In addition, we examined aortic vasomotor responses and remodeling markers via immunohistochemistry. Results were analyzed via 2-way ANOVA, p < 0.05 was considered as statistically significant. RESULTS Compared to mice fed a control diet (CD), WD-fed mice exhibited a 24 % increase in aortic PWV, a five-fold increase in aortic endothelial stiffness, and impaired endothelium-dependent vasodilation. In aorta, these findings were accompanied by medial wall thickening, adventitial fibrosis, increased fibroblast growth factor 23 (FGF-23), decreased Klotho, enhanced oxidative stress, and endothelial cell ultrastructural changes, all of which were prevented with administration of LGT. CONCLUSIONS The present findings support the notion that DPP-4 plays a role in development of WD-induced aortic stiffening, vascular oxidative stress, endothelial dysfunction, and vascular remodeling. Whether, DPP-4 inhibition could be a therapeutic tool used to prevent the development of aortic stiffening and the associated cardiovascular complications in obese and diabetic females remains to be elucidated.
Collapse
|
25
|
João AL, Reis F, Fernandes R. The incretin system ABCs in obesity and diabetes - novel therapeutic strategies for weight loss and beyond. Obes Rev 2016; 17:553-72. [PMID: 27125902 DOI: 10.1111/obr.12421] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 02/06/2023]
Abstract
Incretins are gastrointestinal-derived hormones released in response to a meal playing a key role in the regulation of postprandial secretion of insulin (incretin effect) and glucagon by the pancreas. Both incretins, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (GLP-1), have several other actions by peripheral and central mechanisms. GLP-1 regulates body weight by inhibiting appetite and delaying gastric, emptying actions that are dependent on central nervous system GLP-1 receptor activation. Several other hormones and gut peptides, including leptin and ghrelin, interact with GLP-1 to modulate appetite. GLP-1 is rapidly degraded by the multifunctional enzyme dipeptidyl peptidase-4 (DPP-4). DPP-4 is involved in adipose tissue inflammation, which is associated with insulin resistance and diabetes progression, being a common pathophysiological mechanism in obesity-related complications. Furthermore, the incretin system appears to provide the basis for understanding the high weight loss efficacy of bariatric surgery, a widely used treatment for obesity, often in association with diabetes. The present review brings together new insights into obesity pathogenesis, integrating GLP-1 and DPP-4 in the complex interplay between obesity and inflammation, namely, in diabetic patients. This in turn will provide the basis for novel incretin-based therapeutic strategies for obesity and diabetes with promising benefits in addition to weight loss. © 2016 World Obesity.
Collapse
Affiliation(s)
- A L João
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine and Center for Neuroscience and Cell Biology - Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal
| | - F Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine and Center for Neuroscience and Cell Biology - Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal
| | - R Fernandes
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine and Center for Neuroscience and Cell Biology - Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
26
|
Zhang L, Ding L, Tang C, Li Y, Yang L. Liraglutide-loaded multivesicular liposome as a sustained-delivery reduces blood glucose in SD rats with diabetes. Drug Deliv 2016; 23:3358-3363. [PMID: 27099000 DOI: 10.1080/10717544.2016.1180723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Subcutaneous liraglutide-loaded multivesicular liposomes (Lrg-MVLs) were developed as a sustained drug-delivery system for treating diabetes and their properties were characterized. The Lrg-MVLs prepared using a two-step water-in-oil-in-water double emulsification process had a spherical appearance with a mean diameter of 6.69 μm and an encapsulation efficiency of 82.23 ± 4.78% without any initial burst release. Their pharmacodynamics (PD) and pharmacokinetics (PK) were also studied after a single subcutaneous administration to Sprague-Dawley (SD) rats with diabetes. The PD results demonstrated that Lrg-MVLs presented sustained glucose-lowering effects for nearly a week, while the pharmacokinetic parameters showed that the plasma liraglutide concentration of the designed preparation produced Cmax of 81.979 ± 12.140 pg/ml and an MRT0-t of 88.224 ± 3.893 h. Furthermore, retention of Lrg-MVLs at the injection site was studied semiquantitatively by an in vivo imaging system, which can be used to evaluate the drug release from MVLs in vivo. In conclusion, MVLs are a promising carrier for liraglutide and Lrg-MVLs deserve further study for the treatment of diabetes.
Collapse
Affiliation(s)
- Lixue Zhang
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , China
| | - Lei Ding
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , China
| | - Chengcheng Tang
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , China
| | - Yang Li
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , China
| | - Li Yang
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
27
|
Modulation of myocardial injury and collagen deposition following ischaemia-reperfusion by linagliptin and liraglutide, and both together. Clin Sci (Lond) 2016; 130:1353-62. [PMID: 27129181 DOI: 10.1042/cs20160061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022]
Abstract
Studies have indicated that dipeptidyl peptidase-4 (DPP-4) inhibitors and glucagon-like peptide-1 (GLP-1) agonists reduce infarct size after myocardial ischaemia. Whether these agents modify cardiac remodelling after ischaemia is unclear. Furthermore, it is not known if combination of the two types of drugs is superior to either agent alone. We investigated the modulatory effect of the DPP-4 inhibitor linagliptin alone, the GLP-1 activator liraglutide alone, or the two agents together on myocardial infarct size, left ventricular contractile function and cardiac remodelling signals after a brief period of left coronary artery (LCA) occlusion. C57BL/6 mice were treated with vehicle, the DPP-4 inhibitor linagliptin, the GLP-1 activator liraglutide, or both agents together for 5 days, and then subjected to LCA occlusion (1 h) and reperfusion (3 h). Ischaemia-reperfusion increased reactive oxygen species (ROS) generation and expression of NADPH oxidase (p47(phox), p22(phox) and gp91(phox) subtypes), collagens, fibronectin and proinflammatory cytokines (interleukin 6, tumour necrosis factor α and monocyte chemoattractant protein-1) in the LCA-supplied regions. Pre-treatment with linagliptin or liraglutide reduced infarct size, protected cardiomyocytes from injury and preserved cardiac contractile function in a similar fashion. It is interesting that profibrotic (collagen deposition) signals were expressed soon after ischaemia-reperfusion. Both linagliptin and liraglutide suppressed ROS generation, NADPH oxidase and proinflammatory signals, and reduced collagen deposition. Addition of linagliptin or liraglutide had no significant additive effect above and beyond that of liraglutide and linagliptin given alone. In conclusion, linagliptin and liraglutide can improve cardiac contractile function and indices of cardiac remodelling, which may be related to their role in inhibition of ROS production and proinflammatory cytokines after ischaemia.
Collapse
|
28
|
Barkholt P, Pedersen PJ, Hay-Schmidt A, Jelsing J, Hansen HH, Vrang N. Alterations in hypothalamic gene expression following Roux-en-Y gastric bypass. Mol Metab 2016; 5:296-304. [PMID: 27069869 PMCID: PMC4811984 DOI: 10.1016/j.molmet.2016.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE The role of the central nervous system in mediating metabolic effects of Roux-en-Y gastric bypass (RYGB) surgery is poorly understood. Using a rat model of RYGB, we aimed to identify changes in gene expression of key hypothalamic neuropeptides known to be involved in the regulation of energy balance. METHODS Lean male Sprague-Dawley rats underwent either RYGB or sham surgery. Body weight and food intake were monitored bi-weekly for 60 days post-surgery. In situ hybridization mRNA analysis of hypothalamic AgRP, NPY, CART, POMC and MCH was applied to RYGB and sham animals and compared with ad libitum fed and food-restricted rats. Furthermore, in situ hybridization mRNA analysis of dopaminergic transmission markers (TH and DAT) was applied in the midbrain. RESULTS RYGB surgery significantly reduced body weight and intake of a highly palatable diet but increased chow consumption compared with sham operated controls. In the arcuate nucleus, RYGB surgery increased mRNA levels of orexigenic AgRP and NPY, whereas no change was observed in anorexigenic CART and POMC mRNA levels. A similar pattern was seen in food-restricted versus ad libitum fed rats. In contrast to a significant increase of orexigenic MCH mRNA levels in food-restricted animals, RYGB did not change MCH expression in the lateral hypothalamus. In the VTA, RYGB surgery induced a reduction in mRNA levels of TH and DAT, whereas no changes were observed in the substantia nigra relative to sham surgery. CONCLUSION RYGB surgery increases the mRNA levels of hunger-associated signaling markers in the rat arcuate nucleus without concomitantly increasing downstream MCH expression in the lateral hypothalamus, suggesting that RYGB surgery puts a brake on orexigenic hypothalamic output signals. In addition, down-regulation of midbrain TH and DAT expression suggests that altered dopaminergic activity also contributes to the reduced intake of palatable food in RYGB rats.
Collapse
Affiliation(s)
- Pernille Barkholt
- Gubra, Agern Alle 1, 2970 Hørsholm, Denmark; Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| | | | - Anders Hay-Schmidt
- Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | | | | | |
Collapse
|
29
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
30
|
Singh AK, Singh R. Combination therapy of sodium-glucose co-transporter-2 inhibitors and dipeptidyl peptidase-4 inhibitors in type 2 diabetes: rationale and evidences. Expert Rev Clin Pharmacol 2015; 9:229-240. [PMID: 26589238 DOI: 10.1586/17512433.2016.1123616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
No single antidiabetic agent can correct all the pathophysiologic defects manifested in type 2 diabetes mellitus (T2DM) and, therefore, multiple agents are often required to achieve optimal glycemic control. Combination therapies, having different mechanisms of action, not only have the potential to complement their action, but may possess the properties to counter the undesired compensatory response. Recent finding suggests that sodium-glucose co-transporter-2 inhibitors (SGLT2i) increase endogenous glucose production (EGP) from liver, due to the increase in glucagon which may offset its glucose-lowering potential. In contrast, dipeptidyl peptidase-4 inhibitors (DPP4i) decrease glucagon and EGP. Especially in the light of this finding, combination therapies with SGLT2i and DPP4i are particularly appealing, and are expected to produce an additive effect. Indeed, studies find no drug-drug interaction between SGLT2i and DPP4i. Moreover, significant reduction in glycated hemoglobin has also been observed. This article aims to review the efficacy and safety of combination therapy of SGLT2i and DPP4i in T2DM.
Collapse
Affiliation(s)
| | - Ritu Singh
- a G.D. Hospital & Diabetes Institute , Kolkata , India
| |
Collapse
|
31
|
Dalbøge LS, Pedersen PJ, Hansen G, Fabricius K, Hansen HB, Jelsing J, Vrang N. A Hamster Model of Diet-Induced Obesity for Preclinical Evaluation of Anti-Obesity, Anti-Diabetic and Lipid Modulating Agents. PLoS One 2015; 10:e0135634. [PMID: 26266945 PMCID: PMC4534139 DOI: 10.1371/journal.pone.0135634] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/23/2015] [Indexed: 01/01/2023] Open
Abstract
Aim Unlike rats and mice, hamsters develop hypercholesterolemia, and hypertriglyceridemia when fed a cholesterol-rich diet. Because hyperlipidemia is a hallmark of human obesity, we aimed to develop and characterize a novel diet-induced obesity (DIO) and hypercholesterolemia Golden Syrian hamster model. Methods and Results Hamsters fed a highly palatable fat- and sugar-rich diet (HPFS) for 12 weeks showed significant body weight gain, body fat accumulation and impaired glucose tolerance. Cholesterol supplementation to the diet evoked additional hypercholesterolemia. Chronic treatment with the GLP-1 analogue, liraglutide (0.2 mg/kg, SC, BID, 27 days), normalized body weight and glucose tolerance, and lowered blood lipids in the DIO-hamster. The dipeptidyl peptidase-4 (DPP-4) inhibitor, linagliptin (3.0 mg/kg, PO, QD) also improved glucose tolerance. Treatment with peptide YY3-36 (PYY3-36, 1.0 mg/kg/day) or neuromedin U (NMU, 1.5 mg/kg/day), continuously infused via a subcutaneous osmotic minipump for 14 days, reduced body weight and energy intake and changed food preference from HPFS diet towards chow. Co-treatment with liraglutide and PYY3-36 evoked a pronounced synergistic decrease in body weight and food intake with no lower plateau established. Treatment with the cholesterol uptake inhibitor ezetimibe (10 mg/kg, PO, QD) for 14 days lowered plasma total cholesterol with a more marked reduction of LDL levels, as compared to HDL, indicating additional sensitivity to cholesterol modulating drugs in the hyperlipidemic DIO-hamster. In conclusion, the features of combined obesity, impaired glucose tolerance and hypercholesterolemia in the DIO-hamster make this animal model useful for preclinical evaluation of novel anti-obesity, anti-diabetic and lipid modulating agents.
Collapse
|
32
|
Moraes RM, Lima GMG, Oliveira FE, Brito ACV, Pereira RC, Oliveira LD, Barros PP, Franco GCN, Anbinder AL. Exenatide and Sitagliptin Decrease Interleukin 1β, Matrix Metalloproteinase 9, and Nitric Oxide Synthase 2 Gene Expression But Does Not Reduce Alveolar Bone Loss in Rats With Periodontitis. J Periodontol 2015. [PMID: 26205746 DOI: 10.1902/jop.2015.150278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND New drugs for the treatment of diabetes, glucagon-like peptide-1 (GLP-1) receptor agonists and inhibitors of dipeptidyl peptidase-4 (DPP-4) have shown pleiotropic effects on bone metabolism and anti-inflammatory properties. The aim of this study is to evaluate the effects of exenatide (GLP-1 agonist) and sitagliptin (DPP-4 inhibitor) during periodontitis induction by ligature insertion in rats. METHODS Forty rats were divided into four groups: 1) animals with induced periodontitis that received exenatide (EG); 2) animals with induced periodontitis that received sitagliptin (SG); 3) animals with induced periodontitis and without drug treatment (LG); and 4) animals without induced periodontitis and without drug treatment (controls). The drugs were administered for 28 days. On the day the animals were sacrificed, blood was collected for analysis of glucose and DPP-4 levels. The gene expressions of prostaglandin-endoperoxide synthase 2, tissue inhibitor of metalloproteinase 1, Dpp4, nitric oxide synthase 2 (Nos2), interleukin 1β (Il1b), and matrix metalloproteinase 9 (Mmp9) in the gingiva; support and alveolar bone loss; connective tissue attachment; and the quantity of gingival collagen were evaluated. RESULTS Exenatide and sitagliptin treatments have led to a lower percentage of weight gain but did not influence glycemia. Sitagliptin reduced the serum concentration of DPP-4. Interestingly, although the gene expression profile has revealed a downregulation of Mmp9, Nos2, and Il1b in both EG and SG compared to LG, a significant protective effect was not observed on alveolar bone and collagen tissue in this model. CONCLUSION Regardless of the reduction of the expression of Il1b, Nos2, and Mmp9, the drugs were not effective in the stabilization or reduction of alveolar bone loss and collagen degradation in rats.
Collapse
Affiliation(s)
- Renata M Moraes
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, UNESP - Univ Estadual Paulista (State University of São Paulo), São José dos Campos, São Paulo, Brazil
| | - Gabriela M G Lima
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, UNESP - Univ Estadual Paulista (State University of São Paulo), São José dos Campos, São Paulo, Brazil
| | - Felipe E Oliveira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, UNESP - Univ Estadual Paulista (State University of São Paulo), São José dos Campos, São Paulo, Brazil
| | - Ana Carolina V Brito
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, UNESP - Univ Estadual Paulista (State University of São Paulo), São José dos Campos, São Paulo, Brazil
| | - Rodrigo C Pereira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, UNESP - Univ Estadual Paulista (State University of São Paulo), São José dos Campos, São Paulo, Brazil
| | - Luciane D Oliveira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, UNESP - Univ Estadual Paulista (State University of São Paulo), São José dos Campos, São Paulo, Brazil
| | - Patrícia P Barros
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, UNESP - Univ Estadual Paulista (State University of São Paulo), São José dos Campos, São Paulo, Brazil
| | - Gilson C N Franco
- Department of General Biology, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Ana Lia Anbinder
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, UNESP - Univ Estadual Paulista (State University of São Paulo), São José dos Campos, São Paulo, Brazil
| |
Collapse
|
33
|
|