1
|
Sałat K, Zaręba P, Awtoniuk M, Sałat R. Naturally Inspired Molecules for Neuropathic Pain Inhibition-Effect of Mirogabalin and Cebranopadol on Mechanical and Thermal Nociceptive Threshold in Mice. Molecules 2023; 28:7862. [PMID: 38067591 PMCID: PMC10708129 DOI: 10.3390/molecules28237862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Neuropathic pain is drug-resistant to available analgesics and therefore novel treatment options for this debilitating clinical condition are urgently needed. Recently, two drug candidates, namely mirogabalin and cebranopadol have become a subject of interest because of their potential utility as analgesics for chronic pain treatment. However, they have not been investigated thoroughly in some types of neuropathic pain, both in humans and experimental animals. METHODS This study used the von Frey test, the hot plate test and the two-plate thermal place preference test supported by image analysis and machine learning to assess the effect of intraperitoneal mirogabalin and subcutaneous cebranopadol on mechanical and thermal nociceptive threshold in mouse models of neuropathic pain induced by streptozotocin, paclitaxel and oxaliplatin. RESULTS Mirogabalin and cebranopadol effectively attenuated tactile allodynia in models of neuropathic pain induced by streptozotocin and paclitaxel. Cebranopadol was more effective than mirogabalin in this respect. Both drugs also elevated the heat nociceptive threshold in mice. In the oxaliplatin model, cebranopadol and mirogabalin reduced cold-exacerbated pain. CONCLUSIONS Since mirogabalin and cebranopadol are effective in animal models of neuropathic pain, they seem to be promising novel therapies for various types of neuropathic pain in patients, in particular those who are resistant to available analgesics.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University, 9 Medyczna St., 30-688 Krakow, Poland
| | - Paula Zaręba
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University, 9 Medyczna St., 30-688 Krakow, Poland;
| | - Michał Awtoniuk
- Institute of Mechanical Engineering, Warsaw University of Life Sciences, 166 Nowoursynowska St., 02-787 Warsaw, Poland;
| | - Robert Sałat
- Faculty of Electrical and Computer Engineering, Cracow University of Technology, 24 Warszawska St., 31-155 Krakow, Poland;
| |
Collapse
|
2
|
Xiao J, Niu J, Xu B, Zhang R, Zhang M, Zhang N, Xu K, Zhang Q, Chen D, Shi Y, Fang Q, Li N. NOP01, a NOP receptor agonist, produced potent and peripherally restricted antinociception in a formalin-induced mouse orofacial pain model. Neuropeptides 2022; 91:102212. [PMID: 34826712 DOI: 10.1016/j.npep.2021.102212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
Orofacial pain is one of the most common medical challenges. A preliminary report indicates that the NOP receptor may act as a therapeutic target in orofacial pain. Previous studies have shown that [(pF)Phe4, Aib7, Aib11, Arg14, Lys15]N/OFQ-NH2 (NOP01) functions as a potent NOP receptor peptide agonist. This work aims to investigate the antinociception of NOP01 and its possible action mechanisms in a formalin-induced mouse orofacial pain model at different levels. Our results demonstrated that local, intraperitoneal (i.p.) or intrathecal (i.t.) injection of NOP01 produced dose-related antinociception in both phases of the formalin pain, which could be inhibited by the NOP receptor antagonist but not the classical opioid receptor antagonist. Furthermore, the antinociception induced by systemic NOP01 was blocked by local but not spinal pretreatment with the NOP receptor antagonist, suggesting the involvement of the peripheral NOP receptor in NOP01-induced systemic antinociception. Moreover, local injection of NOP01 markedly suppressed the expression of c-Fos protein induced by formalin in ipsilateral trigeminal ganglion (TG) neurons. In conclusion, this work suggests that NOP01 exerts significant antinociception on orofacial pain at both peripheral and spinal levels via the NOP receptor. Notably, NOP01 cannot readily penetrate the blood-brain barrier. Thus, NOP01 may behave as a potential compound for developing peripherally restricted analgesics.
Collapse
Affiliation(s)
- Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Jiandong Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Nan Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Yonghang Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China.
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China.
| |
Collapse
|
3
|
Toll L, Cippitelli A, Ozawa A. The NOP Receptor System in Neurological and Psychiatric Disorders: Discrepancies, Peculiarities and Clinical Progress in Developing Targeted Therapies. CNS Drugs 2021; 35:591-607. [PMID: 34057709 PMCID: PMC8279133 DOI: 10.1007/s40263-021-00821-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 02/01/2023]
Abstract
The nociceptin opioid peptide (NOP) receptor and its endogenous ligand nociceptin/orphanin FQ (N/OFQ) are the fourth members of the opioid receptor and opioid peptide families. Although they have considerable sequence homology to the other family members, they are not considered opioid per se because they do not have pharmacological profiles similar to the other family members. The number of NOP receptors in the brain is higher than the other family members, and NOP receptors can be found throughout the brain. Because of the widespread distribution of NOP receptors, N/OFQ and other peptide and small molecule agonists and antagonists have extensive CNS activities. Originally thought to be anti-opioid, NOP receptor agonists block some opioid activities, potentiate others, and modulate other activities not affected by traditional opiates. Because the effect of receptor activation can be dependent upon site of administration, state of the animal, and other variables, the study of NOP receptors has been fraught with contradictions and inconsistencies. In this article, the actions and controversies pertaining to NOP receptor activation and inhibition are discussed with respect to CNS disorders including pain (acute, chronic, and migraine), drug abuse, anxiety and depression. In addition, progress towards clinical use of NOP receptor-directed compounds is discussed.
Collapse
Affiliation(s)
- Lawrence Toll
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA.
| | - Andrea Cippitelli
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Akihiko Ozawa
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| |
Collapse
|
4
|
Sliepen SH, Korioth J, Christoph T, Tzschentke TM, Diaz‐delCastillo M, Heegaard A, Rutten K. The nociceptin/orphanin FQ receptor system as a target to alleviate cancer-induced bone pain in rats: Model validation and pharmacological evaluation. Br J Pharmacol 2021; 178:1995-2007. [PMID: 31724155 PMCID: PMC8246843 DOI: 10.1111/bph.14899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/13/2019] [Accepted: 09/27/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Cancer-induced bone pain remains inadequately controlled, and current standard of care analgesics is accompanied by several side effects. Nociceptin/orphanin FQ peptide (NOP) receptor agonists have demonstrated broad analgesic properties in rodent neuropathic and inflammatory pain models. Here, we investigate the analgesic potential of NOP receptor activation in a rodent cancer-induced bone pain model. EXPERIMENTAL APPROACH Model validation by intratibial inoculation in male Sprague Dawley rats was performed with varying MRMT-1/Luc2 cell quantities (0.5-1.5 × 106 ·ml-1 ) and a behavioural battery (>14 days post-surgery) including evoked and non-evoked readouts: paw pressure test, cold plate, von Frey, open field, and weight distribution. Anti-allodynic potential of the endogenous NOP receptor ligand nociceptin (i.t.) and NOP receptor agonist Ro65-6570 ( i.p.) was tested using von Frey filaments, followed by a combination experiment with Ro65-6570 and the NOP receptor antagonist J-113397 (i.p.). Plasma cytokine levels and NOP receptor gene expression in dorsal root ganglion (DRG, L4-L6) and bone marrow were examined. KEY RESULTS Inoculation with 1.5 × 106 ·ml-1 of MRMT-1/Luc2 cells resulted in a robust and progressive pain-related phenotype. Nociceptin and Ro65-6570 treatment inhibited cancer-induced mechanical allodynia. J-113397 selectively antagonized the effect of Ro65-6570. MRMT-1/Luc2-bearing animals demonstrated elevated plasma cytokine levels of IL-4, IL-5, IL-6 and IL-10 plus unaltered NOP-r gene expression in DRG and reduced expression in bone marrow. CONCLUSION AND IMPLICATIONS Nociceptin and Ro65-6570 selectively and dose-dependently reversed cancer-induced bone pain-like behaviour. The NOP receptor system may be a potential target for cancer-induced bone pain treatment. LINKED ARTICLES This article is part of a themed issue on The molecular pharmacology of bone and cancer-elated bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.
Collapse
Affiliation(s)
- Sonny H.J. Sliepen
- Grünenthal InnovationGrünenthal GmbHAachenGermany
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | | | | | | | - Marta Diaz‐delCastillo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Anne‐Marie Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kris Rutten
- Grünenthal InnovationGrünenthal GmbHAachenGermany
| |
Collapse
|
5
|
Abstract
The management of pain, particularly chronic pain, is still an area of medical need. In this context, opioids remain a gold standard for the treatment of pain. However, significant side effects, mainly of central origin, limit their clinical use. Here, we review recent progress to improve the therapeutic and safety profiles of opioids for pain management. Characterization of peripheral opioid-mediated pain mechanisms have been a key component of this process. Several studies identified peripheral µ, δ, and κ opioid receptors (MOR, DOR, and KOR, respectively) and nociceptin/orphanin FQ (NOP) receptors as significant players of opioid-mediated antinociception, able to achieve clinically significant effects independently of any central action. Following this, particularly from a medicinal chemistry point of view, main efforts have been directed towards the peripheralization of opioid receptor agonists with the objective of optimizing receptor activity and minimizing central exposure and the associated undesired effects. These activities have allowed the characterization of a great variety of compounds and investigational drugs that show low central nervous system (CNS) penetration (and therefore a reduced side effect profile) yet maintaining the desired opioid-related peripheral antinociceptive activity. These include highly hydrophilic/amphiphilic and massive molecules unable to easily cross lipid membranes, substrates of glycoprotein P (a extrusion pump that avoids CNS penetration), nanocarriers that release the analgesic agent at the site of inflammation and pain, and pH-sensitive opioid agonists that selectively activate at those sites (and represent a new pharmacodynamic paradigm). Hopefully, patients with pain will benefit soon from the incorporation of these new entities.
Collapse
|
6
|
Kiguchi N, Ding H, Ko MC. Therapeutic potentials of NOP and MOP receptor coactivation for the treatment of pain and opioid abuse. J Neurosci Res 2020; 100:191-202. [PMID: 32255240 DOI: 10.1002/jnr.24624] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/26/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022]
Abstract
Following the identification of the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) as an endogenous ligand for the NOP receptor, ample evidence has revealed unique functional profiles of the N/OFQ-NOP receptor system. NOP receptors are expressed in key neural substrates involved in pain and reward modulation. In nonhuman primates (NHPs), NOP receptor activation effectively exerts antinociception and anti-hypersensitivity at the spinal and supraspinal levels. Moreover, NOP receptor activation inhibits dopaminergic transmission and synergistically enhances mu-opioid peptide (MOP) receptor-mediated analgesia. In this article, we have discussed the functional profiles of ligands with dual NOP and MOP receptor agonist activities and highlight their optimal functional efficacy for pain relief and drug abuse treatment. Through coactivation of NOP and MOP receptors, bifunctional NOP/MOP receptor "partial" agonists (e.g., AT-121, BU08028, and BU10038) reveal a wider therapeutic window with fewer side effects. These newly developed ligands potently induce antinociception without MOP receptor agonist-associated side effects such as abuse potential, respiratory depression, itching sensation, and physical dependence. In addition, in both rodent and NHP models, bifunctional NOP/MOP receptor agonists can attenuate reward processing and/or the reinforcing effects of opioids and other abused drugs. While a mixed NOP/opioid receptor "full" agonist cebranopadol is undergoing clinical trials, bifunctional NOP/MOP "partial" agonists exhibit promising therapeutic profiles in translational NHP models for the treatment of pain and opioid abuse. This class of drugs demonstrates the therapeutic advantage of NOP and MOP receptor coactivation, indicating a greater potential for future development.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Huiping Ding
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mei-Chuan Ko
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,W.G. Hefner Veterans Affairs Medical Center, Salisbury, NC, USA
| |
Collapse
|
7
|
Berberine ameliorates diabetic neuropathic pain in a rat model: involvement of oxidative stress, inflammation, and μ-opioid receptors. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1141-1149. [DOI: 10.1007/s00210-019-01659-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/26/2019] [Indexed: 01/12/2023]
|
8
|
Abstract
The development of nonpeptide systemically active small-molecule NOP-targeted ligands has contributed tremendously to validating the NOP receptor as a promising target for therapeutics. Although a NOP-targeted compound is not yet approved for clinical use, a few NOP ligands are in clinical trials for various indications. Both successful and failed human clinical trials with NOP ligands provide opportunities for rational development of new and improved NOP-targeted compounds. A few years after the discovery of the NOP receptor in 1994, and its de-orphanization upon discovery of the endogenous peptide nociceptin/orphanin FQ (N/OFQ) in 1995, there was a significant effort in the pharmaceutical industry to discover nonpeptide NOP ligands from hits obtained from high-throughput screening campaigns of compound libraries. Depending on the therapeutic indication to be pursued, NOP agonists and antagonists were discovered, and some were optimized as clinical candidates. Advances such as G protein-coupled receptor (GPCR) structure elucidation, functional selectivity in ligand-driven GPCR activation, and multi-targeted ligands provide new scope for the rational design of novel NOP ligands fine-tuned for successful clinical translation. This article reviews the field of nonpeptide NOP ligand drug design in the context of these exciting developments and highlights new optimized nonpeptide NOP ligands possessing interesting functional profiles, which are particularly attractive for several unmet clinical applications involving NOP receptor pharmacomodulation.
Collapse
|
9
|
Adeghate E, Saeed Z, D'Souza C, Tariq S, Kalász H, Tekes K, Adeghate EA. Effect of nociceptin on insulin release in normal and diabetic rat pancreas. Cell Tissue Res 2018; 374:517-529. [PMID: 30112574 DOI: 10.1007/s00441-018-2903-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 07/25/2018] [Indexed: 01/08/2023]
Abstract
Nociceptin (NC), also known as Orphanin FQ, is a brain peptide involved in the regulation of pain, but its role in the endocrine pancreas is poorly understood. The present study examines the pattern of distribution of NC and its effect on insulin and glucagon secretion after the onset of diabetes mellitus (DM). Male Wistar rats weighing 150-200 g were made diabetic with streptozotocin (60 mg/kg body weight, intraperitoneally). Four weeks after the induction of DM, pancreatic tissues were retrieved and processed for immunofluorescence, immunoelectron microscopy, and insulin and glucagon secretion. Isolated islets from non-diabetic and diabetic rats were used to determine the effect of NC on insulin release. NC was discerned in islet cells of non-diabetic control and diabetic rat pancreata. NC co-localized only with insulin in pancreatic beta cells. NC did not co-localize with either glucagon or somatostatin or pancreatic polypeptide. The number of NC-positive cells was markedly (p < 0.001) reduced after the onset of DM. Electron microscopy study showed that NC is located with insulin in the same secretory granules of the beta cells of both non-diabetic and diabetic rat pancreas. NC inhibits insulin release markedly (p < 0.05) from pancreatic tissue fragments of non-diabetic and diabetic rats. In contrast, NC at 10-12 M stimulates insulin release in isolated islets of DM rats. In conclusion, NC co-localizes with insulin only in the islet of Langerhans. The co-localization of NC with insulin suggests a role for NC in the regulation of pancreatic beta cell function.
Collapse
Affiliation(s)
- Ernest Adeghate
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | - Crystal D'Souza
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Huba Kalász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Kornélia Tekes
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | - Ernest A Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
10
|
Pan B, Schröder W, Jostock R, Schwartz M, Rosson G, Polydefkis M. Nociceptin/orphanin FQ opioid peptide-receptor expression in pachyonychia congenita. J Peripher Nerv Syst 2018; 23:241-248. [PMID: 30255608 DOI: 10.1111/jns.12288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/16/2022]
Abstract
Nociceptin/orphanin FQ opioid peptide (NOP)-receptor (NOP-R) is a member of the opioid receptor family. NOP-R activation has demonstrated analgesic effects in preclinical pain models without the addiction risks associated with other opiate targets. Pachyonychia congenita (PC) is a palmoplantar keratoderma characterized by neuropathic pain in affected skin. A cohort of KRT6A gene mutation PC patients with no other explanation for their neuropathic pain offered a unique opportunity to assess potential of NOP-R as a therapeutic target. Plantar biopsies from 10 PC patients and 10 age/gender matched controls were performed at the ball (PC-affected) and the arch (PC-unaffected) of the foot. NOP-R expression was assessed by immunohistochemistry. Localization of NOP-R in subsets of epidermal nerve fibers was investigated using the pan-neuronal marker PGP9.5, markers for unmyelinated peptidergic fibers (calcitonin gene-related peptide [CGRP] and substance P [SP]), as well as for myelinated Aδ and Aβ fibers (neurofilament H [NFH]). Robust NOP-R expression was detected in epidermal keratinocytes and in a subset of PGP9.5+ fibers in both epidermis and dermis, confirmed by western blot and absorption experiments with NOP-R peptide. NOP-R expression in keratinocytes was significantly reduced in PC-affected plantar skin compared with PC-unaffected skin. In addition, NOP-R expression occurred in dermal NFH+ myelinated fibers in all groups, although few CGRP+ fibers co-expressed NOP-R. Furthermore, most SP+ fibers also co-expressed NOP-R. These findings indicate that NOP-R is expressed on epidermal keratinocytes, as well as on epidermal and dermal nerve fibers and has potential as a promising target to treat neuropathic pain in PC.
Collapse
Affiliation(s)
- Baohan Pan
- Neurology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Wolfgang Schröder
- Translational Science & Intelligence, Grünenthal GmbH, Aachen, Germany
| | - Ruth Jostock
- In-Vitro Biology & Biomarker Research Unit, Grünenthal GmbH, Aachen, Germany
| | - Mary Schwartz
- Pachyonychia Congenita Project, Salt Lake City, Utah
| | - Gedge Rosson
- Department of Plastic & Reconstructive Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
11
|
Tzschentke TM, Linz K, Frosch S, Christoph T. Antihyperalgesic, Antiallodynic, and Antinociceptive Effects of Cebranopadol, a Novel Potent Nociceptin/Orphanin FQ and Opioid Receptor Agonist, after Peripheral and Central Administration in Rodent Models of Neuropathic Pain. Pain Pract 2017; 17:1032-1041. [PMID: 28112482 DOI: 10.1111/papr.12558] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/23/2016] [Accepted: 12/10/2016] [Indexed: 12/14/2022]
Abstract
Cebranopadol is a novel and highly potent analgesic acting via nociceptin/orphanin FQ peptide (NOP) and opioid receptors. Since NOP and opioid receptors are expressed in the central nervous system as well as in the periphery, this study addressed the question of where cebranopadol exerts its effects in animal models of chronic neuropathic pain. Mechanical hypersensitivity in streptozotocin (STZ)-treated diabetic rats, cold allodynia in the chronic constriction injury (CCI) model in rats, and heat hyperalgesia and nociception in STZ-treated diabetic and control mice was determined after intraplantar (i.pl.), intracerebroventricular (i.c.v.), or intrathecal (i.th.) administration. In STZ-treated rats, cebranopadol (i.pl.) reduced mechanical hypersensitivity in the ipsilateral paw, but had no effect at the contralateral paw. In CCI rats, cebranopadol (i.pl.) showed antiallodynic activity at the ipsilateral paw. After administration to the contralateral paw, cebranopadol also showed ipsilateral antiallodynic activity, but with reduced potency and delayed onset. In diabetic mice, cebranopadol i.th. and i.c.v. decreased heat hyperalgesia with full efficacy and similar potency for both routes. Cebranopadol also produced significant antinociception in nondiabetic controls. Thus, cebranopadol exerts potent and efficacious antihyperalgesic, antiallodynic, and antinociceptive effects after local/peripheral, spinal, and supraspinal administration. The contralateral effects after i.pl. administration were likely due to systemic redistribution. After central administration of cebranopadol, antihyperalgesic efficacy is reached at doses that are not yet antinociceptive. This study shows that cebranopadol is effective after peripheral as well as central administration in nociceptive and chronic neuropathic pain. Thus, it may be well-suited for the treatment of chronic pain conditions with a neuropathic component.
Collapse
Affiliation(s)
| | - Klaus Linz
- Preclinical Drug Development, Grünenthal GmbH, Aachen, Germany
| | - Stefanie Frosch
- Preclinical Drug Development, Grünenthal GmbH, Aachen, Germany
| | - Thomas Christoph
- Pharmacology and Biomarker Development, Grünenthal GmbH, Germany
| |
Collapse
|
12
|
Ovalle-Magallanes B, Déciga-Campos M, Mata R. Antihyperalgesic activity of a mexicanolide isolated from Swietenia humilis extract in nicotinamide-streptozotocin hyperglycemic mice. Biomed Pharmacother 2017; 92:324-330. [DOI: 10.1016/j.biopha.2017.05.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/02/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022] Open
|
13
|
Starnowska J, Guillemyn K, Makuch W, Mika J, Ballet S, Przewlocka B. Bifunctional opioid/nociceptin hybrid KGNOP1 effectively attenuates pain-related behaviour in a rat model of neuropathy. Eur J Pharm Sci 2017; 104:221-229. [PMID: 28347772 DOI: 10.1016/j.ejps.2017.03.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
Abstract
A bifunctional peptide containing an opioid and nociceptin receptor-binding pharmacophore, H-Dmt-D-Arg-Aba-β-Ala-Arg-Tyr-Tyr-Arg-Ile-Lys-NH2 (KGNOP1), was tested for its analgesic properties when administered intrathecally in naïve and chronic constriction injury (CCI)-exposed rats with neuropathy-like symptoms. KGNOP1 significantly increased the acute pain threshold, as measured by the tail-flick test, and also increased the threshold of a painful reaction to mechanical and thermal stimuli in CCI-exposed rats. Both of the effects could be blocked by pre-administration of [Nphe1]-Nociceptin (1-13)-NH2 (NPhe) or naloxone, antagonists for nociceptin and opioid receptors, respectively. This led us to conclude that KGNOP1 acts as a dual opioid and nociceptin receptor agonist in vivo. The analgesic effect of KGNOP1 proved to be more powerful than clinical drugs such as morphine and buprenorphine. Repeated daily intrathecal injections of KGNOP1 led to the development of analgesic tolerance, with the antiallodynic action being completely abolished on day 6. Nevertheless, the development of tolerance to the antihyperalgesic effect was delayed in comparison to morphine, which lost its efficacy as measured by the cold plate test after 3days of daily intrathecal administration, whereas KGNOP1 was efficient up to day 6. A single intrathecal injection of morphine to KGNOP1-tolerant rats did not raise the pain threshold in any of the behavioural tests; in contrast, a single intrathecal dose of KGNOP1 significantly suppressed allodynia and hyperalgesia in morphine-tolerant rats.
Collapse
Affiliation(s)
- Joanna Starnowska
- Institute of Pharmacology, Department of Pain Pharmacology, Krakow, Poland
| | - Karel Guillemyn
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wioletta Makuch
- Institute of Pharmacology, Department of Pain Pharmacology, Krakow, Poland
| | - Joanna Mika
- Institute of Pharmacology, Department of Pain Pharmacology, Krakow, Poland
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Barbara Przewlocka
- Institute of Pharmacology, Department of Pain Pharmacology, Krakow, Poland.
| |
Collapse
|
14
|
Palmisano M, Mercatelli D, Caputi FF, Carretta D, Romualdi P, Candeletti S. N/OFQ system in brain areas of nerve-injured mice: its role in different aspects of neuropathic pain. GENES, BRAIN, AND BEHAVIOR 2017; 16:537-545. [PMID: 28000999 DOI: 10.1111/gbb.12365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/15/2016] [Accepted: 12/18/2016] [Indexed: 12/28/2022]
Abstract
Several studies showed that chronic pain causes reorganization and functional alterations of supraspinal brain regions. The nociceptin-NOP receptor system is one of the major systems involved in pain control and much evidence also suggested its implication in stress, anxiety and depression. Therefore, we investigated the nociceptin-NOP system alterations in selected brain regions in a neuropathic pain murine model. Fourteen days after the common sciatic nerve ligature, polymerase chain reaction (PCR) analysis indicated a significant decrease of pronociceptin and NOP receptor mRNA levels in the thalamus; these alterations could contribute to the decrease of the thalamic inhibitory function reported in neuropathic pain condition. Nociceptin peptide and NOP mRNA increased in the anterior cingulate cortex (ACC) and not in the somatosensory cortex, suggesting a peculiar involvement of this system in pain regulating circuitry. Similarly to the ACC, an increase of nociceptin peptide levels was observed in the amygdala. Finally, the pronociceptin and NOP mRNAs decrease observed in the hypothalamus reflects the lack of hypothalamus-pituitary-adrenal axis activation, already reported in neuropathic pain models. Our data indicate that neuropathic pain conditions affect the supraspinal nociceptin-NOP system which is also altered in regions known to play a role in emotional aspects of pain.
Collapse
Affiliation(s)
- M Palmisano
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - D Mercatelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - F F Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - D Carretta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - P Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - S Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
16
|
Zeng L, Alongkronrusmee D, van Rijn RM. An integrated perspective on diabetic, alcoholic, and drug-induced neuropathy, etiology, and treatment in the US. J Pain Res 2017; 10:219-228. [PMID: 28176937 PMCID: PMC5268333 DOI: 10.2147/jpr.s125987] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neuropathic pain (NeuP) is a syndrome that results from damaged nerves and/or aberrant regeneration. Common etiologies of neuropathy include chronic illnesses and medication use. Chronic disorders, such as diabetes and alcoholism, can cause neuronal injury and consequently NeuP. Certain medications with antineoplastic effects also carry an exquisitely high risk for neuropathy. These culprits are a few of many that are fueling the NeuP epidemic, which currently affects 7%-10% of the population. It has been estimated that approximately 10% and 7% of US adults carry a diagnosis of diabetes and alcohol disorder, respectively. Despite its pervasiveness, many physicians are unfamiliar with adequate treatment of NeuP, partly due to the few reviews that are available that have integrated basic science and clinical practice. In light of the recent Centers for Disease Control and Prevention guidelines that advise against the routine use of μ-opioid receptor-selective opioids for chronic pain management, such a review is timely. Here, we provide a succinct overview of the etiology and treatment options of diabetic and alcohol- and drug-induced neuropathy, three different and prevalent neuropathies fusing the combined clinical and preclinical pharmacological expertise in NeuP of the authors. We discuss the anatomy of pain and pain transmission, with special attention to key ion channels, receptors, and neurotransmitters. An understanding of pain neurophysiology will lead to a better understanding of the rationale for the effectiveness of current treatment options, and may lead to better diagnostic tools to help distinguish types of neuropathy. We close with a discussion of ongoing research efforts to develop additional treatments for NeuP.
Collapse
Affiliation(s)
- Lily Zeng
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Doungkamol Alongkronrusmee
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
17
|
van Beek M, van Kleef M, Linderoth B, van Kuijk SMJ, Honig WM, Joosten EA. Spinal cord stimulation in experimental chronic painful diabetic polyneuropathy: Delayed effect of High-frequency stimulation. Eur J Pain 2016; 21:795-803. [PMID: 27891705 PMCID: PMC5412908 DOI: 10.1002/ejp.981] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2016] [Indexed: 12/12/2022]
Abstract
Background Spinal cord stimulation (SCS) has been shown to provide pain relief in painful diabetic polyneuropathy (PDPN). As the vasculature system plays a great role in the pathophysiology of PDPN, a potential beneficial side‐effect of SCS is peripheral vasodilation, with high frequency (HF) SCS in particular. We hypothesize that HF‐SCS (500 Hz), compared with conventional (CON) or low frequency (LF)‐SCS will result in increased alleviation of mechanical hypersensitivity in chronic experimental PDPN. Methods Diabetes was induced in 8‐week‐old female Sprague–Dawley rats with an intraperitoneal injection of 65 mg/kg of streptozotocin (n = 44). Rats with a significant decrease in mechanical withdrawal response to von Frey filaments over a period of 20 weeks were implanted with SCS electrodes (n = 18). Rats were assigned to a cross‐over design with a random order of LF‐, CON‐, HF‐ and sham SCS and mechanical withdrawal thresholds were assessed with von Frey testing. Results Compared with sham treatment, the average 50% WT score for 5 Hz was 4.88 g higher during stimulation (p = 0.156), and 1.77 g higher post‐stimulation (p = 0.008). CON‐SCS resulted in 50% WT scores 5.7 g, and 2.51 g higher during (p = 0.064) and after stimulation (p < 0.004), respectively. HF‐SCS started out with an average difference in 50% WT score compared with sham of 1.87 g during stimulation (p = 0.279), and subsequently the steepest rise to a difference of 5.47 g post‐stimulation (p < 0.001). Conclusions We demonstrated a delayed effect of HF‐SCS on mechanical hypersensitivity in chronic PDPN animals compared with LF‐, or CON‐SCS. Significance This study evaluates the effect of SCS frequency (5–500 Hz) on mechanical hypersensitivity in the chronic phase of experimental PDPN. High frequency (500 Hz) – SCS resulted in a delayed effect‐ on pain‐related behavioural outcome in chronic PDPN.
Collapse
Affiliation(s)
- M van Beek
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, The Netherlands.,Pain Management and Research Center, Department of Anesthesiology, MUMC+, Maastricht, The Netherlands
| | - M van Kleef
- Pain Management and Research Center, Department of Anesthesiology, MUMC+, Maastricht, The Netherlands
| | - B Linderoth
- Pain Management and Research Center, Department of Anesthesiology, MUMC+, Maastricht, The Netherlands.,Department of Clinical Neuroscience, (Functional Neurosurgery), Karolinska Institutet, Stockholm, Sweden
| | - S M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), MUMC+, Maastricht, The Netherlands
| | - W M Honig
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - E A Joosten
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, The Netherlands.,Pain Management and Research Center, Department of Anesthesiology, MUMC+, Maastricht, The Netherlands
| |
Collapse
|
18
|
Anand P, Yiangou Y, Anand U, Mukerji G, Sinisi M, Fox M, McQuillan A, Quick T, Korchev YE, Hein P. Nociceptin/orphanin FQ receptor expression in clinical pain disorders and functional effects in cultured neurons. Pain 2016; 157:1960-1969. [PMID: 27127846 DOI: 10.1097/j.pain.0000000000000597] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The nociceptin/orphanin FQ peptide receptor (NOP), activated by its endogenous peptide ligand nociceptin/orphanin FQ (N/OFQ), exerts several effects including modulation of pain signalling. We have examined, for the first time, the tissue distribution of the NOP receptor in clinical visceral and somatic pain disorders by immunohistochemistry and assessed functional effects of NOP and μ-opioid receptor activation in cultured human and rat dorsal root ganglion (DRG) neurons. Quantification of NOP-positive nerve fibres within the bladder suburothelium revealed a remarkable several-fold increase in detrusor overactivity (P < 0.0001) and painful bladder syndrome patient specimens (P = 0.0014) compared with controls. In postmortem control human DRG, 75% to 80% of small/medium neurons (≤50 μm diameter) in the lumbar (somatic) and sacral (visceral) DRG were positive for NOP, and fewer large neurons; avulsion-injured cervical human DRG neurons showed similar numbers. NOP immunoreactivity was significantly decreased in injured peripheral nerves (P = 0.0004), and also in painful neuromas (P = 0.025). Calcium-imaging studies in cultured rat DRG neurons demonstrated dose-dependent inhibition of capsaicin responses in the presence of N/OFQ, with an IC50 of 8.6 pM. In cultured human DRG neurons, 32% inhibition of capsaicin responses was observed in the presence of 1 pM N/OFQ (P < 0.001). The maximum inhibition of capsaicin responses was greater with N/OFQ than μ-opioid receptor agonist DAMGO. Our findings highlight the potential of NOP agonists, particularly in urinary bladder overactivity and pain syndromes. The regulation of NOP expression in visceral and somatic sensory neurons by target-derived neurotrophic factors deserves further study, and the efficacy of NOP selective agonists in clinical trials.
Collapse
Affiliation(s)
- Praveen Anand
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Yiangos Yiangou
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Uma Anand
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Gaurav Mukerji
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Marco Sinisi
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | - Michael Fox
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | - Anthony McQuillan
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | - Tom Quick
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | - Yuri E Korchev
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Peter Hein
- Grünenthal Innovation, Translational Science and Strategy, Grünenthal GmbH, Aachen, Germany
| |
Collapse
|
19
|
Zaveri NT. Nociceptin Opioid Receptor (NOP) as a Therapeutic Target: Progress in Translation from Preclinical Research to Clinical Utility. J Med Chem 2016; 59:7011-28. [PMID: 26878436 DOI: 10.1021/acs.jmedchem.5b01499] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the two decades since the discovery of the nociceptin opioid receptor (NOP) and its ligand, nociceptin/orphaninFQ (N/OFQ), steady progress has been achieved in understanding the pharmacology of this fourth opioid receptor/peptide system, aided by genetic and pharmacologic approaches. This research spawned an explosion of small-molecule NOP receptor ligands from discovery programs in major pharmaceutical companies. NOP agonists have been investigated for their efficacy in preclinical models of anxiety, cough, substance abuse, pain (spinal and peripheral), and urinary incontinence, whereas NOP antagonists have been investigated for treatment of pain, depression, and motor symptoms in Parkinson's disease. Translation of preclinical findings into the clinic is guided by PET and receptor occupancy studies, particularly for NOP antagonists. Recent progress in preclinical NOP research suggests that NOP agonists may have clinical utility for pain treatment and substance abuse pharmacotherapy. This review discusses the progress toward validating the NOP-N/OFQ system as a therapeutic target.
Collapse
Affiliation(s)
- Nurulain T Zaveri
- Astraea Therapeutics , 320 Logue Avenue, Suite 142, Mountain View, California 94043, United States
| |
Collapse
|
20
|
Di Cesare Mannelli L, Micheli L, Ghelardini C. Nociceptin/orphanin FQ receptor and pain: Feasibility of the fourth opioid family member. Eur J Pharmacol 2015; 766:151-4. [PMID: 26277324 DOI: 10.1016/j.ejphar.2015.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
The pharmacological management of chronic pain is a major therapeutic problem. The need of repeated treatments reduces the usefulness of classical analgesic drugs, like μ opioid receptor (MOP) agonists, characterized by tolerance development, side effects and abuse. Moreover, the pathological persistence of pain modifies nociceptive signals and pain-devoted structure activity weakening MOP agonists and making difficult the research of new active molecules. Nociceptine/orphanin FQ (N/OFQ) and its receptor (NOP) offers a peculiar opioid system able to interact with MOP receptors and made more sensitive by chronic pain conditions. The pain reliever efficacy of NOP agonists against persistent pain, mainly neuropathic pain, has been highlighted after intrathecal infusions in rats and non human primates (NHPs). The differences emerged between the effects of NOP stimulation in rodents and NHPs allow to hypothesize the relevance of NOP modulators in higher organisms strongly encouraging the development of compounds active by a systemic route. Possible applicative perspectives are (i) selective NOP agonists as such, (ii) NOP modulation as adjuvant of MOP-based treatments, or (iii) mixed non-selective agonists vs NOP and classical opioid receptors.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|