1
|
Kij A, Kieronska-Rudek A, Bar A, Czyzynska-Cichon I, Strus M, Kozien L, Wiecek G, Zeber-Lubecka N, Kulecka M, Kwiatkowski G, Przyborowski K, Mohaissen T, Sternak M, Buczek E, Zakrzewska A, Proniewski B, Kus K, Franczyk-Zarow M, Kostogrys RB, Pieterman EJ, Princen HMG, Chlopicki S. Low phylloquinone intake deteriorates endothelial function in normolipidemic and dyslipidaemic mice. J Nutr Biochem 2025; 140:109867. [PMID: 39978646 DOI: 10.1016/j.jnutbio.2025.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 01/10/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
While the plasma phylloquinone (PK) concentration is inversely correlated with cardiovascular risk, the involvement of PK in regulating endothelial function has not been directly investigated. Therefore, in this study we assessed the effects of short-term treatment with PK-deficient diets (5-10 weeks) on endothelial function in normolipidemic 14-week-old male C57BL/6JCmd mice and age-matched dyslipidaemic male E3L.CETP mice. Our results show that in normolipidemic mice dietary PK deficiency was associated with a marked reduction of PK levels in the plasma and liver (liquid chromatography-mass spectrometry measurements) and with impaired endothelium-dependent vasodilation assessed in vivo by magnetic resonance imaging (MRI). Dietary PK deficiency-induced endothelial dysfunction was fully reversed by PK supplementation. In dyslipidaemic E3L.CETP mice, dietary PK deficiency exacerbated preexisting endothelial dysfunction. Furthermore, dietary PK deficiency decreased menaquinone-4 (MK-4) levels in the aorta but did not affect blood coagulation (calibrated automated thrombography), microbiota composition (culturing and next-generation sequencing), and gut menaquinone production. In conclusion, our study demonstrated for the first time that sufficient dietary PK intake supports endothelial function in normolipidemic and dyslipidaemic mice indicating nutritional significance of dietary PK in the maintenance of endothelial function in humans.
Collapse
Affiliation(s)
- Agnieszka Kij
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Anna Kieronska-Rudek
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland; Jagiellonian University Medical College, Krakow, Poland
| | - Anna Bar
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Magdalena Strus
- Jagiellonian University Medical College, Department of Bacteriology, Microbial Ecology and Parasitology, Krakow, Poland
| | - Lucja Kozien
- Jagiellonian University Medical College, Department of Bacteriology, Microbial Ecology and Parasitology, Krakow, Poland
| | - Grazyna Wiecek
- Jagiellonian University Medical College, Department of Bacteriology, Microbial Ecology and Parasitology, Krakow, Poland
| | - Natalia Zeber-Lubecka
- Centre of Postgraduate Medical Education Department of Gastroenterology, Hepatology and Clinical Oncology, Warszawa, Poland; Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warszawa, Poland
| | - Maria Kulecka
- Centre of Postgraduate Medical Education Department of Gastroenterology, Hepatology and Clinical Oncology, Warszawa, Poland; Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warszawa, Poland
| | - Grzegorz Kwiatkowski
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Tasnim Mohaissen
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland; University of Copenhagen, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Magdalena Sternak
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Elzbieta Buczek
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Kamil Kus
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland
| | - Magdalena Franczyk-Zarow
- University of Agriculture in Krakow, Faculty of Food Technology, Department of Human Nutrition and Dietetics, Krakow, Poland
| | - Renata B Kostogrys
- University of Agriculture in Krakow, Faculty of Food Technology, Department of Human Nutrition and Dietetics, Krakow, Poland
| | - Elsbeth J Pieterman
- The Netherlands Organization of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Hans M G Princen
- The Netherlands Organization of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, Poland; Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
2
|
Bar A, Berkowicz P, Kurpinska A, Mohaissen T, Karaś A, Kaczara P, Suraj-Prażmowska J, Sternak M, Marczyk B, Malinowska A, Kij A, Jasztal A, Czyzynska-Cichon I, Pieterman EJ, Princen HMG, Wiśniewski JR, Chlopicki S. Effects of life-long hyperlipidaemia on age-dependent development of endothelial dysfunction in humanised dyslipidaemic mice. GeroScience 2025:10.1007/s11357-025-01578-w. [PMID: 40240752 DOI: 10.1007/s11357-025-01578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/22/2025] [Indexed: 04/18/2025] Open
Abstract
Little is known, how life-long hyperlipidaemia affects vascular ageing, before atherosclerosis. Here, we characterise effects of mild, life-long hyperlipidaemia on age-dependent endothelial dysfunction (ED) in humanised dyslipidaemia model of E3L.CETP mice. Vascular function was characterised using magnetic resonance imaging in vivo and wire myograph ex vivo. Plasma endothelial biomarkers and non-targeted proteomics in plasma and aorta were analysed. Early atherosclerosis lesions were occasionally present only in 40-week-old or older E3L.CETP mice. However, age-dependent ED developed earlier, in 14-week-old male and 22-week-old female E3L.CETP mice as compared with 40-week-old female and male C57BL/6J mice. Acetylcholine-induced vasodilation in 8-week-old E3L.CETP, especially female mice, was blocked by catalase and attributed to H2O2. In 8-week-old female E3L.CETP mice, changes in plasma proteome in response to hyperlipidaemia were modest, while in male mice a number of differentially expressed proteins were identified that were involved in oxidative stress response, inflammation and regulation of metabolic pathways. In contrast, in older E3L.CETP and C57BL/6J mice, either plasma or aortic proteome displayed similar pattern of vascular ageing, dominating over hyperlipidaemia-induced changes. Interestingly, in 48-week-old male but not female E3L.CETP mice, vascular mitochondrial functional response was impaired. Early resilience of hyperlipidaemia-induced detrimental effects in young female E3L.CETP mice on a functional level was associated with a switch in vasodilation mechanism, blunted systemic proteomic response in plasma and slower ED development as compared to male E3L.CETP mice. The results indicate that profile of early vascular response to risk factors in young age may determine level of ED in older age before atherosclerosis development.
Collapse
Affiliation(s)
- Anna Bar
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Piotr Berkowicz
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Tasnim Mohaissen
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
- University of Copenhagen, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 København, Copenhagen, Denmark
| | - Agnieszka Karaś
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Patrycja Kaczara
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Joanna Suraj-Prażmowska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Brygida Marczyk
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Agata Malinowska
- Polish Academy of Sciences, Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Pawińskiego St 5a, 02-106, Warsaw, Poland
| | - Agnieszka Kij
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Elsbet J Pieterman
- The Netherlands Organisation of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, 2333 CK, Leiden, The Netherlands
| | - Hans M G Princen
- The Netherlands Organisation of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, 2333 CK, Leiden, The Netherlands
| | - Jacek R Wiśniewski
- Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Am Klopferspitz 18, 82152 Planegg, Martinsried, Germany
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland.
- Jagiellonian University Medical College, Faculty of Medicine, Grzegorzecka 16, 31-531, Krakow, Poland.
| |
Collapse
|
3
|
Inia JA, van Nieuwkoop-van Straalen A, Jukema JW, Rolin B, Staarup EM, Mogensen CK, Princen HMG, van den Hoek AM. Efficacy of a novel PCSK9 inhibitory peptide alone and with evinacumab in a mouse model of atherosclerosis. J Lipid Res 2025; 66:100753. [PMID: 39909173 PMCID: PMC11927713 DOI: 10.1016/j.jlr.2025.100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/23/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025] Open
Abstract
Atherosclerosis is the major cause of cardiovascular disease. This study evaluated the effect of lipid lowering using a novel peptide inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9) and a monoclonal antibody against angiopoietin-like 3 (evinacumab), either alone or in combination in APOE∗3-Leiden.CETP mice fed a Western diet. Effects on body weight, plasma lipids, atherosclerotic lesion size, severity, composition, and morphology were assessed. Treatment with PCSK9 inhibitory peptide significantly decreased both cholesterol and triglycerides (-69% and -68%, respectively). Similar reductions were seen in evinacumab-treated mice (-44% and -55%, respectively). The combination of evinacumab and PCSK9 inhibitory peptide lowered these levels to a larger extent than evinacumab alone (cholesterol: -74%; triglycerides: -81%). Reductions occurred in non-HDL-C without changes in HDL-C. Atherosclerotic lesion size was significantly reduced in all treatment groups compared to vehicle controls (evinacumab: -72%; PCSK9 inhibitory peptide: -97%; combination: -98%). Similarly, all interventions improved atherosclerotic lesion severity, with more undiseased segments and fewer severe lesions. Evaluation of the composition of severe atherosclerotic plaques revealed significant improvement in lesion stability in mice treated with both evinacumab and PCSK9 inhibitory peptide, attributable to decreased macrophage content and increased collagen content. Additionally, evaluation of lipid concentrations in cynomolgus monkeys revealed the beneficial effects of the PCSK9 inhibitory peptide on total cholesterol and LDL-C levels. Treatment with a novel PCSK9 inhibitory peptide alone or with evinacumab shows great potential to reduce and stabilize atherosclerotic lesions.
Collapse
Affiliation(s)
- José A Inia
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands; Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Anita van Nieuwkoop-van Straalen
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Centre, Leiden, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | - Bidda Rolin
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | | | | | - Hans M G Princen
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| |
Collapse
|
4
|
Feng J, Qi X, Chen C, Li B, Wang M, Xie X, Yang K, Liu X, Chen RM, Guo T, Liu J. Multilayer analysis of ethnically diverse blood and urine biomarkers for breast cancer risk and prognosis. Sci Rep 2025; 15:6791. [PMID: 40000747 PMCID: PMC11861975 DOI: 10.1038/s41598-025-90447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Breast cancer (BC) is one of the most common malignancies among women globally, characterized by complex pathogenesis involving various biomarkers present in blood and urine. To enhance understanding of the genetic associations between biomarkers and BC via multidimensional, cross ethnic investigations. Based on GWAS data of 35 blood and urine biomarkers from European populations, we adopted multiple analysis strategies including univariable Mendelian randomization (MR) analysis, reverse MR analysis, sensitivity analysis and multivariate MR to identify potential biomarkers associated with BC risk and survival. Our initial analysis included 122,977 BC and 105,974 controls of European ancestry. Building upon these findings, we conducted cross ethnic validation by applying the same analyses to East Asian populations using data from the IEU GWAS database, which included 5,552 BC and 89,731 controls. This step allowed us to investigate the universality and heterogeneity of our identified biomarkers across different ancestries. Subsequently, utilizing clinical laboratory detection data from multiple regions in China, we performed differential analyses and survival assessments on these potential biomarkers to evaluate their clinical relevance and utility. Notably, we leveraged Luzhou's clinical data to integrate HDL-C with conventional tumor markers (CEA, CA125, CA153) into a machine learning model, comparing its diagnostic efficacy against tumor marker combination. Our study validated associations of ALP, HDL-C, TG, SHBG, and IGF-1 with BC risk, reinforcing the reliability of these findings. Moreover, notable interethnic disparities emerged in the association between HDL-C and BC risk, where in HDL-C demonstrates a contrasting role: acting as a genetic protective agent against BC and suggesting promise as an auxiliary diagnostic marker in East Asian populations, yet inversely, it serves as a genetic dangerous predictor in European populations. Analyzing BC subtypes, we identified associations of HDL-C, TG, SHBG, and CRP with ER+BC, while ER-BC showed associations with GLU, urinary creatinine and microalbuminuria, underscoring subtype-specific genetic characteristics critical for personalized prevention and treatment strategies. Overall, this comprehensive study, by traversing the intricate landscape of genetic associations across ethnic boundaries and employing advanced analytical methodologies, not only uncovers the complex interplay between key biomarkers and BC susceptibility but also highlights the significance of ethnic-specific differences in the role of HDL-C. By enhancing the diagnostic power of a tailored biomarker panel through machine learning, this study contributes to the advancement of precision medicine in BC, offering strategies tailored to the unique genetic profiles and biomarker patterns across diverse populations.
Collapse
Affiliation(s)
- Jia Feng
- Department of Laboratory Medicine, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xing Qi
- Department of Laboratory Medicine, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Clinical Laboratory Medicine, Ziyang Central Hospital, Ziyang, 641300, Sichuan, China
| | - Chen Chen
- Department of Laboratory Medicine, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Baolin Li
- Department of Laboratory Medicine, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Min Wang
- Department of Laboratory Medicine, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xuelong Xie
- Clinical Laboratory of Yibin Second People's Hospital, Yibin, 644000, Sichuan, China
| | - Kailan Yang
- Clinical Laboratory of Zigong First People's Hospital, Zigong, 643000, Sichuan, China
| | - Xuan Liu
- Department of Laboratory Medicine, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Rui Min Chen
- Department of Laboratory Medicine, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tongtong Guo
- Department of Laboratory Medicine, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jinbo Liu
- Department of Laboratory Medicine, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
5
|
Becit-Kizilkaya M, Oncu S, Bugra Koca H, Cavusoglu D. Evaluation of anti-seizure medications and their serum concentration with regard to cardiovascular risk parameters: A cross-sectional study. Epilepsy Behav 2024; 155:109802. [PMID: 38657483 DOI: 10.1016/j.yebeh.2024.109802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE Epilepsy is a chronic disease that requires long-term monitoring and treatment. It is suspected that there is a interaction between the use of anti-seizure medications and the risk of cardiovascular disease. The aim of the study is to investigate the association between the intake of phenobarbital, carbamazepine and valproic acid and their serum drug concentrations (SDC) with various cardiovascular risk parameters (homocysteine, folic acid, vitamin B12, total cholesterol (TC), triglycerides, high- and low-density lipoprotein (LDL)). METHODS This is a cross-sectional study. Data (demographic characteristics and laboratory results) of patients treated for epilepsy in a tertiary care hospital between January 2020 and February 2022 were analyzed retrospectively (n = 2014). Kruskal Wallis, Mann-Whitney U, correlation analysis was used, p < 0.05 was considered statistically significant. RESULTS The median age of patients was 15 years (IQR:8-31) and 48.3 % were women. The highest homocysteine level was found in patients receiving valproic acid, but it was not statistically significant. Patients receiving phenobarbital had the highest levels of folic acid and B12 and the lowest levels of total cholesterol and low-density lipoprotein cholesterol, which was statistically significant. In patients receiving carbamazepine, a moderately negative significant association was found between serum drug concentration and folic acid levels and a moderately positive significant association was found between TC and LDL levels. CONCLUSION In our study, the majority of patients were children and adolescents. Regular monitoring of drug serum concentrations and metabolic parameters may be useful to select the safest drug in terms of cardiovascular disease risk. Randomized controlled trials on the long-term effects of anti-seizure treatment are needed.
Collapse
Affiliation(s)
- Merve Becit-Kizilkaya
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| | - Seyma Oncu
- Department of Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| | - Halit Bugra Koca
- Department of Medical Biochemistry, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| | - Dilek Cavusoglu
- Department of Pediatric Neurology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| |
Collapse
|
6
|
Poudel A, Gachumi G, Paterson PG, El-Aneed A, Badea I. Liposomal Phytosterols as LDL-Cholesterol-Lowering Agents in Diet-Induced Hyperlipidemia. Mol Pharm 2023; 20:4443-4452. [PMID: 37492942 DOI: 10.1021/acs.molpharmaceut.2c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The high blood level of low-density lipoprotein cholesterol (LDL-C) is a primary risk factor for cardiovascular disease. Plant sterols, known as phytosterols (PSs), can reduce LDL-C in a range of 8-14%. The extent of LDL-C reduction depends on its formulation. Encapsulation into liposomes is one formulation strategy to enhance the efficiency of PSs. PSs (campesterol, stigmasterol, and β-sitosterol) have frequently been assessed alone or in combination for their LDL-C-lowering ability. However, one naturally abundant PS, brassicasterol, has not yet been tested for its efficacy. We have previously developed a novel liposomal formulation containing the PS mixture present naturally in canola that is composed of brassicasterol, campesterol, and β-sitosterol. In this work, the efficacy of our novel liposomal PS formulation that includes brassicasterol was assessed in a hamster model. Animals were divided into five groups: (i) liposomal PS in orange juice, (ii) liposomal PS in water, (iii) marketed PS in orange juice, (iv) control orange juice, and (v) control water. The animals were fed a high-fat, cholesterol-supplemented (0.5%) diet to induce hypercholesterolemia. The treatment was administered orally once daily for 4 weeks. Fasting blood samples were collected at baseline, week 2, and week 4. The extent of the reduction of total cholesterol, LDL-C, high-density lipoprotein cholesterol (HDL-C), and triglycerides was compared among the groups. Liposomal PSs in both orange juice and water significantly reduced LDL-C compared to their controls. Furthermore, the liposomal PS was as effective as a marketed PS-containing product in reducing LDL-C. Liposomal PSs in both orange juice and water showed similar efficacy in LDL-C reduction, highlighting that these vehicles/food matrices do not affect the efficacy of PSs. The liposomal formulation of a natural PS mixture extracted from canola oil, with brassicasterol as a major component, exhibited a significant LDL-C reduction in a hamster model.
Collapse
Affiliation(s)
- Asmita Poudel
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| | - George Gachumi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| | - Phyllis G Paterson
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| |
Collapse
|
7
|
Zancanella V, Vallès A, Liefhebber JM, Paerels L, Tornero CV, Wattimury H, van der Zon T, van Rooijen K, Golinska M, Grevelink T, Ehlert E, Pieterman EJ, Keijzer N, Princen HMG, Stokman G, Liu YP. Proof-of-concept study for liver-directed miQURE technology in a dyslipidemic mouse model. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:454-467. [PMID: 37168797 PMCID: PMC10165407 DOI: 10.1016/j.omtn.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/04/2023] [Indexed: 05/13/2023]
Abstract
A gene-silencing platform (miQURE) has been developed and successfully used to deliver therapeutic microRNA (miRNA) to the brain, reducing levels of neurodegenerative disease-causing proteins/RNAs via RNA interference and improving the disease phenotype in animal models. This study evaluates the use of miQURE technology to deliver therapeutic miRNA for liver-specific indications. Angiopoietin-like 3 (ANGPTL3) was selected as the target mRNA because it is produced in the liver and because loss-of-function ANGPTL3 mutations and/or pharmacological inhibition of ANGPTL3 protein lowers lipid levels and reduces cardiovascular risk. Overall, 14 candidate miRNA constructs were tested in vitro, the most potent of which (miAngE) was further evaluated in mice. rAAV5-miAngE led to dose-dependent (≤-77%) decreases in Angptl3 mRNA in WT mice with ≤-90% reductions in plasma ANGPTL3 protein. In dyslipidemic APOE∗3-Leiden.CETP mice, AAV5-miAngE significantly reduced cholesterol and triglyceride levels vs. vehicle and scrambled (miSCR) controls when administrated alone, with greater reductions when co-administered with lipid-lowering therapy (atorvastatin). A significant decrease in total atherosclerotic lesion area (-58% vs. miSCR) was observed in AAV5-miAngE-treated dyslipidemic mice, which corresponded with the maintenance of a non-diseased plaque phenotype and reduced lesion severity. These results support the development of this technology for liver-directed indications.
Collapse
Affiliation(s)
- Vanessa Zancanella
- uniQure biopharma B.V., Department of Research and Development, 1105 BP, Amsterdam, The Netherlands
| | - Astrid Vallès
- uniQure biopharma B.V., Department of Research and Development, 1105 BP, Amsterdam, The Netherlands
| | - Jolanda M.P. Liefhebber
- uniQure biopharma B.V., Department of Research and Development, 1105 BP, Amsterdam, The Netherlands
| | - Lieke Paerels
- uniQure biopharma B.V., Department of Research and Development, 1105 BP, Amsterdam, The Netherlands
| | - Carlos Vendrell Tornero
- uniQure biopharma B.V., Department of Research and Development, 1105 BP, Amsterdam, The Netherlands
| | - Hendrina Wattimury
- uniQure biopharma B.V., Department of Research and Development, 1105 BP, Amsterdam, The Netherlands
| | - Tom van der Zon
- uniQure biopharma B.V., Department of Research and Development, 1105 BP, Amsterdam, The Netherlands
| | - Kristel van Rooijen
- uniQure biopharma B.V., Department of Research and Development, 1105 BP, Amsterdam, The Netherlands
| | - Monika Golinska
- uniQure biopharma B.V., Department of Research and Development, 1105 BP, Amsterdam, The Netherlands
| | - Tamar Grevelink
- uniQure biopharma B.V., Department of Research and Development, 1105 BP, Amsterdam, The Netherlands
| | - Erich Ehlert
- uniQure biopharma B.V., Department of Research and Development, 1105 BP, Amsterdam, The Netherlands
| | | | - Nanda Keijzer
- TNO Metabolic Health Research, Sylviusweg 71 2333 BE Leiden, The Netherlands
| | | | - Geurt Stokman
- TNO Metabolic Health Research, Sylviusweg 71 2333 BE Leiden, The Netherlands
| | - Ying Poi Liu
- uniQure biopharma B.V., Department of Research and Development, 1105 BP, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Inia JA, Stokman G, Pieterman EJ, Morrison MC, Menke AL, Verschuren L, Caspers MPM, Giera M, Jukema JW, van den Hoek AM, Princen HMG. Atorvastatin Attenuates Diet-Induced Non-Alcoholic Steatohepatitis in APOE*3-Leiden Mice by Reducing Hepatic Inflammation. Int J Mol Sci 2023; 24:ijms24097818. [PMID: 37175538 PMCID: PMC10178767 DOI: 10.3390/ijms24097818] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Patients with metabolic syndrome are often prescribed statins to prevent the development of cardiovascular disease. Conversely, data on their effects on non-alcoholic steatohepatitis (NASH) are lacking. We evaluated these effects by feeding APOE*3-Leiden mice a Western-type diet (WTD) with or without atorvastatin to induce NASH and hepatic fibrosis. Besides the well-known plasma cholesterol lowering (-30%) and anti-atherogenic effects (severe lesion size -48%), atorvastatin significantly reduced hepatic steatosis (-22%), the number of aggregated inflammatory cells in the liver (-80%) and hepatic fibrosis (-92%) compared to WTD-fed mice. Furthermore, atorvastatin-treated mice showed less immunohistochemically stained areas of inflammation markers. Atorvastatin prevented accumulation of free cholesterol in the form of cholesterol crystals (-78%). Cholesterol crystals are potent inducers of the NLRP3 inflammasome pathway and atorvastatin prevented its activation, which resulted in reduced expression of the pro-inflammatory cytokines interleukin (IL)-1β (-61%) and IL-18 (-26%). Transcriptome analysis confirmed strong reducing effects of atorvastatin on inflammatory mediators, including NLRP3, NFκB and TLR4. The present study demonstrates that atorvastatin reduces hepatic steatosis, inflammation and fibrosis and prevents cholesterol crystal formation, thereby precluding NLRP3 inflammasome activation. This may render atorvastatin treatment as an attractive approach to reduce NAFLD and prevent progression into NASH in dyslipidemic patients.
Collapse
Affiliation(s)
- José A Inia
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands
| | - Geurt Stokman
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Elsbet J Pieterman
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Martine C Morrison
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Aswin L Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), 2300 RC Leiden, The Netherlands
- Netherlands Heart Institute, 3511 EP Utrecht, The Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Hans M G Princen
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| |
Collapse
|
9
|
van Eenige R, Ying Z, Tramper N, Wiebing V, Siraj Z, de Boer JF, Lambooij JM, Guigas B, Qu H, Coskun T, Boon MR, Rensen PCN, Kooijman S. Combined glucose-dependent insulinotropic polypeptide receptor and glucagon-like peptide-1 receptor agonism attenuates atherosclerosis severity in APOE*3-Leiden.CETP mice. Atherosclerosis 2023; 372:19-31. [PMID: 37015151 DOI: 10.1016/j.atherosclerosis.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND AND AIMS Combined agonism of the glucose-dependent insulinotropic polypeptide receptor (GIPR) and the glucagon-like peptide-1 receptor (GLP1R) is superior to single GLP1R agonism in terms of glycemic control and lowering body weight in individuals with obesity and with or without type 2 diabetes mellitus. As both GIPR and GLP1R signaling have also been implicated in improving inflammatory responses and lipid handling, two crucial players in atherosclerosis development, here we aimed to investigate the effects of combined GIPR/GLP1R agonism in APOE*3-Leiden.CETP mice, a well-established mouse model for human-like lipoprotein metabolism and atherosclerosis development. METHODS Female APOE*3-Leiden.CETP mice were fed a Western-type diet (containing 16% fat and 0.15% cholesterol) to induce dyslipidemia, and received subcutaneous injections with either vehicle, a GIPR agonist (GIPFA-085), a GLP1R agonist (GLP-140) or both agonists. In the aortic root area, atherosclerosis development was assessed. RESULTS Combined GIPR/GLP1R agonism attenuated the development of severe atherosclerotic lesions, while single treatments only showed non-significant improvements. Mechanistically, combined GIPR/GLP1R agonism decreased markers of systemic low-grade inflammation. In addition, combined GIPR/GLP1R agonism markedly lowered plasma triglyceride (TG) levels as explained by reduced hepatic very-low-density lipoprotein (VLDL)-TG production as well as increased TG-derived fatty acid uptake by brown and white adipose tissue which was coupled to enhanced hepatic uptake of core VLDL remnants. CONCLUSIONS Combined GIPR/GLP1R agonism attenuates atherosclerosis severity by diminishing inflammation and increasing VLDL turnover. We anticipate that combined GIPR/GLP1R agonism is a promising strategy to lower cardiometabolic risk in humans.
Collapse
Affiliation(s)
- Robin van Eenige
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Zhixiong Ying
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Naomi Tramper
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Vera Wiebing
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Zohor Siraj
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Freark de Boer
- Departments of Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Joost M Lambooij
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands; Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hongchang Qu
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, United States
| | - Tamer Coskun
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, United States
| | - Mariëtte R Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
10
|
van Gemert Y, Blom AB, Di Ceglie I, Walgreen B, Helsen M, Sloetjes A, Vogl T, Roth J, Kruisbergen NNL, Pieterman EJ, Princen HMG, van der Kraan PM, van Lent PLEM, van den Bosch MHJ. Intensive cholesterol-lowering treatment reduces synovial inflammation during early collagenase-induced osteoarthritis, but not pathology at end-stage disease in female dyslipidemic E3L.CETP mice. Osteoarthritis Cartilage 2023:S1063-4584(23)00703-3. [PMID: 36898656 DOI: 10.1016/j.joca.2023.01.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 03/12/2023]
Abstract
INTRODUCTION The association between metabolic syndrome (MetS) and osteoarthritis (OA) development has become increasingly recognized. In this context, the exact role of cholesterol and cholesterol-lowering therapies in OA development has remained elusive. Recently, we did not observe beneficial effects of intensive cholesterol-lowering treatments on spontaneous OA development in E3L.CETP mice. We postulated that in the presence of local inflammation caused by a joint lesion, cholesterol-lowering therapies may ameliorate OA pathology. MATERIALS AND METHODS Female ApoE3∗Leiden.CETP mice were fed a cholesterol-supplemented Western type diet. After 3 weeks, half of the mice received intensive cholesterol-lowering treatment consisting of atorvastatin and the anti-PCSK9 antibody alirocumab. Three weeks after the start of the treatment, OA was induced via intra-articular injections of collagenase. Serum levels of cholesterol and triglycerides were monitored throughout the study. Knee joints were analyzed for synovial inflammation, cartilage degeneration, subchondral bone sclerosis and ectopic bone formation using histology. Inflammatory cytokines were determined in serum and synovial washouts. RESULTS Cholesterol-lowering treatment strongly reduced serum cholesterol and triglyceride levels. Mice receiving cholesterol-lowering treatment showed a significant reduction in synovial inflammation (P = 0.008, WTD: 95% CI: 1.4- 2.3; WTD + AA: 95% CI: 0.8- 1.5) and synovial lining thickness (WTD: 95% CI: 3.0-4.6, WTD + AA: 95% CI: 2.1-3.2) during early-stage collagenase-induced OA. Serum levels of S100A8/A9, MCP-1 and KC were significantly reduced after cholesterol-lowering treatment (P = 0.0005, 95% CI: -46.0 to -12.0; P = 2.8 × 10-10, 95% CI: -398.3 to -152.1; P = 2.1 × 10-9, -66.8 to -30.4, respectively). However, this reduction did not reduce OA pathology, determined by ectopic bone formation, subchondral bone sclerosis and cartilage damage at end-stage disease. CONCLUSION This study shows that intensive cholesterol-lowering treatment reduces joint inflammation after induction of collagenase-induced OA, but this did not reduce end stage pathology in female mice.
Collapse
Affiliation(s)
- Y van Gemert
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - I Di Ceglie
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - B Walgreen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M Helsen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A Sloetjes
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - T Vogl
- Institute of Immunology, University of Münster, Germany
| | - J Roth
- Institute of Immunology, University of Münster, Germany
| | - N N L Kruisbergen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - E J Pieterman
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - H M G Princen
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - P M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - P L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M H J van den Bosch
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
11
|
van Gemert Y, Kruisbergen NNL, Blom AB, van den Bosch MHJ, van der Kraan PM, Pieterman EJ, Princen HMG, van Lent PLEM. IL-1β inhibition combined with cholesterol-lowering therapies decreases synovial lining thickness and spontaneous cartilage degeneration in a humanized dyslipidemia mouse model. Osteoarthritis Cartilage 2023; 31:340-350. [PMID: 36442605 DOI: 10.1016/j.joca.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Both systemic inflammation and dyslipidemia contribute to osteoarthritis (OA) development and have been suggested as a possible link between metabolic disease and OA development. Recently, the CANTOS trial showed a reduction in knee and hip replacements after inhibition of IL-1β in patients with a history of cardiovascular disease and high inflammatory risk. In this light, we investigated whether inhibition of IL-1β combined with cholesterol-lowering therapies can reduce OA development in dyslipidemic APOE∗3Leiden mice under pro-inflammatory dietary conditions. MATERIALS AND METHODS Female ApoE3∗Leiden mice were fed a cholesterol-supplemented Western-Type diet (WTD) for 38 weeks. After 14 weeks, cholesterol-lowering and anti-inflammatory treatments were started. Treatments included atorvastatin alone or with an anti-IL1β antibody, and atorvastatin combined with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitor alirocumab without or with the anti-IL1β antibody. Knee joints were analyzed for cartilage degradation, synovial inflammation and ectopic bone formation using histology at end point. RESULTS Cholesterol-lowering treatment successfully decreased systemic inflammation in dyslipidemic mice, which was not further affected by inhibition of IL-1β. Synovial thickening and cartilage degeneration were significantly decreased in mice that received cholesterol-lowering treatment combined with inhibition of IL-1β (P < 0.01, P < 0.05, respectively) compared to mice fed a WTD alone. Ectopic bone formation was comparable between all groups. CONCLUSION These results indicate that inhibition of IL-1β combined with cholesterol-lowering therapy diminishes synovial thickening and cartilage degeneration in mice and may imply that this combination therapy could be beneficial in patients with metabolic inflammation.
Collapse
Affiliation(s)
- Y van Gemert
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - N N L Kruisbergen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M H J van den Bosch
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - P M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - E J Pieterman
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - H M G Princen
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - P L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
12
|
Chen X, Wang Z, Wang D, Kan J. Effects of resistant starch III on the serum lipid levels and gut microbiota of Kunming mice under high-fat diet. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Yang K, Lin X, Jian S, Wen J, Jian X, He S, Wen C, Liu T, Qi X, Yin Y, Deng B. Changes in gut microbiota and short-chain fatty acids are involved in the process of canine obesity after neutering. J Anim Sci 2023; 101:skad283. [PMID: 37632755 PMCID: PMC10558198 DOI: 10.1093/jas/skad283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/25/2023] [Indexed: 08/28/2023] Open
Abstract
Neutering is a significant risk factor for obesity in dogs. Changes in gut microbiota and its metabolites have been identified as a key player during obesity progression. However, the mechanisms that promote neuter-associated weight gain are not well understood. Therefore, in this study, sixteen clinically healthy Beagle dogs (6 male and 10 female, mean age = 8.22 ± 0.25 mo old) were neutered. Body weight (BW) and body condition score (BCS) were recorded at 1 d before neutering, 3, 6, 10, 16, and 21 mo after neutering. Dogs were grouped based on their BCS as ideal weight group (IW, n = 4, mean BW = 13.22 ± 1.30 kg, mean BCS = 5.00 ± 0.41) and obese group (OB, n = 12, mean BW = 18.57 ± 1.08 kg, mean BCS = 7.92 ± 0.82) at 21 mo after neutering. Serum lipid profile, glucose, and hormones and fecal microbiota and short-chain fatty acids (SCFAs) were measured. Our results showed that OB dogs had greater (P < 0.0001) BW (18.57 vs. 13.22 kg), BCS (7.92 vs. 5.00), and average daily gain (12.27 vs. 5.69 g/d) than IW dogs at 21 mo after neutering, and the obesity rate was up to 60%. In addition, significant increases (P < 0.05) in serum triglyceride (TG, 1.10 vs. 0.56 mmol/L) and high-density lipoprotein cholesterol (HDL-C, 6.96 vs. 5.40 mmol/L) levels and a significant decrease (P < 0.05) in serum adiponectin (APN, 54.06 vs. 58.39 μg/L) level were observed in OB dogs; serum total cholesterol (4.83 vs. 3.75 mmol/L) (P = 0.075) and leptin (LEP, 2.82 vs. 2.53 μg/L) (P = 0.065) levels tended to be greater in OB dogs; there was a trend towards a lower (P = 0.092) APN/LEP (19.32 vs. 21.81) in OB dogs. Results of fecal microbial alpha-diversity showed that Observed_species and Chao1 indices tended to be lower (P = 0.069) in OB dogs. The STAMP and LEfSe analyses revealed that OB dogs had a greater (P < 0.05 and LDA > 2) reduction in relative abundances of Bacteroides, Prevotella_9, and Megamonas than IW dogs. In addition, OB dogs also had greater (P < 0.05) reduction in fecal acetate, propionate, and butyrate concentrations than IW dogs. Moreover, clear negative correlations (|r| > 0.5 and P < 0.05) were found between SCFAs-producing bacteria and BW, TG, and HDL-C. The functional predictions of microbial communities based on PICRUSt2 analysis revealed that lipid metabolism and endocrine system were significantly disturbed in obese dogs after neutering. Thus, intervention with SCFAs-producing bacteria might represent a new target for the prevention or treatment of canine obesity after neutering. Moreover, weight control before neutering may also contribute to the prevention of canine obesity after neutering.
Collapse
Affiliation(s)
- Kang Yang
- School of Life and Health Science, Kaili University, Kaili 556011, China
| | - Xinye Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shiyan Jian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiawei Wen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoying Jian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shansong He
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chaoyu Wen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tingting Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin Qi
- Department of Technology, Beijing Veterinary Drug and Feed Monitoring Center, Beijing 101127, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
A novel, orally bioavailable, small-molecule inhibitor of PCSK9 with significant cholesterol-lowering properties in vivo. J Lipid Res 2022; 63:100293. [DOI: 10.1016/j.jlr.2022.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
|
15
|
Nostoc flagelliforme capsular polysaccharides from different culture conditions improve hyperlipidemia and regulate intestinal flora in C57BL/6J mice to varying degrees. Int J Biol Macromol 2022; 202:224-233. [PMID: 35038468 DOI: 10.1016/j.ijbiomac.2022.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022]
Abstract
Two capsular polysaccharides (WL-CPS-1 and GLU-CPS-1) purified from Nostoc flagelliforme under normal and mixotrophic culture conditions were used to investigate the hypolipidemic activity and effect on intestinal flora in C57BL/6J mice respectively. Their molecular weight and monosaccharide composition have been determined in previous studies. They both improved the lipid level by affecting the expression of lipid metabolism genes. They down-regulated the TNF-α and IL-1β levels in serum and up-regulated the activity of antioxidant enzymes in liver thus decreased the atherosclerosis index and MDA content. They up-regulated the short chain fatty acids (SCFAs) synthesis. They decreased the abundance of pathogenic bacteria and increased the abundance of probiotics positively correlated with SCFAs. Compared with WL-CPS-1, GLU-CPS-1 exhibited higher in vivo activity and enriched Odoribacter and Alloprevotella correlating with the gene expression of lipid metabolism, suggesting that the bioactivity of polysaccharides could be regulated by culture conditions. These findings contributed to application of N. flagelliforme polysaccharides with higher activity in hypolipidemia by adjusting culture conditions.
Collapse
|
16
|
Zeng C, Yan C, Guo S, Zhu H, Chen Y, Zhan X. High-density lipoprotein cholesterol to apolipoprotein A1 ratio and all-cause mortality among incident peritoneal dialysis patients. Nutr Metab Cardiovasc Dis 2021; 31:3457-3463. [PMID: 34656383 DOI: 10.1016/j.numecd.2021.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS The ratio of high-density lipoprotein cholesterol to apolipoprotein A1 (HAR) is associated with all-cause mortality in nonchronic kidney disease patients, but its role in predicting all-cause mortality in patients undergoing peritoneal dialysis (PD) is still unclear. The purpose of this study was to investigate the relationship between HAR and all-cause mortality in patients with PD. METHODS AND RESULTS The medical records of 1199 patients with PD from November 1, 2005, to August 31, 2019, were collected retrospectively. The main outcome was defined as all-cause mortality. The HAR was divided into three groups by X-tile software. The association between HAR and all-cause mortality was evaluated by Cox models. The Kaplan-Meier method was used for the survival curve. The median follow-up period was 35 months (interquartile range: 20-57 months), with a total of 326 deaths recorded. After multiple adjustments, the risk of all-cause mortality in the high HAR group was 1.96-fold higher than that in the low HAR group (hazard ratio: 1.96; 95% CI, 1.22 to 3.15; P = 0.005). The restricted cubic splines showed that the risk of all-cause mortality increased gradually when HAR was >0.37. In the stratified analysis, a high HAR was linked to a high risk of all-cause mortality in males, patients under 55 years old, and patients without diabetes or cardiovascular disease (CVD). CONCLUSION This study suggests that HAR is independently related to all-cause mortality in PD patients, especially in males, patients under 55 years old, and patients without diabetes or CVD.
Collapse
Affiliation(s)
- Chuanfei Zeng
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Caixia Yan
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shan Guo
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, China
| | - Hengmei Zhu
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yanbing Chen
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiaojiang Zhan
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
17
|
Darabi M, Kontush A. High-density lipoproteins (HDL): Novel function and therapeutic applications. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159058. [PMID: 34624514 DOI: 10.1016/j.bbalip.2021.159058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022]
Abstract
The failure of high-density lipoprotein (HDL)-raising agents to reduce cardiovascular disease (CVD) together with recent findings of increased cardiovascular mortality in subjects with extremely high HDL-cholesterol levels provide new opportunities to revisit our view of HDL. The concept of HDL function developed to explain these contradictory findings has recently been expanded by a role played by HDL in the lipolysis of triglyceride-rich lipoproteins (TGRLs) by lipoprotein lipase. According to the reverse remnant-cholesterol transport (RRT) hypothesis, HDL critically contributes to TGRL lipolysis via acquirement of surface lipids, including free cholesterol, released from TGRL. Ensuing cholesterol transport to the liver with excretion into the bile may reduce cholesterol influx in the arterial wall by accelerating removal from circulation of atherogenic, cholesterol-rich TGRL remnants. Such novel function of HDL opens wide therapeutic applications to reduce CVD in statin-treated patients, which primarily involve activation of cholesterol flux upon lipolysis.
Collapse
Affiliation(s)
- Maryam Darabi
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, Paris, France
| | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, Paris, France.
| |
Collapse
|
18
|
Pieterman EJ, Princen HMG, Jarke A, Nilsson R, Cavallin A, Bergenholm L, Henricsson M, Gopaul VS, Agrawal R, Nissen SE, Hurt-Camejo E. Chronic Oral Administration of Mineral Oil Compared With Corn Oil: Effects on Gut Permeability and Plasma Inflammatory and Lipid Biomarkers. Front Pharmacol 2021; 12:681455. [PMID: 34483899 PMCID: PMC8415260 DOI: 10.3389/fphar.2021.681455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/02/2021] [Indexed: 12/02/2022] Open
Abstract
We investigated the effects of chronic oral administration of mineral oil, versus corn oil as control, on intestinal permeability, inflammatory markers, and plasma lipids in APOE*3-Leiden.CETP mice. Mice received mineral oil or corn oil 15 or 30 μL/mouse/day for 16 weeks (15 mice/group). Intestinal permeability was increased with mineral versus corn oil 30 µL/day, shown by increased mean plasma FITC-dextran concentrations 2 h post-administration (11 weeks: 1.5 versus 1.1 μg/ml, p = 0.02; 15 weeks: 1.7 versus 1.3 μg/ml, p = 0.08). Mean plasma lipopolysaccharide-binding protein levels were raised with mineral versus corn oil 30 µL/day (12 weeks: 5.8 versus 4.4 μg/ml, p = 0.03; 16 weeks: 5.8 versus 4.5 μg/ml, p = 0.09), indicating increased intestinal bacterial endotoxin absorption and potential pro-inflammatory effects. Plasma cholesterol and triglyceride concentrations were decreased with mineral oil, without affecting liver lipids among treated groups. Fecal neutral sterol measurements indicated increased fecal cholesterol excretion with mineral oil 30 µL/day (+16%; p = 0.04). Chronic oral administration of mineral oil in APOE*3-Leiden.CETP mice increased intestinal permeability, with potential pro-inflammatory effects, and decreased plasma cholesterol and triglyceride levels. Our findings may raise concerns about the use of mineral oil as a placebo in clinical studies.
Collapse
Affiliation(s)
- Elsbet J Pieterman
- The Netherlands Organisation for Applied Scientific Research (TNO), Metabolic Health Research, Leiden, Netherlands
| | - Hans M G Princen
- The Netherlands Organisation for Applied Scientific Research (TNO), Metabolic Health Research, Leiden, Netherlands
| | - Annica Jarke
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ralf Nilsson
- Early Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Cavallin
- Early Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Linnéa Bergenholm
- Early Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marcus Henricsson
- Early Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - V Sashi Gopaul
- Early Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rahul Agrawal
- Global Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Steven E Nissen
- Department of Cardiovascular Medicine and Cleveland Clinic Coordinating Center for Clinical Research, Cleveland Clinic, Cleveland, OH, United States
| | - Eva Hurt-Camejo
- Early Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
19
|
van Gemert Y, Kozijn AE, Pouwer MG, Kruisbergen NNL, van den Bosch MHJ, Blom AB, Pieterman EJ, Weinans H, Stoop R, Princen HMG, van Lent PLEM. Novel high-intensive cholesterol-lowering therapies do not ameliorate knee OA development in humanized dyslipidemic mice. Osteoarthritis Cartilage 2021; 29:1314-1323. [PMID: 33722697 DOI: 10.1016/j.joca.2021.02.570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE High systemic cholesterol levels have been associated with osteoarthritis (OA) development. Therefore, cholesterol lowering by statins has been suggested as a potential treatment for OA. We investigated whether therapeutic high-intensive cholesterol-lowering attenuated OA development in dyslipidemic APOE∗3Leiden.CETP mice. METHODS Female mice (n = 13-16 per group) were fed a Western-type diet (WTD) for 38 weeks. After 13 weeks, mice were divided into a baseline group and five groups receiving WTD alone or with treatment: atorvastatin alone, combined with PCSK9 inhibitor alirocumab and/or ANGPTL3 inhibitor evinacumab. Knee joints were analysed for cartilage degradation, synovial inflammation and ectopic bone formation using histology. Aggrecanase activity in articular cartilage and synovial S100A8 expression were determined as markers of cartilage degradation/regeneration and inflammation. RESULTS Cartilage degradation and active repair were significantly increased in WTD-fed mice, but cholesterol-lowering strategies did not ameliorate cartilage destruction. This was supported by comparable aggrecanase activity and S100A8 expression in all treatment groups. Ectopic bone formation was comparable between groups and independent of cholesterol levels. CONCLUSIONS Intensive therapeutic cholesterol lowering per se did not attenuate progression of cartilage degradation in dyslipidemic APOE∗3Leiden.CETP mice, with minor joint inflammation. We propose that inflammation is a key feature in the disease and therapeutic cholesterol-lowering strategies may still be promising for OA patients presenting both dyslipidemia and inflammation.
Collapse
Affiliation(s)
- Y van Gemert
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A E Kozijn
- Metabolic Health Research, TNO, Leiden, the Netherlands; Department of Orthopaedics, UMC Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - M G Pouwer
- Metabolic Health Research, TNO, Leiden, the Netherlands; Department of Cardiology, Leiden UMC, Leiden, the Netherlands
| | - N N L Kruisbergen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M H J van den Bosch
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - E J Pieterman
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - H Weinans
- Department of Orthopaedics, UMC Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - R Stoop
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - H M G Princen
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - P L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
20
|
Lee CK, Liao CW, Meng SW, Wu WK, Chiang JY, Wu MS. Lipids and Lipoproteins in Health and Disease: Focus on Targeting Atherosclerosis. Biomedicines 2021; 9:biomedicines9080985. [PMID: 34440189 PMCID: PMC8393881 DOI: 10.3390/biomedicines9080985] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Despite advances in pharmacotherapy, intervention devices and techniques, residual cardiovascular risks still cause a large burden on public health. Whilst most guidelines encourage achieving target levels of specific lipids and lipoproteins to reduce these risks, increasing evidence has shown that molecular modification of these lipoproteins also has a critical impact on their atherogenicity. Modification of low-density lipoprotein (LDL) by oxidation, glycation, peroxidation, apolipoprotein C-III adhesion, and the small dense subtype largely augment its atherogenicity. Post-translational modification by oxidation, carbamylation, glycation, and imbalance of molecular components can reduce the capacity of high-density lipoprotein (HDL) for reverse cholesterol transport. Elevated levels of triglycerides (TGs), apolipoprotein C-III and lipoprotein(a), and a decreased level of apolipoprotein A-I are closely associated with atherosclerotic cardiovascular disease. Pharmacotherapies aimed at reducing TGs, lipoprotein(a), and apolipoprotein C-III, and enhancing apolipoprotein A-1 are undergoing trials, and promising preliminary results have been reported. In this review, we aim to update the evidence on modifications of major lipid and lipoprotein components, including LDL, HDL, TG, apolipoprotein, and lipoprotein(a). We also discuss examples of translating findings from basic research to potential therapeutic targets for drug development.
Collapse
Affiliation(s)
- Chih-Kuo Lee
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 300, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Che-Wei Liao
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Department of Internal Medicine, National Taiwan University Cancer Center, Taipei 106, Taiwan
| | - Shih-Wei Meng
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 300, Taiwan
| | - Wei-Kai Wu
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Jiun-Yang Chiang
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei 100, Taiwan
- Correspondence: (J.-Y.C.); (M.-S.W.)
| | - Ming-Shiang Wu
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Correspondence: (J.-Y.C.); (M.-S.W.)
| |
Collapse
|
21
|
Fragki S, Dirven H, Fletcher T, Grasl-Kraupp B, Bjerve Gützkow K, Hoogenboom R, Kersten S, Lindeman B, Louisse J, Peijnenburg A, Piersma AH, Princen HMG, Uhl M, Westerhout J, Zeilmaker MJ, Luijten M. Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans: what do we know and what not? Crit Rev Toxicol 2021; 51:141-164. [PMID: 33853480 DOI: 10.1080/10408444.2021.1888073] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Associations between per- and polyfluoroalkyl substances (PFASs) and increased blood lipids have been repeatedly observed in humans, but a causal relation has been debated. Rodent studies show reverse effects, i.e. decreased blood cholesterol and triglycerides, occurring however at PFAS serum levels at least 100-fold higher than those in humans. This paper aims to present the main issues regarding the modulation of lipid homeostasis by the two most common PFASs, PFOS and PFOA, with emphasis on the underlying mechanisms relevant for humans. Overall, the apparent contrast between human and animal data may be an artifact of dose, with different molecular pathways coming into play upon exposure to PFASs at very low versus high levels. Altogether, the interpretation of existing rodent data on PFOS/PFOA-induced lipid perturbations with respect to the human situation is complex. From a mechanistic perspective, research on human liver cells shows that PFOS/PFOA activate the PPARα pathway, whereas studies on the involvement of other nuclear receptors, like PXR, are less conclusive. Other data indicate that suppression of the nuclear receptor HNF4α signaling pathway, as well as perturbations of bile acid metabolism and transport might be important cellular events that require further investigation. Future studies with human-relevant test systems would help to obtain more insight into the mechanistic pathways pertinent for humans. These studies shall be designed with a careful consideration of appropriate dosing and toxicokinetics, so as to enable biologically plausible quantitative extrapolations. Such research will increase the understanding of possible perturbed lipid homeostasis related to PFOS/ PFOA exposure and the potential implications for human health.
Collapse
Affiliation(s)
- Styliani Fragki
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Hubert Dirven
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Tony Fletcher
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England (PHE), Chilton, UK
| | - Bettina Grasl-Kraupp
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, Vienna, Austria
| | | | - Ron Hoogenboom
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Birgitte Lindeman
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jochem Louisse
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Hans M G Princen
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, The Netherlands
| | - Maria Uhl
- Environment Agency Austria (EAA), Vienna, Austria
| | - Joost Westerhout
- Risk Analysis for Products In Development, The Netherlands Organization of Applied Scientific Research (TNO), Utrecht, The Netherlands
| | - Marco J Zeilmaker
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
22
|
Mahrooz A, Shokri Y, Variji A, Zargari M, Alizadeh A, Mehtarian E. Improved risk assessment of coronary artery disease by substituting paraoxonase 1 activity for HDL-C: Novel cardiometabolic biomarkers based on HDL functionality. Nutr Metab Cardiovasc Dis 2021; 31:1166-1176. [PMID: 33579580 DOI: 10.1016/j.numecd.2020.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Developing laboratory assays to evaluate HDL functions and improve cardiovascular disease (CVD) risk assessment has recently emerged as a challenge. The present study was conducted to help predict the risk of coronary artery disease (CAD) by investigating new cardiometabolic risk factors based on substituting paraoxonase 1 (PON1) as a critical enzyme in the functionality of HDL for that of HDL-C. METHODS AND RESULTS The present study recruited 274 subjects undergoing diagnostic coronary angiography, 92 without significant CAD (non-CAD), and 182 with a severe CAD. The diagnostic accuracy of the new biomarkers in non-CAD versus multi-vessel disease was obtained in descending order of AUC as 0.72 (P < 0.001) for log (TG/PON1), 0.70 (P < 0.001) for nonHDL-C/PON1, and 0.67 (P < 0.001) for LDL-C/PON1. After performing a multivariate adjustment for age, gender, BMI, statin therapy, and diabetes mellitus, the increased odds of CAD remained significant for the new cardiometabolic ratios as independent variables [adjusted OR = 1.47 (1.15-1.88), p = 0.002 for LDL-C/PON1; adjusted OR = 2.15 (1.41-3.5), p = 0.009 for nonHDL-C/PON1; adjusted OR = 5.03 (2.14-13.02), p = 0.004 for log (TG/PON1)]. CAD was diagnosed with an optimal discriminating cutoff of 1.84 for LDL-C/PON1, 2.8 for nonHDL-C/PON1, and 0.48 for log (TG/PON1). CONCLUSIONS To improve CAD's risk assessment, the PON1 activity was proposed as an alternative to HDL-C in the commonly used atherogenic lipid ratios. Substituting the PON1 activity for the HDL-C concentration can provide an index of the HDL activity. The present study sought to exploit the lipoprotein-related risk factors of CAD from a more effective perspective.
Collapse
Affiliation(s)
- Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Yasaman Shokri
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Atena Variji
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahad Alizadeh
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Ehsan Mehtarian
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
23
|
van den Hoek AM, Verschuren L, Caspers MPM, Worms N, Menke AL, Princen HMG. Beneficial effects of elafibranor on NASH in E3L.CETP mice and differences between mice and men. Sci Rep 2021; 11:5050. [PMID: 33658534 PMCID: PMC7930243 DOI: 10.1038/s41598-021-83974-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/02/2021] [Indexed: 11/25/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is the most rapidly growing liver disease that is nevertheless without approved pharmacological treatment. Despite great effort in developing novel NASH therapeutics, many have failed in clinical trials. This has raised questions on the adequacy of preclinical models. Elafibranor is one of the drugs currently in late stage development which had mixed results for phase 2/interim phase 3 trials. In the current study we investigated the response of elafibranor in APOE*3Leiden.CETP mice, a translational animal model that displays histopathological characteristics of NASH in the context of obesity, insulin resistance and hyperlipidemia. To induce NASH, mice were fed a high fat and cholesterol (HFC) diet for 15 weeks (HFC reference group) or 25 weeks (HFC control group) or the HFC diet supplemented with elafibranor (15 mg/kg/d) from week 15–25 (elafibranor group). The effects on plasma parameters and NASH histopathology were assessed and hepatic transcriptome analysis was used to investigate the underlying pathways affected by elafibranor. Elafibranor treatment significantly reduced steatosis and hepatic inflammation and precluded the progression of fibrosis. The underlying disease pathways of the model were compared with those of NASH patients and illustrated substantial similarity with molecular pathways involved, with 87% recapitulation of human pathways in mice. We compared the response of elafibranor in the mice to the response in human patients and discuss potential pitfalls when translating preclinical results of novel NASH therapeutics to human patients. When taking into account that due to species differences the response to some targets, like PPAR-α, may be overrepresented in animal models, we conclude that elafibranor may be particularly useful to reduce hepatic inflammation and could be a pharmacologically useful agent for human NASH, but probably in combination with other agents.
Collapse
Affiliation(s)
- Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands.
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Nicole Worms
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Aswin L Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Hans M G Princen
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
24
|
Song F, Zhou Y, Zhang K, Liang YF, He X, Li L. The role of the plasma glycosylated hemoglobin A1c/Apolipoprotein A-l ratio in predicting cardiovascular outcomes in acute coronary syndrome. Nutr Metab Cardiovasc Dis 2021; 31:570-578. [PMID: 33358616 DOI: 10.1016/j.numecd.2020.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND AIMS Glucose and lipid metabolism are major prognostic indicators of coronary heart disease. The ratio of plasma glycosylated hemoglobin A1c (HbA1c) to apolipoprotein A-l (ApoA-l) is an indirect measure of insulin resistance. The study aimed to evaluate whether the HbA1c/ApoA-1 ratio can predict the prognosis in patients with the acute coronary syndrome (ACS). METHODS AND RESULTS A total of 476 ACS patients diagnosed by coronary angiography were enrolled in this longitudinal, observational, retrospective study. Plasma HbA1c, fasting blood glucose and lipid profile were measured. Patients were stratified according to the tertiles of HbA1c/ApoA-l levels. Cox proportional hazard model was used to examine the predictive value of HbA1c/ApoA-l for study endpoints. The association between the Log HbA1c/ApoA-l ratio and major adverse cardiovascular events (MACEs) was estimated using multiple logistic regression. Baseline characteristics showed a mean age of 66 ± 8 years, and 52.5% were hypertensive, 26.8% diabetic, and 54.5% current or prior smokers. During a mean follow-up period of 22.3 ± 1.7 months, 59 deaths occurred. After adjusting for age, gender, smoking, hypertension, diabetes, and coronary artery disease severity, patients in the highest HbA1c/ApoA-l ratio tertile had a 4.36-fold increased risk of mortality compared with those in the lowest tertile. The multivariate logistic regression showed that the Log HbA1c/ApoA-l ratio was associated with MACEs (Odds ratio 2.95, p = 0.013). CONCLUSION After adjusting for traditional cardiovascular risk factors and ACS severity scores, the HbA1c/ApoA-1 ratio remained an independent predictor of all-cause mortality and MACEs in the ACS patients undergoing angiography.
Collapse
Affiliation(s)
- Feier Song
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Yu Zhou
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratory of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Kunyi Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Yuan-Feng Liang
- General Division, Guangdong Geriatric Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Xuyu He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Liwen Li
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
25
|
The Regulation of Fat Metabolism During Aerobic Exercise. Biomolecules 2020; 10:biom10121699. [PMID: 33371437 PMCID: PMC7767423 DOI: 10.3390/biom10121699] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Since the lipid profile is altered by physical activity, the study of lipid metabolism is a remarkable element in understanding if and how physical activity affects the health of both professional athletes and sedentary subjects. Although not fully defined, it has become clear that resistance exercise uses fat as an energy source. The fatty acid oxidation rate is the result of the following processes: (a) triglycerides lipolysis, most abundant in fat adipocytes and intramuscular triacylglycerol (IMTG) stores, (b) fatty acid transport from blood plasma to muscle sarcoplasm, (c) availability and hydrolysis rate of intramuscular triglycerides, and (d) transport of fatty acids through the mitochondrial membrane. In this review, we report some studies concerning the relationship between exercise and the aforementioned processes also in light of hormonal controls and molecular regulations within fat and skeletal muscle cells.
Collapse
|
26
|
Härdtner C, Kornemann J, Krebs K, Ehlert CA, Jander A, Zou J, Starz C, Rauterberg S, Sharipova D, Dufner B, Hoppe N, Dederichs TS, Willecke F, Stachon P, Heidt T, Wolf D, von Zur Mühlen C, Madl J, Kohl P, Kaeser R, Boettler T, Pieterman EJ, Princen HMG, Ho-Tin-Noé B, Swirski FK, Robbins CS, Bode C, Zirlik A, Hilgendorf I. Inhibition of macrophage proliferation dominates plaque regression in response to cholesterol lowering. Basic Res Cardiol 2020; 115:78. [PMID: 33296022 PMCID: PMC7725697 DOI: 10.1007/s00395-020-00838-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023]
Abstract
Statins induce plaque regression characterized by reduced macrophage content in humans, but the underlying mechanisms remain speculative. Studying the translational APOE*3-Leiden.CETP mouse model with a humanized lipoprotein metabolism, we find that systemic cholesterol lowering by oral atorvastatin or dietary restriction inhibits monocyte infiltration, and reverses macrophage accumulation in atherosclerotic plaques. Contrary to current believes, none of (1) reduced monocyte influx (studied by cell fate mapping in thorax-shielded irradiation bone marrow chimeras), (2) enhanced macrophage egress (studied by fluorescent bead labeling and transfer), or (3) atorvastatin accumulation in murine or human plaque (assessed by mass spectrometry) could adequately account for the observed loss in macrophage content in plaques that undergo phenotypic regression. Instead, suppression of local proliferation of macrophages dominates phenotypic plaque regression in response to cholesterol lowering: the lower the levels of serum LDL-cholesterol and lipid contents in murine aortic and human carotid artery plaques, the lower the rates of in situ macrophage proliferation. Our study identifies macrophage proliferation as the predominant turnover determinant and an attractive target for inducing plaque regression.
Collapse
Affiliation(s)
- Carmen Härdtner
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Jan Kornemann
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Katja Krebs
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Carolin A Ehlert
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Alina Jander
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Jiadai Zou
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Christopher Starz
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Simon Rauterberg
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Diana Sharipova
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Bianca Dufner
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Natalie Hoppe
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Tsai-Sang Dederichs
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Florian Willecke
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Peter Stachon
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Timo Heidt
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Constantin von Zur Mühlen
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Josef Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rafael Kaeser
- Department of Medicine II, Faculty of Medicine, Medical Center-University Freiburg, University of Freiburg, Freiburg, Germany
| | - Tobias Boettler
- Department of Medicine II, Faculty of Medicine, Medical Center-University Freiburg, University of Freiburg, Freiburg, Germany
| | - Elsbeth J Pieterman
- The Netherlands Organization for Applied Scientific Research (TNO)-Metabolic Health Research, Leiden, Netherlands
| | - Hans M G Princen
- The Netherlands Organization for Applied Scientific Research (TNO)-Metabolic Health Research, Leiden, Netherlands
| | - Benoît Ho-Tin-Noé
- INSERM Unit 1148, University Paris Diderot, and Laboratory for Vascular Translational Science, Sorbonne Paris Cité, Paris, France
| | - Filip K Swirski
- Center of Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clinton S Robbins
- Peter Munk Cardiac Centre, University Health Network, Toronto, Canada
| | - Christoph Bode
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany
| | - Andreas Zirlik
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany.,Department of Cardiology, University of Graz, Graz, Austria
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, 55 Hugstetter St, 79106, Freiburg, Germany.
| |
Collapse
|
27
|
HDL and Reverse Remnant-Cholesterol Transport (RRT): Relevance to Cardiovascular Disease. Trends Mol Med 2020; 26:1086-1100. [DOI: 10.1016/j.molmed.2020.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
|
28
|
Stokman G, van den Hoek AM, Denker Thorbekk D, Pieterman EJ, Skovgård Veidal S, Basta B, Iruarrizaga‐Lejarreta M, van der Hoorn JW, Verschuren L, Berbée JFP, Rensen PCN, Skjæret T, Alonso C, Feigh M, Kastelein JJP, Friedman SL, Princen HMG, Fraser DA. Dual targeting of hepatic fibrosis and atherogenesis by icosabutate, an engineered eicosapentaenoic acid derivative. Liver Int 2020; 40:2860-2876. [PMID: 32841505 PMCID: PMC7702170 DOI: 10.1111/liv.14643] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/01/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS While fibrosis stage predicts liver-associated mortality, cardiovascular disease (CVD) is still the major overall cause of mortality in patients with NASH. Novel NASH drugs should thus ideally reduce both liver fibrosis and CVD. Icosabutate is a semi-synthetic, liver-targeted eicosapentaenoic acid (EPA) derivative in clinical development for NASH. The primary aims of the current studies were to establish both the anti-fibrotic and anti-atherogenic efficacy of icosabutate in conjunction with changes in lipotoxic and atherogenic lipids in liver and plasma respectively. METHODS The effects of icosabutate on fibrosis progression and lipotoxicity were investigated in amylin liver NASH (AMLN) diet (high fat, cholesterol and fructose) fed ob/ob mice with biopsy-confirmed steatohepatitis and fibrosis and compared with the activity of obeticholic acid. APOE*3Leiden.CETP mice, a translational model for hyperlipidaemia and atherosclerosis, were used to evaluate the mechanisms underlying the lipid-lowering effect of icosabutate and its effect on atherosclerosis. RESULTS In AMLN ob/ob mice, icosabutate significantly reduced hepatic fibrosis and myofibroblast content in association with downregulation of the arachidonic acid cascade and a reduction in both hepatic oxidised phospholipids and apoptosis. In APOE*3Leiden.CETP mice, icosabutate reduced plasma cholesterol and TAG levels via increased hepatic uptake, upregulated hepatic lipid metabolism and downregulated inflammation pathways, and effectively decreased atherosclerosis development. CONCLUSIONS Icosabutate, a structurally engineered EPA derivative, effectively attenuates both hepatic fibrosis and atherogenesis and offers an attractive therapeutic approach to both liver- and CV-related morbidity and mortality in NASH patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Brittany Basta
- Division of Liver DiseasesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | | | | | | | - Jimmy F. P. Berbée
- Department. of MedicineDivision of EndocrinologyEinthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Patrick C. N. Rensen
- Department. of MedicineDivision of EndocrinologyEinthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Tore Skjæret
- NorthSea Therapeutics BVAmsterdamThe Netherlands
| | - Cristina Alonso
- Division of Liver DiseasesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | | | - John J. P. Kastelein
- Department of Vascular MedicineAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Scott L. Friedman
- Division of Liver DiseasesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | | | | |
Collapse
|
29
|
Bar A, Kieronska-Rudek A, Proniewski B, Suraj-Prażmowska J, Czamara K, Marczyk B, Matyjaszczyk-Gwarda K, Jasztal A, Kuś E, Majka Z, Kaczor A, Kurpińska A, Walczak M, Pieterman EJ, Princen HMG, Chlopicki S. In Vivo Magnetic Resonance Imaging-Based Detection of Heterogeneous Endothelial Response in Thoracic and Abdominal Aorta to Short-Term High-Fat Diet Ascribed to Differences in Perivascular Adipose Tissue in Mice. J Am Heart Assoc 2020; 9:e016929. [PMID: 33073641 PMCID: PMC7763398 DOI: 10.1161/jaha.120.016929] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Long-term feeding with a high-fat diet (HFD) induces endothelial dysfunction in mice, but early HFD-induced effects on endothelium have not been well characterized. Methods and Results Using an magnetic resonance imaging-based methodology that allows characterization of endothelial function in vivo, we demonstrated that short-term (2 weeks) feeding with a HFD to C57BL/6 mice or to E3L.CETP mice resulted in the impairment of acetylcholine-induced response in the abdominal aorta (AA), whereas, in the thoracic aorta (TA), the acetylcholine-induced response was largely preserved. Similarly, HFD resulted in arterial stiffness in the AA, but not in the TA. The difference in HFD-induced response was ascribed to distinct characteristics of perivascular adipose tissue in the TA and AA, related to brown- and white-like adipose tissue, respectively, as assessed by histology, immunohistochemistry, and Raman spectroscopy. In contrast, short-term HFD-induced endothelial dysfunction could not be linked to systemic insulin resistance, changes in plasma concentration of nitrite, or concentration of biomarkers of glycocalyx disruption (syndecan-1 and endocan), endothelial inflammation (soluble form of vascular cell adhesion molecule 1, soluble form of intercellular adhesion molecule 1 and soluble form of E-selectin), endothelial permeability (soluble form of fms-like tyrosine kinase 1 and angiopoietin 2), and hemostasis (tissue plasminogen activator and plasminogen activator inhibitor 1). Conclusions Short-term feeding with a HFD induces endothelial dysfunction in the AA but not in the TA, which could be ascribed to a differential response of perivascular adipose tissue to a HFD in the AA versus TA. Importantly, early endothelial dysfunction in the AA is not linked to elevation of classical systemic biomarkers of endothelial dysfunction.
Collapse
Affiliation(s)
- Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland
| | - Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Chair of Pharmacology Faculty of Medicine Jagiellonian University Medical College Krakow Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland
| | - Joanna Suraj-Prażmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Chair and Department of Toxicology Faculty of Pharmacy Jagiellonian University Medical College Krakow Poland
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland
| | - Brygida Marczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Chair of Pharmacology Faculty of Medicine Jagiellonian University Medical College Krakow Poland
| | - Karolina Matyjaszczyk-Gwarda
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Chair and Department of Toxicology Faculty of Pharmacy Jagiellonian University Medical College Krakow Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland
| | - Edyta Kuś
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland
| | - Zuzanna Majka
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Faculty of Chemistry Jagiellonian University Krakow Poland
| | - Agnieszka Kaczor
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Faculty of Chemistry Jagiellonian University Krakow Poland
| | - Anna Kurpińska
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland
| | - Maria Walczak
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Chair and Department of Toxicology Faculty of Pharmacy Jagiellonian University Medical College Krakow Poland
| | - Elsbet J Pieterman
- Metabolic Health Research Gaubius Laboratory The Netherlands Organisation of Applied Scientific Research (TNO) Leiden The Netherlands
| | - Hans M G Princen
- Metabolic Health Research Gaubius Laboratory The Netherlands Organisation of Applied Scientific Research (TNO) Leiden The Netherlands
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Chair of Pharmacology Faculty of Medicine Jagiellonian University Medical College Krakow Poland
| |
Collapse
|
30
|
Beeghly-Fadiel A, Khankari NK, Delahanty RJ, Shu XO, Lu Y, Schmidt MK, Bolla MK, Michailidou K, Wang Q, Dennis J, Yannoukakos D, Dunning AM, Pharoah PDP, Chenevix-Trench G, Milne RL, Hunter DJ, Per H, Kraft P, Simard J, Easton DF, Zheng W. A Mendelian randomization analysis of circulating lipid traits and breast cancer risk. Int J Epidemiol 2020; 49:1117-1131. [PMID: 31872213 PMCID: PMC7750975 DOI: 10.1093/ije/dyz242] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Conventional epidemiologic studies have evaluated associations between circulating lipid levels and breast cancer risk, but results have been inconsistent. As Mendelian randomization analyses may provide evidence for causal inference, we sought to evaluate potentially unbiased associations between breast cancer risk and four genetically predicted lipid traits. METHODS Previous genome-wide association studies (GWAS) have identified 164 discrete variants associated with high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C), triglycerides and total cholesterol. We used 162 of these unique variants to construct weighted genetic scores (wGSs) for a total of 101 424 breast cancer cases and 80 253 controls of European ancestry from the Breast Cancer Association Consortium (BCAC). Unconditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) for associations between per standard deviation increase in genetically predicted lipid traits and breast cancer risk. Additional Mendelian randomization analysis approaches and sensitivity analyses were conducted to assess pleiotropy and instrument validity. RESULTS Corresponding to approximately 15 mg/dL, one standard deviation increase in genetically predicted HDL-C was associated with a 12% increased breast cancer risk (OR: 1.12, 95% CI: 1.08-1.16). Findings were consistent after adjustment for breast cancer risk factors and were robust in several sensitivity analyses. Associations with genetically predicted triglycerides and total cholesterol were inconsistent, and no association for genetically predicted LDL-C was observed. CONCLUSIONS This study provides strong evidence that circulating HDL-C may be associated with an increased risk of breast cancer, whereas LDL-C may not be related to breast cancer risk.
Collapse
Affiliation(s)
- Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nikhil K Khankari
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yingchang Lu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Manjeet K Bolla
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Electron Microscopy/Molecular Pathology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Qin Wang
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Roger L Milne
- Cancer Epidemiology & Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hall Per
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec City, QC, Canada
| | - Douglas F Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
31
|
Effects of noni fruit and fermented noni juice against acute alcohol induced liver injury in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
32
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Parolini C. A Compendium of the Biological Effects of Apolipoprotein A-I Milano. J Pharmacol Exp Ther 2020; 372:54-62. [PMID: 31649050 DOI: 10.1124/jpet.119.261719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/22/2019] [Indexed: 03/08/2025] Open
Abstract
Obesity is a pathologic condition generated by an energy imbalance, that is, excess caloric consumption, leading to weight gain and metabolic disturbances characterized by adipose tissue inflammation and hyperglycemic conditions. In line with these observations, increasing evidence causally links inflammation, or the molecules and networks integral to inflammatory response, to the development of obesity and the complications that emerge from this pathology, such as cardiovascular, neurologic, respiratory, and metabolic illnesses, as well as sepsis and cancer. Not surprisingly, this chronic and abnormal metabolic background leads to constant derangements in innate and adaptive immunity. It is well known that high-density lipoprotein (HDL) possesses anti-inflammatory and antioxidant properties, and various studies have highlighted an emerging role of HDL in modulating immune function. The efficacy of synthetic HDL (sHDL) containing the recombinant form of apoA-IMilano (sHDL-apoA-IM), originating from the observation that carriers of this mutation have low levels of HDL cholesterol without increased atherosclerosis, has been largely proved in diverse animal models of atherosclerosis; however, the therapeutic use of sHDL-apoA-IM still needs clinical validation. One of the main limitations to the use of recombinant proteins in clinical studies lies in the unsustainable purification costs. Unpurified rice-milk-apoA-IM demonstrated anti-inflammatory and antiatherogenic properties in a mouse model, even though administrated by an unconventional way: by oral gavage. Additionally, recent data have uncovered new therapeutic applications for this sHDL-apoA-IM This review provides an overview of all potential application of sHDL-apoA-IM in some inflammatory-based diseases. SIGNIFICANCE STATEMENT: A recent study demonstrated that oral administration of rice-seed protein extracts containing the apoA-IM (i.e., the milk-apoA-IM) reduced atherosclerosis development in a mouse model. Moreover, the rice-milk-apoA-IM preserved both in vitro and in vivo anti-inflammatory properties, as observed when sHDL-apoA-IM was given by intravascular infusion. Besides, various studies suggested that sHDL-apoA-IM could positively affect other inflammatory-based diseases. Together, these data might represent a new starting point for "sHDL-apoA-IM-based therapies" in chronic degenerative disease.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
34
|
van den Hoek AM, Pieterman EJ, van der Hoorn JW, Iruarrizaga-Lejarreta M, Alonso C, Verschuren L, Skjæret T, Princen HMG, Fraser DA. Icosabutate Exerts Beneficial Effects Upon Insulin Sensitivity, Hepatic Inflammation, Lipotoxicity, and Fibrosis in Mice. Hepatol Commun 2019; 4:193-207. [PMID: 32025605 PMCID: PMC6996349 DOI: 10.1002/hep4.1453] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022] Open
Abstract
Icosabutate is a structurally engineered eicosapentaenoic acid derivative under development for nonalcoholic steatohepatitis (NASH). In this study, we investigated the absorption and distribution properties of icosabutate in relation to liver targeting and used rodents to evaluate the effects of icosabutate on glucose metabolism, insulin resistance, as well as hepatic steatosis, inflammation, lipotoxicity, and fibrosis. The absorption, tissue distribution, and excretion of icosabutate was investigated in rats along with its effects in mouse models of insulin resistance (ob/ob) and metabolic inflammation/NASH (high‐fat/cholesterol‐fed APOE*3Leiden.CETP mice) and efficacy was compared with synthetic peroxisome proliferator‐activated receptor α (PPAR‐α) (fenofibrate) and/or PPAR‐γ/(α) (pioglitazone and rosiglitazone) agonists. Icosabutate was absorbed almost entirely through the portal vein, resulting in rapid hepatic accumulation. Icosabutate demonstrated potent insulin‐sensitizing effects in ob/ob mice, and unlike fenofibrate or pioglitazone, it significantly reduced plasma alanine aminotransferase. In high‐fat/cholesterol‐fed APOE*3Leiden.CETP mice, icosabutate, but not rosiglitazone, reduced microvesicular steatosis and hepatocellular hypertrophy. Although both rosiglitazone and icosabutate reduced hepatic inflammation, only icosabutate elicited antifibrotic effects in association with decreased hepatic concentrations of multiple lipotoxic lipid species and an oxidative stress marker. Hepatic gene‐expression analysis confirmed the changes in lipid metabolism, inflammatory and fibrogenic response, and energy metabolism, and revealed the involved upstream regulators. In conclusion, icosabutate selectively targets the liver through the portal vein and demonstrates broad beneficial effects following insulin sensitivity, hepatic microvesicular steatosis, inflammation, lipotoxicity, oxidative stress, and fibrosis. Icosabutate therefore offers a promising approach to the treatment of both dysregulated glucose/lipid metabolism and inflammatory disorders of the liver, including NASH.
Collapse
Affiliation(s)
- Anita M van den Hoek
- Department of Metabolic Health Research The Netherlands Organization for Applied Scientific Research Leiden the Netherlands
| | - Elsbet J Pieterman
- Department of Metabolic Health Research The Netherlands Organization for Applied Scientific Research Leiden the Netherlands
| | - José W van der Hoorn
- Department of Metabolic Health Research The Netherlands Organization for Applied Scientific Research Leiden the Netherlands
| | | | | | - Lars Verschuren
- Department of Microbiology and Systems Biology The Netherlands Organization for Applied Scientific Research Zeist the Netherlands
| | - Tore Skjæret
- NorthSea Therapeutics BV Naarden the Netherlands
| | - Hans M G Princen
- Department of Metabolic Health Research The Netherlands Organization for Applied Scientific Research Leiden the Netherlands
| | | |
Collapse
|
35
|
Pouwer MG, Pieterman EJ, Worms N, Keijzer N, Jukema JW, Gromada J, Gusarova V, Princen HMG. Alirocumab, evinacumab, and atorvastatin triple therapy regresses plaque lesions and improves lesion composition in mice. J Lipid Res 2019; 61:365-375. [PMID: 31843957 PMCID: PMC7053846 DOI: 10.1194/jlr.ra119000419] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/12/2019] [Indexed: 11/26/2022] Open
Abstract
Atherosclerosis-related CVD causes nearly 20 million deaths annually. Most patients are treated after plaques develop, so therapies must regress existing lesions. Current therapies reduce plaque volume, but targeting all apoB-containing lipoproteins with intensive combinations that include alirocumab or evinacumab, monoclonal antibodies against cholesterol-regulating proprotein convertase subtilisin/kexin type 9 and angiopoietin-like protein 3, may provide more benefit. We investigated the effect of such lipid-lowering interventions on atherosclerosis in APOE*3-Leiden.CETP mice, a well-established model for hyperlipidemia. Mice were fed a Western-type diet for 13 weeks and thereafter matched into a baseline group (euthanized at 13 weeks) and five groups that received diet alone (control) or with treatment [atorvastatin; atorvastatin and alirocumab; atorvastatin and evinacumab; or atorvastatin, alirocumab, and evinacumab (triple therapy)] for 25 weeks. We measured effects on cholesterol levels, plaque composition and morphology, monocyte adherence, and macrophage proliferation. All interventions reduced plasma total cholesterol (37% with atorvastatin to 80% with triple treatment; all P < 0.001). Triple treatment decreased non-HDL-C to 1.0 mmol/l (91% difference from control; P < 0.001). Atorvastatin reduced atherosclerosis progression by 28% versus control (P < 0.001); double treatment completely blocked progression and diminished lesion severity. Triple treatment regressed lesion size versus baseline in the thoracic aorta by 50% and the aortic root by 36% (both P < 0.05 vs. baseline), decreased macrophage accumulation through reduced proliferation, and abated lesion severity. Thus, high-intensive cholesterol-lowering triple treatment targeting all apoB-containing lipoproteins regresses atherosclerotic lesion area and improves lesion composition in mice, making it a promising potential approach for treating atherosclerosis.
Collapse
Affiliation(s)
- Marianne G Pouwer
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, The Netherlands.,Department of Cardiology Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Elsbet J Pieterman
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, The Netherlands
| | - Nicole Worms
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, The Netherlands
| | - Nanda Keijzer
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Hans M G Princen
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, The Netherlands
| |
Collapse
|
36
|
Woudberg NJ, Mendham AE, Katz AA, Goedecke JH, Lecour S. Exercise intervention alters HDL subclass distribution and function in obese women. Lipids Health Dis 2018; 17:232. [PMID: 30301473 PMCID: PMC6178267 DOI: 10.1186/s12944-018-0879-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/27/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Obesity is associated with a change in high-density lipoprotein (HDL) function and subclass. Exercise training reduces cardiovascular risk in obese patients. We aimed to explore the effect of an exercise training stimulus on HDL functionality and subclass in obese women. METHODS Thirty-two obese black South African women were randomly assigned to exercise (combined aerobic and resistance exercise) or control (no exercise) conditions for 12-weeks. Pre- and post-testing included venous blood sampling for analysis of lipid profile and HDL functionality, by measuring cellular cholesterol efflux capacity, reduction in endothelial vascular cell adhesion molecule (VCAM) expression (anti-inflammatory function), paraoxonase (PON) (antioxidative function) and platelet activating factor acetylhydrolase (PAF-AH) activities (anti-thrombotic function). PON-1 and PAF-AH expression were determined in serum and in isolated HDL using Western blotting. Levels of large, intermediate and small HDL subclasses were measured using the Lipoprint® system. RESULTS Exercise training resulted in a decrease in body mass index (- 1.0 ± 0.5% vs + 1.2 ± 0.6%, p = 0.010), PON activity (- 8.7 ± 2.4% vs + 1.1 ± 3.0%, p = 0.021), PAF-AH serum expression (- 22.1 ± 8.0% vs + 16.9 ± 9.8, p = 0.002), and the distribution of small HDL subclasses (- 10.1 ± 5.4% vs + 15.7 ± 6.6%, p = 0.004) compared to controls. Exercise did not alter HDL cellular cholesterol efflux capacity and anti-inflammatory function. CONCLUSIONS These results demonstrate the potential for exercise training to modify HDL subclass distribution and HDL function in obese women. TRIAL REGISTRATION Clinical trials number: PACTR201711002789113 .
Collapse
Affiliation(s)
- Nicholas J Woudberg
- Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | - Amy E Mendham
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa.,Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Arieh A Katz
- UCT Research Unit for Receptor biology, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Julia H Goedecke
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa.,Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
37
|
Ren K, Jiang T, Zhao GJ. Quercetin induces the selective uptake of HDL-cholesterol via promoting SR-BI expression and the activation of the PPARγ/LXRα pathway. Food Funct 2018; 9:624-635. [PMID: 29292466 DOI: 10.1039/c7fo01107e] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reverse cholesterol transport (RCT) is the process to deliver cholesterol to the liver for further excretion and involves scavenger receptor class B type I (SR-BI)-mediated selective lipid uptake (SLU) from high-density lipoprotein cholesterol (HDL-C). The up-regulation of hepatic SR-BI expression accelerates HDL-C clearance in circulation and impedes the development of atherosclerosis (AS). In the present study, we explored the modulation of hepatic SR-BI expression and SR-BI-mediated SLU by quercetin, a natural flavonoid compound in the diet with a favorable role in cardiovascular disorders. We found that quercetin significantly increased the expression level of SR-BI in HepG2 cells in a concentration- and time-dependent manner. Besides, quercetin had stimulatory effects on the binding of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil)-labeled HDL to hepatocytes and 125I/3H-CE-HDL association. Treatment with small interfering RNA (siRNA) or SR-BI specific inhibitor, BLT-1, inhibited quercetin-induced Dil-HDL binding and selective HDL-C uptake. Treatment with quercetin increased both proliferator-activated receptor γ (PPARγ) and liver X receptor α (LXRα) levels. Additionally, the quercetin-induced expression of SR-BI, Dil-HDL binding and the selective uptake of HDL-C were significantly attenuated by treatment with PPARγ siRNA, LXRα siRNA, and their antagonists, respectively. In C57BL/6 mice, quercetin administration potently increased SR-BI, PPARγ and LXRα levels and lipid accumulation in the liver. Altogether, our results suggest that quercetin-induced up-regulation of SR-BI and subsequent lipid uptake in hepatocytes might contribute to its beneficial effects on cholesterol homeostasis and atherogenesis.
Collapse
Affiliation(s)
- Kun Ren
- Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi 541004, China.
| | | | | |
Collapse
|
38
|
Association of plasminogen activator inhibitor-1 and low-density lipoprotein heterogeneity as a risk factor of atherosclerotic cardiovascular disease with triglyceride metabolic disorder: a pilot cross-sectional study. Coron Artery Dis 2018; 28:577-587. [PMID: 28692480 DOI: 10.1097/mca.0000000000000521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND We hypothesized that an increase in plasminogen activator inhibitor 1 (PAI-1) might reduce low-density lipoprotein (LDL) particle size in conjunction with triglyceride (TG) metabolism disorder, resulting in an increased risk of atherosclerotic cardiovascular disease (ASCVD). METHODS This study was carried out as a hospital-based cross-sectional study in 537 consecutive outpatients (mean age: 64 years; men: 71%) with one or more risk factors for ASCVD from April 2014 to October 2014 at the Cardiovascular Center of Nihon University Surugadai Hospital. The estimated LDL-particle size was measured as relative LDL migration using polyacrylamide gel electrophoresis with the LipoPhor system.The plasma PAI-1 level, including the tissue PA/PAI-1 complex and the active and latent forms of PAI-1, was determined using a latex photometric immunoassay method. RESULTS A multivariate regression analysis after adjustments for ASCVD risk factors showed that an elevated PAI-1 level was an independent predictor of smaller-sized LDL-particle in both the overall patients population (β=0.209, P<0.0001) and a subset of patients with a serum low-density lipoprotein cholesterol (LDL-C) level lower than 100 mg/dl (β=0.276, P<0.0001). Furthermore, an increased BMI and TG-rich lipoprotein related markers [TG, remnant-like particle cholesterol, apolipoprotein (apo) B, apo C-II, and apo C-III] were found to be independent variables associated with an increased PAI-1 level in multivariate regression models. A statistical analysis of data from nondiabetic patients with well-controlled serum LDL-C levels yielded similar findings. Furthermore, in the 310 patients followed up for at least 6 months, a multiple-logistic regression analysis after adjustments for ASCVD risk factors identified the percent changes of the plasma PAI-1 level in the third tertile compared with those in the first tertile as being independently predictive of decreased LDL-particle size [odds ratio (95% confidence interval): 2.11 (1.12/3.40), P=0.02]. CONCLUSION The plasma PAI-1 levels may be determined by the degree of obesity and TG metabolic disorders. These factors were also shown to be correlated with a decreased LDL-particle size, increasing the risk of ASCVD, even in nondiabetic patients with well-controlled serum LDL-C levels.
Collapse
|
39
|
Woudberg NJ, Pedretti S, Lecour S, Schulz R, Vuilleumier N, James RW, Frias MA. Pharmacological Intervention to Modulate HDL: What Do We Target? Front Pharmacol 2018; 8:989. [PMID: 29403378 PMCID: PMC5786575 DOI: 10.3389/fphar.2017.00989] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022] Open
Abstract
The cholesterol concentrations of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) have traditionally served as risk factors for cardiovascular disease. As such, novel therapeutic interventions aiming to raise HDL cholesterol have been tested in the clinical setting. However, most trials led to a significant increase in HDL cholesterol with no improvement in cardiovascular events. The complexity of the HDL particle, which exerts multiple physiological functions and is comprised of a number of subclasses, has raised the question as to whether there should be more focus on HDL subclass and function rather than cholesterol quantity. We review current data regarding HDL subclasses and subclass-specific functionality and highlight how current lipid modifying drugs such as statins, cholesteryl ester transfer protein inhibitors, fibrates and niacin often increase cholesterol concentrations of specific HDL subclasses. In addition this review sets out arguments suggesting that the HDL3 subclass may provide better protective effects than HDL2.
Collapse
Affiliation(s)
- Nicholas J. Woudberg
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sarah Pedretti
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Richard W. James
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Miguel A. Frias
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
40
|
Lanktree MB, Thériault S, Walsh M, Paré G. HDL Cholesterol, LDL Cholesterol, and Triglycerides as Risk Factors for CKD: A Mendelian Randomization Study. Am J Kidney Dis 2017; 71:166-172. [PMID: 28754456 DOI: 10.1053/j.ajkd.2017.06.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/02/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND High-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride concentrations are heritable risk factors for vascular disease, but their role in the progression of chronic kidney disease (CKD) is unclear. STUDY DESIGN 2-sample Mendelian randomization analysis of data derived from the largest published lipid and CKD studies. SETTING & PARTICIPANTS Effect of independent genetic variants significantly associated with lipid concentrations was obtained from the Global Lipids Genetics Consortium (n=188,577), and the effect of these same variants on estimated glomerular filtration rate (eGFR), CKD (defined as eGFR<60mL/min/1.73m2), and albuminuria was obtained from the CKD Genetics Consortium (n=133,814). FACTOR Using conventional, multivariable, and Egger Mendelian randomization approaches, we assessed the causal association between genetically determined lipid concentrations and kidney traits. OUTCOME eGFR, dichotomous eGFR<60mL/min/1.73m2, and albuminuria. RESULTS In multivariable analysis, a 17-mg/dL higher HDL cholesterol concentration was associated with an 0.8% higher eGFR (95% CI, 0.4%-1.3%; P=0.004) and lower risk for eGFR<60mL/min/1.73m2 (OR, 0.85; 95% CI, 0.77-0.93; P<0.001), while Egger analysis showed no evidence of pleiotropy. There was no evidence for a causal relationship between LDL cholesterol concentration and any kidney disease measure. Genetically higher triglyceride concentrations appeared associated with higher eGFRs, but this finding was driven by a single pleiotropic variant in the glucokinase regulator gene (GCKR). After exclusion, genetically higher triglyceride concentration was not associated with any kidney trait. LIMITATIONS Individual patient-level phenotype and genotype information were unavailable. CONCLUSIONS 2-sample Mendelian randomization analysis of data from the largest lipid and CKD cohorts supports genetically higher HDL cholesterol concentration as causally associated with better kidney function. There was no association between genetically altered LDL cholesterol or triglyceride concentration and kidney function. Further analysis of CKD outcomes in HDL cholesterol intervention trials is warranted.
Collapse
Affiliation(s)
- Matthew B Lanktree
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Sébastien Thériault
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada; Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Michael Walsh
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Guillaume Paré
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada; Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
41
|
Ming JE, Abrams RE, Bartlett DW, Tao M, Nguyen T, Surks H, Kudrycki K, Kadambi A, Friedrich CM, Djebli N, Goebel B, Koszycki A, Varshnaya M, Elassal J, Banerjee P, Sasiela WJ, Reed MJ, Barrett JS, Azer K. A Quantitative Systems Pharmacology Platform to Investigate the Impact of Alirocumab and Cholesterol-Lowering Therapies on Lipid Profiles and Plaque Characteristics. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017710941. [PMID: 28804243 PMCID: PMC5484552 DOI: 10.1177/1177625017710941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/17/2017] [Indexed: 12/20/2022]
Abstract
Reduction in low-density lipoprotein cholesterol (LDL-C) is associated with decreased risk for cardiovascular disease. Alirocumab, an antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), significantly reduces LDL-C. Here, we report development of a quantitative systems pharmacology (QSP) model integrating peripheral and liver cholesterol metabolism, as well as PCSK9 function, to examine the mechanisms of action of alirocumab and other lipid-lowering therapies, including statins. The model predicts changes in LDL-C and other lipids that are consistent with effects observed in clinical trials of single or combined treatments of alirocumab and other treatments. An exploratory model to examine the effects of lipid levels on plaque dynamics was also developed. The QSP platform, on further development and qualification, may support dose optimization and clinical trial design for PCSK9 inhibitors and lipid-modulating drugs. It may also improve our understanding of factors affecting therapeutic responses in different phenotypes of dyslipidemia and cardiovascular disease.
Collapse
Affiliation(s)
- Jeffrey E Ming
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Ruth E Abrams
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | | | - Mengdi Tao
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Tu Nguyen
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Howard Surks
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | | | | | | | - Nassim Djebli
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Britta Goebel
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Alex Koszycki
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Meera Varshnaya
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | | | | | | | | | - Jeffrey S Barrett
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Karim Azer
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| |
Collapse
|
42
|
Ding Y, Pu L, Kan J. Hypolipidemic effects of lipid-lowering granulated tea preparation from Monascus-fermented grains (adlay and barley bran) mixed with lotus leaves on Sprague–Dawley rats fed a high-fat diet. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
43
|
Xia X, Li G, Ding Y, Ren T, Zheng J, Kan J. Effect of Whole Grain Qingke (Tibetan Hordeum vulgare L. Zangqing 320) on the Serum Lipid Levels and Intestinal Microbiota of Rats under High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2686-2693. [PMID: 28301146 DOI: 10.1021/acs.jafc.6b05641] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study investigated the hypolipidemic effect of whole grain Qingke (WGQ) and its influence on intestinal microbiota. Changes in the serum lipid, intestinal environment, and microbiota of Sprague-Dawley rats fed high-fat diets supplemented with different doses of WGQ were determined. Results showed that high doses of WGQ significantly decreased (P < 0.05) the Lee's index, serum total cholesterol, low-density lipoprotein cholesterol, and non-high-density lipoprotein cholesterol levels whereas they increased the body weight of the rats. Cecal weight and short-chain fatty acid (SCFA) concentration increased with increasing WGQ dose. An Illumina-based sequencing approach showed that the relative abundance of putative SCFA-producing bacteria Prevotella and Anaerovibrio increased in the rats fed the WGQ diet. Principal component analysis revealed a significant difference in intestinal microbiota composition after the administration of the WGQ diet. These findings provide insights into the contribution of the intestinal microbiota to the hypolipidemic effect of WGQ.
Collapse
Affiliation(s)
- Xuejuan Xia
- College of Food Science, Southwest University , Chongqing 400715, China
| | - Guannan Li
- College of Biotechnology, Southwest University , Chongqing 400715, China
| | - Yongbo Ding
- College of Food Science, Southwest University , Chongqing 400715, China
| | - Tingyuan Ren
- College of Food Science, Southwest University , Chongqing 400715, China
| | - Jiong Zheng
- College of Food Science, Southwest University , Chongqing 400715, China
| | - Jianquan Kan
- College of Food Science, Southwest University , Chongqing 400715, China
| |
Collapse
|
44
|
Phenolic extract from Ocimum basilicum restores lipid metabolism in Triton WR-1339-induced hyperlipidemic mice and prevents lipoprotein-rich plasma oxidation. FOOD SCIENCE AND HUMAN WELLNESS 2017. [DOI: 10.1016/j.fshw.2017.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Simic B, Mocharla P, Crucet M, Osto E, Kratzer A, Stivala S, Kühnast S, Speer T, Doycheva P, Princen HM, van der Hoorn JW, Jukema JW, Giral H, Tailleux A, Landmesser U, Staels B, Lüscher TF. Anacetrapib, but not evacetrapib, impairs endothelial function in CETP-transgenic mice in spite of marked HDL-C increase. Atherosclerosis 2017; 257:186-194. [PMID: 28152406 DOI: 10.1016/j.atherosclerosis.2017.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/24/2016] [Accepted: 01/12/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS High-density lipoprotein cholesterol (HDL-C) is inversely related to cardiovascular risk. HDL-C raising ester transfer protein (CETP) inhibitors, are novel therapeutics. We studied the effects of CETP inhibitors anacetrapib and evacetrapib on triglycerides, cholesterol and lipoproteins, cholesterol efflux, paraoxonase activity (PON-1), reactive oxygen species (ROS), and endothelial function in E3L and E3L.CETP mice. METHODS Triglycerides and cholesterol were measured at weeks 5, 14 and 21 in E3L.CETP mice on high cholesterol diet and treated with anacetrapib (3 mg/kg/day), evacetrapib (3 mg/kg/day) or placebo. Cholesterol efflux was assessed ex-vivo in mice treated with CETP inhibitors for 3 weeks on a normal chow diet. Endothelial function was analyzed at week 21 in isolated aortic rings, and serum lipoproteins assessed by fast-performance liquid chromatography. RESULTS Anacetrapib and evacetrapib increased HDL-C levels (5- and 3.4-fold, resp.) and reduced triglycerides (-39% vs. placebo, p = 0.0174). Total cholesterol levels were reduced only in anacetrapib-treated mice (-32%, p = 0.0386). Cholesterol efflux and PON-1 activity (+45% and +35% vs. control, p < 0.005, resp.) were increased, while aortic ROS production was reduced with evacetrapib (-49% vs. control, p = 0.020). Anacetrapib, but not evacetrapib, impaired endothelium dependent vasorelaxation (p < 0.05). In contrast, no such effects were observed in E3L mice for all parameters tested. CONCLUSIONS Notwithstanding a marked rise in HDL-C, evacetrapib did not improve endothelial function, while anacetrapib impaired it, suggesting that CETP inhibition does not provide vascular protection. Anacetrapib exerts unfavorable endothelial effects beyond CETP inhibition, which may explain the neutral results of large clinical trials in spite of increased HDL-C.
Collapse
Affiliation(s)
- Branko Simic
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland.
| | - Pavani Mocharla
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Margot Crucet
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Elena Osto
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Adelheid Kratzer
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Simona Stivala
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Susan Kühnast
- TNO - Metabolic Health Research, Leiden, The Netherlands
| | - Thimoteus Speer
- Department of Internal Medicine IV, Saarland University Medical Centre, Homburg, Germany
| | - Petia Doycheva
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Hans M Princen
- TNO - Metabolic Health Research, Leiden, The Netherlands
| | | | | | - Hector Giral
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Anne Tailleux
- Institute Pasteur de Lille, Inserm UMR 1011, University of Lille, France
| | - Ulf Landmesser
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Bart Staels
- Institute Pasteur de Lille, Inserm UMR 1011, University of Lille, France
| | - Thomas F Lüscher
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland.
| |
Collapse
|
46
|
Yamamoto Y, Terada K, Takahashi Y, Imai K, Kagawa Y, Inoue Y. Influence of antiepileptic drugs on serum lipid levels in adult epilepsy patients. Epilepsy Res 2016; 127:101-106. [DOI: 10.1016/j.eplepsyres.2016.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 08/05/2016] [Accepted: 08/23/2016] [Indexed: 12/29/2022]
|
47
|
Triglyceride-lowering therapies reduce cardiovascular disease event risk in subjects with hypertriglyceridemia. J Clin Lipidol 2016; 10:905-914. [DOI: 10.1016/j.jacl.2016.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/22/2016] [Accepted: 03/14/2016] [Indexed: 11/30/2022]
|
48
|
Shipman KE, Strange RC, Ramachandran S. Use of fibrates in the metabolic syndrome: A review. World J Diabetes 2016; 7:74-88. [PMID: 26981181 PMCID: PMC4781903 DOI: 10.4239/wjd.v7.i5.74] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/30/2015] [Accepted: 01/21/2016] [Indexed: 02/06/2023] Open
Abstract
The use of fibrates in the treatment of dyslipidaemia has changed significantly over recent years. Their role appeared clear at the start of this century. The Helsinki Heart Study and Veterans Affairs High-Density Cholesterol Intervention Trial suggested significant benefit, especially in patients with atherogenic dyslipidaemia. However, this clarity disintegrated following the negative outcomes reported by the Bezafibrate Infarction Prevention, Fenofibrate Intervention and Event Lowering in Diabetes and Action to Control Cardiovascular Risk in Diabetes randomised controlled trials. In this review we discuss these and other relevant trials and consider patient subgroups such as those with the metabolic syndrome and those needing treatment to prevent the microvascular complications associated with diabetes in whom fibrates may be useful. We also discuss observations from our group that may provide some explanation for the varying outcomes reported in large trials. The actions of fibrates in patients who are also on statins are interesting and appear to differ from those in patients not on statins. Understanding this is key as statins are the primary lipid lowering agents and likely to occupy that position for the foreseeable future. We also present other features of fibrate treatment we have observed in our clinical practice; changes in creatinine, liver function tests and the paradoxical high density lipoprotein reduction. Our purpose is to provide enough data for the reader to make objective decisions in their own clinical practice regarding fibrate use.
Collapse
|
49
|
Princen HMG, Pouwer MG, Pieterman EJ. Comment on "Hypercholesterolemia with consumption of PFOA-laced Western diets is dependent on strain and sex of mice" by Rebholz S.L. et al. Toxicol. Rep. 2016 (3) 46-54. Toxicol Rep 2016; 3:306-309. [PMID: 28959551 PMCID: PMC5615825 DOI: 10.1016/j.toxrep.2016.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/07/2016] [Indexed: 01/01/2023] Open
Affiliation(s)
- Hans M G Princen
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Marianne G Pouwer
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Elsbet J Pieterman
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| |
Collapse
|