1
|
Hassanshahi A, Ilaghi M, Ranjbar H, Razavinasab M, Kohlmeier KA, Hosseinmardi N, Behzadi G, Janahmadi M, Shabani M. Agmatine mitigates hyperexcitability of ventral tegmental area dopaminergic neurons in prenatally stressed male offspring. Eur J Pharmacol 2025; 992:177362. [PMID: 39923826 DOI: 10.1016/j.ejphar.2025.177362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Prenatal stress (PS) alters development of the brain, resulting in heightening the risk in offspring of cognitive deficits and addiction behaviors. The ventral tegmental area (VTA) plays a crucial role in processing stressful events, and promoting cognitively based motivational behavior. Previous research, including our own, has shown that PS affects the development of VTA dopaminergic (DA) neurons, leading to functional differences. In this study PS was induced in pregnant mice using both psychological and physical methods. Psychological stress involved placing the mice in a communication stress box to observe others under physical stress, while physical stress was applied by immersion in water for 5 min daily for 7 days. Agmatine, a neuromodulator with neuroprotective properties, was examined for its effects on the electrophysiological functioning of VTA DA neurons in the male offspring of stressed mice. Patch-clamp recordings of VTA DA cells from offspring maternally exposed to psychological or physical stress revealed enhanced cellular excitability, evidenced by increased firing frequency and greater firing following inhibition. Additionally, a decrease in action potential half-width and latency to the first spike were observed, indicating altered firing properties. Prenatal administration of agmatine mitigated these effects, preventing the PS-induced hyperexcitability of the VTA DA cells. Our findings extend previous work by demonstrating that both physical and psychological PS can significantly alter the electrophysiological functionality of VTA DA neurons, resulting in increased excitability. Agmatine effectively reduced these electrophysiological changes, highlighting its potential as a neuroprotective agent against neural alterations caused by negative maternal events during gestation.
Collapse
Affiliation(s)
- Amin Hassanshahi
- Department of Physiology, Bam University of Medical Sciences, Bam, Iran
| | - Mehran Ilaghi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Narges Hosseinmardi
- Neuroscience Research Center, Institute of Neuroscience and Cognition and Dept. of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Neuroscience Research Center, Institute of Neuroscience and Cognition and Dept. of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, Institute of Neuroscience and Cognition and Dept. of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Ramshini E, Shabani M. Cannabinoid receptor type 1 agonist disrupts methamphetamine-induced conditioned place preference in adolescent male rats. Neurosci Lett 2025; 844:138033. [PMID: 39489281 DOI: 10.1016/j.neulet.2024.138033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/28/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Addiction can be viewed as a state of compulsive engagement in drug use. It is believed that drug-associated memories maintain compulsive drug-seeking behavior. Therefore, disrupting drug-associated memories may reduce drug-seeking behavior. In the present study, a conditioned place preference (CPP) apparatus was conducted to evaluate the effect of cannabinoid receptor type 1 (CB1R) agonist and antagonist on the acquisition of CPP induced by methamphetamine (METH). Anxiety behaviors and memory retrieval were assessed using elevated plus maze (EPM) and step-through passive avoidance tasks. In this study using a 5-day schedule of CPP, exposure to METH increased the time spent in the drug-paired compartment, and CB1Rs agonist (WIN 55,212-2, WIN) disrupted the METH-induced CPP. In the EPM experiment, METH significantly decreased the ratio of times spent in the open arms to total times spent in any arms (OAT) and the ratio of entries into open arms to total entries (OAE), indicating that METH increases anxiety-like behaviors. However, the CB1Rs antagonist (SR141716A, SR) reversed METH-induced anxiety behaviors. The results obtained in the passive avoidance experiment showed that blockade of brain CB1Rs by SR improves METH-induced amnesia. In summary, CB1Rs appear to modulate METH-associated memories, and antagonists of CB1Rs may serve as a therapeutic target for METH-induced anxiety behaviors.
Collapse
Affiliation(s)
- Effat Ramshini
- Department of Physiology, Kerman University of Medical Sciences, Kerman Neuroscience Research Center, Kerman, Iran
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Mehboodi D, Shahedi A, Namavar MR, Yadegari M, Vakili M. Effect of berberine on the hippocampal structure, biochemical factors, memory, and blood-brain barrier in rat model of transient global cerebral ischemia. Phytother Res 2024. [PMID: 38950958 DOI: 10.1002/ptr.8234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/03/2024]
Abstract
Global cerebral ischemia (GCI) results in damage to the neurons and leads to cognitive impairments. Berberine (BBR) is known for its neuroprotective qualities. This study aimed to investigate the effects of BBR on memory, Blood-brain barrier (BBB) permeability, biochemical factors, and neuronal structure. Sixty-three adult male Wistar rats were divided randomly into Sham (21), GCI (21), and GCI + BBR (21) groups. The GCI + BBR group received 50 mg/kg of BBR for 7 days before and 6 h after 20 min of GCI induction. After 24 h, assessments included hippocampal neuronal structure, catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GPX) levels, memory performance, and BBB permeability. The GCI + BBR group reduced volume loss in the CA1 and its sublayers (oriens, pyramidal, and radiatum) compared to the GCI group (p < 0.0001, p < 0.001, p < 0.01 and p < 0.001, respectively). Additionally, the GCI + BBR group showed higher pyramidal neuron density (p < 0.0001) and number (p < 0.0001) compared to the GCI group. BBR also decreased MDA levels (p < 0.0001) and increased CAT activity (p < 0.0001) in the GCI + BBR group compared to the GCI group, with GPX and SOD activity approaching Sham levels (p < 0.0001, both). BBR demonstrated significant improvements in short and long-term memory compared to the GCI group (p < 0.01, p < 0.0001, respectively). Furthermore, BBB permeability in the GCI + BBR group was significantly reduced compared to the GCI group (p < 0.0001). These findings demonstrated BBR's potential to protect the neurons in the CA1 and BBB structures, enhance antioxidant activity, and alleviate GCI-induced memory impairments.
Collapse
Affiliation(s)
- Dariush Mehboodi
- Department of Anatomical Sciences, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abbas Shahedi
- Department of Anatomical Sciences, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Neuroendocrine Research Center, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Reza Namavar
- Clinic Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Yadegari
- Department of Anatomical Sciences, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Neuroendocrine Research Center, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mahmood Vakili
- Health Monitoring Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
4
|
Nam Y, Prajapati R, Kim S, Shin SJ, Cheong DY, Park YH, Park HH, Lim D, Yoon Y, Lee G, Jung HA, Park I, Kim DH, Choi JS, Moon M. Dual regulatory effects of neferine on amyloid-β and tau aggregation studied by in silico, in vitro, and lab-on-a-chip technology. Biomed Pharmacother 2024; 172:116226. [PMID: 38301421 DOI: 10.1016/j.biopha.2024.116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of two critical pathogenic factors: amyloid-β (Aβ) and tau. Aβ and tau become neurotoxic aggregates via self-assembly, and these aggregates contribute to the pathogenesis of AD. Therefore, there has been growing interest in therapeutic strategies that simultaneously target Aβ and tau aggregates. Although neferine has attracted attention as a suitable candidate agent for alleviating AD pathology, there has been no study investigating whether neferine affects the modulation of Aβ or tau aggregation/dissociation. Herein, we investigated the dual regulatory effects of neferine on Aβ and tau aggregation/dissociation. We predicted the binding characteristics of neferine to Aβ and tau using molecular docking simulations. Next, thioflavin T and atomic force microscope analyses were used to evaluate the effects of neferine on the aggregation or dissociation of Aβ42 and tau K18. We verified the effect of neferine on Aβ fibril degradation using a microfluidic device. In addition, molecular dynamics simulation was used to predict a conformational change in the Aβ42-neferine complex. Moreover, we examined the neuroprotective effect of neferine against neurotoxicity induced by Aβ and tau and their fibrils in HT22 cells. Finally, we foresaw the pharmacokinetic properties of neferine. These results demonstrated that neferine, which has attracted attention as a potential treatment for AD, can directly affect Aβ and tau pathology.
Collapse
Affiliation(s)
- Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Ritu Prajapati
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Da Yeon Cheong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Danyou Lim
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Republic of Korea
| | - Yoojeong Yoon
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Insu Park
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Republic of Korea.
| | - Dong-Hyun Kim
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea.
| |
Collapse
|
5
|
Dan L, Hao Y, Li J, Wang T, Zhao W, Wang H, Qiao L, Xie P. Neuroprotective effects and possible mechanisms of berberine in animal models of Alzheimer's disease: a systematic review and meta-analysis. Front Pharmacol 2024; 14:1287750. [PMID: 38259291 PMCID: PMC10800531 DOI: 10.3389/fphar.2023.1287750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/26/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Recently, multiple preclinical studies have reported the beneficial effect of berberine in the treatment of Alzheimer's disease (AD). Nevertheless, the neuroprotective effects and possible mechanisms of berberine against AD are not universally recognized. This study aimed to conduct a systematic review and meta-analysis by integrating relevant animal studies to assess the neuroprotective effects and potential mechanisms of berberine on AD. Methods: We systematically searched PubMed, Embase, Scopus and Web of Science databases that reported the effects of berberine on AD models up to 1 February 2023. The escape latency, times of crossing platform, time spent in the target quadrant and pro-oligomerized amyloid beta 42 (Aβ1-42) were included as primary outcomes. The secondary outcomes were the Tau-ps 204, Tau-ps 404, β-site of APP cleaving enzyme (BACE1), amyloid precursor protein (APP), acetylcholine esterase (AChE), tumor necrosis factor ⍺ (TNF-α), interleukin 1β (IL-1β), IL-6, nitric oxide (NO), glial fibrillary acidic protein (GFAP), malonaldehyde (MDA), glutathione S-transferase (GST), glutathione (GSH), glutathione peroxidase (GPx), Beclin-1 and neuronal apoptosis cells. This meta-analysis was conducted using RevMan 5.4 and STATA 15.1. The SYRCLE's risk of bias tool was used to assess the methodological quality. Results: Twenty-two studies and 453 animals were included in the analysis. The overall results showed that berberine significantly shortened the escape latency (p < 0.00001), increased times of crossing platform (p < 0.00001) and time spent in the target quadrant (p < 0.00001), decreased Aβ1-42 deposition (p < 0.00001), Tau-ps 202 (p < 0.00001) and Tau-ps 404 (p = 0.002), and improved BACE1, APP, AChE, Beclin-1, neuronal apoptosis cells, oxidative stress and inflammation levels. Conclusion: Berberine may be a promising drug for the treatment of AD based on preclinical evidence (especially when the dose was 5-260 mg/kg). The potential mechanisms for these protective effects may be closely related to anti-neuroinflammation, anti-oxidative stress, modulation of autophagy, inhibition of neuronal apoptosis and protection of cholinergic system. However, these results may be limited by the quality of existing research. Larger and methodologically more rigorous preclinical research are needed to provide more convincing evidence.
Collapse
Affiliation(s)
- Lijuan Dan
- School of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanwei Hao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyuan Wang
- Traditional Chinese medicine department, 363 Hospital of Chengdu, Chengdu, China
| | - Weiwei Zhao
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Hui Wang
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Liyan Qiao
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Peijun Xie
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| |
Collapse
|
6
|
Gasmi A, Asghar F, Zafar S, Oliinyk P, Khavrona O, Lysiuk R, Peana M, Piscopo S, Antonyak H, Pen JJ, Lozynska I, Noor S, Lenchyk L, Muhammad A, Vladimirova I, Dub N, Antoniv O, Tsal O, Upyr T, Bjørklund G. Berberine: Pharmacological Features in Health, Disease and Aging. Curr Med Chem 2024; 31:1214-1234. [PMID: 36748808 DOI: 10.2174/0929867330666230207112539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Berberine is the main active compound of different herbs and is defined as an isoquinoline quaternary botanical alkaloid found in barks and roots of numerous plants. It exhibits a wide range of pharmacological effects, such as anti-obesity and antidiabetic effects. Berberine has antibacterial activity against a variety of microbiota, including many bacterial species, protozoa, plasmodia, fungi, and trypanosomes. OBJECTIVE This review describes the role of berberine and its metabolic effects. It also discusses how it plays a role in glucose metabolism, fat metabolism, weight loss, how it modulates the gut microbiota, and what are its antimicrobial properties along with its potential side effects with maximal tolerable dosage. METHODS Representative studies were considered and analyzed from different scientific databases, including PubMed and Web of Science, for the years 1982-2022. RESULTS Literature analysis shows that berberine affects many biochemical and pharmacological pathways that theoretically yield a positive effect on health and disease. Berberine exhibits neuroprotective properties in various neurodegenerative and neuropsychological ailments. Despite its low bioavailability after oral administration, berberine is a promising tool for several disorders. A possible hypothesis would be the modulation of the gut microbiome. While the evidence concerning the aging process in humans is more limited, preliminary studies have shown positive effects in several models. CONCLUSION Berberine could serve as a potential candidate for the treatment of several diseases. Previous literature has provided a basis for scientists to establish clinical trials in humans. However, for obesity, the evidence appears to be sufficient for hands-on use.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Farah Asghar
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, Lahore, Pakistan
| | - Saba Zafar
- Department of Research, The Women University, Multan, Pakistan
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Oksana Khavrona
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Salva Piscopo
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Iryna Lozynska
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Larysa Lenchyk
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Akram Muhammad
- Department of Research, Government College University, Faisalabad, Pakistan
| | - Inna Vladimirova
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, Ukraine
| | - Olha Antoniv
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Oksana Tsal
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Taras Upyr
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
7
|
Mushtaq Z, Imran M, Saeed F, Imran A, Ali SW, Shahbaz M, Alsagaby SA, Guerrero Sánchez Y, Umar M, Hussain M, Al Abdimonem W, Al Jbawi E, Mahwish, El-Ghorab AH, Abdelgawad MA. Berberine: a comprehensive Approach to combat human maladies. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2184300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Zarina Mushtaq
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences, University of the Punjab, Quid-i-Azam Campus, Lahore, Pakistan
| | - Muhammad Shahbaz
- Department of Food Science and Technology, MNS-University Multan, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | | | - Maryam Umar
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Waleed Al Abdimonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | | - Mahwish
- Department of Nutritional Sciences, Government College Women University Faisalabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
8
|
Javanmehr N, Saleki K, Alijanizadeh P, Rezaei N. Microglia dynamics in aging-related neurobehavioral and neuroinflammatory diseases. J Neuroinflammation 2022; 19:273. [PMID: 36397116 PMCID: PMC9669544 DOI: 10.1186/s12974-022-02637-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Microglia represent the first line of immune feedback in the brain. Beyond immune surveillance, they are essential for maintaining brain homeostasis. Recent research has revealed the microglial cells' spatiotemporal heterogeneity based on their local and time-based functions in brain trauma or disease when homeostasis is disrupted. Distinct "microglial signatures" have been recorded in physiological states and brain injuries, with discrete or sometimes overlapping pro- and anti-inflammatory functions. Microglia are involved in the neurological repair processes, such as neurovascular unit restoration and synaptic plasticity, and manage the extent of the damage due to their phenotype switching. The versatility of cellular phenotypes beyond the classical M1/M2 classification, as well as the double-edge actions of microglia in neurodegeneration, indicate the need for further exploration of microglial cell dynamics and their contribution to neurodegenerative processes. This review discusses the homeostatic functions of different microglial subsets focusing on neuropathological conditions. Also, we address the feasibility of targeting microglia as a therapeutic strategy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
9
|
Yang F, Chen L, Yu Y, Xu T, Chen L, Yang W, Wu Q, Han Y. Alzheimer's disease and epilepsy: An increasingly recognized comorbidity. Front Aging Neurosci 2022; 14:940515. [PMID: 36438002 PMCID: PMC9685172 DOI: 10.3389/fnagi.2022.940515] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/24/2022] [Indexed: 08/27/2023] Open
Abstract
Both Alzheimer's disease (AD) and epilepsy are common chronic diseases in older people. Seizures and epileptiform discharges are very prevalent in AD and can occur since any stage of AD. Increasing evidence indicates that AD and epilepsy may be comorbid. Several factors may be related to the underlying mechanism of the comorbidity. Identifying seizures in patients with AD is a challenge because seizures are often clinically non-motor and may overlap with some AD symptoms. Not only seizures but also epileptiform discharges may exacerbate the cognitive decline in AD patients, highlighting the importance of early recognition and treatment. This review provides a comprehensive overview of seizures in AD from multiple aspects to provide more insight.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanbing Han
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Naseh M, Bayat M, Akbari S, Vatanparast J, Shabani M, Haghighi AB, Haghani M. Neuroprotective effects of sodium valproate on hippocampal cell and volume, and cognitive function in a rat model of focal cerebral ischemia. Physiol Behav 2022; 251:113806. [PMID: 35417732 DOI: 10.1016/j.physbeh.2022.113806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
Valproate (VPA) as a histone deacetylase (HDAC) inhibitor has shown neuroprotective effects in neurodegenerative diseases. This study evaluated whether VPA treatment ameliorated the synaptic plasticity dysfunction, hippocampal neuronal loss, and spatial memory deficits induced by cerebral ischemia in the middle cerebral artery occlusion (MCAO) model. Thirty-two male Sprague-Dawley rats were randomly divided into 4 groups control, sham, cerebral ischemia+vehicle (MCAO+V), and MCAO+VPA. The right common carotid artery was occluded for 1 hour. VPA (300 mg/kg) or vehicles were injected intraperitoneally on days 0,1,2 and 3 of the reperfusion. After 7 days of reperfusion the Morris water maze, passive avoidance, and open field tests were performed. Hippocampal synaptic plasticity in the CA1 area was recorded by field potential recording. We used the term neuronal Input-Output (I/O) function and paired-pulse ratio (PPR) to refer to basal synaptic transmission and presynaptic neurotransmitter release probability respectively. After that, the brains were removed for assaying stereological parameters of the CA1 neurons. Our results showed the VPA administration significantly reduced the total infarct volume, improved MCAO-induced spatial learning -memory, fear memory, and anxiety compared to the MCAO+V group. In addition, the field potential recording showed that VPA significantly ameliorated the impaired the long- term potentiation (LTP) induced by MCAO, without any effects on basal synaptic transmission and neurotransmitter release probability. Therefore, it seems that a decrease in total infarct volume and induction of long-term potentiation via postsynaptic mechanisms is responsible for improving MCAO-induced cognitive impairment.
Collapse
Affiliation(s)
- Maryam Naseh
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Akbari
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Vatanparast
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Masoud Haghani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Shou JW, Shaw PC. Therapeutic Efficacies of Berberine against Neurological Disorders: An Update of Pharmacological Effects and Mechanisms. Cells 2022; 11:cells11050796. [PMID: 35269418 PMCID: PMC8909195 DOI: 10.3390/cells11050796] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Neurological disorders are ranked as the leading cause of disability and the second leading cause of death worldwide, underscoring an urgent necessity to develop novel pharmacotherapies. Berberine (BBR) is a well-known phytochemical isolated from a number of medicinal herbs. BBR has attracted much interest for its broad range of pharmacological actions in treating and/or managing neurological disorders. The discoveries in basic and clinical studies of the effects of BBR on neurological disorders in the last decade have provided novel evidence to support the potential therapeutical efficacies of BBR in treating neurological diseases. In this review, we summarized the pharmacological properties and therapeutic applications of BBR against neurological disorders in the last decade. We also emphasized the major pathways modulated by BBR, which provides firm evidence for BBR as a promising drug candidate for neurological disorders.
Collapse
Affiliation(s)
- Jia-Wen Shou
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 852852, China;
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 852852, China;
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 852852, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 852852, China
- Correspondence:
| |
Collapse
|
12
|
Akbar M, Shabbir A, Rehman K, Akash MSH, Shah MA. Neuroprotective potential of berberine in modulating Alzheimer's disease via multiple signaling pathways. J Food Biochem 2021; 45:e13936. [PMID: 34523148 DOI: 10.1111/jfbc.13936] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022]
Abstract
Berberine is one of the most important quinoline alkaloids, which has shown numerous pharmacological activities. There are pieces of evidence that berberine serves as a promising substance for treating Alzheimer's disease (AD). Recently, numerous studies on animal models have shown the neuroprotective role of berberine. AD is a complex disease having multiple pathological factors. Berberine restrains the deposition of amyloid plaques and neurofibrillary tangles. Substantial studies have demonstrated that berberine may also exhibit the protective effect against the risk factors associated with AD. This review illustrates the role of berberine in neuroinflammation, oxidative stress and its activity against acetylcholinesterase enzyme. It also focuses on the bioavailability and safety of berberine in AD. However, more investigations are required to explore the bioavailability and safety assessment of berberine and its new perspectives in limiting the AD-related pathogenesis and risk factors. PRACTICAL APPLICATIONS: Current therapeutic measures only provide symptomatic relief against AD by slowing memory loss, resolving thinking problems and behavioral issues. In recent past years, many biological actions and potential therapeutic applications have been observed by berberine particularly in neurological diseases. Berberine has been investigated by various researchers for its activity against AD. This review demonstrates a variety of mechanisms by which berberine imparts its neuroprotective roles and provides the possible mechanism of action of berberine by which it prevents the formation of neurofibrillary tangles and disaggregation of amyloid beta plaques in AD. It also focuses that berberine limits the neuroinflammation and oxidative stress in AD. Pre-clinical aspects of berberine against AD are also discussed. Eventually, a prospect is formulated that berberine might be a therapeutically significant agent for treating and preventing AD.
Collapse
Affiliation(s)
- Moazzama Akbar
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Anam Shabbir
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Government College University, Faisalabad, Pakistan
| |
Collapse
|
13
|
Singh AK, Singh SS, Rathore AS, Singh SP, Mishra G, Awasthi R, Mishra SK, Gautam V, Singh SK. Lipid-Coated MCM-41 Mesoporous Silica Nanoparticles Loaded with Berberine Improved Inhibition of Acetylcholine Esterase and Amyloid Formation. ACS Biomater Sci Eng 2021; 7:3737-3753. [PMID: 34297529 DOI: 10.1021/acsbiomaterials.1c00514] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Selective permeability of the blood-brain barrier limits effective treatment of neurodegenerative disorders. In the present study, brain-targeted lipid-coated mesoporous silica nanoparticles (MSNs) containing berberine (BBR) were synthesized for the effective treatment of Alzheimer's disease (AD). The study involved synthesis of Mobil Composition of Matter-41 (MCM-41) mesoporous silica nanoparticles (MSNs), BBR loading, and lipid coating of MSNs (MSNs-BBR-L) and in vitro and in vivo characterization of MSNs-BBR-L. The liposomes (for lipid coating) were prepared by the thin-film hydration method. Transmission electron microscopy (TEM) images indicated 5 nm thickness of the lipid coating. Dynamic light scattering (DLS) and TEM results confirmed that the size of synthesized MSNs-BBR-L was in the range of 80-100 nm. The X-ray diffraction (XRD) pattern demonstrated retention of the ordered structure of BBR after encapsulation and lipid coating. Fourier transform infrared (FTIR) spectrum confirmed the formation of a lipid coat over the MSN particles. MSNs-BBR-L displayed significantly (p < 0.05) higher acetylcholine esterase (AChE) inhibitory activity. The study confirmed significant (p < 0.05) amyloid fibrillation inhibition and decreased the malondialdehyde (MDA) level by MSNs-BBR-L. Pure BBR- and MSNs-BBR-L-treated AD animals showed a significant decrease in the BACE-1 level compared to scopolamine-intoxicated mice. Eight times higher area under the curve for MSNs-BBR-L (2400 ± 27.44 ng h/mL) was recorded compared to the pure BBR (295.5 ± 0.755 ng h/mL). Overall, these results highlight the utility of MSNs-BBR-L as promising drug delivery vehicles for brain delivery of drugs.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gaurav Mishra
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201303, Uttar Pradesh, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
14
|
Meftahi GH, Bayat M, Zarifkar AH, Akbari S, Borhani Haghighi A, Naseh M, Yousefi Nejad A, Haghani M. Treatment with edaravone improves the structure and functional changes in the hippocampus after chronic cerebral hypoperfusion in rat. Brain Res Bull 2021; 174:122-130. [PMID: 34116172 DOI: 10.1016/j.brainresbull.2021.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 02/08/2023]
Abstract
This study aimed to find out cellular and electrophysiological effects of the edaravone (EDR) administration following induction of vascular dementia (VaD) via bilateral-carotid vessel occlusion (2VO). The rats were randomly divided into control, sham, 2VO + V (vehicle), and 2VO + EDR groups. EDR was administered once a day from day 0-28 after surgery. The passive-avoidance, Morris water-maze, and open-field tests were used for evaluation of memory, locomotor, and anxiety. The field-potential recording was used for assessment of electrophysiological properties of the hippocampus; and after sacrificing, the cerebral hemispheres were removed for stereological study and evaluation of MDA levels. The long-term potentiation (LTP), paired-pulse ratio (PPR), and input-output (I/O) curves were evaluated as indexes for long-term and short-term synaptic plasticity, and basal-synaptic transmission (BST), respectively. The 2VO led to increases in MDA level with considerable neuronal loss and decreases in the volume of the hippocampus, along with a reduction in the BST and LTP induction which was associated with a decrement in PPR and ultimate loss in memory with higher anxiety behavior. However, administration of EDR caused a decline in MDA and prevented the neural loss and volume of the hippocampus, rescued BST and LTP depression, improved memory and anxiety without any effects on PPR. Therefore, most likely through the improvement of MDA level, and the hippocampal cell number and volume, EDR leads to recovery of synaptic plasticity and behavioral performance. Because of the LTP rescue, without recovery of PPR, it is likely that the EDR improved LTP through the post-synaptic neurons.
Collapse
Affiliation(s)
- Gholam Hossein Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Hossein Zarifkar
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Somaye Akbari
- Department of Physiology, the Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Maryam Naseh
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Yousefi Nejad
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Islamic Azad University of Kazeroon, Shiraz, Iran.
| | - Masoud Haghani
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Varshney H, Siddique YH. Role of natural plant products against Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:904-941. [PMID: 33881973 DOI: 10.2174/1871527320666210420135437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/12/2020] [Accepted: 02/09/2021] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative disorder. Deposition of amyloid fibrils and tau protein are associated with various pathological symptoms. Currently limited medication is available for AD treatment. Most of the drugs are basically cholinesterase inhibitors and associated with various side effects. Natural plant products have shown potential as a therapeutic agent for the treatment of AD symptoms. Variety of secondary metabolites like flavonoids, tannins, terpenoids, alkaloids and phenols are used to reduce the progression of the disease. Plant products have less or no side effect and are easily available. The present review gives a detailed account of the potential of natural plant products against the AD symptoms.
Collapse
Affiliation(s)
- Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
16
|
Iqubal A, Iqubal MK, Fazal SA, Pottoo FH, Haque SE. Nutraceuticals and their Derived Nano-formulations for the Prevention and Treatment of Alzheimer's disease. Curr Mol Pharmacol 2021; 15:23-50. [PMID: 33687906 DOI: 10.2174/1874467214666210309115605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is one of the common chronic neurological disorders and associated with cognitive dysfunction, depression and progressive dementia. Presence of β-amyloid or senile plaques, hyper-phosphorylated tau proteins, neurofibrillary tangle, oxidative-nitrative stress, mitochondrial dysfunction, endoplasmic reticulum stress, neuroinflammation and derailed neurotransmitter status are the hallmark of AD. Currently, donepezil, memantine, rivastigmine and galantamine are approved by the FDA for symptomatic management. It is well-known that these approved drugs only exert symptomatic relief and possess poor patient-compliance. Additionally, various published evidence shows the neuroprotective potential of various nutraceuticals via their antioxidant, anti-inflammatory and anti-apoptotic effects in the preclinical and clinical studies. These nutraceuticals possess a significant neuroprotective potential and hence, can be a future pharmacotherapeutic for the management and treatment of AD. However, nutraceutical suffers from certain major limitations such as poor solubility, low bioavailability, low stability, fast hepatic-metabolism and larger particle size. These pharmacokinetic attributes restrict their entry into the brain via the blood-brain barrier. Therefore, to over such issues, various nanoformulation of nutraceuticals was developed, that allows their effective delivery into brain owning to reduced particle size, increased lipophilicity increased bioavailability and avoidance of fast hepatic metabolism. Thus, in this review, we have discussed the etiology of AD, focused on the pharmacotherapeutics of nutraceuticals with preclinical and clinical evidence, discussed pharmaceutical limitation and regulatory aspects of nutraceuticals to ensure safety and efficacy. We further explored the latitude of various nanoformulation of nutraceuticals as a novel approach to overcome the existing pharmaceutical limitation and for effective delivery into the brain.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Syed Abul Fazal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal, University, P.O.BOX 1982, Damman, 31441. Saudi Arabia
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| |
Collapse
|
17
|
Wang Y, Lim YY, He Z, Wong WT, Lai WF. Dietary phytochemicals that influence gut microbiota: Roles and actions as anti-Alzheimer agents. Crit Rev Food Sci Nutr 2021; 62:5140-5166. [PMID: 33559482 DOI: 10.1080/10408398.2021.1882381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The last decide has witnessed a growing research interest in the role of dietary phytochemicals in influencing the gut microbiota. On the other hand, recent evidence reveals that dietary phytochemicals exhibit properties of preventing and tackling symptoms of Alzheimer's disease, which is a neurodegenerative disease that has also been linked with the status of the gut microbiota over the last decade. Till now, little serious discussions, however, have been made to link recent understanding of Alzheimer's disease, dietary phytochemicals and the gut microbiota together and to review the roles played by phytochemicals in gut dysbiosis induced pathologies of Alzheimer's disease. Deciphering these connections can provide insights into the development and future use of dietary phytochemicals as anti-Alzheimer drug candidates. This review aims at presenting latest evidence in the modulating role of phytochemicals in the gut microbiota and its relevance to Alzheimer's disease and summarizing the mechanisms behind the modulative activities. Limitations of current research in this field and potential directions will also be discussed for future research on dietary phytochemicals as anti-Alzheimer agents.
Collapse
Affiliation(s)
- Yi Wang
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Queensland, Australia.,School of Dentistry, University of Queensland, Herston, Queensland, Australia
| | - Yau-Yan Lim
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Zhendan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.,School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| |
Collapse
|
18
|
Wang YY, Yan Q, Huang ZT, Zou Q, Li J, Yuan MH, Wu LQ, Cai ZY. Ameliorating Ribosylation-Induced Amyloid-β Pathology by Berberine via Inhibiting mTOR/p70S6K Signaling. J Alzheimers Dis 2021; 79:833-844. [PMID: 33361598 DOI: 10.3233/jad-200995] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Berberine (BBR) plays a neuroprotective role in the pathogenesis of Alzheimer's disease (AD), inhibiting amyloid-β (Aβ) production and promoting Aβ clearance. Advanced glycation end products (AGEs) promote Aβ aggregation and tau hyperphosphorylation. The activation of mTOR signaling occurring at the early stage of AD has a prominent impact on the Aβ production. This work focused on whether BBR regulates the production and clearance of ribosylation-induced Aβ pathology via inhibiting mTOR signaling. OBJECTIVE To explore whether BBR ameliorates ribosylation-induced Aβ pathology in APP/PS1 mice. METHODS Western blot and immunofluorescence staining were used to detect the related proteins of the mammalian target of Rapamycin (mTOR) signaling pathway and autophagy, as well as the related kinases of Aβ generation and clearance. Tissue sections and Immunofluorescence staining were used to observe Aβ42 in APP/PS1 mice hippocampal. Morris water maze test was used to measure the spatial learning and memory of APP/PS1 mice. RESULTS BBR improves spatial learning and memory of APP/PS1 mice. BBR limits the activation of mTOR/p70S6K signaling pathway and enhances autophagy process. BBR reduces the activity of BACE1 and γ-secretase induced by D-ribose, and enhances Aβ-degrading enzymes and Neprilysin, and inhibits the expression of Aβ in APP/PS1 mice. CONCLUSION BBR ameliorates ribosylation-induced Aβ pathology via inhibiting mTOR/p70S6K signaling and improves spatial learning and memory of the APP/PS1 mice.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Qian Yan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Zhen-Ting Huang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Jing Li
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Ming-Hao Yuan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Liang-Qi Wu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-You Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
19
|
Ahmad SS, Khalid M, Kamal MA, Younis K. Study of Nutraceuticals and Phytochemicals for the Management of Alzheimer's Disease: A Review. Curr Neuropharmacol 2021; 19:1884-1895. [PMID: 33588732 PMCID: PMC9185787 DOI: 10.2174/1570159x19666210215122333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) affects several people worldwide and has devastating impacts on society with a limited number of approaches for its pharmacological treatment. The main causes of AD are not clear yet. However, the formation of senile plaques, neurofibrillary tangles, hyper-phosphorylation of tau protein, and disruption of redox homeostasis may cause AD. These causes have a positive correlation with oxidative stress, producing reactive ions, which are responsible for altering the physiological condition of the body. CONCLUSION Ongoing research recommended the use of phytochemicals as acetylcholinesterase inhibitors to hinder the onset and progression of AD. The natural compound structures, including lignans, flavonoids, tannins, polyphenols, triterpenes, sterols, and alkaloids have anti-inflammatory, antioxidant, and anti-amyloidogenic properties. The purpose of this article is to provide a brief introduction to AD along with the use of natural compounds as new therapeutic approaches for its management.
Collapse
Affiliation(s)
| | | | - Mohammad A. Kamal
- Address correspondence to these authors at the Department of Bioengineering, Integral University Lucknow, UP-226026, India; E-mail: and King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; E-mail:
| | - Kaiser Younis
- Address correspondence to these authors at the Department of Bioengineering, Integral University Lucknow, UP-226026, India; E-mail: and King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; E-mail:
| |
Collapse
|
20
|
Berberine ameliorates rats model of combined Alzheimer's disease and type 2 diabetes mellitus via the suppression of endoplasmic reticulum stress. 3 Biotech 2020; 10:359. [PMID: 32832321 DOI: 10.1007/s13205-020-02354-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/22/2020] [Indexed: 12/30/2022] Open
Abstract
This study is aimed to investigate the protective effect against type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) of Berberine (BBR), and the underlying mechanism of action is explored. We established a rat model of combined AD and T2DM and used it to investigate the effect of BBR (150 mg/kg) on the course of these pathologies. The Morris water maze, biochemical analysis, hematoxylin-eosin staining, immunohistochemical study, immunofluorescent staining, TUNEL assay, RT-qPCR and western blot were used to reveal the effect of BBR on blood glucose, lipid changes, hippocampal injuries and cognitive impairment. The results showed that BBR could alleviate memory deficits, restore the disordered arrangement of nerve cells, the damage of neurons, improve TUNEL-positive cells and decrease the elevated levels of fasting blood glucose, triglyceride, total cholesterol and glycosylated serum protein levels in Alzheimer diabetic rats. Moreover, BBR treatment reduces the transcription of mRNAs and expression of proteins related to endoplasmic reticulum (ER) stress. These findings conclude that BBR can protect neurons by inhibiting the pathway of ER stress and thereby play an essential role in the preventive and therapeutic of AD and T2DM.
Collapse
|
21
|
M H, V P, S M J M, M R, M B, M S. Exposure to Electromagnetic Field during Gestation Adversely Affects the Electrophysiological Properties of Purkinje Cells in Rat Offspring. J Biomed Phys Eng 2020; 10:433-440. [PMID: 32802791 PMCID: PMC7416100 DOI: 10.31661/jbpe.v0i0.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/25/2016] [Indexed: 12/03/2022]
Abstract
Background: Prenatal adverse effects of radiofrequency electromagnetic fields (RF-EMF) exposure on nervous system are an issue of major concern. Objective: Thus, in this study we evaluated the membrane current flow properties of Purkinje neurons after maternal exposure to 900 MHz pulsed RF-EMF. Material and Methods: In this experimental study, during all days of pregnancy, rats in the EMF-exposed group were exposed to 900 MHz pulsed-EMF radiation for 6 h per day. The effects of RF-EMF exposure on the electrophysiological properties of the Purkinje cerebellum neurons from male pups were evaluated by whole-cell patch clamp recordings in current and voltage clamp modes. In voltage-clamp experiments, the holding potential was -60mV, and a depolarizing voltage step (1000 ms duration) was applied from -60 to +50 mV in 10 mV increments at 2s intervals. Results: The exposure group demonstrated reduced spontaneous firing associated with upward and rightward shift in I/V curve compared to the control rats. Moreover, the peak amplitude of the current for the exposure pups also revealed a significant decrement. The reversal potential was +40 mV and +20 mV for the control and RF-EMF groups, respectively and showed significant differences between the two groups. Conclusion: The decrease in ion’s conductance could be attributed to the observed decrease in the voltage onset of the inward current, peak amplitude and voltage shift.
Collapse
Affiliation(s)
- Haghani M
- PhD, Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pouladvand V
- MSc, Department of Biochemical, Jiroft University of Medical Sciences, Jiroft, Kerman, Iran
| | - Mortazavi S M J
- PhD, Ionizing and Non-Ionizing Radiation Protection Research Center, Paramedical School, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Department of Medical Physics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razavinasab M
- PhD, Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Bayat M
- PhD, Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shabani M
- PhD, Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
- PhD, Jiroft University of Medical Sciences, Jiroft, Kerman, Iran
| |
Collapse
|
22
|
Rusmini P, Cristofani R, Tedesco B, Ferrari V, Messi E, Piccolella M, Casarotto E, Chierichetti M, Cicardi ME, Galbiati M, Geroni C, Lombardi P, Crippa V, Poletti A. Enhanced Clearance of Neurotoxic Misfolded Proteins by the Natural Compound Berberine and Its Derivatives. Int J Mol Sci 2020; 21:ijms21103443. [PMID: 32414108 PMCID: PMC7279252 DOI: 10.3390/ijms21103443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Accumulation of misfolded proteins is a common hallmark of several neurodegenerative disorders (NDs) which results from a failure or an impairment of the protein quality control (PQC) system. The PQC system is composed by chaperones and the degradative systems (proteasome and autophagy). Mutant proteins that misfold are potentially neurotoxic, thus strategies aimed at preventing their aggregation or at enhancing their clearance are emerging as interesting therapeutic targets for NDs. Methods: We tested the natural alkaloid berberine (BBR) and some derivatives for their capability to enhance misfolded protein clearance in cell models of NDs, evaluating which degradative pathway mediates their action. Results: We found that both BBR and its semisynthetic derivatives promote degradation of mutant androgen receptor (ARpolyQ) causative of spinal and bulbar muscular atrophy, acting mainly via proteasome and preventing ARpolyQ aggregation. Overlapping effects were observed on other misfolded proteins causative of amyotrophic lateral sclerosis, frontotemporal-lobar degeneration or Huntington disease, but with selective and specific action against each different mutant protein. Conclusions: BBR and its analogues induce the clearance of misfolded proteins responsible for NDs, representing potential therapeutic tools to counteract these fatal disorders.
Collapse
Affiliation(s)
- Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Elio Messi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Maria Elena Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Cristina Geroni
- Naxospharma srl, Novate Milanese, 20026 Milan, Italy; (C.G.); (P.L.)
| | - Paolo Lombardi
- Naxospharma srl, Novate Milanese, 20026 Milan, Italy; (C.G.); (P.L.)
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
- Correspondence:
| |
Collapse
|
23
|
Singh AK, Singh SK, Nandi MK, Mishra G, Maurya A, Rai A, Rai GK, Awasthi R, Sharma B, Kulkarni GT. Berberine: A Plant-derived Alkaloid with Therapeutic Potential to Combat Alzheimer's disease. Cent Nerv Syst Agents Med Chem 2020; 19:154-170. [PMID: 31429696 DOI: 10.2174/1871524919666190820160053] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Berberine (a protoberberine isoquinoline alkaloid) has shown promising pharmacological activities, including analgesic, anti-inflammatory, anticancer, antidiabetic, anti-hyperlipidemic, cardioprotective, memory enhancement, antidepressant, antioxidant, anti-nociceptive, antimicrobial, anti- HIV and cholesterol-lowering effects. It is used in the treatment of the neurodegenerative disorder. It has strong evidence to serve as a potent phytoconstituent in the treatment of various neurodegenerative disorders such as AD. It limits the extracellular amyloid plaques and intracellular neurofibrillary tangles. It has also lipid-glucose lowering ability, hence can be used as a protective agent in atherosclerosis and AD. However, more detailed investigations along with safety assessment of berberine are warranted to clarify its role in limiting various risk factors and AD-related pathologies. This review highlights the pharmacological basis to control oxidative stress, neuroinflammation and protective effect of berberine in AD, which will benefit to the biological scientists in understanding and exploring the new vistas of berberine in combating Alzheimer's disease.
Collapse
Affiliation(s)
- Anurag K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Santosh K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Manmath K Nandi
- Institute of Medical Sciences, Faculty of Ayurveda, Department of medicinal chemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Gaurav Mishra
- Institute of Medical Sciences, Faculty of Ayurveda, Department of medicinal chemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Anand Maurya
- Institute of Medical Sciences, Faculty of Ayurveda, Department of medicinal chemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Arati Rai
- Hygia Institute of Pharmaceutical Education & Research, Lucknow-226020, Uttar Pradesh, India
| | - Gopal K Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| | - Giriraj T Kulkarni
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| |
Collapse
|
24
|
Lin L, Li C, Zhang D, Yuan M, Chen CH, Li M. Synergic Effects of Berberine and Curcumin on Improving Cognitive Function in an Alzheimer's Disease Mouse Model. Neurochem Res 2020; 45:1130-1141. [PMID: 32080784 DOI: 10.1007/s11064-020-02992-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and no effective therapies have been found to prevent or cure AD to date. Berberine and curcumin are extracts from traditional Chinese herbs that have a long history of clinical benefits for AD. Here, using a transgenic AD mouse model, we found that the combined berberine and curcumin treatment had a much better effect on improving the cognitive function of mice than the single-drug treatment, suggesting synergic effects of the combined berberine and curcumin treatment. In addition, we found that the combined berberine and curcumin treatment had significant synergic effects on reducing soluble amyloid-β-peptide(1-42) production. Furthermore, the combination treatment also had remarkable synergic effects on decreasing inflammatory responses and oxidative stress in both the cortex and hippocampus of AD mice. We also found that the combination treatment performed much better than the single drugs in reducing the APP and BACE1 levels and increasing AMPKα phosphorylation and cell autophagy, which might be the underlying mechanism of the synergic effects. Taken together, the result of this study reveal the synergic effects and potential underlying mechanisms of the combined berberine and curcumin treatment in improving the symptoms of AD in mice. This study sheds light on a new strategy for exploring new phytotherapies for AD and also emphasizes that more research should focus on the synergic effects of herbal drugs in the future.
Collapse
Affiliation(s)
- Lin Lin
- Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Cheng Li
- Department of Public Health, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Deyi Zhang
- Department of Anesthesiology, Mianyang People's Hospital, Mianyang, 621000, Sichuan, China
| | - Mingxiang Yuan
- Department of Gynaecology and Obstetrics, Mianyang People's Hospital, Mianyang, 621000, Sichuan, China
| | - Chun-Hai Chen
- Department of Occupational Health, Amy Medical University, Chongqing, 400038, China.
| | - Maoquan Li
- Affiliated Traditional Chinese Medicine Hospital of Chengdu Medical College, Chengdu, 610300, Sichuan, China. .,Chengdu Qingbaijiang District Traditional Chinese Medicine Hospital, Chengdu, 610300, Sichuan, China. .,Department of Public Health, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| |
Collapse
|
25
|
Liu P, Li Y, Qi X, Xu J, Liu D, Ji X, Chi T, Liu H, Zou L. Protein kinase C is involved in the neuroprotective effect of berberine against intrastriatal injection of quinolinic acid-induced biochemical alteration in mice. J Cell Mol Med 2019; 23:6343-6354. [PMID: 31318159 PMCID: PMC6714207 DOI: 10.1111/jcmm.14522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Protein kinase C (PKC) shows a neuronal protection effect in neurodegenerative diseases. In this study, we test whether berberine has a positive effect on the activity of PKC in quinolinic acid (QA)‐induced neuronal cell death. We used intrastriatal injections of QA mice model to test the effect of berberine on motor and cognitive deficits, and the PKC signalling pathway. Treatment with 50 mg/kg b.w of berberine for 2 weeks significantly prevented QA‐induced motor and cognitive impairment and related pathologic changes in the brain. QA inhibited the phosphorylation of PKC and its downstream molecules, GSK‐3β, ERK and CREB, enhanced the glutamate level and release of neuroinflammatory cytokines; these effects were attenuated by berberine. We used in vivo infusion of Go6983, a PKC inhibitor to disturb PKC activity in mice brain, and found that the effect of berberine to reverse motor and cognitive deficits was significantly reduced. Moreover, inhibition of PKC also blocked the anti‐excitotoxicity effect of berberine, which is induced by glutamate in PC12 cells and BV2 cells, as well as anti‐neuroinflammatory effect in LPS‐stimulated BV2 cells. Above all, berberine showed neuroprotective effect against QA‐induced acute neurotoxicity by activating PKC and its downstream molecules.
Collapse
Affiliation(s)
- Peng Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yinjie Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoxiao Qi
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Jia Xu
- Sanhome Pharmaceutical Limited Company, Nanjing, China
| | - Danyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xuefei Ji
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianyan Chi
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Han Liu
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Libo Zou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
26
|
Hirai T, Mitani Y, Kurumisawa K, Nomura K, Wang W, Nakashima KI, Inoue M. Berberine stimulates fibroblast growth factor 21 by modulating the molecular clock component brain and muscle Arnt-like 1 in brown adipose tissue. Biochem Pharmacol 2019; 164:165-176. [PMID: 30991048 DOI: 10.1016/j.bcp.2019.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factor 21 (FGF21), a member of the FGF subfamily that acts through the FGF receptor 1 with the co-receptor β-Klotho, functions as an important metabolic regulator of peripheral glucose tolerance and lipid homeostasis in an endocrine or autocrine and/or paracrine manner. Previous studies showed that FGF21 ameliorated and prevented the development of metabolic disorders, such as obesity and diabetes mellitus. In the present study, we demonstrated that berberine, a naturally occurring compound, stimulated FGF21 expression in brown adipose tissue (BAT). Furthermore, the up-regulated expression of FGF21 in brown adipocytes in response to berberine was due, at least in part, to the activation of the AMP-activated protein kinase pathway. We also found that berberine reversed high-fat diet-induced obesity concomitant with its regulation of the expression of Fgf21 and the core clock component brain and muscle Arnt-like 1 (Bmal1) in BAT. Berberine significantly up-regulated the gene expression and production of FGF21 in a dose-dependent manner in C3H10T1/2 brown adipocytes. Furthermore, the knockdown of Bmal1 prevented the up-regulated expression of FGF21 in response to berberine in C3H10T1/2 brown adipocytes, suggesting that Bmal1 links the regulatory mechanisms of FGF21 in response to berberine. The present results suggest that berberine stimulates the expression of FGF21 by modulating molecular clock Bmal1 in BAT, which may, in turn, attenuate diet-induced obesity. They also indicate the potential of berberine as a therapeutic agent for obesity and obesity-associated metabolic disorders related to circadian misalignments.
Collapse
Affiliation(s)
- Takao Hirai
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Yuhei Mitani
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Karen Kurumisawa
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Kohei Nomura
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Wei Wang
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Ken-Ichi Nakashima
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| |
Collapse
|
27
|
Yuan NN, Cai CZ, Wu MY, Su HX, Li M, Lu JH. Neuroprotective effects of berberine in animal models of Alzheimer's disease: a systematic review of pre-clinical studies. Altern Ther Health Med 2019; 19:109. [PMID: 31122236 PMCID: PMC6533761 DOI: 10.1186/s12906-019-2510-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/18/2019] [Indexed: 02/08/2023]
Abstract
Background Berberine is an isoquinoline alkaloid extracted from various Berberis species which is widely used in East Asia for a wide range of symptoms. Recently, neuroprotective effects of berberine in Alzheimer’s disease (AD) animal models are being extensively reported. So far, no clinical trial has been carried out on the neuroprotective effects of berberine. However, a review of the experimental data is needed before choosing berberine as a candidate drug for clinical experiments. We conducted a systematic review on AD rodent models to analyze the drug effects with minimal selection bias. Methods Five online literature databases were searched to find publications reporting studies of the effect of berberine treatment on animal models of AD. Up to March 2018, 15 papers were identified to describe the efficacy of berberine. Results The included 15 articles met our inclusion criteria with different quality ranging from 3 to 5. We analyzed data extracted from full texts with regard to pharmacological effects and potential anti-Alzheimer’s properties. Our analysis revealed that in multiple memory defects animal models, berberine showed significant memory-improving activities with multiple mechanisms, such as anti-inflammation, anti-oxidative stress, cholinesterase (ChE) inhibition and anti-amyloid effects. Conclusion AD is likely to be a complex disease driven by multiple factors. Yet, many therapeutic strategies based on lowering β-amyloid have failed in clinical trials. This suggest that the threapy should not base on a single cause of Alzheimer’s disease but rather a number of different pathways that lead to the disease. Overall we think that berberine can be a promising multipotent agent to combat Alzheimer’s disease.
Collapse
|
28
|
Saeedi Goraghani M, Ahmadi - Zeidabadi M, Bakhshaei S, Shabani M, Ghotbi Ravandi S, Rezaei − Zarchi S, Nozari M. Behavioral consequences of simultaneous postnatal exposure to MK-801 and static magnetic field in male Wistar rats. Neurosci Lett 2019; 701:77-83. [DOI: 10.1016/j.neulet.2019.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/31/2019] [Accepted: 02/17/2019] [Indexed: 12/30/2022]
|
29
|
Modulation of sphingosine-1-phosphate receptor by FTY720 contributes in improvement of hepatic encephalopathy induced by bile duct ligation. Brain Res Bull 2019; 146:253-269. [DOI: 10.1016/j.brainresbull.2019.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/17/2018] [Accepted: 01/13/2019] [Indexed: 12/11/2022]
|
30
|
de Oliveira JS, Abdalla FH, Dornelles GL, Palma TV, Signor C, da Silva Bernardi J, Baldissarelli J, Lenz LS, de Oliveira VA, Chitolina Schetinger MR, Melchiors Morsch VM, Rubin MA, de Andrade CM. Neuroprotective effects of berberine on recognition memory impairment, oxidative stress, and damage to the purinergic system in rats submitted to intracerebroventricular injection of streptozotocin. Psychopharmacology (Berl) 2019; 236:641-655. [PMID: 30377748 DOI: 10.1007/s00213-018-5090-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/21/2018] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease. The present study investigated the effects of 50 and 100 mg/kg berberine (BRB) on recognition memory, oxidative stress, and purinergic neurotransmission, in a model of sporadic dementia of the Alzheimer's type induced by intracerebroventricular (ICV) injection of streptozotocin (STZ) in rats. Rats were submitted to ICV-STZ 3 mg/kg or saline, and 3 days later, were started on a treatment of BRB or saline for 21 days. The results demonstrated that BRB was effective in protecting against memory impairment, increased reactive oxygen species, and the subsequent increase in protein and lipid oxidation in the cerebral cortex and hippocampus, as well as δ-aminolevulinate dehydratase inhibition in the cerebral cortex. Moreover, the decrease in total thiols, and the reduced glutathione and glutathione S-transferase activity in the cerebral cortex and hippocampus of ICV-STZ rats, was prevented by BRB treatment. Besides an antioxidant effect, BRB treatment was capable of preventing decreases in ecto-nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase (EC-5'-Nt), and adenosine deaminase (ADA) activities in synaptosomes of the cerebral cortex and hippocampus. Thus, our data suggest that BRB exerts a neuroprotective effect on recognition memory, as well as on oxidative stress and oxidative stress-related damage, such as dysfunction of the purinergic system. This suggests that BRB may act as a promising multipotent agent for the treatment of AD.
Collapse
Affiliation(s)
- Juliana Sorraila de Oliveira
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Setor de Bioquímica e Estresse Oxidativo do Laboratório de Terapia Celular, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil. .,Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Fátima Husein Abdalla
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Guilherme Lopes Dornelles
- Programa de Pós graduação em Medicina Veterinária, Centro de Ciência Rurais/Departamento de Clínica de Pequenos Animais, Laboratório de Patologia Clínica Veternária/Hospital Veterinário, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Taís Vidal Palma
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Setor de Bioquímica e Estresse Oxidativo do Laboratório de Terapia Celular, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cristiane Signor
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Laboratório de Neuropsicofarmacologia Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Jamile da Silva Bernardi
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jucimara Baldissarelli
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luana Suéling Lenz
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Setor de Bioquímica e Estresse Oxidativo do Laboratório de Terapia Celular, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vitor Antunes de Oliveira
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maribel Antonello Rubin
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Laboratório de Neuropsicofarmacologia Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cinthia Melazzo de Andrade
- Programa de Pós graduação em Medicina Veterinária, Centro de Ciência Rurais/Departamento de Clínica de Pequenos Animais, Laboratório de Patologia Clínica Veternária/Hospital Veterinário, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Department of Small Animal Clinic, Center of Rural Sciences Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
31
|
Fan D, Liu L, Wu Z, Cao M. Combating Neurodegenerative Diseases with the Plant Alkaloid Berberine: Molecular Mechanisms and Therapeutic Potential. Curr Neuropharmacol 2019; 17:563-579. [PMID: 29676231 PMCID: PMC6712296 DOI: 10.2174/1570159x16666180419141613] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative diseases are among the most serious health problems affecting millions of people worldwide. Such diseases are characterized by a progressive degeneration and / or death of neurons in the central nervous system. Currently, there are no therapeutic approaches to cure or even halt the progression of neurodegenerative diseases. During the last two decades, much attention has been paid to the neuroprotective and anti-neurodegenerative activities of compounds isolated from natural products with high efficacy and low toxicity. Accumulating evidence indicates that berberine, an isoquinoline alkaloid isolated from traditional Chinese medicinal herbs, may act as a promising anti-neurodegenerative agent by inhibiting the activity of the most important pathogenic enzymes, ameliorating intracellular oxidative stress, attenuating neuroinflammation, triggering autophagy and protecting neurons against apoptotic cell death. This review attempts to summarize the current state of knowledge regarding the therapeutic potential of berberine against neurodegenerative diseases, with a focus on the molecular mechanisms that underlie its effects on Alzheimer's, Parkinson's and Huntington's diseases.
Collapse
Affiliation(s)
| | | | - Zhengzhi Wu
- Address correspondence to these authors at the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China;, E-mail: and Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China; E-mail:
| | - Meiqun Cao
- Address correspondence to these authors at the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China;, E-mail: and Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China; E-mail:
| |
Collapse
|
32
|
Lin X, Zhang N. Berberine: Pathways to protect neurons. Phytother Res 2018; 32:1501-1510. [DOI: 10.1002/ptr.6107] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/03/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaorui Lin
- Second Department of Clinical Medicine; China Medical University; No. 77 Puhe Road Shenyang 110122 PR China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy; China Medical University; No. 77 Puhe Road Shenyang 110122 PR China
| |
Collapse
|
33
|
Metaxakis A, Ploumi C, Tavernarakis N. Autophagy in Age-Associated Neurodegeneration. Cells 2018; 7:cells7050037. [PMID: 29734735 PMCID: PMC5981261 DOI: 10.3390/cells7050037] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
The elimination of abnormal and dysfunctional cellular constituents is an essential prerequisite for nerve cells to maintain their homeostasis and proper function. This is mainly achieved through autophagy, a process that eliminates abnormal and dysfunctional cellular components, including misfolded proteins and damaged organelles. Several studies suggest that age-related decline of autophagy impedes neuronal homeostasis and, subsequently, leads to the progression of neurodegenerative disorders due to the accumulation of toxic protein aggregates in neurons. Here, we discuss the involvement of autophagy perturbation in neurodegeneration and present evidence indicating that upregulation of autophagy holds potential for the development of therapeutic interventions towards confronting neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Athanasios Metaxakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece.
| | - Christina Ploumi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece.
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion 70013, Crete, Greece.
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece.
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion 70013, Crete, Greece.
| |
Collapse
|
34
|
Lee SH, Suk K. Identification of glia phenotype modulators based on select glial function regulatory signaling pathways. Expert Opin Drug Discov 2018; 13:627-641. [DOI: 10.1080/17460441.2018.1465925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sun-Hwa Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
35
|
The Role of Macrophages in Neuroinflammatory and Neurodegenerative Pathways of Alzheimer's Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis: Pathogenetic Cellular Effectors and Potential Therapeutic Targets. Int J Mol Sci 2018. [PMID: 29533975 PMCID: PMC5877692 DOI: 10.3390/ijms19030831] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In physiological conditions, different types of macrophages can be found within the central nervous system (CNS), i.e., microglia, meningeal macrophages, and perivascular (blood-brain barrier) and choroid plexus (blood-cerebrospinal fluid barrier) macrophages. Microglia and tissue-resident macrophages, as well as blood-borne monocytes, have different origins, as the former derive from yolk sac erythromyeloid precursors and the latter from the fetal liver or bone marrow. Accordingly, specific phenotypic patterns characterize each population. These cells function to maintain homeostasis and are directly involved in the development and resolution of neuroinflammatory processes. Also, following inflammation, circulating monocytes can be recruited and enter the CNS, therefore contributing to brain pathology. These cell populations have now been identified as key players in CNS pathology, including autoimmune diseases, such as multiple sclerosis, and degenerative diseases, such as Amyotrophic Lateral Sclerosis and Alzheimer’s disease. Here, we review the evidence on the involvement of CNS macrophages in neuroinflammation and the advantages, pitfalls, and translational opportunities of pharmacological interventions targeting these heterogeneous cellular populations for the treatment of brain diseases.
Collapse
|
36
|
Sadhukhan P, Saha S, Dutta S, Mahalanobish S, Sil PC. Nutraceuticals: An emerging therapeutic approach against the pathogenesis of Alzheimer's disease. Pharmacol Res 2018; 129:100-114. [PMID: 29183770 DOI: 10.1016/j.phrs.2017.11.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is regarded as a progressive and devastating neurodegenerative disorder. In aged individuals, it is the most prevalent cause of dementia and is characterized by gradual loss of cognitive functions. In the last decade, numerous research works were undertaken to investigate the pathogenesis of AD. Although the etiology of AD is still not clear, several histopathological studies confirm prominent changes in the AD affected brains. The major changes include the formation of senile plaques and neurofibrillary tangles primarily owing to the deposition of amyloid β plaques (Aβ) and hyper-phosphorylation of tau protein. Disruption of the redox homeostasis in the brain is a major triggering factor for the development of such pathophysiological conditions. Chemical formulations usually act by inhibiting activities of the enzymes responsible for the development of AD. But with time, these pharmacotherapies develop many side effects including toxicity in different organs. Recent researches are henceforth focused on the identification of novel therapeutic molecules from the nature's basket. This review aims to emphasize the therapeutic effects and regulation of molecular targets of different natural products such as curcumin, resveratrol, genistein and others. These prophylactic multipotent natural compounds have the potency to interfere with the formation as well as deposition of the Aβ peptides. These natural compounds have also been found in modulating different intracellular signalling molecules and enzymes including β-secretase and γ-secretase. This review article is expected to be helpful in understanding the recent progress in natural product research as a therapeutic approach in amelioration and/or delaying the detrimental effects of AD.
Collapse
Affiliation(s)
- Pritam Sadhukhan
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII-M, Kolkata, 700054, India
| | - Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII-M, Kolkata, 700054, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII-M, Kolkata, 700054, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII-M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII-M, Kolkata, 700054, India.
| |
Collapse
|
37
|
Salgado-Puga K, Rodríguez-Colorado J, Prado-Alcalá RA, Peña-Ortega F. Subclinical Doses of ATP-Sensitive Potassium Channel Modulators Prevent Alterations in Memory and Synaptic Plasticity Induced by Amyloid-β. J Alzheimers Dis 2018; 57:205-226. [PMID: 28222502 DOI: 10.3233/jad-160543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In addition to coupling cell metabolism and excitability, ATP-sensitive potassium channels (KATP) are involved in neural function and plasticity. Moreover, alterations in KATP activity and expression have been observed in Alzheimer's disease (AD) and during amyloid-β (Aβ)-induced pathology. Thus, we tested whether KATP modulators can influence Aβ-induced deleterious effects on memory, hippocampal network function, and plasticity. We found that treating animals with subclinical doses (those that did not change glycemia) of a KATP blocker (Tolbutamide) or a KATP opener (Diazoxide) differentially restrained Aβ-induced memory deficit, hippocampal network activity inhibition, and long-term synaptic plasticity unbalance (i.e., inhibition of LTP and promotion of LTD). We found that the protective effect of Tolbutamide against Aβ-induced memory deficit was strong and correlated with the reestablishment of synaptic plasticity balance, whereas Diazoxide treatment produced a mild protection against Aβ-induced memory deficit, which was not related to a complete reestablishment of synaptic plasticity balance. Interestingly, treatment with both KATP modulators renders the hippocampus resistant to Aβ-induced inhibition of hippocampal network activity. These findings indicate that KATP are involved in Aβ-induced pathology and they heighten the potential role of KATP modulation as a plausible therapeutic strategy against AD.
Collapse
Affiliation(s)
- Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| | - Javier Rodríguez-Colorado
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| |
Collapse
|
38
|
Netrin-1 improves the amyloid-β-mediated suppression of memory and synaptic plasticity. Brain Res Bull 2017; 131:107-116. [DOI: 10.1016/j.brainresbull.2017.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/14/2017] [Accepted: 03/29/2017] [Indexed: 11/24/2022]
|
39
|
Mohammadzadeh N, Mehri S, Hosseinzadeh H. Berberis vulgaris and its constituent berberine as antidotes and protective agents against natural or chemical toxicities. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:538-551. [PMID: 28656089 PMCID: PMC5478782 DOI: 10.22038/ijbms.2017.8678] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/13/2017] [Indexed: 12/17/2022]
Abstract
Berberis vulgaris L (B. vulgaris) and its main constituent berberine have been used in traditional medicine for a long time. This medicinal plant and berberine have many properties that have attracted the attention of researchers over the time. According to several studies, B. vulgaris and berberine exhibited anti-inflammatory, antioxidant, anticonvulsant, antidepressant, anti-Alzheimer, anti-cancer, anti-arrhythmic, antiviral, antibacterial and anti-diabetic effects in both in vitro and invivo experiments. In regard to many reports on protective effects of B. vulgaris and berberine on natural and chemical toxins, in the current review article, the inhibitory effects of these compounds against natural, industrial, environmental and chemical toxicities with focus on cellular mechanism have been categorized. It has been mentioned that berberine could ameliorate toxicity of chemical toxins in brain, heart, kidney, liver and lung in part through antioxidant, anti-inflammatory, anti-apoptotic, modulation of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways.
Collapse
Affiliation(s)
| | - Soghra Mehri
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Berberine protects against memory impairment and anxiogenic-like behavior in rats submitted to sporadic Alzheimer’s-like dementia: Involvement of acetylcholinesterase and cell death. Neurotoxicology 2016; 57:241-250. [DOI: 10.1016/j.neuro.2016.10.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 01/03/2023]
|
41
|
Fingolimod (FTY720) improves hippocampal synaptic plasticity and memory deficit in rats following focal cerebral ischemia. Brain Res Bull 2016; 124:95-102. [PMID: 27066884 DOI: 10.1016/j.brainresbull.2016.04.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/23/2022]
Abstract
Fingolimod (FTY720) is a known sphingosine-1-phosphate (S1P) receptor agonist. Several studies have shown the therapeutic efficacy of FTY720 in neurodegenerative disorders. However, the neuroprotective mechanisms in brain ischemia have not been adequately studied. Therefore, the present study aimed to investigate the effects of FTY720 on the impairment of learning and memory and hippocampal synaptic plasticity induced by middle cerebral artery occlusion (MCAO) in ischemic brain injury. Twenty eight male rats were randomly divided into four groups of control (n=7), sham (n=8), ischemic-reperfusion+vehicle (I/R+V; n=7), and I/R+FTY720 (n=6). After 1h of the occlusion of artery, the filament was gently withdrawn to allow reperfusion for the next 7 days. The animals first received a dose of FTY720 (0.5mg/Kg) or its vehicle (intra-peritoneal) twenty-four hours before surgery in I/R+FTY720 and I/R+V groups, respectively. The administration of FTY720 or its vehicle continued every other day. The passive avoidance test and field potential recording were used for evaluation of learning, memory and synaptic plasticity. The brain infarct volume was measured by triphenyltetrazolim hydrochloride (TTC) staining. MCAO caused infarct damage in the rat's brain tissue. The administration of FTY720 significantly reduced the size of the lesion, improved the memory impairment of MCAO rats, and increased the STL time. In addition, the field potential recording demonstrated a marked reduction in induction of long-term potentiation of MCAO animals. However, administration of FTY720 recovers the magnitude of the LTP without any effects on presynaptic plasticity and neurotransmitter release probability. The results of this study demonstrated that MCAO in rats impairs the retention of passive avoidance tasks and multiple injection of FTY720 improved the memory performance after MCAO by LTP induction via post-synaptic mechanisms.
Collapse
|
42
|
Aghaei I, Hajali V, Dehpour A, Haghani M, Sheibani V, Shabani M. Alterations in the intrinsic electrophysiological properties of Purkinje neurons in a rat model of hepatic encephalopathy: Relative preventing effect of PPARγ agonist. Brain Res Bull 2016; 121:16-25. [DOI: 10.1016/j.brainresbull.2015.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 12/17/2022]
|
43
|
Abstract
Berberine, an important protoberberine isoquinoline alkaloid, has several pharmacological activities, including antimicrobial, glucose- and cholesterol-lowering, antitumoral, and immunomodulatory properties. Substantial studies suggest that berberine may be beneficial to Alzheimer's disease (AD) by limiting the pathogenesis of extracellular amyloid plaques and intracellular neurofibrillary tangles. Increasing evidence has indicated that berberine exerts a protective role in atherosclerosis related to lipid- and glucose-lowering properties, implicating that berberine has the potential to inhibit these risk factors for AD. This review also attempts to discuss the pharmacological basis through which berberine may retard oxidative stress and neuroinflammation to exhibit its protective role in AD. Accordingly, berberine might be considered a potential therapeutic approach to prevent or delay the process of AD. However, more detailed investigations along with a safety assessment of berberine are warranted to clarify the role of berberine in limiting these risk factors and AD-related pathologies.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province
| | - Chuanling Wang
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People's Republic of China
| |
Collapse
|
44
|
Peña-Altamira E, Prati F, Massenzio F, Virgili M, Contestabile A, Bolognesi ML, Monti B. Changing paradigm to target microglia in neurodegenerative diseases: from anti-inflammatory strategy to active immunomodulation. Expert Opin Ther Targets 2015; 20:627-40. [PMID: 26568363 DOI: 10.1517/14728222.2016.1121237] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The importance of microglia in most neurodegenerative pathologies, from Parkinson's disease to amyotrophic lateral sclerosis and Alzheimer's disease, is increasingly recognized. Until few years ago, microglial activation in pathological conditions was considered dangerous to neurons due to its causing inflammation. Today we know that these glial cells also play a crucial physiological and neuroprotective role, which is altered in neurodegenerative conditions. AREAS COVERED The neuroinflammatory hypothesis for neurodegenerative diseases has led to the trial of anti-inflammatory agents as therapeutics with largely disappointing results. New information about the physiopathological role of microglia has highlighted the importance of immunomodulation as a potential new therapeutic approach. This review summarizes knowledge on microglia as a potential therapeutic target in the most common neurodegenerative diseases, with focus on compounds directed toward the modulation of microglial immune response through specific molecular pathways. EXPERT OPINION Here we support the innovative concept of targeting microglial cells by modulating their activity, rather than simply trying to counteract their inflammatory neurotoxicity, as a potential therapeutic approach for neurodegenerative diseases. The advantage of this therapeutic approach could be to reduce neuroinflammation and toxicity, while at the same time strengthening intrinsic neuroprotective properties of microglia and promoting neuroregeneration.
Collapse
Affiliation(s)
| | - Federica Prati
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Francesca Massenzio
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Marco Virgili
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Antonio Contestabile
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Maria Laura Bolognesi
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Barbara Monti
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| |
Collapse
|
45
|
Wang X, Wang L, Jiang R, Yuan Y, Yu Q, Li Y. Exendin-4 antagonizes Aβ1-42-induced suppression of long-term potentiation by regulating intracellular calcium homeostasis in rat hippocampal neurons. Brain Res 2015; 1627:101-8. [DOI: 10.1016/j.brainres.2015.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/06/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|
46
|
Bayat M, Sharifi MD, Haghani M, Shabani M. Enriched environment improves synaptic plasticity and cognitive deficiency in chronic cerebral hypoperfused rats. Brain Res Bull 2015; 119:34-40. [PMID: 26474515 DOI: 10.1016/j.brainresbull.2015.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 12/12/2022]
Abstract
Recent studies have indicated that environmental enrichment (EE) increases the sensorial and social stimulations and leads to strengthened plastic changes in the brain. In models of chronic cerebral hypoperfusion, the ability of an EE to restore the cognition depends on hippocampal synaptic plasticity. The mechanisms for this effect have not, however, been adequately studied. Thus, the aim of the present study was to evaluate the neuroprotective effects and underlying mechanism of environmental enrichment by assessment of spatial memory tasks as well as parameters of synaptic plasticity in rats subjected to occlusion of the bilateral common carotid arteries (2-VO) model. Male Sprague-Dawley rats were used in this study. The model group was established by occlusion of the bilateral common carotid arteries. The animals were tested for learning, memory performance and synaptic plasticity using Morris water maze (MWM), 8-arm Radial Maze (RM), and field potential recording, respectively. The rats subjected to 2-VO in EE exhibited a significantly lower number of working errors and reference errors in RM. Moreover, the enriched environment recovered the memory performance of hypoperfused rats and decreased the swimming time to reach the platform in MWM. In addition, conditions of the environment did not have any effect on baseline synaptic transmission and presynaptic plasticity, but housing the animals in EE rescued the impairment of LTP induction induced by 2-VO. These results suggest that EE ameliorates the LTP and spatial memory impairment induced by 2-VO. Our data indicated that the LTP recovery by EE in the rat models of 2-VO is probably mediated by post-synaptic mechanisms.
Collapse
Affiliation(s)
- Mahnaz Bayat
- Department of Physiology, International Branch, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Davood Sharifi
- Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Masoud Haghani
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|