1
|
Horst MV, Santos LA, Knob A, Silva EMM, Faria CMDR. Essential oils from Lamiaceae plants effectively control Colletotrichum gloeosporioides, Elsinoë ampelina and Phytophthora infestans. Braz J Microbiol 2025; 56:975-989. [PMID: 39932661 PMCID: PMC12095744 DOI: 10.1007/s42770-024-01607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/25/2024] [Indexed: 05/22/2025] Open
Abstract
The aim of this paper was to evaluate the effect of essential oils from the Lamiaceae family on the control of Colletotrichum gloeosporioides, Elsinoë ampelina and Phytophthora infestans, as well as to investigate mode of action of the most effective essential oils. Capitalize oils of Lavender (LEO), Basil (BEO), Mint (MEO), Oregano (OEO) and Thyme (TEO) were used at doses of 0, 250, 500, 750 and 1000 µL L-1. Effects on mycelial growth and spore germination were evaluated to identify the most potent essential oils. Additionally, the action of volatile compounds and the effects of the oils effect on ergosterol content, membrane permeability, and transfer test assessed. OEO and TEO were the most promising, completely inhibiting the development of phytopathogens at nearly all tested doses. Consequently, these two essential oils were selected for further analysis, except 250 µL L-1dose, which did not completely inhibit the phytopathogens. Regarding ergosterol content, OEO significantly reduced ergosterol levels in C. gloeosporioides and E. ampelina, while TEO decreased only the ergosterol content of C. gloeosporioides, and did not interfere with the other microorganism. The membrane permeability was also affected by the two essential oils. Only OEO showed no effect on the membrane permeability of E. ampelina. The study also revealed that OEO and TEO exhibited fungicidal effects against C. gloeosporioides and E. ampelina, while showing fungistatic effects against P. infestans. In conclusion, OEO and TEO were found to be the most effective oils in the management of C. gloeosporioides, E. ampelina, and P. infestans. Their distinct mechanisms of action further indicate their potential as potent agents for directly controlling plant diseases.
Collapse
Affiliation(s)
- Marcos Vinicius Horst
- Agronomy Departament, Midwestern Paraná State University - Unicentro, Guarapuava, 85040-167, Paraná, Brasil.
| | - Leandro Alvarenga Santos
- Agronomy Department, Feira de Santana State University, Feira de Santana, Bahia, 44036-900, Brasil
| | - Adriana Knob
- Department of Biological Science, Midwestern Paraná State University - Unicentro, Guarapuava, 85040-167, Paraná, Brasil
| | - Elis Marina Müller Silva
- Agronomy Departament, Midwestern Paraná State University - Unicentro, Guarapuava, 85040-167, Paraná, Brasil
| | | |
Collapse
|
2
|
Moreno-González R, Juan ME, Planas JM. Determination of pentacyclic triterpenes and polyphenols from table olives in colon and plasma and their chemopreventive effects on 1,2-dimethylhydrazine-induced preneoplastic lesions in rat colon. Food Funct 2025; 16:1588-1602. [PMID: 39918253 DOI: 10.1039/d4fo04313h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Table olives are a rich dietary source of pentacyclic triterpenes (PT) and polyphenols (P), many of which have demonstrated significant antiproliferative and proapoptotic activities. This study aimed to evaluate the effect of this food on the early stages of colon carcinogenesis induced by 1,2-dimethylhydrazine (DMH) at 20 mg kg-1. Male Sprague-Dawley rats were administered either water or a suspension of Arbequina table olives (OA; 3.85 g kg-1) by gavage at 10 mL kg-1 for 49 days. Each group was then divided into two subgroups that received subcutaneous injections of the carcinogen (DMH+/Olives- and DMH+/Olives+) or the solvent (DMH-/Olives- and DMH-/Olives+) on days 8, 15, and 22. Analysis by LC-MS of AO enabled us to calculate the administered doses of PT (12.38 mg kg-1) and P (4.02 g kg-1) as well as the colon content of these compounds. At the end of the intervention, we found 5.1% of PT and 0.2% of P of the administered dose in the colonic content of the DMH+/Olives+ group. The highest concentrations were for maslinic and oleanolic acids (321 ± 67 and 84.8 ± 14.3 nmol g-1, respectively) followed by hydroxytyrosol (3.31 ± 0.24 nmol g-1). The supplementation with AO reduced aberrant crypt foci by 54.1%, and mucin depleted foci by 35.7% compared to the control group. The daily consumption of table olives exerts chemopreventive activities by reducing preneoplastic intestinal lesions, which might be explained, at least in part, by the significant concentrations of PT and P remaining in the colon.
Collapse
Affiliation(s)
- Rocío Moreno-González
- Grup de Fisiologia i Nutrició Experimental (FINEX), Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB, María de Maeztu Unit of Excellence), Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028-Barcelona, Spain.
| | - M Emília Juan
- Grup de Fisiologia i Nutrició Experimental (FINEX), Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB, María de Maeztu Unit of Excellence), Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028-Barcelona, Spain.
| | - Joana M Planas
- Grup de Fisiologia i Nutrició Experimental (FINEX), Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB, María de Maeztu Unit of Excellence), Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028-Barcelona, Spain.
| |
Collapse
|
3
|
Ansari MM, Yadav V, Dighe S, Kuche K, Kanika, Khan R, Jain S. Co-Delivery of Glycyrrhizin and Paclitaxel via Gelatin-Based Core-Shell Nanoparticles Ameliorates 1,2-Dimethylhydrazine-Induced Precancerous Lesions in Colon. ACS Biomater Sci Eng 2025; 11:942-957. [PMID: 39865570 DOI: 10.1021/acsbiomaterials.4c02220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Colorectal cancer is a lethal malignancy that begins from acquired/inherent premalignant lesions. Thus, targeting these lesions at an early stage of the disease could impede the oncogenesis and maximize the efficacy. The present work underscores a combinatorial therapy of paclitaxel (PTX) and glycyrrhizin (GL) delivered via gelatin-derived core-shell nanoparticles [AC-PCL(GL + PTX)-GNPs] for effective management of precancerous lesions. The desolvation method was adopted to prepare GL-loaded gelatin nanoparticles (GL-GNPs), which were coated with PTX and AC-PCL. The prepared NPs exhibited optimal physical attributes and had spherical morphology, as analyzed by transmission electron microscopy and field-emission scanning electron microscopy. In vitro release studies revealed sustained release for ∼96 h. Cell culture studies in HTC 116, and HT-29 cells showed synergistic action with CI < 0.9 and DRI > 1. Moreover, AC-PCL(GL + PTX)-GNPs exhibited amplified intracellular uptake and thus significantly reduced IC50. Pharmacokinetic studies revealed substantiated pharmacokinetic parameters (AUC0-∞, Cmax, etc.). In vivo studies in a 1,2-dimethyl hydrazine-induced model revealed a decrease in the number of lesions, mucin depletion, and subside infiltrations. An immunohistochemical study revealed elevated expression of caspase-9 and suppressed expression of VEGF and Ki-67. Toxicity studies showed insignificant changes in systemic biomarkers along with no alterations in organ morphology and hemocompatibility. In essence, AC-PCL(GL + PTX)-GNPs render a competent and safer tactic to regulate early-stage precancerous lesions.
Collapse
Affiliation(s)
- Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Mohali, Punjab 160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Mohali, Punjab 160062, India
| | - Sayali Dighe
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Mohali, Punjab 160062, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Mohali, Punjab 160062, India
| | - Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
4
|
Liang Y, Ban Y, Liu L, Li Y. Inhibitory Effects of the Polyphenols from the Root of Rhizophora apiculata Blume on Fatty Acid Synthase Activity and Human Colon Cancer Cells. Molecules 2024; 29:1180. [PMID: 38474695 DOI: 10.3390/molecules29051180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Marine mangrove vegetation has been traditionally employed in folk medicine to address various ailments. Notably, Rhizophora apiculata Blume has exhibited noteworthy properties, demonstrating efficacy against cancer, viruses, and bacteria. The enzyme fatty acid synthase (FAS) plays a pivotal role in de novo fatty acid synthesis, making it a promising target for combating colon cancer. Our study focused on evaluating the FAS inhibitory effects of both the crude extract and three isolated compounds from R. apiculata. The n-butanol fraction of R. apiculata extract (BFR) demonstrated a significant inhibition of FAS, with an IC50 value of 93.0 µg/mL. For inhibition via lyoniresinol-3α-O-β-rhamnopyranoside (LR), the corresponding IC50 value was 20.1 µg/mL (35.5 µM). LR competitively inhibited the FAS reaction with acetyl-CoA, noncompetitively with malonyl-CoA, and in a mixed manner with NADPH. Our results also suggest that both BFR and LR reversibly bind to the KR domain of FAS, hindering the reduction of saturated acyl groups in fatty acid synthesis. Furthermore, BFR and LR displayed time-dependent inhibition for FAS, with kobs values of 0.0045 min-1 and 0.026 min-1, respectively. LR also exhibited time-dependent inhibition on the KR domain, with a kobs value of 0.019 min-1. In human colon cancer cells, LR demonstrated the ability to reduce viability and inhibit intracellular FAS activity. Notably, the effects of LR on human colon cancer cells could be reversed with the end product of FAS-catalyzed chemical reactions, affirming the specificity of LR on FAS. These findings underscore the potential of BFR and LR as potent FAS inhibitors, presenting novel avenues for the treatment of human colon cancer.
Collapse
Affiliation(s)
- Yan Liang
- School of Sports Sciences, Beijing Sport University, No. 48, Xinxi Road, Beijing 100084, China
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, Beisanhuanxi Road, Beijing 100191, China
| | - Yue Ban
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, Beisanhuanxi Road, Beijing 100191, China
| | - Lei Liu
- College of Chemistry and Materials Engineering, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yanchun Li
- School of Sports Sciences, Beijing Sport University, No. 48, Xinxi Road, Beijing 100084, China
| |
Collapse
|
5
|
Wróblewska-Łuczka P, Cabaj J, Bargieł J, Łuszczki JJ. Anticancer effect of terpenes: focus on malignant melanoma. Pharmacol Rep 2023; 75:1115-1125. [PMID: 37515699 PMCID: PMC10539410 DOI: 10.1007/s43440-023-00512-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
Melanoma is a highly aggressive and life-threatening form of skin cancer that accounts for a significant proportion of cancer-related deaths worldwide. Although conventional cancer therapies, such as surgical excision, chemotherapy, and radiation, have been used to treat malignant melanoma, their efficacy is often limited due to the development of resistance and adverse side effects. Therefore, there is a growing interest in developing alternative treatment options for melanoma that are more effective and less toxic. Terpenes, a diverse group of naturally occurring compounds of plant origin, have emerged as potential anticancer agents due to their ability to inhibit tumor growth and induce apoptosis in cancer cells. In this review, the current understanding of the anticancer effects of terpenes (including, thymoquinone, β-elemene, carvacrol, limonene, α-pinene, β-caryophyllene, perillyl alcohol, taxol, betulinic acid, α-bisabolol, ursolic acid, linalool, lupeol, and artesunate) was summarized, with a special focus on their potential as therapeutic agents for malignant melanoma.
Collapse
Affiliation(s)
- Paula Wróblewska-Łuczka
- Department of Occupational Medicine, Medical University of Lublin, Jaczewskiego 8B, 20-090, Lublin, Poland
| | - Justyna Cabaj
- Department of Occupational Medicine, Medical University of Lublin, Jaczewskiego 8B, 20-090, Lublin, Poland
| | - Julia Bargieł
- Department of Occupational Medicine, Medical University of Lublin, Jaczewskiego 8B, 20-090, Lublin, Poland
| | - Jarogniew J Łuszczki
- Department of Occupational Medicine, Medical University of Lublin, Jaczewskiego 8B, 20-090, Lublin, Poland.
| |
Collapse
|
6
|
Macharia JM, Káposztás Z, Bence RL. Medicinal Characteristics of Withania somnifera L. in Colorectal Cancer Management. Pharmaceuticals (Basel) 2023; 16:915. [PMID: 37513827 PMCID: PMC10384768 DOI: 10.3390/ph16070915] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Research into tumorigenic pathways can aid in the development of more efficient cancer therapies and provide insight into the physiological regulatory mechanisms employed by rapidly proliferating cancer cells. Due to the severe side effects of cancer chemotherapeutic medications, plant chemicals and their analogues are now explored more frequently for the treatment and prevention of colorectal cancer (CRC), opening the stage for new phytotherapeutic strategies that are considered effective and safe substitutes. Our study aimed to evaluate the medicinal properties of Withania somnifera L. and its safety applications in CRC management. Important databases were rigorously searched for relevant literature, and only 82 full-text publications matched the inclusion requirements from a massive collection of 10,002 titles and abstracts. W. somnifera L. contains a high concentration of active plant-based compounds. The pharmacological activity of the plant from our study has been demonstrated to exert antiproliferation, upregulation of apoptosis, decrease in oxidative stress, downregulation of cyclooxygenase-2 (COX-2), induction of targeted cytotoxic effects on cancerous cells, and exertion of both antiangiogenesis and antimigratory effects. We advise further research before recommending W. somnifera L. for clinical use to identify the optimal concentrations required to elicit beneficial effects in CRC management in humans, singly or in combination.
Collapse
Affiliation(s)
- John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, Vörösmarty Mihály Str. 4, 7621 Pécs, Hungary
| | - Zsolt Káposztás
- Faculty of Health Science, University of Pẻcs, 7621 Pécs, Hungary
| | - Raposa L Bence
- Faculty of Health Science, University of Pẻcs, 7621 Pécs, Hungary
| |
Collapse
|
7
|
Macharia JM, Ngure V, Emődy B, Király B, Káposztás Z, Rozmann N, Erdélyi A, Raposa B. Pharmacotherapeutic Potential of Aloe secundiflora against Colorectal Cancer Growth and Proliferation. Pharmaceutics 2023; 15:pharmaceutics15051558. [PMID: 37242800 DOI: 10.3390/pharmaceutics15051558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Aloe species are widespread and diverse in African ecosystems, and this commonly correlates to their habitual use as reservoirs of herbal medicine. The side effects associated with chemotherapy and the development of antimicrobial resistance to empirically used antimicrobial drugs are substantial, paving the way for novel phytotherapeutic approaches. This comprehensive study aimed to evaluate and present Aloe secundiflora (A. secundiflora) as a compelling alternative with potential benefits in colorectal cancer (CRC) treatment. Important databases were systematically searched for relevant literature, and out of a large collection of 6421 titles and abstracts, only 68 full-text articles met the inclusion criteria. A. secundiflora possesses an abundant presence of bioactive phytoconstituents in the leaves and roots, including anthraquinones, naphthoquinones, phenols, alkaloids, saponins, tannins, and flavonoids, among others. These metabolites have proven diverse efficacy in inhibiting cancer growth. The presence of innumerable biomolecules in A. secundiflora signifies the beneficial effects of incorporating the plant as a potential anti-CRC agent. Nonetheless, we recommend further research to determine the optimal concentrations necessary to elicit beneficial effects in the management of CRC. Furthermore, they should be investigated as potential raw ingredients for making conventional medications.
Collapse
Affiliation(s)
- John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Veronica Ngure
- School of Science and Applied Technology, Laikipia University, Nyahururu P.O. Box 1100-20300, Kenya
| | - Barnabás Emődy
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Bence Király
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Zsolt Káposztás
- Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Nóra Rozmann
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Attila Erdélyi
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Bence Raposa
- Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| |
Collapse
|
8
|
Kato LS, Lelis CA, da Silva BD, Galvan D, Conte-Junior CA. Micro- and nanoencapsulation of natural phytochemicals: Challenges and recent perspectives for the food and nutraceuticals industry applications. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:77-137. [PMID: 37236735 DOI: 10.1016/bs.afnr.2022.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Worldwide, there has been growing interest in the research, development, and commercialization of functional bioactive components and nutraceuticals. As a result of consumer awareness of the relationship between diet, health, and disease, the consumption of plant-derived bioactive components has recently increased in the past two decades. Phytochemicals are bioactive nutrient plant chemicals in fruits, vegetables, grains, and other plant foods that may provide desirable health benefits beyond essential nutrition. They may reduce the risk of major chronic diseases, cardiovascular diseases, cancer, osteoporosis, diabetes, high blood pressure, and psychotic diseases and have antioxidant, antimicrobial, and antifungal properties, cholesterol-lowering, antithrombotic, or anti-inflammatory effects. Phytochemicals have been recently studied and explored for various purposes, such as pharmaceuticals, agrochemicals, flavors, fragrances, coloring agents, biopesticides, and food additives. These compounds are known as secondary metabolites and are commonly classified as polyphenols, terpenoids (terpenes), tocotrienols and tocopherols, carotenoids, alkaloids and other nitrogen-containing metabolites, stilbenes and lignans, phenolic acids, and glucosinates. Thus, this chapter aims to define the general chemistry, classification, and essential sources of phytochemicals, as well as describe the potential application of phytochemicals in the food and nutraceuticals industry, explaining the main properties of interest of the different compounds. Finally, the leading technologies involving micro and nanoencapsulation of phytochemicals are extensively detailed to protect them against degradation and enhance their solubility, bioavailability, and better applicability in the pharmaceutical, food, and nutraceutical industry. The main challenges and perspectives are detailed.
Collapse
Affiliation(s)
- Lilian Seiko Kato
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carini Aparecida Lelis
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Chemistry (PGQu), IQ, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Bruno Dutra da Silva
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Chemistry (PGQu), IQ, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Chemistry (PGQu), IQ, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil; Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil; Residue Analysis Laboratory (LAB RES), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
9
|
Wei RY, Li CH, Zhong WY, Ye JJ. A correlation study affecting survival in patients after radical colon cancer surgery: A retrospective study. Medicine (Baltimore) 2023; 102:e33302. [PMID: 36930115 PMCID: PMC10019116 DOI: 10.1097/md.0000000000033302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
The objective of this study was to explore the relevant factors affecting the 5-year survival rate of patients after radical colon cancer surgery, and to provide some basis for improving the quality of life and prognosis of colon cancer patients. The clinical data of 116 colon cancer patients who underwent treatment in our hospital from January 2017 to December 2017 were retrospectively selected. Using the date of performing surgical treatment as the starting point and the completion of 5 years after surgery or patient death as the end point, all patients were followed up by telephone to count the 5-year survival rate and analyze the influence of each factor with the prognosis of colon cancer patients. Of the 116 patients, 14 patients were lost to follow-up. Of the 102 patients with complete follow-up, 33 patients were died, with an overall 5-year survival rate of 67.6%. After univariate analysis, it was found that distant metastasis (χ2 = 10.493, P = .001), lymph node metastasis (χ2 = 25.145, P < .001), depth of muscle infiltration (χ2 = 14.929, P < .001), alcohol consumption (χ2 = 15.263, P < .001), and preoperative obstruction (χ2 = 9.555, P = .002) were significantly associated with the prognosis of colon cancer patients. Multivariate logistic analysis showed that distant metastasis (odds ratio [OR]: 1.932, 95% confidence intervals [CI]: 1.272-2.934, P = .002), lymph node metastasis (OR: 1.219, 95% CI: 1.091-1.362, P < .001), and obstruction (OR: 1.970, 95% CI: 1.300-2.990, P < .001) were significant independent risk factors affecting the prognosis in patients after radical colon cancer surgery. In summary, preoperative obstruction, lymph node metastasis, and distant metastasis are independent factors influencing 5-year survival rate after radical colon cancer surgery. Patients with risk factors should be followed up more closely and reasonable postoperative adjuvant chemotherapy regimens should be used to improve long-term survival.
Collapse
Affiliation(s)
- Ruo-Yu Wei
- Shenzhen School of Clinic Medicine, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Chun-Hong Li
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wen-Yi Zhong
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jin-Jun Ye
- Department of General Surgery, Longgang Central Hospital of Longgang District (The Ninth People’s Hospital of Shenzhen), Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Ramírez-Santos J, Calzada F, Mendieta-Wejebe JE, Ordoñez-Razo RM, Martinez-Casares RM, Valdes M. Understanding the Antilymphoma Activity of Annona macroprophyllata Donn and Its Acyclic Terpenoids: In Vivo, In Vitro, and In Silico Studies. Molecules 2022; 27:7123. [PMID: 36296714 PMCID: PMC9607537 DOI: 10.3390/molecules27207123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Annona macroprophyllata Donn (A. macroprophyllata) is used in traditional Mexican medicine for the treatment of cancer, diabetes, inflammation, and pain. In this work, we evaluated the antitumor activity of three acyclic terpenoids obtained from A. macroprophyllata to assess their potential as antilymphoma agents. We identified the terpenoids farnesyl acetate (FA), phytol (PT) and geranylgeraniol (Gg) using gas chromatography-mass spectroscopy (GC-MS) and spectroscopic (1H, and 13C NMR) methods applied to petroleum ether extract of leaves from A. macroprophyllata (PEAm). We investigated antitumor potential in Balb/c mice inoculated with U-937 cells by assessing brine shrimp lethality (BSL), and cytotoxic activity in these cells. In addition, to assess the potential toxicity of PEAm, FA, PT and Gg in humans, we tested their acute oral toxicity in mice. Our results showed that the three terpenoids exhibited considerable antilymphoma and cytotoxic activity. In terms of lethality, we determined a median lethal dose (LD50) for thirteen isolated products of PEAm. Gg, PT and AF all exhibited a higher lethality with values of 1.41 ± 0.42, 3.03 ± 0.33 and 5.82 ± 0.58 µg mL-1, respectively. To assess cytotoxic activity against U-937 cells, we calculated the mean cytotoxic concentration (CC50) and found that FA and PT were closer in respect to the control drug methotrexate (MTX, 0.243 ± 0.007 µM). In terms of antilymphoma activity, we found that FA, PT and Gg considerably inhibited lymph node growth, with median effective doses (ED50) of 5.89 ± 0.39, 6.71 ± 0.31 and 7.22 ± 0.51 mg kg-1 in females and 5.09 ± 0.66, 5.83 ± 0.50 and 6.98 ± 0.57mg kg -1 in males, respectively. Regarding acute oral toxicity, we classified all three terpenoids as category IV, indicating a high safety margin for human administration. Finally, in a molecular docking study of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, we found binding of terpenoids to some amino acids of the catalytic site, suggesting an effect upon activity with a resulting decrease in the synthesis of intermediates involved in the prenylation of proteins involved in cancer progression. Our findings suggest that the acyclic terpenoids FA, PT, and Gg may serve as scaffolds for the development of new treatments for non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Jesica Ramírez-Santos
- Instituto Politécnico Nacional, Escuela Superior de Medicina, Sección de Estudios de Posgrado e Investigación, Plan de San Luis y Salvador Díaz Mirón S/N, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades 2° Piso CORSE Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06720, Mexico
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades 2° Piso CORSE Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06720, Mexico
| | - Jessica Elena Mendieta-Wejebe
- Instituto Politécnico Nacional, Escuela Superior de Medicina, Sección de Estudios de Posgrado e Investigación, Plan de San Luis y Salvador Díaz Mirón S/N, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Rosa María Ordoñez-Razo
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital Pediatría, 2° Piso, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06725, Mexico
| | - Rubria Marlen Martinez-Casares
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Calzada del Hueso 1100, Mexico City 04960, Mexico
| | - Miguel Valdes
- Instituto Politécnico Nacional, Escuela Superior de Medicina, Sección de Estudios de Posgrado e Investigación, Plan de San Luis y Salvador Díaz Mirón S/N, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| |
Collapse
|
11
|
Whole-Genome Sequencing and Comparative Genomics Analysis of the Wild Edible Mushroom ( Gomphus purpuraceus) Provide Insights into Its Potential Food Application and Artificial Domestication. Genes (Basel) 2022; 13:genes13091628. [PMID: 36140797 PMCID: PMC9498453 DOI: 10.3390/genes13091628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Gomphus purpuraceus (Iwade) Yokoyama is a species of wild fungi that grows in southwest China, considered an edible and medicinal fungus with potential commercial prospects. However, the detailed mechanisms related to the development of mycelium and the formation of the fruiting body are unclear. To obtain a comprehensive overview of genetic features, whole-genome and comparative genomics analyses of G. purpuraceus were performed. High-quality DNA was extracted from the mycelium, which was isolated from a fresh fruiting body of G. purpuraceus. The DNA sample was subjected to sequencing using Illumina and Oxford Nanopore sequencing platforms. A genome assembly totaling 40.15 Mb in 50 contigs with an N50 length of 2.06 Mb was generated, and 8705 putative predicted genes were found. Subsequently, phylogenetic analysis revealed a close evolutionary relationship between G. purpuraceus and Gomphus bonarii. Moreover, a total of 403 carbohydrate-active enzymes (CAZymes) were identified in G. purpuraceus, which included 147 glycoside hydrolases (GHs), 85 glycosyl transferases (GTs), 8 polysaccharide lyases (PLs), 76 carbohydrate esterases (CEs), 57 auxiliary activities (AAs) and 30 carbohydrate-binding modules (CBMs). Compared with the other 13 fungi (Laccaria bicolor, Russula virescens, Boletus edulis, etc.), the number and distribution of CAZymes in G. purpuraceus were similar to other mycorrhizal fungi. Furthermore, the optimization of culture medium for G. purpuraceus showed the efficient utilization of disaccharides such as sucrose and maltose. The genome of G. purpuraceus provides new insights into its niche, food applications and potential artificial domestication.
Collapse
|
12
|
Knockdown of OLR1 weakens glycolytic metabolism to repress colon cancer cell proliferation and chemoresistance by downregulating SULT2B1 via c-MYC. Cell Death Dis 2021; 13:4. [PMID: 34921134 PMCID: PMC8683511 DOI: 10.1038/s41419-021-04174-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022]
Abstract
Chemoresistance is one of the major problems of colon cancer treatment. In tumors, glycolytic metabolism has been identified to promote cell proliferation and chemoresistance. However, the molecular mechanisms underlying glycolytic metabolism and chemoresistance in colon cancer remains enigmatic. Hence, this research was designed to explore the mechanism underlying the OLR1/c-MYC/SULT2B1 axis in the regulation of glycolytic metabolism, to affect colon cancer cell proliferation and chemoresistance. Colon cancer tissues and LoVo cells were attained, where OLR1, c-MYC, and SULT2B1 expression was detected by immunohistochemistry, RT-qPCR, and western blot analysis. Next, ectopic expression and knockdown assays were implemented in LoVo cells. Cell proliferation was detected by MTS assay and clone formation. Extracellular acidification, glucose uptake, lactate production, ATP/ADP ratio, and GLUT1 and LDHA expression were measured to evaluate glycolytic metabolism. Then, the transfected cells were treated with chemotherapeutic agents to assess drug resistance by MTS experiments and P-gp and SMAD4 expression by RT-qPCR. A nude mouse model of colon cancer transplantation was constructed for in vivo verification. The levels of OLR1, c-MYC, and SULT2B1 were upregulated in colon cancer tissues and cells. Mechanistically, OLR1 increased c-MYC expression to upregulate SULT2B1 in colon cancer cells. Moreover, knockdown of OLR1, c-MYC, or SULT2B1 weakened glycolytic metabolism, proliferation, and chemoresistance of colon cancer cells. In vivo experiments authenticated that OLR1 knockdown repressed the tumorigenesis and chemoresistance in nude mice by downregulating c-MYC and SULT2B1. Conclusively, knockdown of OLR1 might diminish SULT2B1 expression by downregulating c-MYC, thereby restraining glycolytic metabolism to inhibit colon cancer cell proliferation and chemoresistance.
Collapse
|
13
|
Perumal AB, Huang L, Nambiar RB, He Y, Li X, Sellamuthu PS. Application of essential oils in packaging films for the preservation of fruits and vegetables: A review. Food Chem 2021; 375:131810. [PMID: 34959137 DOI: 10.1016/j.foodchem.2021.131810] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/16/2021] [Accepted: 12/04/2021] [Indexed: 01/10/2023]
Abstract
Fruits and vegetables are highly perishable in nature. Several factors could affect the quality and shelf life of fruits and vegetables. Packaging materials (usually made up of polymers, proteins, lipids, polysaccharides, etc.,) are incorporated with essential oil (EO) which is high in antimicrobial and antioxidant compounds that can enhance the shelf life of fruits and vegetables without affecting their quality. However, the use of EO for postharvest preservation can alter the organoleptic properties of fresh produce. Exploiting synergistic interactions between several EOs, encapsulation of EO, or combining EO with non-thermal techniques such as irradiation, UV-C, cold plasma, ultrasound, etc., may help in preventing the spoilage of food products at lower concentrations without altering their organoleptic properties. This review aims to discuss the overview and current scenario of packaging film with EO for the preservation of fruit and vegetables. We have also discussed the spoilage mechanism of fruits and vegetables, mode of action of EOs, and the effect of EO with packaging film on antimicrobial and sensory properties of fruits and vegetables.
Collapse
Affiliation(s)
- Anand Babu Perumal
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Lingxia Huang
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Reshma B Nambiar
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Periyar Selvam Sellamuthu
- Department of Food Process Engineering, Postharvest Research Lab, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamilnadu, India.
| |
Collapse
|
14
|
Sherif DA, Makled MN, Suddek GM. The HIV reverse transcriptase Inhibitor Tenofovir suppressed DMH/HFD-induced colorectal cancer in Wistar rats. Fundam Clin Pharmacol 2021; 35:940-954. [PMID: 33829539 DOI: 10.1111/fcp.12679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022]
Abstract
Colon rectal cancer (CRC) is the second commonest malignancy in developed countries and a significant cause of mortality. Tenofovir reportedly reduces the risk of hepatocellular carcinoma and interferes with cell cycle and cell proliferation. The current study investigated the potential antitumor effect of tenofovir against experimentally induced CRC. CRC was induced by 1,2-dimethylhydrazine (DMH, 20 mg/kg, once a week) and high-fat diet (HFD) in Wistar rats. Rats received tenofovir at a dose of 25 or 50 mg/kg (i.p.) for 24 weeks. Tenofovir-25 failed to significantly decrease the total number of dysplasia, adenoma and adenocarcinoma and to improve histopathological changes; however, tenofovir-50 resulted in no tumors seen in the colon lumen and a significant decrease in the total number of dysplasia and no adenoma or adenocarcinoma observed compared to DMH/HFD group. Tenofovir-25 failed to attenuate DMH/HFD-induced cell proliferation, whereas tenofovir-50 significantly decreased cell proliferation revealed by the decreased PCNA expression. Tenofovir-25 also failed to attenuate DMH/HFD-induced oxidative stress, whereas tenofovir-50 significantly attenuated oxidative stress as indicated by the decreased MDA concentration and SOD activity along with the increased GSH concentrations. Moreover, tenofovir-50 decreased Bcl-2 and cyclin D1 expressions in colon tissues compared with DMH/HFD group. Tenofovir-50 also significantly decreased INF-ɤ concentration in colon tissues. These findings suggest that the high dose of tenofovir (50 mg/kg) has antitumor potential against DMH/HFD-induced CRC, which might be mediated through the inhibition of cell proliferation, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Dana A Sherif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Clinical Pharmacy Department, Gastrointestinal Surgery Center (GISC), Mansoura University, Mansoura, Egypt
| | - Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
15
|
Siraj MA, Islam MA, Al Fahad MA, Kheya HR, Xiao J, Simal-Gandara J. Cancer Chemopreventive Role of Dietary Terpenoids by Modulating Keap1-Nrf2-ARE Signaling System—A Comprehensive Update. APPLIED SCIENCES 2021; 11:10806. [DOI: 10.3390/app112210806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ROS, RNS, and carcinogenic metabolites generate excessive oxidative stress, which changes the basal cellular status and leads to epigenetic modification, genomic instability, and initiation of cancer. Epigenetic modification may inhibit tumor-suppressor genes and activate oncogenes, enabling cells to have cancer promoting properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that in humans is encoded by the NFE2L2 gene, and is activated in response to cellular stress. It can regulate redox homoeostasis by expressing several cytoprotective enzymes, including NADPH quinine oxidoreductase, heme oxygenase-1, UDP-glucuronosyltransferase, glutathione peroxidase, glutathione-S-transferase, etc. There is accumulating evidence supporting the idea that dietary nutraceuticals derived from commonly used fruits, vegetables, and spices have the ability to produce cancer chemopreventive activity by inducing Nrf2-mediated detoxifying enzymes. In this review, we discuss the importance of these nutraceuticals in cancer chemoprevention and summarize the role of dietary terpenoids in this respect. This approach was taken to accumulate the mechanistic function of these terpenoids to develop a comprehensive understanding of their direct and indirect roles in modulating the Keap1-Nrf2-ARE signaling system.
Collapse
Affiliation(s)
- Md Afjalus Siraj
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA
| | - Md. Arman Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Habiba Rahman Kheya
- Department of Sociology, Faculty of Social Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
16
|
Wahab S, Alshahrani MY, Ahmad MF, Abbas H. Current trends and future perspectives of nanomedicine for the management of colon cancer. Eur J Pharmacol 2021; 910:174464. [PMID: 34474029 DOI: 10.1016/j.ejphar.2021.174464] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Colon cancer (CC) kills countless people every year throughout the globe. It persists as one of the highly lethal diseases to be treated because the overall survival rate for CC is meagre. Early diagnosis and efficient treatments are two of the biggest hurdles in the fight against cancer. In the present work, we will review thriving strategies for CC targeted drug delivery and critically explain the most recent progressions on emerging novel nanotechnology-based drug delivery systems. Nanotechnology-based animal and human clinical trial studies targeting CC are discussed. Advancements in nanotechnology-based drug delivery systems intended to enhance cellular uptake, improved pharmacokinetics and effectiveness of anticancer drugs have facilitated the powerful targeting of specific agents for CC therapy. This review provides insight into current progress and future opportunities for nanomedicines as potential curative targets for CC treatment. This information could be used as a platform for the future expansion of multi-functional nano constructs for CC's advanced detection and functional drug delivery.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hashim Abbas
- Queens Medical Center, Nottingham University Hospitals, NHS, Nottingham, UK
| |
Collapse
|
17
|
Preparative separation of three terpenoids from edible brown algae Sargassum fusiforme by high-speed countercurrent chromatography combined with preparative high-performance liquid chromatography. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Liu ZB, Zhang T, Ye X, Liu ZQ, Sun X, Zhang LL, Wu CJ. Natural substances derived from herbs or plants are promising sources of anticancer agents against colorectal cancer via triggering apoptosis. J Pharm Pharmacol 2021; 74:162-178. [PMID: 34559879 DOI: 10.1093/jpp/rgab130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Nowadays, one of the most common gastrointestinal cancers is colorectal cancer (CRC). Chemotherapy is still one of the main methods to treat cancer. However, the currently available synthetic chemotherapy drugs often cause serious adverse reactions. Apoptosis is generally considered as an ideal way for induction the death of tumour cells without the body's inflammatory response, and it is reported that lots of natural agents could trigger various cancer cells to apoptosis. The overarching aim of this project was to elucidate the specific mechanisms by which natural substances induce apoptosis in CRC cells and to be used as an alternative therapeutic option in the future. KEY FINDINGS The mechanisms for the pro-apoptotic effects of natural substances derived from herbs or plants include death receptor pathway, mitochondrial pathway, endoplasmic reticulum stress pathway, related signal transduction pathways (PI3K/Akt, MAPK, p53 signalling), and so on. SUMMARY This paper updated this information regarding the anti-tumour effects of natural agents via induction of apoptosis against CRC, which would be beneficial for future new drug research regarding natural products from herbs or plants.
Collapse
Affiliation(s)
- Zi-Bo Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Ting Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xun Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Zi-Qi Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xue Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Li-Lin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | | |
Collapse
|
19
|
Hani U, Honnavalli YK, Begum MY, Yasmin S, Osmani RAM, Ansari MY. Colorectal cancer: A comprehensive review based on the novel drug delivery systems approach and its management. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Carsanba E, Pintado M, Oliveira C. Fermentation Strategies for Production of Pharmaceutical Terpenoids in Engineered Yeast. Pharmaceuticals (Basel) 2021; 14:295. [PMID: 33810302 PMCID: PMC8066412 DOI: 10.3390/ph14040295] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. Production of these compounds are generally carried out through extraction from their natural sources or chemical synthesis. However, these processes are generally unsustainable, produce low yield, and result in wasting of substantial resources, most of them limited. Microbial production of terpenoids provides a sustainable and environment-friendly alternative. In recent years, the yeast Saccharomyces cerevisiae has become a suitable cell factory for industrial terpenoid biosynthesis due to developments in omics studies (genomics, transcriptomics, metabolomics, proteomics), and mathematical modeling. Besides that, fermentation development has a significant importance on achieving high titer, yield, and productivity (TYP) of these compounds. Up to now, there have been many studies and reviews reporting metabolic strategies for terpene biosynthesis. However, fermentation strategies have not been yet comprehensively discussed in the literature. This review summarizes recent studies of recombinant production of pharmaceutically important terpenoids by engineered yeast, S. cerevisiae, with special focus on fermentation strategies to increase TYP in order to meet industrial demands to feed the pharmaceutical market. Factors affecting recombinant terpenoids production are reviewed (strain design and fermentation parameters) and types of fermentation process (batch, fed-batch, and continuous) are discussed.
Collapse
Affiliation(s)
- Erdem Carsanba
- Amyris BioProducts Portugal, Unipessoal, Lda. Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Carla Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| |
Collapse
|
21
|
da Silva BD, Bernardes PC, Pinheiro PF, Fantuzzi E, Roberto CD. Chemical composition, extraction sources and action mechanisms of essential oils: Natural preservative and limitations of use in meat products. Meat Sci 2021; 176:108463. [PMID: 33640647 DOI: 10.1016/j.meatsci.2021.108463] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022]
Abstract
The antimicrobial activity of essential oils (EO) is associated with the presence of secondary metabolites synthesized by plants. Its mechanism of action involves the interaction of its hydrophobic components with the lipids present in the cell membrane of microorganism, resulting in metabolic damages and cell death. Spoilage and pathogenic microorganisms are contaminants in meat and meat products with considerable impacts on food quality and safety. Research shows the potential of applying essential oils in the preservation of meat food systems as compounds of low toxicity, extracted from a natural source, and as an alternative to consumer demand for healthy foods with a more natural appeal. In addition, there is a great diversity of plants from which essential oils can be extracted, whose antimicrobial activity in vitro and in meat and meat products has been proven.
Collapse
Affiliation(s)
- Bruno Dutra da Silva
- Departamento de Engenharia de Alimentos, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Patrícia Campos Bernardes
- Departamento de Engenharia de Alimentos, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Patrícia Fontes Pinheiro
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Elisabete Fantuzzi
- Departamento de Agronomia, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Consuelo Domenici Roberto
- Departamento de Engenharia de Alimentos, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil.
| |
Collapse
|
22
|
F El Azab E, Elguindy NM, Yacout GA, Elgamal DA. Hepatoprotective Impact of Geraniol Against CCl<sub>4</sub>-Induced Liver Fibrosis in Rats. Pak J Biol Sci 2020; 23:1650-1658. [PMID: 33274899 DOI: 10.3923/pjbs.2020.1650.1658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Numerous experimental studies have shown various pharmacological activities including geraniol's cancer prevention agent and antioxidant capacity. The goal of this investigation is to mark the prospective defensive role of geraniol in rat's carbon tetrachloride (CCl4) instigated in liver fibrosis. MATERIALS AND METHODS Liver fibrosis was prompted by subcutaneous injections of CCl4, twice week by week and for about a month. Simultaneously, geraniol (200 mg kg-1) was orally regulated every day. Post-Hoc-Test were carried out where p<0.05 has been established as a significant value. RESULTS The biochemical results showed that geraniol reduced liver damage just as manifestations of liver fibrosis. The administration of geraniol diminished the CCl4-initiated the elevation in serum aminotransferase activities and alkaline phosphatase activity. Geraniol diminished the levels of TNF-α, NO and myeloperoxidase activity which were prompted by the CCl4 treatment. The rise of serum hyaluronidase activity and hepatic hydroxyproline content was also curtailed by geraniol treatment. Besides, geraniol fundamentally declined hepatic malondialdehyde (MDA) formation and increased reduced glutathione (GSH) in CCl4-treated rats. Geraniol has also increased the activity of hepatic antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione-S-transferase (GST) and glutathione peroxidase (GPx) in the rats treated with CCl4. Finally, the histological analysis of the liver bolstered the biochemical results. CONCLUSION Our study has demonstrated that geraniol has a hepatoprotective upshot on liver fibrosis caused by CCl4, supposedly due to its free radical scavenging, antioxidant and anti-inflammatory characteristics.
Collapse
|
23
|
Marine-Derived Penicillium purpurogenum Reduces Tumor Size and Ameliorates Inflammation in an Erlich Mice Model. Mar Drugs 2020; 18:md18110541. [PMID: 33138062 PMCID: PMC7694122 DOI: 10.3390/md18110541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background: This study addresses the antitumoral properties of Penicillium purpurogenum isolated from a polluted lagoon in Northeastern Brazil. Methods: Ethyl Acetate Extracellular Extract (EAE) was used. The metabolites were studied using direct infusion mass spectrometry. The solid Ehrlich tumor model was used for antitumor activity. Female Swiss mice were divided into groups (n = 10/group) as follows: The negative control (CTL−), treated with a phosphate buffered solution; the positive control (CTL+), treated with cyclophosphamide (25 mg/kg); extract treatments at doses of 4, 20, and 100 mg/kg; animals without tumors or treatments (Sham); and animals without tumors treated with an intermediate dose (EAE20). All treatments were performed intraperitoneally, daily, for 15 days. Subsequently, the animals were euthanized, and the tumor, lymphoid organs, and serum were used for immunological, histological, and biochemical parameter evaluations. Results: The extract was rich in meroterpenoids. All doses significantly reduced tumor size, and the 20 and 100 mg/kg doses reduced tumor-associated inflammation and tumor necrosis. The extract also reduced the cellular infiltration of lymphoid organs and circulating TNF-α levels. The extract did not induce weight loss or renal and hepatic toxic changes. Conclusions: These results indicate that P. purpurogenum exhibits immunomodulatory and antitumor properties in vivo. Thus, fungal fermentation is a valid biotechnological approach to the production of antitumor agents.
Collapse
|
24
|
Tuoheti T, Rasheed HA, Meng L, Dong MS. High hydrostatic pressure enhances the anti-proliferative properties of lotus bee pollen on the human prostate cancer PC-3 cells via increased metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113057. [PMID: 32505838 DOI: 10.1016/j.jep.2020.113057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/09/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The beneficial effects of bee pollen on prostate diseases are well known. Clinicians confirm that, in nonbacterial prostate diseases, bee pollen improves the condition of patients effectively. However, there is insufficient evidence to rate effectiveness of bee pollen on prostate cancer. AIM OF THE STUDY High hydrostatic pressure (HHP), an effective non-thermal technique to improve the nutritional quality and bio-functionality of plant-based foods, was used to increase the anti-proliferative properties of Lotus (Nelumbo nucifera) bee pollen (LBP) in prostate cancer PC-3 cells via enhancement of bioactive compounds. MATERIALS AND METHODS Freeze-dried lotus bee pollen produced from Fu Zhou city, Jiangxi province, China, was processed by high hydrostatic pressure (HHP). The anti-proliferative activities, apoptosis of ethanol and methanol extracts in prostate cancer PC-3 cells was evaluated using MTT method and Annexin-V/PI cell apoptosis assay kit, respectively. The changes of metabolites were determined using UPLC-Triple-TOF-MS analysis platform. RESULTS HHP treatment enhanced anti-proliferative activities, cell apoptosis, cell cycle disruption, glutathione-depletion in prostate cancer PC-3 cells. The metabolomics analysis showed that some metabolites such as chaetoglobosin A, glutathione oxidized, cyanidin 3-rutinoside, brassicoside, sophoranone, curcumin II, soyasaponin II were significantly increased (p < 0.05) after the HHP treatment, PCA results shown that these bioactive components have quite correlation with anti-proliferative activities of lotus bee pollen on the PC-3 cells. The results indicated that HHP enhances the anti-prostate cancer activity of lotus bee pollen via increased metabolites.
Collapse
Affiliation(s)
- Tuhanguli Tuoheti
- College of Food Science & Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, People's Republic of China
| | - Hafiz Abdul Rasheed
- College of Food Science & Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, People's Republic of China
| | - Ling Meng
- College of Food Science & Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, People's Republic of China
| | - Ming Sheng Dong
- College of Food Science & Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
25
|
Menezes R, Foito A, Jardim C, Costa I, Garcia G, Rosado-Ramos R, Freitag S, Alexander CJ, Outeiro TF, Stewart D, Santos CN. Bioprospection of Natural Sources of Polyphenols with Therapeutic Potential for Redox-Related Diseases. Antioxidants (Basel) 2020; 9:antiox9090789. [PMID: 32858836 PMCID: PMC7576474 DOI: 10.3390/antiox9090789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022] Open
Abstract
Plants are a reservoir of high-value molecules with underexplored biomedical applications. With the aim of identifying novel health-promoting attributes in underexplored natural sources, we scrutinized the diversity of (poly)phenols present within the berries of selected germplasm from cultivated, wild, and underutilized Rubus species. Our strategy combined the application of metabolomics, statistical analysis, and evaluation of (poly)phenols' bioactivity using a yeast-based discovery platform. We identified species as sources of (poly)phenols interfering with pathological processes associated with redox-related diseases, particularly, amyotrophic lateral sclerosis, cancer, and inflammation. In silico prediction of putative bioactives suggested cyanidin-hexoside as an anti-inflammatory molecule which was validated in yeast and mammalian cells. Moreover, cellular assays revealed that the cyanidin moiety was responsible for the anti-inflammatory properties of cyanidin-hexoside. Our findings unveiled novel (poly)phenolic bioactivities and illustrated the power of our integrative approach for the identification of dietary (poly)phenols with potential biomedical applications.
Collapse
Affiliation(s)
- Regina Menezes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (R.M.); (R.R.-R.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (C.J.); (I.C.); (G.G.)
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Alexandre Foito
- Environmental and Biochemical Science Group, The James Hutton Institute, Dundee DD2 5DA, UK; (A.F.); (S.F.); (D.S.)
| | - Carolina Jardim
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (C.J.); (I.C.); (G.G.)
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Inês Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (C.J.); (I.C.); (G.G.)
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Gonçalo Garcia
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (C.J.); (I.C.); (G.G.)
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rita Rosado-Ramos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (R.M.); (R.R.-R.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (C.J.); (I.C.); (G.G.)
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sabine Freitag
- Environmental and Biochemical Science Group, The James Hutton Institute, Dundee DD2 5DA, UK; (A.F.); (S.F.); (D.S.)
| | | | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettinge, 37073 Göttingen, Germany;
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Derek Stewart
- Environmental and Biochemical Science Group, The James Hutton Institute, Dundee DD2 5DA, UK; (A.F.); (S.F.); (D.S.)
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Cláudia N. Santos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (R.M.); (R.R.-R.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (C.J.); (I.C.); (G.G.)
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
26
|
Fadhilah K, Wahyuono S, Astuti P. A bioactive compound isolated from Duku ( Lansium domesticum Corr) fruit peels exhibits cytotoxicity against T47D cell line. F1000Res 2020; 9:3. [PMID: 34136135 PMCID: PMC8185580 DOI: 10.12688/f1000research.21072.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Breast cancer is a major health problem for women globally. Many attempts have been promoted to cure cancer by finding new anticancer medicines from natural resources. Despite the richness of biodiversity discovered, there are some natural resources that remain unexplored. Fruit peels of Duku ( Lansium domesticum Corr.) are rich with compounds that may have the potential to be developed as anticancer drugs. This study aimed to isolate cytotoxic compounds from the fruit peels of L. domesticum and assess their cytotoxic nature against T47D cells. Methods: Powdered peels were macerated with ethyl acetate and the filtrate was evaporated to give EtOAc extract A. Dried extract A was triturated with n-hexane to give n-hexane soluble fraction B and insoluble fraction C. The cytotoxic nature of these three samples were assessed using MTT assay using T47D cells and doxorubicin as a control. Results: Fraction C that showed the smallest IC50 (25.56 ± 0.64μg/mL) value compared to extract A and fraction B. Fraction C was further fractionated by vacuum liquid chromatography to give 6 subfractions. Subfraction 2 showed a single compound based on thin layer chromatography, and this compound was identified as Lamesticumin A on the basis of its spectroscopic data. Lamesticumin A demonstrated cytotoxic activity against T47D cell lines with an IC 50 value of 15.68 ± 0.30µg/mL. Conclusions: Further research is needed to investigate the potential of the natural compound Lamesticumin A derived from L. domesticum fruit peel as an anticancer therapy.
Collapse
Affiliation(s)
- Khusnul Fadhilah
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Subagus Wahyuono
- Departement of Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyaka, 55281, Indonesia
| | - Puji Astuti
- Departement of Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyaka, 55281, Indonesia
| |
Collapse
|
27
|
Fadhilah K, Wahyuono S, Astuti P. A bioactive compound isolated from Duku ( Lansium domesticum Corr) fruit peels exhibits cytotoxicity against T47D cell line. F1000Res 2020; 9:3. [PMID: 34136135 PMCID: PMC8185580 DOI: 10.12688/f1000research.21072.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2019] [Indexed: 04/08/2024] Open
Abstract
Background: Breast cancer is a major health problem for women globally. Many attempts have been promoted to cure cancer by finding new anticancer medicines from natural resources. Despite the richness of biodiversity discovered, there are some natural resources that remain unexplored. Fruit peels of Duku ( Lansium domesticum Corr.) are rich with compounds that may have the potential to be developed as anticancer drugs. This study aimed to isolate cytotoxic compounds from the fruit peels of L. domesticum and assess their cytotoxic nature against T47D cells. Methods: Powdered peels were macerated with ethyl acetate and the filtrate was evaporated to give EtOAc extract A. Dried extract A was triturated with n-hexane to give n-hexane soluble fraction B and insoluble fraction C. The cytotoxic nature of these three samples were assessed using MTT assay using T47D cells and doxorubicin as a control. Results: Fraction C that showed the smallest IC50 (25.56 ± 0.64μg/mL) value compared to extract A and fraction B. Fraction C was further fractionated by vacuum liquid chromatography to give 6 subfractions. Subfraction 2 showed a single compound based on thin layer chromatography, and this compound was identified as Lamesticumin A on the basis of its spectroscopic data. Lamesticumin A demonstrated cytotoxic activity against T47D cell lines with an IC50 value of 15.68 ± 0.30µg/mL. Conclusions: Further research is needed to investigate the potential of the natural compound Lamesticumin A derived from L. domesticum fruit peel as an anticancer therapy.
Collapse
Affiliation(s)
- Khusnul Fadhilah
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Subagus Wahyuono
- Departement of Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyaka, 55281, Indonesia
| | - Puji Astuti
- Departement of Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyaka, 55281, Indonesia
| |
Collapse
|
28
|
Jin XY, Chen H, Li DD, Li AL, Wang WY, Gu W. Design, synthesis, and anticancer evaluation of novel quinoline derivatives of ursolic acid with hydrazide, oxadiazole, and thiadiazole moieties as potent MEK inhibitors. J Enzyme Inhib Med Chem 2019; 34:955-972. [PMID: 31072147 PMCID: PMC6522941 DOI: 10.1080/14756366.2019.1605364] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023] Open
Abstract
In this article, a series of novel quinoline derivatives of ursolic acid (UA) bearing hydrazide, oxadiazole, or thiadiazole moieties were designed, synthesised, and screened for their in vitro antiproliferative activities against three cancer cell lines (MDA-MB-231, HeLa, and SMMC-7721). A number of compounds showed significant activity against at least one cell line. Among them, compound 4d exhibited the most potent activity against three cancer cell lines with IC50 values of 0.12 ± 0.01, 0.08 ± 0.01, and 0.34 ± 0.03 μM, respectively. In particular, compound 4d could induce the apoptosis of HeLa cells, arrest cell cycle at the G0/G1 phase, elevate intracellular reactive oxygen species level, and decrease mitochondrial membrane potential. In addition, compound 4d could significantly inhibit MEK1 kinase activity and impede Ras/Raf/MEK/ERK transduction pathway. Therefore, compound 4d may be a potential anticancer agent and a promising lead worthy of further investigation.
Collapse
Affiliation(s)
- Xiao-Yan Jin
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Hao Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Dong-Dong Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - A-Liang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Wen-Yan Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| |
Collapse
|
29
|
Mohd-Salleh SF, Wan-Ibrahim WS, Ismail N. Pereskia bleo Leaves Extract Induces Cell Death via Cell Cycle Arrest and Apoptosis in Cervical Cancer Cells HeLa. Nutr Cancer 2019; 72:826-834. [PMID: 31433251 DOI: 10.1080/01635581.2019.1654530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Pereskia bleo is a leafy and edible plant, locally known as "Pokok Jarum Tujuh Bilah" which has anticancer properties. This study purposed to determine the cytotoxic effects of P. bleo leaves extracts on several well-known cancer cells and elucidate its underlying mechanism in inducing cell death.Methods: Cytotoxic activity on selected cell lines was determined using MTT assay. Mechanism of cell death was investigated through cell cycle and Annexin V assay. Expression of apoptotic proteins was measured by flow cytometry method.Results: Ethyl acetate extract of P. bleo leaves (PBEA) appeared to have the strongest IC50 value (14.37 ± 8.40 μg/ml) and most active against HeLa cells was further studied for apoptosis. The cell cycle investigation by flow cytometry evidenced the increment of PBEA treated HeLa cells in G0/G1 phase and apoptotic event was detected in Annexin V assay. Analysis of apoptotic protein showed pro-apoptotic proteins (Bax, p53 and caspase 3) were triggered where as anti-apoptotic protein Bcl-2 was suppressed in treated HeLa cells.Conclusions: Our findings demonstrated that PBEA treatment induced cell death in HeLa cells by p53-mediated mechanism through arresting cell cycle at G0/G1 phase and mitochondrial-mediated pathway with involvement of pro-apoptotic proteins, anti-apoptotic protein, and caspase 3.
Collapse
Affiliation(s)
- Siti Farhanah Mohd-Salleh
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Wan Suriyani Wan-Ibrahim
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Norzila Ismail
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
30
|
Reduction of Preneoplastic Lesions Induced by 1,2-Dimethylhydrazine in Rat Colon by Maslinic Acid, a Pentacyclic Triterpene from Olea europaea L. Molecules 2019; 24:molecules24071266. [PMID: 30939812 PMCID: PMC6479602 DOI: 10.3390/molecules24071266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Maslinic acid triggers compelling antiproliferative and pro-apoptotic effects in different human cancer cell lines. Hence, the chemopreventive activity was investigated on early stages of carcinogenesis induced by 1,2-dimethylhydrazine (DMH) which is a model that mimics human sporadic colorectal cancer. Male Sprague-Dawley rats were orally administered either maslinic acid at 5, 10 or 25 mg/kg dissolved in (2-hydroxypropyl)-β-cyclodextrin 20% (w/v) or the solvent for 49 days. After one week of treatment, animals received three weekly intraperitoneal injections of DMH at the dose of 20 mg/kg. Maslinic acid reduced the preneoplastic biomarkers, aberrant crypt foci (ACF) and mucin-depleted foci (MDF), already at 5 mg/kg in a 15% and 27%, respectively. The decline was significant at 25 mg/kg with decreases of 33% and 51%, respectively. Correlation analysis showed a significant association between the concentrations of maslinic acid found in the colon and the reduction of ACF (r = 0.999, p = 0.019) and MDF (r = 0.997, p = 0.049). The present findings demonstrate that maslinic acid induced an inhibition of the initiation stages of carcinogenesis. The assessment of this pentacyclic triterpene at the colon sheds light for designing diets with foods rich in maslinic acid to exert a chemopreventive activity in colorectal cancer.
Collapse
|
31
|
Vemula S, Gupta MK, Arva Tatireddygari VR, Vadde R. Pancreatic cancer chemoprevention. THERANOSTIC APPROACH FOR PANCREATIC CANCER 2019:245-261. [DOI: 10.1016/b978-0-12-819457-7.00012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
32
|
Brunetti A, Marinelli O, Morelli MB, Iannarelli R, Amantini C, Russotti D, Santoni G, Maggi F, Nabissi M. Isofuranodiene synergizes with temozolomide in inducing glioma cells death. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:51-59. [PMID: 30599912 DOI: 10.1016/j.phymed.2018.09.220] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/11/2018] [Accepted: 09/25/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common and deadly brain form of tumor. GBM exhibits high resistance to the standard treatment consisting of temozolomide (TMZ) combined with radiotherapy. Isofuranodiene (IFD) is a bioactive sesquiterpene occurring in the essential oils obtained from Alexanders (Smyrnium olusatrum L., Apiaceae). This compound has shown a broad spectrum of antitumoral activities in different human cancer cell lines both in vitro and in vivo. However, the mechanism of action of IFD on GBM and its potential effects in combination with chemotherapeutic drugs, have not been fully elucidated. PURPOSE The aim of the present study was to evaluate the anticancer effects of IFD itself and in combination with TMZ in GBM. METHODS Sulforhodamine B-based proliferation assay, cell cycle analysis and Annexin V/PI staining were carried out to determine the IFD effects on three human GBM cell lines, U87, T98, U251 and in normal human astrocyte. Modulation of protein expression levels was determined by western blot analysis. Reactive oxygen species (ROS) production was evaluated by cytofluorimetry. Moreover, the effects on cell viability of the IFD and TMZ co-administration was evaluated through the calculation of combination index (CI). RESULTS IFD exerted cytotoxic effects against the GBM cell lines, but not in normal cells (normal human astrocytes). This compound induced a cell cycle blockage and a necrotic cell death depending on the increase of intracellular ROS levels. Furthermore, the synergism between IFD and TMZ was demonstrated in GBM cell lines. CONCLUSION This study demonstrated the glioma selectivity of IFD and its cytotoxic properties suggesting a new strategy for the treatment of GBM in order to overcome the TMZ resistance and to reduce its side effects.
Collapse
Affiliation(s)
| | - Oliviero Marinelli
- School of Pharmacy, University of Camerino, Camerino 63032, Italy; School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 63032, Italy
| | | | | | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 63032, Italy
| | | | - Giorgio Santoni
- School of Pharmacy, University of Camerino, Camerino 63032, Italy
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Camerino 63032, Italy.
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, Camerino 63032, Italy.
| |
Collapse
|
33
|
Haque MA, Sailo BL, Padmavathi G, Kunnumakkara AB, Jana CK. Nature-inspired development of unnatural meroterpenoids as the non-toxic anti-colon cancer agents. Eur J Med Chem 2018; 160:256-265. [PMID: 30368201 DOI: 10.1016/j.ejmech.2018.08.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
Structural analogues of anti-cancer natural product, dysideanone, were synthesized starting from Wieland-Miescher ketone derivative. In vitro studies have been conducted to evaluate the anti-cancer potential of these unnatural meroterpenoids against colon cancer. Synthesized carbotetracycles were found to be more active as compared to their acyclic carbinol-derivatives. Unnatural carbotetracycles 4b-e, 4h, 4i and 12 were found to be highly effective against the human colon adenocarcinoma cells with IC50 concentrations of 7.5-20 μM. In this series, the carbotetracyclic catechol 4e (IC50 = 7.5 μM) and quinone 12 (IC50 = 8 μM) were found to be the most potent compounds having the IC50 of less than 10 μM with no cytotoxic effect on the normal cells. Downregulation of Cox-2 and survivin and cell cycle arrest eventually leading to apoptosis were found to be the underlying mechanism of the anti-cancer effect of these unnatural meroterpenoids.
Collapse
Affiliation(s)
- Md Ashraful Haque
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Bethsebie L Sailo
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| | - Chandan K Jana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|