1
|
Szukiewicz D. Potential Therapeutic Exploitation of G Protein-Coupled Receptor 120 (GPR120/FFAR4) Signaling in Obesity-Related Metabolic Disorders. Int J Mol Sci 2025; 26:2501. [PMID: 40141148 PMCID: PMC11941992 DOI: 10.3390/ijms26062501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The increasing prevalence of overweight and obesity not only in adults but also among children and adolescents has become one of the most alarming health problems worldwide. Metabolic disorders accompanying fat accumulation during pathological weight gain induce chronic low-grade inflammation, which, in a vicious cycle, increases the immune response through pro-inflammatory changes in the cytokine (adipokine) profile. Obesity decreases life expectancy, largely because obese individuals are at an increased risk of many medical complications, often referred to as metabolic syndrome, which refers to the co-occurrence of insulin resistance (IR), impaired glucose tolerance, type 2 diabetes (T2D), atherogenic dyslipidemia, hypertension, and premature ischemic heart disease. Metabotropic G protein-coupled receptors (GPCRs) constitute the most numerous and diverse group of cell surface transmembrane receptors in eukaryotes. Among the GPCRs, researchers are focusing on the connection of G protein-coupled receptor 120 (GPR120), also known as free fatty acid receptor 4 (FFAR4), with signaling pathways regulating the inflammatory response and insulin sensitivity. This review presents the current state of knowledge concerning the involvement of GPR120 in anti-inflammatory and metabolic signaling. Since both inflammation in adipose tissue and insulin resistance are key problems in obesity, there is a rationale for the development of novel, GPR120-based therapies for overweight and obese individuals. The main problems associated with introducing this type of treatment into clinical practice are also discussed.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
2
|
Son SE, Koh JM, Im DS. Free fatty acid receptor 4 (FFA4) activation attenuates obese asthma by suppressing adiposity and resolving metaflammation. Biomed Pharmacother 2024; 174:116509. [PMID: 38574615 DOI: 10.1016/j.biopha.2024.116509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Obese asthma is recognized to have different asthma phenotypes. N-3 polyunsaturated fatty acids (PUFAs) have shown beneficial effects in obesity and metabolic syndrome. Free fatty acid receptor 4 (FFA4, also known as GPR120) is a receptor for n-3 PUFAs. In the present study, we investigated whether FFA4 activation ameliorates high-fat diet (HFD)-induced obese asthma. We investigated whether FFA4 activation ameliorates obese asthma using an FFA4 agonist, compound A (CpdA), in combination with FFA4 wild-type (WT) and knock-out (KO) mice. Administration of an FFA4 agonist, compound A (CpdA, 30 mg/kg), suppressed HFD-induced weight gain, adiposity, and airway hypersensitivity (AHR), and increased immune cell infiltration in an FFA4-dependent manner. Histological analysis revealed that CpdA treatment suppressed HFD-induced mucus hypersecretion, inflammation, and fibrosis in an FFA4-dependent manner. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) showed an HFD-induced increase in the mRNA levels of pro-inflammatory cytokines in the lungs and gonadal white adipose tissue, whereas CpdA inhibited this increase in an FFA4-dependent manner. In the fluorescence-activated cell sorting (FACS) analysis, HFD induced an increase in the lung innate lymphoid cells (ILC) ILC1, ILC2, and ILC3; however, CpdA reversed this increase. In addition, HFD induced an increase in the pro-inflammatory M1 macrophage population and a decrease in the anti-inflammatory M2 macrophage population in the lungs, whereas CpdA treatment reversed these changes. The present study suggests that FFA4 activation may have therapeutic potential in obese asthma.
Collapse
Affiliation(s)
- So-Eun Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Basic Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
3
|
Zhang S, Roth BL. Sensing unsaturated fatty acids: insights from GPR120 signaling. Cell Res 2023; 33:657-658. [PMID: 37142674 PMCID: PMC10474016 DOI: 10.1038/s41422-023-00814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Affiliation(s)
- Shicheng Zhang
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Mao C, Xiao P, Tao XN, Qin J, He QT, Zhang C, Guo SC, Du YQ, Chen LN, Shen DD, Yang ZS, Zhang HQ, Huang SM, He YH, Cheng J, Zhong YN, Shang P, Chen J, Zhang DL, Wang QL, Liu MX, Li GY, Guo Y, Xu HE, Wang C, Zhang C, Feng S, Yu X, Zhang Y, Sun JP. Unsaturated bond recognition leads to biased signal in a fatty acid receptor. Science 2023; 380:eadd6220. [PMID: 36862765 DOI: 10.1126/science.add6220] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023]
Abstract
Individual free fatty acids (FAs) play important roles in metabolic homeostasis, many through engagement with more than 40G protein-coupled receptors. Searching for receptors to sense beneficial omega-3 FAs of fish oil enabled the identification of GPR120, which is involved in a spectrum of metabolic diseases. Here, we report six cryo-electron microscopy structures of GPR120 in complex with FA hormones or TUG891 and Gi or Giq trimers. Aromatic residues inside the GPR120 ligand pocket were responsible for recognizing different double-bond positions of these FAs and connect ligand recognition to distinct effector coupling. We also investigated synthetic ligand selectivity and the structural basis of missense single-nucleotide polymorphisms. We reveal how GPR120 differentiates rigid double bonds and flexible single bonds. The knowledge gleaned here may facilitate rational drug design targeting to GPR120.
Collapse
Affiliation(s)
- Chunyou Mao
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiao-Na Tao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
- The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiao Qin
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qing-Tao He
- Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Sheng-Chao Guo
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ya-Qin Du
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Li-Nan Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhi-Shuai Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Han-Qiong Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shen-Ming Huang
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yong-Hao He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jie Cheng
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Ya-Ni Zhong
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Pan Shang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Jun Chen
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dao-Lai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Qian-Lang Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mei-Xia Liu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Guo-Yu Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yongyuan Guo
- Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - H Eric Xu
- CAS Key Laboratory of Receptor Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chuanxin Wang
- The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Shiqing Feng
- The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China
- Research and Development Center for E-Learning, Ministry of Education, Beijing 100816, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
5
|
Jiang X, Yang Q, Qu H, Chen Y, Zhu S. Endogenous n-3 PUFAs Improve Non-Alcoholic Fatty Liver Disease through FFAR4-Mediated Gut-Liver Crosstalk. Nutrients 2023; 15:nu15030586. [PMID: 36771292 PMCID: PMC9919706 DOI: 10.3390/nu15030586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The gut-liver axis plays a key role in the development and progression of non-alcoholic fatty liver disease (NAFLD). Due to the complexity and incomplete understanding of the cross-talk between the gut and liver, effective therapeutic targets are largely unknown. Free fatty acid receptors (FFARs) may bridge the cross-talk between the gut and liver. FFAR4 has received considerable attention due to its important role in lipid metabolism. However, the role of FFAR4 in this cross talk in NAFLD remains unclear. In this study, mice with high endogenous n-3 PUFAs but FFAR4 deficiency were generated by crossbreeding Fat-1 and FFAR4 knockout mice. FFAR4 deficiency blocked the protective effects of high endogenous n-3 PUFAs on intestinal barrier dysfunction and hepatic steatosis. In addition, FFAR4 deficiency decreased gut microbiota diversity and enriched Rikenella, Anaerotruncus, and Enterococcus, and reduced Dubosiella, Ruminococcaceae UCG-010, Ruminococcaceae UCG-014, Coriobacteriaceae UCG-002, Faecalibaculum, Ruminococcaceae UCG-009, and Akkermansia. Notably, FFAR4 deficiency co-regulated pantothenic acid and CoA biosynthesis, β-alanine metabolism, and sphingolipid metabolism pathways in the gut and liver, potentially associated with the aggravation of NAFLD. Together, the beneficial effects of n-3 PUFAs on the gut and liver were mediated by FFAR4, providing insights on the role of FFAR4 in the treatment of NAFLD through the gut-liver axis.
Collapse
Affiliation(s)
- Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Hongyan Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi 214122, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Du YQ, Sha XY, Cheng J, Wang J, Lin JY, An WT, Pan W, Zhang LJ, Tao XN, Xu YF, Jia YL, Yang Z, Xiao P, Liu M, Sun JP, Yu X. Endogenous Lipid-GPR120 Signaling Modulates Pancreatic Islet Homeostasis to Different Extents. Diabetes 2022; 71:1454-1471. [PMID: 35472681 DOI: 10.2337/db21-0794] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022]
Abstract
Long-chain fatty acids (LCFAs) are not only energy sources but also serve as signaling molecules. GPR120, an LCFA receptor, plays key roles in maintaining metabolic homeostasis. However, whether endogenous ligand-GPR120 circuits exist and how such circuits function in pancreatic islets are unclear. Here, we found that endogenous GPR120 activity in pancreatic δ-cells modulated islet functions. At least two unsaturated LCFAs, oleic acid (OA) and linoleic acid (LA), were identified as GPR120 agonists within pancreatic islets. These two LCFAs promoted insulin secretion by inhibiting somatostatin secretion and showed bias activation of GPR120 in a model system. Compared with OA, LA exerted higher potency in promoting insulin secretion, which is dependent on β-arrestin2 function. Moreover, GPR120 signaling was impaired in the diabetic db/db model, and replenishing OA and LA improved islet function in both the db/db and streptozotocin-treated diabetic models. Consistently, the administration of LA improved glucose metabolism in db/db mice. Collectively, our results reveal that endogenous LCFA-GPR120 circuits exist and modulate homeostasis in pancreatic islets. The contributions of phenotype differences caused by different LCFA-GPR120 circuits within islets highlight the roles of fine-tuned ligand-receptor signaling networks in maintaining islet homeostasis.
Collapse
Affiliation(s)
- Ya-Qin Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xue-Ying Sha
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jie Cheng
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jing-Yu Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Wen-Tao An
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Wei Pan
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Li-Jun Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xiao-Na Tao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yun-Fei Xu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ying-Li Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zhao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Peng Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Jin-Peng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Lamontagne-Proulx J, Coulombe K, Dahhani F, Côté M, Guyaz C, Tremblay C, Di Marzo V, Flamand N, Calon F, Soulet D. Effect of Docosahexaenoic Acid (DHA) at the Enteric Level in a Synucleinopathy Mouse Model. Nutrients 2021; 13:nu13124218. [PMID: 34959768 PMCID: PMC8703327 DOI: 10.3390/nu13124218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
The aggregation of alpha-synuclein protein (αSyn) is a hallmark of Parkinson’s disease (PD). Considerable evidence suggests that PD involves an early aggregation of αSyn in the enteric nervous system (ENS), spreading to the brain. While it has previously been reported that omega-3 polyunsaturated fatty acids (ω-3 PUFA) acts as neuroprotective agents in the brain in murine models of PD, their effect in the ENS remains undefined. Here, we studied the effect of dietary supplementation with docosahexaenoic acid (DHA, an ω-3 PUFA), on the ENS, with a particular focus on enteric dopaminergic (DAergic) neurons. Thy1-αSyn mice, which overexpress human αSyn, were fed ad libitum with a control diet, a low ω-3 PUFA diet or a diet supplemented with microencapsulated DHA and then compared with wild-type littermates. Our data indicate that Thy1-αSyn mice showed a lower density of enteric dopaminergic neurons compared with non-transgenic animals. This decrease was prevented by dietary DHA. Although we found that DHA reduced microgliosis in the striatum, we did not observe any evidence of peripheral inflammation. However, we showed that dietary intake of DHA promoted a build-up of ω-3 PUFA-derived endocannabinoid (eCB)-like mediators in plasma and an increase in glucagon-like peptide-1 (GLP-1) and the redox regulator, Nrf2 in the ENS. Taken together, our results suggest that DHA exerts neuroprotection of enteric DAergic neurons in the Thy1-αSyn mice, possibly through alterations in eCB-like mediators, GLP-1 and Nrf2.
Collapse
Affiliation(s)
- Jérôme Lamontagne-Proulx
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (J.L.-P.); (K.C.); (M.C.); (C.T.); (F.C.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Katherine Coulombe
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (J.L.-P.); (K.C.); (M.C.); (C.T.); (F.C.)
| | - Fadil Dahhani
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, QC G1V 4G5, Canada; (F.D.); (V.D.); (N.F.)
- Canada Excellence Research in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, QC G1V 4G5, Canada
| | - Mélissa Côté
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (J.L.-P.); (K.C.); (M.C.); (C.T.); (F.C.)
| | - Cédric Guyaz
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Cyntia Tremblay
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (J.L.-P.); (K.C.); (M.C.); (C.T.); (F.C.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Vincenzo Di Marzo
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, QC G1V 4G5, Canada; (F.D.); (V.D.); (N.F.)
- Canada Excellence Research in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, QC G1V 4G5, Canada
- Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF) et Centre NUTRISS, Université Laval, Québec, QC G1V 0A6, Canada
| | - Nicolas Flamand
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, QC G1V 4G5, Canada; (F.D.); (V.D.); (N.F.)
- Canada Excellence Research in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, QC G1V 4G5, Canada
- Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Frédéric Calon
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (J.L.-P.); (K.C.); (M.C.); (C.T.); (F.C.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
- Laboratoire International Associé OptiNutriBrain, (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
| | - Denis Soulet
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (J.L.-P.); (K.C.); (M.C.); (C.T.); (F.C.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF) et Centre NUTRISS, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-654-2296
| |
Collapse
|
8
|
Liu T, Ji RL, Tao YX. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharmacol Ther 2021; 234:108044. [PMID: 34822948 DOI: 10.1016/j.pharmthera.2021.108044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors involved in the regulation of almost all known physiological processes. Dysfunctions of GPCR-mediated signaling have been shown to cause various diseases. The prevalence of obesity and type 2 diabetes mellitus (T2DM), two strongly associated disorders, is increasing worldwide, with tremendous economical and health burden. New safer and more efficacious drugs are required for successful weight reduction and T2DM treatment. Multiple GPCRs are involved in the regulation of energy and glucose homeostasis. Mutations in these GPCRs contribute to the development and progression of obesity and T2DM. Therefore, these receptors can be therapeutic targets for obesity and T2DM. Indeed some of these receptors, such as melanocortin-4 receptor and glucagon-like peptide 1 receptor, have provided important new drugs for treating obesity and T2DM. This review will focus on the naturally occurring mutations of several GPCRs associated with obesity and T2DM, especially incorporating recent large genomic data and insights from structure-function studies, providing leads for future investigations.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States.
| |
Collapse
|
9
|
Abstract
Free fatty acids (FFAs) are implicated in the pathogenesis of metabolic diseases that includes obesity, type 2 diabetes mellitus, and cardiovascular disease (CVD). FFAs serve as ligands for free fatty acid receptors (FFARs) that belong to the family of rhodopsin-like G protein-coupled receptors (GPCRs) and are expressed throughout the body to maintain energy homeostasis under changing nutritional conditions. Free fatty acid receptor 4 (FFAR4), also known as G protein-coupled receptor 120, is a long-chain fatty acid receptor highly expressed in adipocytes, endothelial cells, and macrophages. Activation of FFAR4 helps maintain metabolic homeostasis by regulating adipogenesis, insulin sensitivity, and inflammation. Furthermore, dysfunction of FFAR4 is associated with insulin resistance, obesity, and eccentric remodeling in both humans and mice, making FFAR4 an attractive therapeutic target for treating or preventing metabolic diseases. While much of the previous literature on FFAR4 has focused on its role in obesity and diabetes, recent studies have demonstrated that FFAR4 may also play an important role in the development of atherosclerosis and CVD. Most notably, FFAR4 activation reduces monocyte-endothelial cell interaction, enhances cholesterol efflux from macrophages, reduces lesion size in atherogenic mouse models, and stimulates oxylipin production in myocytes that functions in a feed-forward cardioprotective mechanism. This review will focus on the role of FFAR4 in metabolic diseases and highlights an underappreciated role of FFAR4 in the development of atherosclerosis and CVD.
Collapse
Affiliation(s)
- Gage M Stuttgen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Division of Endocrinology & Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
10
|
Structural studies of phosphorylation-dependent interactions between the V2R receptor and arrestin-2. Nat Commun 2021; 12:2396. [PMID: 33888704 PMCID: PMC8062632 DOI: 10.1038/s41467-021-22731-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/18/2021] [Indexed: 12/21/2022] Open
Abstract
Arrestins recognize different receptor phosphorylation patterns and convert this information to selective arrestin functions to expand the functional diversity of the G protein-coupled receptor (GPCR) superfamilies. However, the principles governing arrestin-phospho-receptor interactions, as well as the contribution of each single phospho-interaction to selective arrestin structural and functional states, are undefined. Here, we determined the crystal structures of arrestin2 in complex with four different phosphopeptides derived from the vasopressin receptor-2 (V2R) C-tail. A comparison of these four crystal structures with previously solved Arrestin2 structures demonstrated that a single phospho-interaction change results in measurable conformational changes at remote sites in the complex. This conformational bias introduced by specific phosphorylation patterns was further inspected by FRET and 1H NMR spectrum analysis facilitated via genetic code expansion. Moreover, an interdependent phospho-binding mechanism of phospho-receptor-arrestin interactions between different phospho-interaction sites was unexpectedly revealed. Taken together, our results provide evidence showing that phospho-interaction changes at different arrestin sites can elicit changes in affinity and structural states at remote sites, which correlate with selective arrestin functions. The interaction between a GPCR, such as the vasopressin receptor-2 (V2R), and arrestin depends on the receptors’ phosphorylation pattern. Here authors use FRET and NMR to analyze the phosphorylation patterns of the V2R-arrestin complex and show that phospho-interactions are the key determinants of selective arrestin conformational states and correlated functions.
Collapse
|
11
|
Croze ML, Flisher MF, Guillaume A, Tremblay C, Noguchi GM, Granziera S, Vivot K, Castillo VC, Campbell SA, Ghislain J, Huising MO, Poitout V. Free fatty acid receptor 4 inhibitory signaling in delta cells regulates islet hormone secretion in mice. Mol Metab 2021; 45:101166. [PMID: 33484949 PMCID: PMC7873385 DOI: 10.1016/j.molmet.2021.101166] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Maintenance of glucose homeostasis requires the precise regulation of hormone secretion from the endocrine pancreas. Free fatty acid receptor 4 (FFAR4/GPR120) is a G protein-coupled receptor whose activation in islets of Langerhans promotes insulin and glucagon secretion and inhibits somatostatin secretion. However, the contribution of individual islet cell types (α, β, and δ cells) to the insulinotropic and glucagonotropic effects of GPR120 remains unclear. As gpr120 mRNA is enriched in somatostatin-secreting δ cells, we hypothesized that GPR120 activation stimulates insulin and glucagon secretion via inhibition of somatostatin release. METHODS Glucose tolerance tests were performed in mice after administration of selective GPR120 agonist Compound A. Insulin, glucagon, and somatostatin secretion were measured in static incubations of isolated mouse islets in response to endogenous (ω-3 polyunsaturated fatty acids) and/or pharmacological (Compound A and AZ-13581837) GPR120 agonists. The effect of Compound A on hormone secretion was tested further in islets isolated from mice with global or somatostatin cell-specific knock-out of gpr120. Gpr120 expression was assessed in pancreatic sections by RNA in situ hybridization. Cyclic AMP (cAMP) and calcium dynamics in response to pharmacological GPR120 agonists were measured specifically in α, β, and δ cells in intact islets using cAMPER and GCaMP6 reporter mice, respectively. RESULTS Acute exposure to Compound A increased glucose tolerance, circulating insulin, and glucagon levels in vivo. Endogenous and/or pharmacological GPR120 agonists reduced somatostatin secretion in isolated islets and concomitantly demonstrated dose-dependent potentiation of glucose-stimulated insulin secretion and arginine-stimulated glucagon secretion. Gpr120 was enriched in δ cells. Pharmacological GPR120 agonists reduced cAMP and calcium levels in δ cells but increased these signals in α and β cells. Compound A-mediated inhibition of somatostatin secretion was insensitive to pertussis toxin. The effect of Compound A on hormone secretion was completely absent in islets from mice with either global or somatostatin cell-specific deletion of gpr120 and partially reduced upon blockade of somatostatin receptor signaling by cyclosomatostatin. CONCLUSIONS Inhibitory GPR120 signaling in δ cells contributes to both insulin and glucagon secretion in part by mitigating somatostatin release.
Collapse
Affiliation(s)
- Marine L Croze
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Marcus F Flisher
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | | | | | - Glyn M Noguchi
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | | | - Kevin Vivot
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Vincent C Castillo
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | | | - Julien Ghislain
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Mark O Huising
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA; Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Vincent Poitout
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
12
|
Flores-Espinoza E, Meizoso-Huesca A, Villegas-Comonfort S, Reyes-Cruz G, García-Sáinz JA. Effect of docosahexaenoic acid, phorbol myristate acetate, and insulin on the interaction of the FFA4 (short isoform) receptor with Rab proteins. Eur J Pharmacol 2020; 889:173595. [PMID: 32986985 DOI: 10.1016/j.ejphar.2020.173595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022]
Abstract
Human embryonic kidney (HEK) 293 cells were co-transfected with plasmids for the expression of mCherry fluorescent protein-tagged FFA4 receptors and the enhanced green fluorescent protein-tagged Rab proteins involved in retrograde transport and recycling, to study their possible interaction through Förster Resonance Energy Transfer (FRET), under the action of agents that induce FFA4 receptor phosphorylation and internalization through different processes, i.e., the agonist, docosahexaenoic acid, the protein kinase C activator phorbol myristate acetate, and insulin. Data indicate that FFA4 receptor internalization varied depending on the agent that induced the process. Agonist activation (docosahexaenoic acid) induced an association with early endosomes (as suggested by interaction with Rab5) and rapid recycling to the plasma membrane (as indicated by receptor interaction with Rab4). More prolonged agonist stimulation also appears to allow the FFA4 receptors to interact with late endosomes (interaction with Rab9), slow recycling (interaction with Rab 11), and target to degradation (Rab7). Phorbol myristate acetate, triggered a rapid association with early endosomes (Rab5), slow recycling to the plasma membrane (Rab11), and some receptor degradation (Rab7). Insulin-induced FFA4 receptor internalization appears to be associated with interaction with early endosomes (Rab5) and late endosomes (Rab9) and fast and slow recycling to the plasma membrane (Rab4, Rab11). Additionally, we observed that agonist- and PMA-induced FFA4 internalization was markedly reduced by paroxetine, which suggests a possible role of G protein-coupled receptor kinase 2.
Collapse
Affiliation(s)
- Emmanuel Flores-Espinoza
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aldo Meizoso-Huesca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sócrates Villegas-Comonfort
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Av. Instituto Politécnico Nacional, 2508, Col. San Pedro Zacatenco, Mexico City, Mexico
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
13
|
Freitas RDS, Muradás TC, Dagnino APA, Rost FL, Costa KM, Venturin GT, Greggio S, da Costa JC, Campos MM. Targeting FFA1 and FFA4 receptors in cancer-induced cachexia. Am J Physiol Endocrinol Metab 2020; 319:E877-E892. [PMID: 32893672 DOI: 10.1152/ajpendo.00509.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Free fatty acid (FFA) receptors FFA1 and FFA4 are omega-3 molecular targets in metabolic diseases; however, their function in cancer cachexia remains unraveled. We assessed the role of FFA1 and FFA4 receptors in the mouse model of cachexia induced by Lewis lung carcinoma (LLC) cell implantation. Naturally occurring ligands such as α-linolenic acid (ALA) and docosahexaenoic acid (DHA), the synthetic FFA1/FFA4 agonists GW9508 and TUG891, or the selective FFA1 GW1100 or FFA4 AH7614 antagonists were tested. FFA1 and FFA4 expression and other cachexia-related parameters were evaluated. GW9508 and TUG891 decreased tumor weight in LLC-bearing mice. Regarding cachexia-related end points, ALA, DHA, and the preferential FFA1 agonist GW9508 rescued body weight loss. Skeletal muscle mass was reestablished by ALA treatment, but this was not reflected in the fiber cross-sectional areas (CSA) measurement. Otherwise, TUG891, GW1100, or AH7614 reduced the muscle fiber CSA. Treatments with ALA, GW9508, GW1100, or AH7614 restored white adipose tissue (WAT) depletion. As for inflammatory outcomes, ALA improved anemia, whereas GW9508 reduced splenomegaly. Concerning behavioral impairments, ALA and GW9508 rescued locomotor activity, whereas ALA improved motor coordination. Additionally, DHA improved grip strength. Notably, GW9508 restored abnormal brain glucose metabolism in different brain regions. The GW9508 treatment increased leptin levels, without altering uncoupling protein-1 downregulation in visceral fat. LLC-cachectic mice displayed FFA1 upregulation in subcutaneous fat, but not in visceral fat or gastrocnemius muscle, whereas FFA4 was unaltered. Overall, the present study shed new light on FFA1 and FFA4 receptors' role in metabolic disorders, indicating FFA1 receptor agonism as a promising strategy in mitigating cancer cachexia.
Collapse
Affiliation(s)
- Raquel D S Freitas
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Pesquisas em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thaís C Muradás
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Pesquisas em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula A Dagnino
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Pesquisas em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda L Rost
- Centro de Pesquisas em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kesiane M Costa
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gianina T Venturin
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul (Brain Institute of Rio Grande do Sul - BraIns), Porto Alegre, Brazil
| | - Samuel Greggio
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul (Brain Institute of Rio Grande do Sul - BraIns), Porto Alegre, Brazil
| | - Jaderson C da Costa
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul (Brain Institute of Rio Grande do Sul - BraIns), Porto Alegre, Brazil
| | - Maria M Campos
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Pesquisas em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
14
|
Chen T, Xiong H, Yang JF, Zhu XL, Qu RY, Yang GF. Diaryl Ether: A Privileged Scaffold for Drug and Agrochemical Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9839-9877. [PMID: 32786826 DOI: 10.1021/acs.jafc.0c03369] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diaryl ether (DE) is a functional scaffold existing widely both in natural products (NPs) and synthetic organic compounds. Statistically, DE is the second most popular and enduring scaffold within the numerous medicinal chemistry and agrochemical reports. Given its unique physicochemical properties and potential biological activities, DE nucleus is recognized as a fundamental element of medicinal and agrochemical agents aimed at different biological targets. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antibacterial, antimalarial, herbicidal, fungicidal, insecticidal, and so on. In this review, we highlight the medicinal and agrochemical versatility of the DE motif according to the published information in the past decade and comprehensively give a summary of the target recognition, structure-activity relationship (SAR), and mechanism of action of its analogues. It is expected that this profile may provide valuable guidance for the discovery of new active ingredients both in drug and pesticide research.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hao Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
15
|
Cho H, Kim K, Kim N, Woo M, Kim HY. Effect of propolis phenolic compounds on free fatty acid receptor 4 activation. Food Sci Biotechnol 2020; 29:579-584. [PMID: 32296569 PMCID: PMC7142188 DOI: 10.1007/s10068-019-00688-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Propolis is known to have multiple biological and pharmacological properties including the regulation of energy homeostasis. Although phenolic compounds are considered to be the major active components in propolis, there is little information available about their mechanisms underlying the regulation of energy homeostasis. In this study, the effects of five phenolic compounds in propolis, chrysin, pinocembrin, galangin, pinobanksin, and caffeic acid phenethyl ester (CAPE) were evaluated on the activation of free fatty acid receptor 4 (FFA4), which are involved in the control of energy homeostasis by enhancing insulin signaling, increasing glucose uptake, and regulating adipogenesis. The results showed that three phenolic compounds exhibited the activation of FFA4, which were ranked in the order of pinocembrin, CAPE and pinobanksin in FFA4-expressing cells. These results suggest that some phenolic compounds in propolis, particularly pinocembrin, may affect the control of energy homeostasis via the activation of FFA4.
Collapse
Affiliation(s)
- Hyunnho Cho
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Korea
| | - Kyong Kim
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Korea
| | - Nayeon Kim
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Korea
| | - Minji Woo
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Korea
| | - Hye Young Kim
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Korea
| |
Collapse
|
16
|
Cell active and functionally-relevant small-molecule agonists of calcitonin receptor. Bioorg Chem 2020; 96:103596. [PMID: 32004895 DOI: 10.1016/j.bioorg.2020.103596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 12/15/2022]
Abstract
The natural calcitonin (CT) receptor and its peptide agonists are considered validated targets for drug discovery. A small molecule agonist, SUN-B8155, has previously been shown to efficiently activate cellular CTR. Herein, we report the synthesis of a series of compounds (S8155 1-9) derived from SUN-B8155, and investigate the structural-functional relationship, bias properties and their cellular activity profile. We discover that the N-hydroxyl group from the pyridone ring is required for G protein activity and its affinity to the CT receptor. Among the compounds studied, S8155-7 exhibits improved G protein activity while S8155-4 displays a significant β-arrestin-2 signaling bias. Finally, we show that both S8155-4 and S8155-7 inhibit tumour cell invasion through CTR activation. These two compounds are anticipated to find extensive applications in chemical biology research as well drug development efforts targeting CT receptor.
Collapse
|
17
|
Villegas-Comonfort S, Guzmán-Silva A, Romero-Ávila MT, Takei Y, Tsujimoto G, Hirasawa A, García-Sáinz JA. Receptor tyrosine kinase activation induces free fatty acid 4 receptor phosphorylation, β-arrestin interaction, and internalization. Eur J Pharmacol 2019; 855:267-275. [PMID: 31078517 DOI: 10.1016/j.ejphar.2019.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022]
Abstract
FFA4 (Free Fatty Acid receptor 4, previously known as GPR120) is a G protein-coupled receptor that acts as a sensor of long-chain fatty acids, modulates metabolism, and whose dysfunction participates in endocrine disturbances. FFA4 is known to be phosphorylated and internalized in response to agonists and protein kinase C activation. In this paper report the modulation of this fatty acid receptor by activation of receptor tyrosine kinases. Cell-activation with growth factors (insulin, epidermal growth factor, insulin-like growth factor-I, and platelet-derived growth factor) increases FFA4 phosphorylation in a time- and concentration-dependent fashion. This effect was blocked by inhibitors of protein kinase C and phosphoinositide 3-kinase, suggesting the involvement of these kinases in it. FFA4 phosphorylation did not alter agonist-induced FFA4 calcium signaling, but was associated with decreased ERK 1/2 phosphorylation. In addition, insulin, insulin-like growth factor-I, epidermal growth factor, and to a lesser extent, platelet-derived growth factor, induce receptor internalization. This action of insulin, insulin-like growth factor I, and epidermal growth factor was blocked by inhibitors of protein kinase C and phosphoinositide 3-kinase. Additionally, cell treatment with these growth factors induced FFA4-β-arrestin coimmunoprecipitation. Our results evidenced cross-talk between receptor tyrosine kinases and FFA4 and suggest roles of protein kinase C and phosphoinositide 3-kinase in such a functional interaction.
Collapse
Affiliation(s)
- Sócrates Villegas-Comonfort
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70-248, Ciudad de México, 04510, Mexico
| | - Alejandro Guzmán-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70-248, Ciudad de México, 04510, Mexico
| | - M Teresa Romero-Ávila
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70-248, Ciudad de México, 04510, Mexico
| | - Yoshinori Takei
- Graduate School of Pharmaceutical Sciences, Kyoto University: Sakyo-ku, Kyoto, 606-8501, Japan
| | - Gozoh Tsujimoto
- Graduate School of Pharmaceutical Sciences, Kyoto University: Sakyo-ku, Kyoto, 606-8501, Japan
| | - Akira Hirasawa
- Graduate School of Pharmaceutical Sciences, Kyoto University: Sakyo-ku, Kyoto, 606-8501, Japan
| | - J Adolfo García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70-248, Ciudad de México, 04510, Mexico.
| |
Collapse
|
18
|
Kim HY, Kim K. Identification of a Novel Function of Extract of Gingko biloba (EGb 761®) as a Regulator of PYY Secretion and FFA4 Activation. NATURAL PRODUCT SCIENCES 2019; 25:165. [DOI: 10.20307/nps.2019.25.2.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 01/05/2025]
Affiliation(s)
- Hye Young Kim
- Research Group of Natural Material and Metabolism, Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea
| | - Kyong Kim
- Research Group of Natural Material and Metabolism, Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea
| |
Collapse
|
19
|
Recio C, Lucy D, Iveson P, Iqbal AJ, Valaris S, Wynne G, Russell AJ, Choudhury RP, O'Callaghan C, Monaco C, Greaves DR. The Role of Metabolite-Sensing G Protein-Coupled Receptors in Inflammation and Metabolic Disease. Antioxid Redox Signal 2018; 29:237-256. [PMID: 29117706 DOI: 10.1089/ars.2017.7168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Great attention has been placed on the link between metabolism and immune function giving rise to the term "immunometabolism." It is widely accepted that inflammation and oxidative stress are key processes that underlie metabolic complications during obesity, diabetes, and atherosclerosis. Therefore, identifying the mechanisms and mediators that are involved in the regulation of both inflammation and metabolic homeostasis is of high scientific and therapeutic interest. Recent Advances: G protein-coupled receptors (GPCRs) that signal in response to metabolites have emerged as attractive therapeutic targets in inflammatory disease. Critical Issues and Future Directions: In this review, we discuss recent findings about the physiological role of the main metabolite-sensing GPCRs, their implication in immunometabolic disorders, their principal endogenous and synthetic ligands, and their potential as drug targets in inflammation and metabolic disease. Antioxid. Redox Signal. 29, 237-256.
Collapse
Affiliation(s)
- Carlota Recio
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Daniel Lucy
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Poppy Iveson
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Asif J Iqbal
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Sophia Valaris
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Graham Wynne
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Angela J Russell
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Robin P Choudhury
- 3 Radcliffe Department of Medicine, University of Oxford , Oxford, Great Britain
| | - Chris O'Callaghan
- 4 Nuffield Department of Medicine, University of Oxford , Oxford, Great Britain
| | - Claudia Monaco
- 5 Kennedy Institute for Rheumatology, University of Oxford , Oxford, Great Britain
| | - David R Greaves
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| |
Collapse
|
20
|
Meizoso‐Huesca A, Villegas‐Comonfort S, Romero‐Ávila MT, García‐Sáinz JA. Free fatty acid receptor 4 agonists induce lysophosphatidic acid receptor 1 (
LPA
1
) desensitization independent of
LPA
1
internalization and heterodimerization. FEBS Lett 2018; 592:2612-2623. [DOI: 10.1002/1873-3468.13179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/09/2018] [Accepted: 06/27/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Aldo Meizoso‐Huesca
- Departamento de Biología Celular y del Desarrollo Instituto de Fisiología Celular Universidad Nacional Autónoma de México Mexico
| | - Sócrates Villegas‐Comonfort
- Departamento de Biología Celular y del Desarrollo Instituto de Fisiología Celular Universidad Nacional Autónoma de México Mexico
| | - M. Teresa Romero‐Ávila
- Departamento de Biología Celular y del Desarrollo Instituto de Fisiología Celular Universidad Nacional Autónoma de México Mexico
| | - J. Adolfo García‐Sáinz
- Departamento de Biología Celular y del Desarrollo Instituto de Fisiología Celular Universidad Nacional Autónoma de México Mexico
| |
Collapse
|
21
|
Riddy DM, Delerive P, Summers RJ, Sexton PM, Langmead CJ. G Protein-Coupled Receptors Targeting Insulin Resistance, Obesity, and Type 2 Diabetes Mellitus. Pharmacol Rev 2018; 70:39-67. [PMID: 29233848 DOI: 10.1124/pr.117.014373] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/13/2017] [Indexed: 03/21/2025] Open
Abstract
G protein-coupled receptors (GPCRs) continue to be important discovery targets for the treatment of type 2 diabetes mellitus (T2DM). Many GPCRs are directly involved in the development of insulin resistance and β-cell dysfunction, and in the etiology of inflammation that can lead to obesity-induced T2DM. This review summarizes the current literature describing a number of well-validated GPCR targets, but also outlines several new and promising targets for drug discovery. We highlight the importance of understanding the role of these receptors in the disease pathology, and their basic pharmacology, which will pave the way to the development of novel pharmacological probes that will enable these targets to fulfill their promise for the treatment of these metabolic disorders.
Collapse
Affiliation(s)
- Darren M Riddy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., R.J.S., P.M.S., C.J.L.); and Institut de Recherches Servier, Pôle d'Innovation Thérapeutique Métabolisme, Suresnes, France (P.D.)
| | - Philippe Delerive
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., R.J.S., P.M.S., C.J.L.); and Institut de Recherches Servier, Pôle d'Innovation Thérapeutique Métabolisme, Suresnes, France (P.D.)
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., R.J.S., P.M.S., C.J.L.); and Institut de Recherches Servier, Pôle d'Innovation Thérapeutique Métabolisme, Suresnes, France (P.D.)
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., R.J.S., P.M.S., C.J.L.); and Institut de Recherches Servier, Pôle d'Innovation Thérapeutique Métabolisme, Suresnes, France (P.D.)
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., R.J.S., P.M.S., C.J.L.); and Institut de Recherches Servier, Pôle d'Innovation Thérapeutique Métabolisme, Suresnes, France (P.D.)
| |
Collapse
|
22
|
Zhao Y, Zhang H, Yan A, Zhu J, Liu K, Chen D, Xie R, Xu X, Su X. Grifolic acid induces mitochondrial membrane potential loss and cell death of RAW264.7 macrophages. Mol Med Rep 2017; 17:3281-3287. [PMID: 29257254 DOI: 10.3892/mmr.2017.8218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/13/2017] [Indexed: 11/06/2022] Open
Abstract
Grifolic acid is a phenolic compound that was first extracted from the mushroom Albatrellus confluens; it acts as an agonist of the free fatty acid receptor (FFAR4). FFAR4 is expressed in macrophages and mediates the anti‑inflammatory effects of n‑3 unsaturated free fatty acids. In the present study, the effects of grifolic acid on macrophages were observed in mouse RAW264.7 cells. It was demonstrated that grifolic acid (2.5‑20 µmol/l) treatment reduced RAW264.7 cell viability in a dose‑ and time‑dependent manner. The number of apoptotic cells significantly increased following grifolic acid treatment compared with the untreated control cells. Grifolic acid treatment resulted in a significant decrease in cellular adenosine 5'‑triphosphate (ATP) content in RAW264.7 cells. Mitochondrial membrane potential (MMP), as measured by JC‑1 staining, was significantly diminished by grifolic acid treatment in a dose‑ and time‑dependent manner. Treatment with cyclosporine A, a protector of MMP, attenuated grifolic acid‑induced reduction of MMP and viability in RAW264.7 cells. FFAR4 knockdown did not significantly influence grifolic acid‑induced reduction of cell viability, ATP levels or MMP. In conclusion, grifolic acid may induce macrophage cell death by reducing MMP and by inhibiting ATP production probably in an FFAR4‑independent manner.
Collapse
Affiliation(s)
- Yufeng Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Hai Zhang
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Aili Yan
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Juanxia Zhu
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Ke Liu
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Di Chen
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Rong Xie
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Xi Xu
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Xingli Su
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
23
|
The acute glucose lowering effect of specific GPR120 activation in mice is mainly driven by glucagon-like peptide 1. PLoS One 2017; 12:e0189060. [PMID: 29206860 PMCID: PMC5716539 DOI: 10.1371/journal.pone.0189060] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
The mechanism behind the glucose lowering effect occurring after specific activation of GPR120 is not completely understood. In this study, a potent and selective GPR120 agonist was developed and its pharmacological properties were compared with the previously described GPR120 agonist Metabolex-36. Effects of both compounds on signaling pathways and GLP-1 secretion were investigated in vitro. The acute glucose lowering effect was studied in lean wild-type and GPR120 null mice following oral or intravenous glucose tolerance tests. In vitro, in GPR120 overexpressing cells, both agonists signaled through Gαq, Gαs and the β-arrestin pathway. However, in mouse islets the signaling pathway was different since the agonists reduced cAMP production. The GPR120 agonists stimulated GLP-1 secretion both in vitro in STC-1 cells and in vivo following oral administration. In vivo GPR120 activation induced significant glucose lowering and increased insulin secretion after intravenous glucose administration in lean mice, while the agonists had no effect in GPR120 null mice. Exendin 9–39, a GLP-1 receptor antagonist, abolished the GPR120 induced effects on glucose and insulin following an intravenous glucose challenge. In conclusion, GLP-1 secretion is an important mechanism behind the acute glucose lowering effect following specific GPR120 activation.
Collapse
|
24
|
Polymorphisms in FFAR4 (GPR120) Gene Modulate Insulin Levels and Sensitivity after Fish Oil Supplementation. J Pers Med 2017; 7:jpm7040015. [PMID: 29113108 PMCID: PMC5748627 DOI: 10.3390/jpm7040015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/11/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022] Open
Abstract
The objective was to test whether FFAR4 single nucleotide polymorphisms (SNPs) are associated with glycemic control-related traits in humans following fish oil supplementation. A total of 210 participants were given 3 g/day of omega-3 (n-3) fatty acids (FA) (1.9–2.2 g of eicosapentaenoic acid (EPA) and 1.1 g of docosahexaenoic acid (DHA)) during six weeks. Biochemical parameters were taken before and after the supplementation. Using the HapMap database and the tagger procedure in Haploview, 12 tagging SNPs in FFAR4 were selected and then genotyped using TaqMan technology. Transcript expression levels were measured for 30 participants in peripheral mononuclear blood cells. DNA methylation levels were measured for 35 participants in leukocytes. In silico analyses were also performed. Four gene–diet interactions on fasting insulin levels and homeostatic model assessment of insulin resistance (HOMA-IR) index values were found. rs17108973 explained a significant proportion of the variance of insulin levels (3.0%) and HOMA-IR (2.03%) index values. Splice site prediction was different depending on the allele for rs11187527. rs17108973 and rs17484310 had different affinity for transcription factors depending on the allele. n-3 FAs effectively improve insulin-related traits for major allele homozygotes of four FFAR4 SNPs as opposed to carriers of the minor alleles.
Collapse
|
25
|
Im DS. FFA4 (GPR120) as a fatty acid sensor involved in appetite control, insulin sensitivity and inflammation regulation. Mol Aspects Med 2017; 64:92-108. [PMID: 28887275 DOI: 10.1016/j.mam.2017.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/03/2017] [Accepted: 09/03/2017] [Indexed: 12/19/2022]
Abstract
Unsaturated long-chain fatty acids have been suggested to be beneficial in the context of cardiovascular disorders based in epidemiologic studies conducted in Greenland and Mediterranean. DHA and EPA are omega-3 polyunsaturated fatty acids that are plentiful in fish oil, and oleic acid is an omega-9 monounsaturated fatty acid, rich in olive oil. Dietary intake of these unsaturated long-chain fatty acids have been associated with insulin sensitivity and weight loss, which contrasts with the impairment of insulin sensitivity and weight gain associated with high intakes of saturated long-chain fatty acids. The recent discovery that free fatty acid receptor 4 (FFA4, also known as GPR120) acts as a sensor for unsaturated long-chain fatty acids started to unveil the molecular mechanisms underlying the beneficial functions played by these unsaturated long-chain fatty acids in various physiological processes, which include the secretions of gastrointestinal peptide hormones and glucose homeostasis. In this review, the physiological roles and therapeutic significance of FFA4 in appetite control, insulin sensitization, and inflammation reduction are discussed in relation to obesity and type 2 diabetes from pharmacological viewpoints.
Collapse
Affiliation(s)
- Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
26
|
Hopkins MM, Meier KE. Free Fatty Acid Receptors and Cancer: From Nutrition to Pharmacology. Handb Exp Pharmacol 2017; 236:233-251. [PMID: 27757756 DOI: 10.1007/164_2016_48] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of fatty acids on cancer cells have been studied for decades. The roles of dietary long-chain n-3 polyunsaturated fatty acids, and of microbiome-generated short-chain butyric acid, have been of particular interest over the years. However, the roles of free fatty acid receptors (FFARs) in mediating effects of fatty acids in tumor cells have only recently been examined. In reviewing the literature, the data obtained to date indicate that the long-chain FFARs (FFA1 and FFA4) play different roles than the short-chain FFARs (FFA2 and FFA3). Moreover, FFA1 and FFA4 can in some cases mediate opposing actions in the same cell type. Another conclusion is that different types of cancer cells respond differently to FFAR activation. Currently, the best-studied models are prostate, breast, and colon cancer. FFA1 and FFA4 agonists can inhibit proliferation and migration of prostate and breast cancer cells, but enhance growth of colon cancer cells. In contrast, FFA2 activation can in some cases inhibit proliferation of colon cancer cells. Although the available data are sometimes contradictory, there are several examples in which FFAR agonists inhibit proliferation of cancer cells. This is a unique response to GPCR activation that will benefit from a mechanistic explanation as the field progresses. The development of more selective FFAR agonists and antagonists, combined with gene knockout approaches, will be important for unraveling FFAR-mediated inhibitory effects. These inhibitory actions, mediated by druggable GPCRs, hold promise for cancer prevention and/or therapy.
Collapse
Affiliation(s)
- Mandi M Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, 99210-1495, USA
| | - Kathryn E Meier
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, 99210-1495, USA.
| |
Collapse
|
27
|
Watterson KR, Hansen SVF, Hudson BD, Alvarez-Curto E, Raihan SZ, Azevedo CMG, Martin G, Dunlop J, Yarwood SJ, Ulven T, Milligan G. Probe-Dependent Negative Allosteric Modulators of the Long-Chain Free Fatty Acid Receptor FFA4. Mol Pharmacol 2017; 91:630-641. [PMID: 28385906 PMCID: PMC5438128 DOI: 10.1124/mol.116.107821] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/29/2017] [Indexed: 12/16/2022] Open
Abstract
High-affinity and selective antagonists that are able to block the actions of both endogenous and synthetic agonists of G protein-coupled receptors are integral to analysis of receptor function and to support suggestions of therapeutic potential. Although there is great interest in the potential of free fatty acid receptor 4 (FFA4) as a novel therapeutic target for the treatment of type II diabetes, the broad distribution pattern of this receptor suggests it may play a range of roles beyond glucose homeostasis in different cells and tissues. To date, a single molecule, 4-methyl-N-9H-xanthen-9-yl-benzenesulfonamide (AH-7614), has been described as an FFA4 antagonist; however, its mechanism of antagonism remains unknown. We synthesized AH-7614 and a chemical derivative and demonstrated these to be negative allosteric modulators (NAMs) of FFA4. Although these NAMs did inhibit FFA4 signaling induced by a range of endogenous and synthetic agonists, clear agonist probe dependence in the nature of allosteric modulation was apparent. Although AH-7614 did not antagonize the second long-chain free fatty acid receptor, free fatty acid receptor 1, the simple chemical structure of AH-7614 containing features found in many anticancer drugs suggests that a novel close chemical analog of AH-7614 devoid of FFA4 activity, 4-methyl-N-(9H-xanthen-9-yl)benzamide (TUG-1387), will also provide a useful control compound for future studies assessing FFA4 function. Using TUG-1387 alongside AH-7614, we show that endogenous activation of FFA4 expressed by murine C3H10T1/2 mesenchymal stem cells is required for induced differentiation of these cells toward a more mature, adipocyte-like phenotype.
Collapse
Affiliation(s)
- Kenneth R Watterson
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Steffen V F Hansen
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Brian D Hudson
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Elisa Alvarez-Curto
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Sheikh Zahir Raihan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Carlos M G Azevedo
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Gabriel Martin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Julia Dunlop
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Stephen J Yarwood
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Trond Ulven
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| |
Collapse
|
28
|
Nishiyama K, Fujimoto Y, Takeuchi T, Azuma YT. Aggressive Crosstalk Between Fatty Acids and Inflammation in Macrophages and Their Influence on Metabolic Homeostasis. Neurochem Res 2017; 43:19-26. [PMID: 28424949 DOI: 10.1007/s11064-017-2269-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 02/08/2023]
Abstract
From the immunological point of view, macrophages are required to maintain metabolic homeostasis. Recently, there has been an increased focus on the influence of macrophage phenotypes in adipose tissue on the maintenance of metabolic homeostasis in healthy conditions because dysregulated metabolic homeostasis causes metabolic syndrome. This review notes several types of inflammatory and anti-inflammatory mediators in metabolic homeostasis. M1 macrophage polarization mediates inflammation, whereas M2 macrophage polarization mediates anti-inflammation. Fatty acids and their related factors mediate both inflammatory and anti-inflammatory responses. Saturated fatty acids and polyunsaturated fatty acids mediate inflammation, whereas marine-derived n-3 fatty acids, such as eicosapentaenoic acid and docosahexaenoic acid, mediate anti-inflammation. In this review, we discuss the current understanding of the crosstalk between fatty acids and inflammation in macrophages and their influence on metabolic homeostasis.
Collapse
Affiliation(s)
- Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Yasuyuki Fujimoto
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Tadayoshi Takeuchi
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan.
| |
Collapse
|
29
|
Meital LT, Sandow SL, Calder PC, Russell FD. Abdominal aortic aneurysm and omega-3 polyunsaturated fatty acids: Mechanisms, animal models, and potential treatment. Prostaglandins Leukot Essent Fatty Acids 2017; 118:1-9. [PMID: 28288701 DOI: 10.1016/j.plefa.2017.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 01/22/2023]
Abstract
Abdominal aortic aneurysm (AAA) is an inflammatory disease associated with macrophage accumulation in the adventitia, oxidative stress, medial elastin degradation and aortic dilation. Progression of AAA is linked to increased risk of rupture, which carries a high mortality rate. Drug therapies trialled to date lack efficacy and although aneurysm repair is available for patients with large aneurysm, peri-surgical morbidity and mortality have been widely reported. Recent studies using rodent models of AAA suggest that long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) and their metabolites can moderate inflammation and oxidative stress perpetuated by infiltrating macrophages and intervene in the destruction of medial elastin. This review examines evidence from these animal studies and related reports of inhibition of inflammation and arrest of aneurysm development following prophylactic supplementation with LC n-3 PUFAs. The efficacy of LC n-3 PUFAs for management of existing aneurysm is unclear and further investigations involving human clinical trials are warranted.
Collapse
Affiliation(s)
- Lara T Meital
- Inflammation and Healing Research Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Queensland, Australia
| | - Shaun L Sandow
- Inflammation and Healing Research Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Queensland, Australia
| | - Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Fraser D Russell
- Inflammation and Healing Research Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Queensland, Australia.
| |
Collapse
|
30
|
Villegas-Comonfort S, Takei Y, Tsujimoto G, Hirasawa A, García-Sáinz JA. Effects of arachidonic acid on FFA4 receptor: Signaling, phosphorylation and internalization. Prostaglandins Leukot Essent Fatty Acids 2017; 117:1-10. [PMID: 28237082 DOI: 10.1016/j.plefa.2017.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/28/2016] [Accepted: 01/24/2017] [Indexed: 12/18/2022]
Abstract
Arachidonic acid increased intracellular calcium, in cells expressing green fluorescent protein-tagged human FFA4 receptors, with an EC50 of ~40µM. This action was not blocked by cyclooxygenase or lipoxigenase inhibitors but it was inhibited by AH7614, a FFA4 antagonist. Arachidonic acid induced ERK activation accompanied by EGF receptor transactivation. However, EGF transactivation was not the major mechanism through which the fatty acid induced ERK phosphorylation, as evidenced by the inability of AG1478 to block it. Arachidonic acid increased FFA4 receptor phosphorylation that reached its maximum within 15min with an EC50 of ~30µM; inhibitors of protein kinase C partially diminish this effect and AH7614 blocked it. Arachidonic acid induced rapid and sustained Akt/PKB phosphorylation and FFA4 - β-arrestin interaction. Confocal microscopy evidenced that FFA4 receptor activation and phosphorylation were associated to internalization. In conclusion, arachidonic acid is a bona fide FFA4 receptor agonist.
Collapse
Affiliation(s)
- S Villegas-Comonfort
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. Ap., Postal 70-248, Ciudad de México 04510, Mexico
| | - Y Takei
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - G Tsujimoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - A Hirasawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - J A García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. Ap., Postal 70-248, Ciudad de México 04510, Mexico.
| |
Collapse
|
31
|
Adams GL, Velazquez F, Jayne C, Shah U, Miao S, Ashley ER, Madeira M, Akiyama TE, Di Salvo J, Suzuki T, Wang N, Truong Q, Gilbert E, Zhou D, Verras A, Kirkland M, Pachanski M, Powles M, Yin W, Ujjainwalla F, Venkatraman S, Edmondson SD. Discovery of Chromane Propionic Acid Analogues as Selective Agonists of GPR120 with in Vivo Activity in Rodents. ACS Med Chem Lett 2017; 8:96-101. [PMID: 28105282 DOI: 10.1021/acsmedchemlett.6b00394] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022] Open
Abstract
GPR120 (FFAR4) is a fatty acid sensing G protein coupled receptor (GPCR) that has been identified as a target for possible treatment of type 2 diabetes. A selective activator of GPR120 containing a chromane scaffold has been designed, synthesized, and evaluated in vivo. Results of these efforts suggest that chromane propionic acid 18 is a suitable tool molecule for further animal studies. Compound 18 is selective over the closely related target GPR40 (FFAR1), has a clean off-target profile, demonstrates suitable pharmacokinetic properties, and has been evaluated in wild-type/knockout GPR120 mouse oGTT studies.
Collapse
Affiliation(s)
- Gregory L. Adams
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Charles Jayne
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Unmesh Shah
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Shouwu Miao
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Eric R. Ashley
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Maria Madeira
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Taro E. Akiyama
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Jerry Di Salvo
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | | | - Quang Truong
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Eric Gilbert
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Dan Zhou
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Andreas Verras
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | | | - Maryann Powles
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wu Yin
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | | | | |
Collapse
|
32
|
Cox JM, Chu HD, Chelliah MV, Debenham JS, Eagen K, Lan P, Lombardo M, London C, Plotkin MA, Shah U, Sun Z, Vaccaro HM, Venkatraman S, Suzuki T, Wang N, Ashley ER, Crespo A, Madeira M, Leung DH, Alleyne C, Ogawa AM, Souza S, Thomas-Fowlkes B, Di Salvo J, Weinglass A, Kirkland M, Pachanski M, Powles MA, Tozzo E, Akiyama TE, Ujjainwalla F, Tata JR, Sinz CJ. Design, Synthesis, and Evaluation of Novel and Selective G-protein Coupled Receptor 120 (GPR120) Spirocyclic Agonists. ACS Med Chem Lett 2017; 8:49-54. [PMID: 28105274 DOI: 10.1021/acsmedchemlett.6b00360] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/17/2016] [Indexed: 01/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an ever increasing worldwide epidemic, and the identification of safe and effective insulin sensitizers, absent of weight gain, has been a long-standing goal of diabetes research. G-protein coupled receptor 120 (GPR120) has recently emerged as a potential therapeutic target for treating T2DM. Natural occurring, and more recently, synthetic agonists have been associated with insulin sensitizing, anti-inflammatory, and fat metabolism effects. Herein we describe the design, synthesis, and evaluation of a novel spirocyclic GPR120 agonist series, which culminated in the discovery of potent and selective agonist 14. Furthermore, compound 14 was evaluated in vivo and demonstrated acute glucose lowering in an oral glucose tolerance test (oGTT), as well as improvements in homeostatic measurement assessment of insulin resistance (HOMA-IR; a surrogate marker for insulin sensitization) and an increase in glucose infusion rate (GIR) during a hyperinsulinemic euglycemic clamp in diet-induced obese (DIO) mice.
Collapse
Affiliation(s)
- Jason M. Cox
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Hong D. Chu
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mariappan V. Chelliah
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - John S. Debenham
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Keith Eagen
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ping Lan
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Matthew Lombardo
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Clare London
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael A. Plotkin
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Unmesh Shah
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Zhongxiang Sun
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Henry M. Vaccaro
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Srikanth Venkatraman
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | | | - Eric R. Ashley
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Alejandro Crespo
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Maria Madeira
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Dennis H. Leung
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Candice Alleyne
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Aimie M. Ogawa
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Sarah Souza
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Brande Thomas-Fowlkes
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jerry Di Salvo
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Adam Weinglass
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Melissa Kirkland
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michele Pachanski
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mary Ann Powles
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Effie Tozzo
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Taro E. Akiyama
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Feroze Ujjainwalla
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - James R. Tata
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Christopher J. Sinz
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
33
|
Alfonzo-Méndez MA, Alcántara-Hernández R, García-Sáinz JA. Novel Structural Approaches to Study GPCR Regulation. Int J Mol Sci 2016; 18:E27. [PMID: 28025563 PMCID: PMC5297662 DOI: 10.3390/ijms18010027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Upon natural agonist or pharmacological stimulation, G protein-coupled receptors (GPCRs) are subjected to posttranslational modifications, such as phosphorylation and ubiquitination. These posttranslational modifications allow protein-protein interactions that turn off and/or switch receptor signaling as well as trigger receptor internalization, recycling or degradation, among other responses. Characterization of these processes is essential to unravel the function and regulation of GPCR. METHODS In silico analysis and methods such as mass spectrometry have emerged as novel powerful tools. Both approaches have allowed proteomic studies to detect not only GPCR posttranslational modifications and receptor association with other signaling macromolecules but also to assess receptor conformational dynamics after ligand (agonist/antagonist) association. RESULTS this review aims to provide insights into some of these methodologies and to highlight how their use is enhancing our comprehension of GPCR function. We present an overview using data from different laboratories (including our own), particularly focusing on free fatty acid receptor 4 (FFA4) (previously known as GPR120) and α1A- and α1D-adrenergic receptors. From our perspective, these studies contribute to the understanding of GPCR regulation and will help to design better therapeutic agents.
Collapse
Affiliation(s)
- Marco A Alfonzo-Méndez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - Rocío Alcántara-Hernández
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - J Adolfo García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| |
Collapse
|
34
|
Ertunc ME, Hotamisligil GS. Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J Lipid Res 2016; 57:2099-2114. [PMID: 27330055 DOI: 10.1194/jlr.r066514] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/20/2016] [Indexed: 12/19/2022] Open
Abstract
Lipids encompass a wide variety of molecules such as fatty acids, sterols, phospholipids, and triglycerides. These molecules represent a highly efficient energy resource and can act as structural elements of membranes or as signaling molecules that regulate metabolic homeostasis through many mechanisms. Cells possess an integrated set of response systems to adapt to stresses such as those imposed by nutrient fluctuations during feeding-fasting cycles. While lipids are pivotal for these homeostatic processes, they can also contribute to detrimental metabolic outcomes. When metabolic stress becomes chronic and adaptive mechanisms are overwhelmed, as occurs during prolonged nutrient excess or obesity, lipid influx can exceed the adipose tissue storage capacity and result in accumulation of harmful lipid species at ectopic sites such as liver and muscle. As lipid metabolism and immune responses are highly integrated, accumulation of harmful lipids or generation of signaling intermediates can interfere with immune regulation in multiple tissues, causing a vicious cycle of immune-metabolic dysregulation. In this review, we summarize the role of lipotoxicity in metaflammation at the molecular and tissue level, describe the significance of anti-inflammatory lipids in metabolic homeostasis, and discuss the potential of therapeutic approaches targeting pathways at the intersection of lipid metabolism and immune function.
Collapse
Affiliation(s)
- Meric Erikci Ertunc
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T. H. Chan School of Public Health, Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, MA 02115
| | - Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T. H. Chan School of Public Health, Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, MA 02115
| |
Collapse
|
35
|
Prihandoko R, Alvarez-Curto E, Hudson BD, Butcher AJ, Ulven T, Miller AM, Tobin AB, Milligan G. Distinct Phosphorylation Clusters Determine the Signaling Outcome of Free Fatty Acid Receptor 4/G Protein-Coupled Receptor 120. Mol Pharmacol 2016; 89:505-20. [PMID: 26873857 DOI: 10.1124/mol.115.101949] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/11/2016] [Indexed: 02/14/2025] Open
Abstract
It is established that long-chain free fatty acids includingω-3 fatty acids mediate an array of biologic responses through members of the free fatty acid (FFA) receptor family, which includes FFA4. However, the signaling mechanisms and modes of regulation of this receptor class remain unclear. Here, we employed mass spectrometry to determine that phosphorylation of mouse (m)FFAR4 occurs at five serine and threonine residues clustered in two separable regions of the C-terminal tail, designated cluster 1 (Thr(347), Thr(349), and Ser(350)) and cluster 2 (Ser(357)and Ser(361)). Mutation of these phosphoacceptor sites to alanine completely prevented phosphorylation of mFFA4 but did not limit receptor coupling to extracellular signal regulated protein kinase 1 and 2 (ERK1/2) activation. Rather, an inhibitor of Gq/11proteins completely prevented receptor signaling to ERK1/2. By contrast, the recruitment of arrestin 3, receptor internalization, and activation of Akt were regulated by mFFA4 phosphorylation. The analysis of mFFA4 phosphorylation-dependent signaling was extended further by selective mutations of the phosphoacceptor sites. Mutations within cluster 2 did not affect agonist activation of Akt but instead significantly compromised receptor internalization and arrestin 3 recruitment. Distinctly, mutation of the phosphoacceptor sites within cluster 1 had no effect on receptor internalization and had a less extensive effect on arrestin 3 recruitment but significantly uncoupled the receptor from Akt activation. These unique observations define differential effects on signaling mediated by phosphorylation at distinct locations. This hallmark feature supports the possibility that the signaling outcome of mFFA4 activation can be determined by the pattern of phosphorylation (phosphorylation barcode) at the C terminus of the receptor.
Collapse
Affiliation(s)
- Rudi Prihandoko
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (R.P., A.J.B., A.B.T.); Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology (E.A.-C., B.D.H., G.M.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences (A.M.M.), University of Glasgow, Glasgow, United Kingdom; and Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark (T.U.)
| | - Elisa Alvarez-Curto
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (R.P., A.J.B., A.B.T.); Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology (E.A.-C., B.D.H., G.M.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences (A.M.M.), University of Glasgow, Glasgow, United Kingdom; and Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark (T.U.)
| | - Brian D Hudson
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (R.P., A.J.B., A.B.T.); Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology (E.A.-C., B.D.H., G.M.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences (A.M.M.), University of Glasgow, Glasgow, United Kingdom; and Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark (T.U.)
| | - Adrian J Butcher
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (R.P., A.J.B., A.B.T.); Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology (E.A.-C., B.D.H., G.M.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences (A.M.M.), University of Glasgow, Glasgow, United Kingdom; and Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark (T.U.)
| | - Trond Ulven
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (R.P., A.J.B., A.B.T.); Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology (E.A.-C., B.D.H., G.M.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences (A.M.M.), University of Glasgow, Glasgow, United Kingdom; and Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark (T.U.)
| | - Ashley M Miller
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (R.P., A.J.B., A.B.T.); Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology (E.A.-C., B.D.H., G.M.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences (A.M.M.), University of Glasgow, Glasgow, United Kingdom; and Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark (T.U.)
| | - Andrew B Tobin
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (R.P., A.J.B., A.B.T.); Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology (E.A.-C., B.D.H., G.M.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences (A.M.M.), University of Glasgow, Glasgow, United Kingdom; and Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark (T.U.)
| | - Graeme Milligan
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (R.P., A.J.B., A.B.T.); Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology (E.A.-C., B.D.H., G.M.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences (A.M.M.), University of Glasgow, Glasgow, United Kingdom; and Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark (T.U.)
| |
Collapse
|
36
|
|