1
|
Wang X, Li X, Ma X, Zhang L, Han T, Zhang D. Dihydromyricetin alleviates inflammatory bowel disease associated intestinal fibrosis by inducing autophagy through the PI3K/AKT/mTOR signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4183-4194. [PMID: 38041777 DOI: 10.1007/s00210-023-02856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
Intestinal fibrosis is a common complication of inflammatory bowel disease and is characterized by tissue stiffening and luminal narrowing. Dihydromyricetin (DHM) can alleviate liver fibrosis and renal interstitial fibrosis by inducing autophagy. However, whether DHM can alleviate intestinal fibrosis remains unclear. This study is aimed at evaluating the role and mechanism of action of DHM in inflammatory bowel disease-associated intestinal fibrosis. Mice were administered dextran sulfate sodium (DSS) in drinking water to induce inflammatory bowel disease-associated intestinal fibrosis. HE staining, qPCR, and Western blotting were used to analyze colon inflammation. Masson's trichrome staining, qPCR, Western blotting, and immunofluorescence staining were used to evaluate the severity of fibrosis. Transmission electron microscopy and Western blotting were used to assess the activation of autophagosomes. The human colonic fibroblast line CCD-18Co was cultured in the presence of TGF-β1 to develop a fibrotic phenotype. Immunofluorescence staining, Western blotting, and qPCR were used to assess the alteration of fibrosis markers and used to investigate whether DHM-induced autophagy was involved in the inactivation of CCD-18Co cells. Additionally, the role of the PI3K/AKT/mTOR pathway was investigated. DHM alleviated intestinal inflammation and inhibited the progression of intestinal fibrosis. Additionally, DHM induced the activation of autophagy, thereby alleviating intestinal fibrosis, and downregulated the PI3K/AKT/mTOR signaling pathway in vitro. Overall, this study demonstrated that DHM can inhibit the progression of intestinal fibrosis and activation of colonic fibroblasts by inducing autophagy through the PI3K/AKT/mTOR signaling pathway, thereby playing a preventive and therapeutic role in intestinal fibrosis.
Collapse
Affiliation(s)
- XiaoChun Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - XiaoLi Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - XueNi Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - LuDan Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - TiYun Han
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - DeKui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Wang ZN, Ma JC, Xi MF, Yin D, Jiang LF, Qi J. Effects of Nanoparticle-Mediated Dihydromyricetin to Diabetic Wounds: An In Vivo Study. J Burn Care Res 2024; 45:644-654. [PMID: 38236154 DOI: 10.1093/jbcr/irae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 01/19/2024]
Abstract
Diabetic wound is one of the serious complications of diabetes, and the wound is persistent and easily recurring, which seriously endangers the health and life of patients. How to effectively promote the healing of diabetic wounds has been a hot spot and difficult area of clinical research. Some previous studies have shown that dihydromyricetin has the effects of regulating blood glucose, controlling the severity, and inhibiting scarring. In the present study, we used polylactic-co-glycolic acid nanoparticles as a carrier to load dihydromyricetin to make drug-loaded nanoparticles and applied them dropwise (200 µL) to diabetic mice wounds by topical application to observe the healing and scar formation of diabetic wounds. We found that the healing rate of the diabetic mice was faster and the scar formation was less obvious. In addition, the elevated blood glucose level and weight loss of the mice in the treatment group were also reduced. Therefore, nanoparticle-mediated dihydromyricetin may be an effective treatment for diabetic wounds.
Collapse
Affiliation(s)
- Zhao-Nan Wang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Nantong University Medical School, Nantong, Jiangsu 226000, P.R. China
- Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, Jiangsu 223800, P.R. China
| | - Jiu-Cheng Ma
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Nantong University Medical School, Nantong, Jiangsu 226000, P.R. China
| | - Ming-Fan Xi
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Nantong University Medical School, Nantong, Jiangsu 226000, P.R. China
| | - Dong Yin
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Nantong University Medical School, Nantong, Jiangsu 226000, P.R. China
| | - Li-Fan Jiang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Nantong University Medical School, Nantong, Jiangsu 226000, P.R. China
| | - Jun Qi
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
3
|
Sun L, Xiao Y, San W, Chen Y, Meng G. Dihydromyricetin regulates RIPK3-CaMKII to prevent necroptosis in high glucose-stimulated cardiomyocytes. Heliyon 2024; 10:e28921. [PMID: 38596141 PMCID: PMC11002228 DOI: 10.1016/j.heliyon.2024.e28921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Background Diabetic cardiomyopathy is one common cardiovascular complication without effective treatments. Dihydromyricetin (DHY), a natural dihydroflavonol compound extracted from Ampelopsis grossedentata, possesses versatile pharmacologically important effects. In our current research, we planned to evaluate the impact and probable DHY mechanisms in high glucose (HG)-induced cardiomyocytes. Methods Primary cardiomyocytes were pretreated with different concentrations of DHY (0, 20, 40, 80, 160, and 320 μM) for various time (0, 1, 2, 4, 12, and 24 h). They were then stimulated for 48 h with 5.5 mmol/L normal glucose (NG) and 33.3 mmol/L high glucose (HG). Cell viability, adenosine-triphosphate (ATP) levels, and lactate dehydrogenase (LDH) release of cardiomyocytes were detected. JC-1 staining was employed to measure the mitochondrial membrane potential. MitoSOX staining and dihydroethidium (DHE) staining were applied to evaluate the oxidative stress levels. TDT mediated dUTP nick end labeling (TUNEL) was used to measure apoptotic levels. Expressions of calcium/calmodulin-dependent protein kinase II (CaMKII), phospholamban (PLB), optic atrophy 1 (OPA1), dynamin-related protein 1 (DRP1), caspase 3, mixed kinase lineage domain like protein (MLKL), receptor interacting protein kinase 3 (RIPK3), and receptor interacting protein kinase 1 (RIPK1) were detected by immunofluorescence and/or Western blot. Results DHY improved cell viability, enhanced ATP level, and decreased LDH content in HG-stimulated cardiomyocytes, suggesting DHY attenuating cell injury. DHY reduced number of TUNEL positive cells, inhibited RIPK3 and cleaved-caspase 3 expression, implying DHY alleviated necroptosis in HG-stimulated cardiomyocytes. DHY diminished JC-1 monomers, DHE and MitoSOX fluorescence intensity as well as DRP1 expression but increased JC-1 aggregates intensity and OPA1 expression, indicating that DHY attenuated oxidative stress in HG-stimulated cardiomyocytes. DHY also attenuated CaMKII activity by suppressed PLB phosphorylation and inhibited CaMKII oxidation in HG-stimulated cardiomyocytes. Conclusions HG-induced cardiomyocytes injury was alleviated wherein DHY attenuated necroptosis, repressed ROS production, and inhibited CaMKII oxidation, suggesting that DHY may serve as potential agent to prevent and treat diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Linlin Sun
- Department of Pharmacy, Affiliated Maternity & Child Health Care Hospital of Nantong University, Nantong, China
- Department of Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Health Care Hospital of Nantong University, Nantong, China
| | - Yujiao Xiao
- Department of Pathology, Jincheng People's Hospital, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, China
| | - Wenqing San
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yun Chen
- Department of Pharmacy, Affiliated Maternity & Child Health Care Hospital of Nantong University, Nantong, China
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Guoliang Meng
- Department of Pharmacy, Affiliated Maternity & Child Health Care Hospital of Nantong University, Nantong, China
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
4
|
Zeng T, Song Y, Qi S, Zhang R, Xu L, Xiao P. A comprehensive review of vine tea: Origin, research on Materia Medica, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116788. [PMID: 37343650 DOI: 10.1016/j.jep.2023.116788] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vine tea is a popular folk tea that has been consumed in China for more than 1200 years. It is often used in ethnic medicine by ethnic groups in southwest China with at least 35 aliases in 10 provinces. In coastal areas, vine tea is mostly used to treat heatstroke, aphtha, aphonia, toothache, etc. In contrast, in the southwest inland regions, vine tea is mostly used to clear away heat and toxic materials, antiphlogosis and relieving sore-throat, lowering blood pressure and lipid levels, and alleviating fatigue. Three main species have been used as the source of vine tea, Nekemias grossedentata, Nekemias cantonensis and Nekemias megalophylla. Among them, the leaves of Nekemias grossedentata were considered as new food resource in complicance with regulations, according to the Food Safety Standards published by the Monitoring and Evaluation Department of the National Health and Family Planning Commission in China. AIM OF THE STUDY At present, the comprehensively summary of Materia Medica on the history and source of vine tea is currently unavailable. The current article summed up the Materia Medica, species origin and pharmacological effects of all 3 major species used in vine tea to fill the knowledge gaps. We also aim to provide a reference for future research on historical textual, resource development and medicinal utilization of vine tea. MATERIALS AND METHODS Adhering to the literature screening methodology outlined by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), this review encompasses 148 scholarly research papers from three database, paper ancient books, local chronicles and folklore through field investigations. We then comprehensively summarized and discussed research progresses in scientific and application studies of vine tea. RESULTS The historical records indicated that vine tea could have been used as early as Southern and Northern Dynasties (AC 420-589). Nekemias grossedentata, Nekemias cantonensis and Nekemias megalophylla, were used to considered as vine tea in the ethnic medicine. The main phytochemicals found in three plants are flavonoids, polyphenols and terpenoids, among which dihydromyricetin (DHM) is the most important and most studied active substance. The key words "Ampelopsis grossedentata" (Synonym of Nekemias grossedentata) and "dihydromyricetin/DHM" showed the highest frequency over the last 27 year based on the research trend analysis. And the ethnopharmacology studies drawn the main activities of vine tea are antioxidant, antibacterial, hepatoprotective, neuroprotective and anti-atherosclerosis activities. CONCLUSIONS This review systematically summarized and discussed vine tea from the following five aspects, history, genetic relationship, phytochemistry, research trend and ethnopharmacology. Vine tea has a long historical usage in Chinese ethnic medicine. Its outstanding therapeutic efficacies have attracted extensive attention in other places in the world at present. Nekemias cantonensis and Nekemias megalophylla are quite similar to Nekemias grossedentata in terms of many aspects. However, the current research has a narrow focus on mainly Nekemias grossedentata and DHM. We propose that future studies could be carried out to determine the synergistic effect of multi-components and multi-targets of vine tea including all 3 species to provide valuable knowledge.
Collapse
Affiliation(s)
- Tiexin Zeng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Yanjun Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Shunyao Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Ruyue Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
5
|
Dong J, Wang S, Mao J, Wang Z, Zhao S, Ren Q, Kang J, Ye J, Xu X, Zhu Y, Zhang Q. Preparation of Dihydromyricetin-Loaded Self-Emulsifying Drug Delivery System and Its Anti-Alcoholism Effect. Pharmaceutics 2023; 15:2296. [PMID: 37765265 PMCID: PMC10535266 DOI: 10.3390/pharmaceutics15092296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Intraperitoneal injection of dihydromyricetin (DMY) has shown promising potential in the treatment of alcoholism. However, its therapeutic effect is limited due to its low solubility, poor stability, and high gut-liver first-pass metabolism, resulting in very low oral bioavailability. In this study, we developed a DMY-loaded self-emulsifying drug delivery system (DMY-SEDDS) to enhance the oral bioavailability and anti-alcoholism effect of DMY. DMY-SEDDS improved the oral absorption of DMY by facilitating lymphatic transport. The area under the concentration-time curve (AUC) of DMY in the DMY-SEDDS group was 4.13-fold higher than in the DMY suspension group. Furthermore, treatment with DMY-SEDDS significantly enhanced the activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) in the liver of mice (p < 0.05). Interestingly, DMY-SEDDS also increased ADH activity in the stomach of mice with alcoholism (p < 0.01), thereby enhancing ethanol metabolism in the gastrointestinal tract and reducing ethanol absorption into the bloodstream. As a result, the blood alcohol concentration of mice with alcoholism was significantly decreased after DMY-SEDDS treatment (p < 0.01). In the acute alcoholism mice model, compared to saline treatment, DMY-SEDDS prolonged the onset of LORR (loss of righting reflex) (p < 0.05) and significantly shortened the duration of LORR (p < 0.01). Additionally, DMY-SEDDS treatment significantly reduced gastric injury in acute alcoholism mice. Collectively, these findings demonstrate the potential of DMY-SEDDS as a treatment in the treatment of alcoholism.
Collapse
Affiliation(s)
- Jianxia Dong
- Department of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (J.D.); (S.W.)
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (J.K.)
| | - Shu Wang
- Department of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (J.D.); (S.W.)
| | - Jiamin Mao
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
| | - Zhidan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (J.K.)
| | - Shiying Zhao
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
| | - Qiao Ren
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
| | - Jialing Kang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (J.K.)
| | - Jing Ye
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
| | - Xiaohong Xu
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
| | - Yujin Zhu
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
| | - Quan Zhang
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
- Chengdu Nature’s Grace Biological Technology Co., Ltd., Chengdu 610213, China
| |
Collapse
|
6
|
WANG J, JIN QG, LIU RP, WANG XQ, LI YH, KIM NH, XU YN. Dihydromyricetin supplementation during in vitro culture improves porcine oocyte developmental competence by regulating oxidative stress. J Reprod Dev 2023; 69:10-17. [PMID: 36403957 PMCID: PMC9939282 DOI: 10.1262/jrd.2022-031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dihydromyricetin (DHM), a dihydroflavonoid compound, exhibits a variety of biological activities, including antitumor activity. However, the effects of DHM on mammalian reproductive processes, especially during early embryonic development, remain unclear. In this study, we added DHM to porcine zygotic medium to explore the influence and underlying mechanisms of DHM on the developmental competence of parthenogenetically activated porcine embryos. Supplementation with 5 μM DHM during in vitro culture (IVC) significantly improved blastocyst formation rate and increased the total number of cells in porcine embryos. Further, DHM supplementation also improved glutathione levels and mitochondrial membrane potential; reduced natural reactive oxygen species levels in blastomeres and apoptosis rate; upregulated Nanog, Oct4, SOD1, SOD2, Sirt1, and Bcl2 expression; and downregulated Beclin1, ATG12, and Bax expression. Collectively, DHM supplementation regulated oxidative stress during IVC and could act as a potential antioxidant during in vitro porcine oocytes maturation.
Collapse
Affiliation(s)
- Jing WANG
- College of Agriculture, Yanbian University, Yanji 133000, China,Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Qing-Guo JIN
- College of Agriculture, Yanbian University, Yanji 133000, China
| | - Rong-Ping LIU
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Xin-Qin WANG
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Ying-Hua LI
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Nam-Hyung KIM
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Yong-Nan XU
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| |
Collapse
|
7
|
Chen Y, Zheng Y, Chen R, Shen J, Zhang S, Gu Y, Shi J, Meng G. Dihydromyricetin Attenuates Diabetic Cardiomyopathy by Inhibiting Oxidative Stress, Inflammation and Necroptosis via Sirtuin 3 Activation. Antioxidants (Basel) 2023; 12:antiox12010200. [PMID: 36671063 PMCID: PMC9854700 DOI: 10.3390/antiox12010200] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Dihydromyricetin (DHY), the main flavonoid component in Ampelopsis grossedentata, has important benefits for health. The present study aimed to investigate the exact effects and possible mechanisms of DHY on diabetic cardiomyopathy (DCM). Male C57BL/6 mice and sirtuin 3 (SIRT3) knockout (SIRT3-KO) mice were injected with streptozotocin (STZ) to induce a diabetic model. Two weeks later, DHY (250 mg/kg) or carboxymethylcellulose (CMC) were administrated once daily by gavage for twelve weeks. We found that DHY alleviated fasting blood glucose (FBG) and triglyceride (TG) as well as glycosylated hemoglobin (HbA1c) levels; increased fasting insulin (FINS); improved cardiac dysfunction; ameliorated myocardial hypertrophy, fibrosis and injury; suppressed oxidative stress, inflammasome and necroptosis; but improved SIRT3 expression in STZ-induced mice. Neonatal rat cardiomyocytes were pre-treated with DHY (80 μM) with or without high glucose (HG) stimulation. The results showed that DHY attenuated cell damage but improved SIRT3 expression and inhibited oxidative stress, inflammasome and necroptosis in cardiomyocytes with high glucose stimulation. Moreover, the above protective effects of DHY on DCM were unavailable in SIRT3-KO mice, implying a promising medical potential of DHY for DCM treatment. In sum, DHY improved cardiac dysfunction; ameliorated myocardial hypertrophy, fibrosis and injury; and suppressed oxidative stress, inflammation and necroptosis via SIRT3 activation in STZ-induced diabetic mice, suggesting DHY may serve as a candidate for an agent to attenuate diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yangyang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Ruixiang Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jieru Shen
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Nantong University, Nantong 226001, China
| | - Shuping Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yunhui Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Nantong University, Nantong 226001, China
- Correspondence: (J.S.); (G.M.); Tel.: +86-513-8116-0901 (J.S.); +86-513-8505-1726 (G.M.); Fax: +86-513-8116-0901 (J.S.); +86-513-8505-1728 (G.M.)
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
- Correspondence: (J.S.); (G.M.); Tel.: +86-513-8116-0901 (J.S.); +86-513-8505-1726 (G.M.); Fax: +86-513-8116-0901 (J.S.); +86-513-8505-1728 (G.M.)
| |
Collapse
|
8
|
Li Z, Cai F, Tang J, Xu Y, Guo K, Xu Z, Feng Y, Xi K, Gu Y, Chen L. Oxygen metabolism-balanced engineered hydrogel microspheres promote the regeneration of the nucleus pulposus by inhibiting acid-sensitive complexes. Bioact Mater 2022; 24:346-360. [PMID: 36632505 PMCID: PMC9822967 DOI: 10.1016/j.bioactmat.2022.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is commonly caused by imbalanced oxygen metabolism-triggered inflammation. Overcoming the shortcomings of antioxidants in IVDD treatment, including instability and the lack of targeting, remains challenging. Microfluidic and surface modification technologies were combined to graft chitosan nanoparticles encapsulated with strong reductive black phosphorus quantum dots (BPQDs) onto GelMA microspheres via amide bonds to construct oxygen metabolism-balanced engineered hydrogel microspheres (GM@CS-BP), which attenuate extracellular acidosis in nucleus pulposus (NP), block the inflammatory cascade, reduce matrix metalloproteinase expression (MMP), and remodel the extracellular matrix (ECM) in intervertebral discs (IVDs). The GM@CS-BP microspheres reduce H2O2 intensity by 229%. Chemical grafting and electrostatic attraction increase the encapsulation rate of BPQDs by 167% and maintain stable release for 21 days, demonstrating the antioxidant properties and sustained modulation of the BPQDs. After the GM@CS-BP treatment, western blotting revealed decreased acid-sensitive ion channel-3 and inflammatory factors. Histological staining in an 8-week IVDD model confirmed the regeneration of NP. GM@CS-BP microspheres therefore maintain a balance between ECM synthesis and degradation by regulating the positive feedback between imbalanced oxygen metabolism in IVDs and inflammation. This study provides an in-depth interpretation of the mechanisms underlying the antioxidation of BPQDs and a new approach for IVDD treatment.
Collapse
Affiliation(s)
- Ziang Li
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Feng Cai
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Jincheng Tang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Yichang Xu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Kaijin Guo
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Road, Xuzhou, Jiangsu, 221000, PR China
| | - Zonghan Xu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Yu Feng
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Kun Xi
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
- Corresponding author.
| | - Yong Gu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
- Corresponding author.
| | - Liang Chen
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
- Corresponding author.
| |
Collapse
|
9
|
Faramarzi H, Department of Community Medicine, Faculty of Medicine, Shiraz University of Medical Sciences, Iran, Chaleshtori S, Zolghadri S, Beheshtroo M, Faramarzi A, Shafiee SM, Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran;, Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran;, Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran;, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran;, Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran;, Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz Iran;. Ferric oxide nanoparticles administration suppresses isoniazid induced oxidative stress in the rat brain tissue. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
10
|
Ma S, Shu X, Wang WX. Responses of two marine fish to organically complexed Zn: Insights from microbial community and liver transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155457. [PMID: 35469859 DOI: 10.1016/j.scitotenv.2022.155457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
The diversity and adjustability of metal-organic complex enhance the function of metals and promote the burgeoning fields of chemical biology. In the present study, we chose two marine fish to explore the effects of a dihydromyricetin (DMY)-Zn(II) complex on the intestinal microbiome composition and liver biological function using high-throughput sequencing technology. Two economic fish species commonly found in Southern China (golden pompano Trachinotus ovatus and pearl gentian grouper ♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatus) were exposed to dietary DMY-Zn complex for 4-week. Our study found that DMY-Zn performed a vital function on the improved anti-oxidative ability of both fish species. The Zn complex improved the stability of microbial community structure of the golden pompano by enhancing the α-diversity, but its impacts on the composition and diversity of intestine microorganisms of grouper were insignificant. BugBase results showed that the intestine microbiota following DMY-Zn exposure contained a lower abundance of potentially pathogenic bacteria and higher abundance of aerobic bacteria. Intestine health and utilization of carbohydrates were improved in the golden pompano, and unclassified bacteria were significantly enriched in the grouper. Liver transcriptome indicated that DMY-Zn affected the oxidative phosphorylation process (OXPHOS). Specifically, the OXPHOS process (map00190) was activated by promoting the glucose uptake (map04251, map04010) in golden pompano and lipid metabolism (map00071, map00140, map00062 and map00564) in grouper. Such difference in the responses of intestine microbiome and liver metabolism may be possibly explained by their different Zn basal requirements. Our study demonstrated that different fish species may have different responses to dietary DMY-Zn complex. The results provided a reference for the application of new additives in aquatic animal feed, and new insights into the roles of metal-organic complex in their biological impacts on fish.
Collapse
Affiliation(s)
- Shuoli Ma
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
11
|
Syed AM, Kundu S, Ram C, Kulhari U, Kumar A, Mugale MN, Mohapatra P, Murty US, Sahu BD. Up-regulation of Nrf2/HO-1 and inhibition of TGF-β1/Smad2/3 signaling axis by daphnetin alleviates transverse aortic constriction-induced cardiac remodeling in mice. Free Radic Biol Med 2022; 186:17-30. [PMID: 35513128 DOI: 10.1016/j.freeradbiomed.2022.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
Oxidative damage and accumulation of extracellular matrix (ECM) components play a crucial role in the adverse outcome of cardiac hypertrophy. Evidence suggests that nuclear factor erythroid-derived factor 2 related factor 2 (Nrf2) can modulate oxidative damage and adverse myocardial remodeling. Daphnetin (Daph) is a coumarin obtained from the plant genus Daphne species that exerts anti-oxidative and anti-inflammatory properties. Herein, we investigated the roles of Daph in transverse aortic constriction (TAC)-induced cardiac hypertrophy and fibrosis in mice. TAC-induced alterations in cardiac hypertrophy markers, histopathological changes, and cardiac function were markedly ameliorated by oral administration of Daph in mice. We found that Daph significantly reduced the reactive oxygen species (ROS) generation, increased the nuclear translocation of Nrf2, and consequently, reinstated the protein levels of NAD(P)H quinone dehydrogenase1 (NQO1), heme oxygenase-1 (HO-1), and other antioxidants in the heart. Besides, Daph significantly inhibited the TAC-induced accumulation of ECM components, including α-smooth muscle actin (α-SMA), collagen I, collagen III, and fibronectin, and interfered with the TGF-β1/Smad2/3 signaling axis. Further studies revealed that TAC-induced terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive nuclei and the protein levels of Bax/Bcl2 ratio and cleaved caspase 3 were substantially decreased by Daph treatment. We further characterized the effect of Daph on angiotensin II (Ang-II)-stimulated H9c2 cardiomyoblast cells and observed that Daph markedly decreased the Ang-II induced increase in cell size, production of ROS, and proteins associated with apoptosis and fibrosis. Mechanistically, Daph alone treatment enhanced the protein levels of Nrf2, NQO1, and HO-1 in H9c2 cells. The inhibition of this axis by Si-Nrf2 transfection abolished the protective effect of Daph in H9c2 cells. Taken together, Daph effectively counteracted the TAC-induced cardiac hypertrophy and fibrosis by improving the Nrf2/HO-1 axis and inhibiting the TGF-β1/Smad2/3 signaling axis.
Collapse
Affiliation(s)
- Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Sourav Kundu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Uttam Kulhari
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Akhilesh Kumar
- Toxicology & Experimental Medicine, CSIR- Central Drug Research Institute (CDRI), Lucknow, 226 031, India
| | - Madhav Nilakanth Mugale
- Toxicology & Experimental Medicine, CSIR- Central Drug Research Institute (CDRI), Lucknow, 226 031, India
| | - Purusottam Mohapatra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India.
| |
Collapse
|
12
|
Zhang LS, Zhang JS, Hou YL, Lu WW, Ni XQ, Lin F, Liu XY, Wang XJ, Yu YR, Jia MZ, Tang CS, Han L, Chai SB, Qi YF. Intermedin 1-53 Inhibits NLRP3 Inflammasome Activation by Targeting IRE1α in Cardiac Fibrosis. Inflammation 2022; 45:1568-1584. [PMID: 35175495 DOI: 10.1007/s10753-022-01642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/24/2022]
Abstract
Intermedin (IMD), a paracrine/autocrine peptide, protects against cardiac fibrosis. However, the underlying mechanism remains poorly understood. Previous study reports that activation of nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome contributes to cardiac fibrosis. In this study, we aimed to investigate whether IMD mitigated cardiac fibrosis by inhibiting NLRP3. Cardiac fibrosis was induced by angiotensin II (Ang II) infusion for 2 weeks in rats. Western blot, real-time PCR, histological staining, immunofluorescence assay, RNA sequencing, echocardiography, and hemodynamics were used to detect the role and the mechanism of IMD in cardiac fibrosis. Ang II infusion resulted in rat cardiac fibrosis, shown as over-deposition of myocardial interstitial collagen and cardiac dysfunction. Importantly, NLRP3 activation and endoplasmic reticulum stress (ERS) were found in Ang II-treated rat myocardium. Ang II infusion decreased the expression of IMD and increased the expression of the receptor system of IMD in the fibrotic rat myocardium. IMD treatment attenuated the cardiac fibrosis and improved cardiac function. In addition, IMD inhibited the upregulation of NLRP3 markers and ERS markers induced by Ang II. In vitro, IMD knockdown by small interfering RNA significantly promoted the Ang II-induced cardiac fibroblast and NLRP3 activation. Moreover, silencing of inositol requiring enzyme 1 α (IRE1α) blocked the effects of IMD inhibiting fibroblast and NLRP3 activation. Pre-incubation with PKA pathway inhibitor H89 blocked the effects of IMD on the anti-ERS, anti-NLRP3, and anti-fibrotic response. In conclusion, IMD alleviated cardiac fibrosis by inhibiting NLRP3 inflammasome activation through suppressing IRE1α via the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Lin-Shuang Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China.,School of Nursing, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jin-Sheng Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Yue-Long Hou
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Wei-Wei Lu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Xian-Qiang Ni
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Fan Lin
- Department of Respiratory Disease, Peking University Third Hospital, Beijing, China
| | - Xiu-Ying Liu
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Jie Wang
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Chao-Shu Tang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Ling Han
- Department of Cardiology, Fu Xing Hospital, Capital Medical University, A20 Fuxingmenwai Street, Xicheng District, Beijing, 100038, China.
| | - San-Bao Chai
- Department of Endocrinology, Peking University International Hospital, Life Park Road No. 1, Zhongguancun Life Science Park, Changping District, Beijing, 102206, China.
| | - Yong-Fen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China. .,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China.
| |
Collapse
|
13
|
Zhang H, Caprioli G, Hussain H, Khoi Le NP, Farag MA, Xiao J. A multifaceted review on dihydromyricetin resources, extraction, bioavailability, biotransformation, bioactivities, and food applications with future perspectives to maximize its value. EFOOD 2021. [DOI: 10.53365/efood.k/143518] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Natural bioactive compounds present a better alternative to prevent and treat chronic diseases owing to their lower toxicity and abundant resources. (+)-Dihydromyricetin (DMY) is a flavanonol, possessing numerous interesting bioactivities with abundant resources. This review provides a comprehensive overview of the recent advances in DMY natural resources, stereoisomerism, physicochemical properties, extraction, biosynthesis, pharmacokinetics, and biotransformation. Stereoisomerism of DMY should be considered for better indication of its efficacy. Biotechnological approach presents a potential tool for the production of DMY using microbial cell factories. DMY high instability is related to its powerful antioxidant capacity due to pyrogallol moiety in ring B, and whether preparation of other analogues could demonstrate improved properties. DMY demonstrates poor bioavailability based on its low solubility and permeability with several attempts to improve its pharmacokinetics and efficacy. DMY possesses various pharmacological effects, which have been proven by many in vitro and in vivo experiments, while clinical trials are rather scarce, with underlying action mechanisms remaining unclear. Consequently, to maximize the usefulness of DMY in nutraceuticals, improvement in bioavailability, and better understanding of its actions mechanisms and drug interactions ought to be examined in the future along with more clinical evidence.
Collapse
|
14
|
Cheng L, Wang X, Ma X, Xu H, Yang Y, Zhang D. Effect of dihydromyricetin on hepatic encephalopathy associated with acute hepatic failure in mice. PHARMACEUTICAL BIOLOGY 2021; 59:557-564. [PMID: 33982639 PMCID: PMC8128201 DOI: 10.1080/13880209.2021.1917625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
CONTEXT Hepatic encephalopathy (HE) is a complex neuropsychiatric disease caused by liver failure. Dihydromyricetin (DMY) is a traditional medicine used to treat liver injury. OBJECTIVE To investigate the effects of dihydromyricetin (DMY) on hepatic encephalopathy associated with acute hepatic failure mice models established by thioacetamide (TAA) exposure. MATERIALS AND METHODS Female BALB/c mouse were randomly divided into control, DMY, TAA, and TAA + DMY groups (n = 8). The first two groups were intraperitoneally injected with saline or 5 mg/kg DMY, respectively. The last two groups were injected with 600 mg/kg TAA to establish HE models, and then the mice in the last group were treated with 5 mg/kg DMY. Neurological and cognition functions were evaluated 24 and 48 h after injection. Mice were sacrificed after which livers and brains were obtained for immunoblot and histopathological analysis, while blood was collected for the analysis of liver enzymes. RESULTS In the TAA + DMY group, ALT and AST decreased to 145.31 ± 12.88 U/L and 309.51 ± 25.92 U/L, respectively, whereas ammonia and TBIL decreased to 415.67 ± 41.91 μmol/L and 3.31 ± 0.35 μmol/L, respectively. Moreover, MDA decreased to 10.74 ± 3.97 nmol/g, while SOD and GST increased to 398.69 ± 231.30 U/g and 41.37 ± 21.84 U/g, respectively. The neurological score decreased to 2.87 ± 0.63, and the number of GFAP-positive cells decreased to 41.10 ± 1.66. Furthermore, the protein levels of TNF-α, IL-6, and GABAA in the cortex decreased. CONCLUSIONS We speculate that DMY can serve as a novel treatment for HE.
Collapse
Affiliation(s)
- Long Cheng
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - Xiaoying Wang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - Xueni Ma
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - Huimei Xu
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - Yifan Yang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
- CONTACT Dekui Zhang Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou730030, People’s Republic of China
| |
Collapse
|
15
|
Feng L, Que D, Li Z, Zhong X, Yan J, Wei J, Zhang X, Yang P, Ou C, Chen M. Dihydromyricetin ameliorates vascular calcification in chronic kidney disease by targeting AKT signaling. Clin Sci (Lond) 2021; 135:2483-2502. [PMID: 34643227 DOI: 10.1042/cs20210259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/29/2022]
Abstract
Vascular calcification is highly prevalent in chronic kidney disease (CKD), and is characterized by transdifferentiation from contractile vascular smooth muscle cells (VSMCs) into an osteogenic phenotype. However, no effective and therapeutic option to prevent vascular calcification is yet available. Dihydromyricetin (DMY), a bioactive flavonoid isolated from Ampelopsis grossedentata, has been found to inhibit VSMCs proliferation and the injury-induced neointimal formation. However, whether DMY has an effect on osteogenic differentiation of VSMCs and vascular calcification is still unclear. In the present study, we sought to investigate the effect of DMY on vascular calcification in CKD and the underlying mechanism. DMY treatment significantly attenuated calcium/phosphate-induced calcification of rat and human VSMCs in a dose-dependent manner, as shown by Alizarin Red S staining and calcium content assay, associated with down-regulation of osteogenic markers including type I collagen (COL I), Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2) and osteocalcin (OCN). These results were further confirmed in aortic rings ex vivo. Moreover, DMY ameliorated vascular calcification in rats with CKD. Additionally, we found that AKT signaling was activated during vascular calcification, whereas significantly inhibited by DMY administration. DMY treatment significantly reversed AKT activator-induced vascular calcification. Furthermore, inhibition of AKT signaling efficiently attenuated calcification, which was similar to that after treatment with DMY alone, and DMY had a better inhibitory effect on calcification as compared with AKT inhibitor. The present study demonstrated that DMY has a potent inhibitory role in vascular calcification partially by inhibiting AKT activation, suggesting that DMY may act as a promising therapeutic candidate for patients suffering from vascular calcification.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/enzymology
- Aorta/pathology
- Aortic Diseases/enzymology
- Aortic Diseases/etiology
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Cells, Cultured
- Disease Models, Animal
- Flavonols/pharmacology
- Humans
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Osteogenesis/drug effects
- Phosphorylation
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Sprague-Dawley
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/enzymology
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Vascular Calcification/enzymology
- Vascular Calcification/etiology
- Vascular Calcification/pathology
- Vascular Calcification/prevention & control
- Rats
Collapse
Affiliation(s)
- Liyun Feng
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Dongdong Que
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zehua Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xinglong Zhong
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jing Yan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jintao Wei
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiuli Zhang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Pingzhen Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Caiwen Ou
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Minsheng Chen
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
16
|
Hydrogen Sulfide Attenuates Angiotensin II-Induced Cardiac Fibroblast Proliferation and Transverse Aortic Constriction-Induced Myocardial Fibrosis through Oxidative Stress Inhibition via Sirtuin 3. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9925771. [PMID: 34603602 PMCID: PMC8486544 DOI: 10.1155/2021/9925771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/30/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022]
Abstract
Sirtuin 3 (SIRT3) is critical in mitochondrial function and oxidative stress. Our present study investigates whether hydrogen sulfide (H2S) attenuated myocardial fibrosis and explores the possible role of SIRT3 on the protective effects. Neonatal rat cardiac fibroblasts were pretreated with NaHS followed by angiotensin II (Ang II) stimulation. SIRT3 was knocked down with siRNA technology. SIRT3 promoter activity and expression, as well as mitochondrial function, were measured. Male wild-type (WT) and SIRT3 knockout (KO) mice were intraperitoneally injected with NaHS followed by transverse aortic constriction (TAC). Myocardium sections were stained with Sirius red. Hydroxyproline content, collagen I and collagen III, α-smooth muscle actin (α-SMA), and dynamin-related protein 1 (DRP1) expression were measured both in vitro and in vivo. We found that NaHS enhanced SIRT3 promoter activity and increased SIRT3 mRNA expression. NaHS inhibited cell proliferation and hydroxyproline secretion, decreased collagen I, collagen III, α-SMA, and DRP1 expression, alleviated oxidative stress, and improved mitochondrial respiration function and membrane potential in Ang II-stimulated cardiac fibroblasts, which were unavailable after SIRT3 was silenced. In vivo, NaHS reduced hydroxyproline content, ameliorated perivascular and interstitial collagen deposition, and inhibited collagen I, collagen III, and DRP1 expression in the myocardium of WT mice but not SIRT3 KO mice with TAC. Altogether, NaHS attenuated myocardial fibrosis through oxidative stress inhibition via a SIRT3-dependent manner.
Collapse
|
17
|
Eckenstaler R, Sandori J, Gekle M, Benndorf RA. Angiotensin II receptor type 1 - An update on structure, expression and pathology. Biochem Pharmacol 2021; 192:114673. [PMID: 34252409 DOI: 10.1016/j.bcp.2021.114673] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
The AT1 receptor, a major effector of the renin-angiotensin system, has been extensively studied in the context of cardiovascular and renal disease. Moreover, angiotensin receptor blockers, sartans, are among the most frequently prescribed drugs for the treatment of hypertension, chronic heart failure and chronic kidney disease. However, precise molecular insights into the structure of this important drug target have not been available until recently. In this context, seminal studies have now revealed exciting new insights into the structure and biased signaling of the receptor and may thus foster the development of novel therapeutic approaches to enhance the efficacy of pharmacological angiotensin receptor antagonism or to enable therapeutic induction of biased receptor activity. In this review, we will therefore highlight these and other seminal publications to summarize the current understanding of the tertiary structure, ligand binding properties and downstream signal transduction of the AT1 receptor.
Collapse
Affiliation(s)
| | - Jana Sandori
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University, Halle, Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany.
| |
Collapse
|
18
|
Yang YP, Zhao JQ, Gao HB, Li JJ, Li XL, Niu XL, Lei YH, Li X. Tannic acid alleviates lipopolysaccharide‑induced H9C2 cell apoptosis by suppressing reactive oxygen species‑mediated endoplasmic reticulum stress. Mol Med Rep 2021; 24:535. [PMID: 34080663 PMCID: PMC8170226 DOI: 10.3892/mmr.2021.12174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/30/2021] [Indexed: 01/08/2023] Open
Abstract
Sepsis‑induced myocardial dysfunction is one of the features of multiple organ dysfunction in sepsis, which is associated with extremely high mortality and is characterized by impaired myocardial compliance. To date, there are few effective treatment options available to cure sepsis. Tannic acid (TA) is reportedly protective during sepsis; however, the underlying mechanisms by which TA protects against septic heart injury remain elusive. The present study investigated the potential effects and underlying mechanisms of TA in alleviating lipopolysaccharide (LPS)‑induced H9C2 cardiomyocyte cell apoptosis. H9C2 cells were treated with LPS (15 µg/ml), TA (10 µM) and TA + LPS; control cells were treated with medium only. Apoptosis was measured using flow cytometry, reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analysis. Additionally, the levels of cellular reactive oxygen species (ROS), malondialdehyde and nicotinamide adenine dinucleotide phosphate were evaluated. Western blotting and RT‑qPCR were also employed to detect the expression levels of endoplasmic reticulum (ER) stress‑associated functional proteins. The present findings demonstrated that TA reduced the degree of LPS‑induced H9C2 cell injury, including inhibition of ROS production and ER stress (ERS)‑associated apoptosis. ERS‑associated functional proteins, including activating transcription factor 6, protein kinase‑like ER kinase, inositol‑requiring enzyme 1, spliced X box‑binding protein 1 and C/EBP‑homologous protein were suppressed in response to TA treatment. Furthermore, the expression levels of ERS‑associated apoptotic proteins, including c‑Jun N‑terminal kinase, Bax, cytochrome c, caspase‑3, caspase‑12 and caspase‑9 were reduced following treatment with TA. Additionally, the protective effects of TA on LPS‑induced H9C2 cells were partially inhibited following treatment with the ROS inhibitor N‑acetylcysteine, which demonstrated that ROS mediated ERS‑associated apoptosis and TA was able to decrease ROS‑mediated ERS‑associated apoptosis. Collectively, the present findings demonstrated that the protective effects of TA against LPS‑induced H9C2 cell apoptosis may be associated with the amelioration of ROS‑mediated ERS. These findings may assist the development of potential novel therapeutic methods to inhibit the progression of myocardial cell injury.
Collapse
Affiliation(s)
- Yan-Ping Yang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jie-Qiong Zhao
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Hai-Bo Gao
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jin-Jing Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiao-Li Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiao-Lin Niu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yong-Hong Lei
- Department of Plastic Surgery, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Xue Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
19
|
Wang HL, Xing GD, Qian Y, Sun XF, Zhong JF, Chen KL. Dihydromyricetin attenuates heat stress-induced apoptosis in dairy cow mammary epithelial cells through suppressing mitochondrial dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112078. [PMID: 33676053 DOI: 10.1016/j.ecoenv.2021.112078] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
It is well known that the dairy cow production is very sensitive to environmental factors, including high temperature, high humidity and radiant heat sources. High temperature-induced heat stress is the main environmental factor that causes oxidative stress and apoptosis, which affects the development of mammary glands in dairy cows. Dihydromyricetin (DMY) is a nature flavonoid compound extracted from Ampelopsis grossedentata; it has been shown to have various pharmacological functions, such as anti-inflammation, antitumor and liver protection. The present study aims to evaluate the protective effect of DMY on heat stress-induced dairy cow mammary epithelial cells (DCMECs) apoptosis and explore the potential mechanisms. The results show that heat stress triggers heat shock response and reduces cell viability in DCMECs; pretreatment of DCMECs with DMY (25 μM) for 12 h significantly alleviates the negative effects of heat stress on cells. DMY can provide cytoprotective effects by suppressing heat stress-caused mitochondrial membrane depolarization and mitochondrial dysfunction, Bax and Caspase 3 activity, and modulation of oxidative enzymes, thereby preventing ROS production and apoptosis in DCMECs. Importantly, DMY treatment could attenuate heat stress-induced mitochondrial fragmentation through mediating the expression of mitochondrial fission and fusion-related genes, including Dynamin related protein 1 (Drp1), Mitochondrial fission 1 protein (Fis1), and Mitofusin1, 2 (Mfn1, 2). Above all, our findings demonstrate that DMY could protect DCMECs against heat stress-induced injury through preventing oxidative stress, the imbalance of mitochondrial fission and fusion, which provides useful evidence that DMY can be a promising therapeutic drug for protecting heat stress-induced mammary glands injury and mastitis.
Collapse
Affiliation(s)
- Hui-Li Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guang-Dong Xing
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yong Qian
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xue-Feng Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ji-Feng Zhong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Kun-Lin Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
20
|
Garvin AM, De Both MD, Talboom JS, Lindsey ML, Huentelman MJ, Hale TM. Transient ACE (Angiotensin-Converting Enzyme) Inhibition Suppresses Future Fibrogenic Capacity and Heterogeneity of Cardiac Fibroblast Subpopulations. Hypertension 2021; 77:904-918. [PMID: 33486989 PMCID: PMC7878436 DOI: 10.1161/hypertensionaha.120.16352] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transient ACE (angiotensin-converting enzyme) inhibition in spontaneously hypertensive rats is known to protect against future injury-induced cardiac inflammation, fibrosis, and dysfunction; however, the mechanisms of protection have not been delineated. Here, we used single-cell RNA sequencing to test the hypothesis that transient ACE inhibitor treatment would induce a persistent shift in cardiac fibroblast subpopulations. Adult male spontaneously hypertensive rats (11 weeks old, hypertensive with cardiac hypertrophy) were treated for 2 weeks with an ACE inhibitor, enalapril (30 mg/kg per day, PO), or water (untreated spontaneously hypertensive rats) followed by a 2-week washout period (n=7/group). Cardiac fibroblasts were isolated from the left ventricle and subjected to single-cell RNA sequencing. Nine clusters of fibroblasts were identified, with 98% of cells in clusters 0 to 6. The transient treatment produced significant changes both within and across clusters. Cluster 1 depicted a highly fibrogenic gene profile, with cluster 6 serving as a gateway to cluster 1. Transient ACE inhibition depleted the gateway and expanded cluster 0, which was the least fibrogenic profile. Moreover, within cluster 1 fibroblasts, ACE inhibition reduced expression of individual fibrosis genes (eg, COL1A1, COL3A1, and FN1; all P<1×10-35). Clusters 2 to 5 reflected proliferative, moderately fibrogenic, translationally active, and less inflammatory subsets of fibroblasts, all of which exhibited attenuated fibrogenic gene expression after transient ACE inhibition. In conclusion, transient ACE inhibition shifts cardiac fibroblast subpopulations and degree of activation resulting in an overall reduced fibrogenic phenotype.
Collapse
Affiliation(s)
- Alexandra M Garvin
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Matthew D De Both
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Joshua S Talboom
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, and Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
| |
Collapse
|
21
|
Xu B, Zhang X, Gao Y, Song J, Shi B. Microglial Annexin A3 promoted the development of melanoma via activation of hypoxia-inducible factor-1α/vascular endothelial growth factor signaling pathway. J Clin Lab Anal 2021; 35:e23622. [PMID: 33118214 PMCID: PMC7891517 DOI: 10.1002/jcla.23622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Melanoma, a relatively common malignancy, has become one of the tumors with the fastest rising incidence in recent years. The purpose of this study was to investigate the effect of Microglial Annexin A3 (ANXA3) on melanoma. METHODS Serum samples were obtained from 20 patients with melanoma or 20 healthy controls. Kaplan-Meier survival analysis was performed. Transcriptome were used to analyze the correlation between ANXA3 expression and overall survival in patients with melanoma. Human melanoma cell lines WM-115 cells were transfected with ANXA3, si-ANXA3, ANXA3 + si-hypoxia inducible factor-1α (HIF-1α), si-ANXA3 + HIF-1α, and negative plasmids. Cell proliferation assay, cell invasion assay, and wound healing assay were performed on WM-115 cells. Lactate dehydrogenase (LDH) and caspase-3/9 activities were detected by commercial kits. Western blot and RT-PCR were used to detect the protein and mRNA expression of relation factors. RESULTS ANXA3 expression was up-regulated in patients with melanoma in comparison with healthy controls. Over-expression of ANXA3 promoted cell growth and migration, and reduced cytotoxicity of WM-115 cells. Overall survival (OS) and disease-free survival (DFS) of patients with high ANXA3 expression were both lower than those of patients with low ANXA3 expression. Down-regulation of ANXA3 reduced cell growth and migration, and promoted cytotoxicity of WM-115 cells. ANXA3 induced vascular endothelial growth factor (VEGF) signaling pathway by activation of HIF-1α. CONCLUSION In conclusion, our results indicated that ANXA3 promoted cell growth and migration of melanoma via activation of HIF-1α/VEGF signaling pathway.
Collapse
Affiliation(s)
- Bin Xu
- Department of SurgeryZhejiang Rehabilitation Medical CenterHangzhouChina
| | - Xiping Zhang
- Department of Tumor SurgeryZhejiang Cancer HospitalHangzhouChina
| | - Yuan Gao
- Department of SurgeryZhejiang Rehabilitation Medical CenterHangzhouChina
| | - Jianfei Song
- Department of SurgeryZhejiang Rehabilitation Medical CenterHangzhouChina
| | - Bailing Shi
- Department of SurgeryThe Third Affiliated Hospital of ZhejiangChinese Medical UniversityHangzhouChina
| |
Collapse
|
22
|
Dalcin AJF, Roggia I, Felin S, Vizzotto BS, Mitjans M, Vinardell MP, Schuch AP, Ourique AF, Gomes P. UVB photoprotective capacity of hydrogels containing dihydromyricetin nanocapsules to UV-induced DNA damage. Colloids Surf B Biointerfaces 2020; 197:111431. [PMID: 33142255 DOI: 10.1016/j.colsurfb.2020.111431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/03/2020] [Accepted: 10/17/2020] [Indexed: 11/16/2022]
Abstract
We evaluate the effect of cationic nanocapsules containing dihydromyricetin (DMY) flavonoid for safe topical use in photoprotection against UV-induced DNA damage. The stability was investigated for feasibility to produce hydrogels containing cationic nanocapsules of the flavonoid DMY (NC-DMY) for 90 days under three different storage conditions (4 ± 2 °C, 25 ± 2 °C, and 40 ± 2 °C), as well as evaluation of skin permeation and its cytotoxicity in skin cell lines. The physicochemical and rheological characteristics were maintained during the analysis period under the different aforementioned conditions. However, at 25 °C and 40 °C, the formulations indicated yellowish coloration and DMY content reduction. Therefore, the ideal storage condition of 4 °C was adopted. DMY remained in the stratum corneum and the uppermost layers of the skin. Regarding safety, all formulations demonstrated to be safe for topical application. NC-DMY exhibited a 50% Solar Protection Factor (SPF-DNA) against DNA damage caused by UVB radiation and demonstrated 99.9% protection against DNA lesion induction. These findings establish a promising formulation containing nanoencapsulated DMY flavonoids with a photoprotective and antioxidant potential of eliminating reactive oxygen species formed by solar radiation.
Collapse
Affiliation(s)
- Ana Júlia F Dalcin
- Laboratory of Nanotechnology, Franciscan University, Santa Maria, Brazil; Nanosciences Post-Graduate Program in Nanosciences, Franciscan University, Santa Maria, Brazil.
| | - Isabel Roggia
- Laboratory of Nanotechnology, Franciscan University, Santa Maria, Brazil; Nanosciences Post-Graduate Program in Nanosciences, Franciscan University, Santa Maria, Brazil.
| | - Sabrina Felin
- Laboratory of Nanotechnology, Franciscan University, Santa Maria, Brazil.
| | - Bruno S Vizzotto
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil.
| | | | | | - André P Schuch
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil.
| | - Aline F Ourique
- Nanosciences Post-Graduate Program in Nanosciences, Franciscan University, Santa Maria, Brazil.
| | - Patrícia Gomes
- Nanosciences Post-Graduate Program in Nanosciences, Franciscan University, Santa Maria, Brazil.
| |
Collapse
|
23
|
Hua YY, Zhang Y, Gong WW, Ding Y, Shen JR, Li H, Chen Y, Meng GL. Dihydromyricetin Improves Endothelial Dysfunction in Diabetic Mice via Oxidative Stress Inhibition in a SIRT3-Dependent Manner. Int J Mol Sci 2020; 21:ijms21186699. [PMID: 32933152 PMCID: PMC7555401 DOI: 10.3390/ijms21186699] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Dihydromyricetin (DHY), a flavonoid component isolated from Ampelopsis grossedentata, exerts versatile pharmacological activities. However, the possible effects of DHY on diabetic vascular endothelial dysfunction have not yet been fully elucidated. In the present study, male C57BL/6 mice, wild type (WT) 129S1/SvImJ mice and sirtuin 3 (SIRT3) knockout (SIRT3-/-) mice were injected with streptozotocin (STZ, 60 mg/kg/day) for 5 consecutive days. Two weeks later, DHY were given at the doses of 250 mg/kg by gavage once daily for 12 weeks. Fasting blood glucose (FBG) and glycosylated hemoglobin (HbA1c) level, endothelium-dependent relaxation of thoracic aorta, reactive oxygen species (ROS) production, SIRT3, and superoxide dismutase 2 (SOD2) protein expressions, as well as mitochondrial Deoxyribonucleic Acid (mtDNA) copy number, in thoracic aorta were detected. Our study found that DHY treatment decreased FBG and HbA1c level, improved endothelium-dependent relaxation of thoracic aorta, inhibited oxidative stress and ROS production, and enhanced SIRT3 and SOD2 protein expression, as well as mtDNA copy number, in thoracic aorta of diabetic mice. However, above protective effects of DHY were unavailable in SIRT3-/- mice. The study suggested DHY improved endothelial dysfunction in diabetic mice via oxidative stress inhibition in a SIRT3-dependent manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yun Chen
- Correspondence: (Y.C.); (G.-L.M.); Tel.: +86-513-8505-1726 (G.-L.M.); Fax: +86-513-8505-1728 (G.-L.M.)
| | - Guo-Liang Meng
- Correspondence: (Y.C.); (G.-L.M.); Tel.: +86-513-8505-1726 (G.-L.M.); Fax: +86-513-8505-1728 (G.-L.M.)
| |
Collapse
|
24
|
Umair M, Jabbar S, Sultana T, Ayub Z, Abdelgader SA, Xiaoyu Z, Chong Z, Fengxia L, Xiaomei B, Zhaoxin L. Chirality of the biomolecules enhanced its stereospecific action of dihydromyricetin enantiomers. Food Sci Nutr 2020; 8:4843-4856. [PMID: 32994946 PMCID: PMC7500803 DOI: 10.1002/fsn3.1766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 02/03/2023] Open
Abstract
The present study explores the effect of chirality of the biological macromolecules, its functional aspects, and its interaction with other food components. Dihydromyricetin (DHM) is a natural novel flavonol isolated from the vine tea (Ampelopsis grossedentata) leaves. However, limited progress in enantiopure separation methods of such compounds hinder in the development of enantiopure functional studies. This study is an attempt to develop a simple, accurate, and sensitive extraction method for the separation of the enantiopure DHM from vine tea leaves. In addition, the identification and purity of the extracted enantiopure (-)-DHM were further determined by the proton nuclear magnetic resonance (1H-NMR) and the carbon nuclear magnetic resonance (13C-NMR). The study further evaluates the antimicrobial activity of isolated (-)-DHM in comparison with racemate (+)-DHM, against selected foodborne pathogens, whereas the action mode of enantiopure (-)-DHM to increase the integrity and permeability of the bacterial cell membrane was visualized by confocal laser scanning microscopy using green fluorescence nucleic acid dye (SYTO-9) and propidium iodide (PI). Moreover, the morphological changes in the bacterial cell structure were observed through field emission scanning electron microscope. During analyzing the cell morphology of B. cereus (AS11846), it was confirmed that enantiopure (-)-DHM could increase the cell permeability that leads to the released of internal cell constituents and, thus, causes cell death. Therefore, the present study provides an insight into the advancement of enantiopure isolation along with its antimicrobial effect which could be served as an effective approach of biosafety.
Collapse
Affiliation(s)
- Muhammad Umair
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Saqib Jabbar
- Food Science Research Institute (FSRI)National Agricultural Research Centre (NARC)IslamabadPakistan
| | - Tayyaba Sultana
- College of Public AdministrationNanjing Agriculture UniversityNanjingChina
| | - Zubaria Ayub
- Institute of Home SciencesUniversity of AgricultureFaisalabadPakistan
| | | | - Zhu Xiaoyu
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Zhang Chong
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Lu Fengxia
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Bie Xiaomei
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Lu Zhaoxin
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| |
Collapse
|
25
|
Sun Z, Lu W, Lin N, Lin H, Zhang J, Ni T, Meng L, Zhang C, Guo H. Dihydromyricetin alleviates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome through activation of SIRT1. Biochem Pharmacol 2020; 175:113888. [PMID: 32112883 DOI: 10.1016/j.bcp.2020.113888] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/24/2020] [Indexed: 12/21/2022]
Abstract
Doxorubicin (DOX) is a powerful anthracycline antineoplastic drug whose clinical application is limited by serious cardiotoxic side effects. Dihydromyricetin (DHM), a flavonoid compound extracted from the Japanese raisin tree (Hovenia dulcis), is cardioprotective in patients with heart failure; however, the underlying mechanisms are poorly understood. The aim of this study was to assess the possible anti-inflammatory properties of DHM in a rat model of DOX-induced cardiotoxicity and DOX-treated H9C2 cells, and gain insights into the molecular mechanisms that mediate these effects. The results showed that DHM treatment significantly improved the myocardial structure and function in DOX-exposed rats by alleviating NLRP3 inflammasome-mediated inflammation. DHM also inhibited DOX-induced activation of the NLRP3 inflammasome in H9C2 cells. This effect was mediated by inhibition of caspase-1 activity, suppression of IL-1β and IL-18 release, and upregulation of SIRT1 protein levels in vivo and in vitro. Moreover, selective inhibition of SIRT1 blocked the protective effects of DHM. Collectively, our findings indicate that DHM protects against DOX-induced cardiotoxicity by inhibiting NLRP3 inflammasome activation via stimulation of the SIRT1 pathway.
Collapse
Affiliation(s)
- Zhenzhu Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Wenqiang Lu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Na Lin
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Jie Zhang
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Tingjuan Ni
- Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | | | - Hangyuan Guo
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China.
| |
Collapse
|
26
|
Metabolomics of the Protective Effect of Ampelopsis grossedentata and Its Major Active Compound Dihydromyricetin on the Liver of High-Fat Diet Hamster. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3472578. [PMID: 32071609 PMCID: PMC7007936 DOI: 10.1155/2020/3472578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 11/18/2022]
Abstract
The flavonoid dihydromyricetin (DMY) is the main component of Ampelopsis grossedentata (Hand-Mazz) W. T. Wang (AG), a daily beverage and folk medicine used in Southern China to treat jaundice hepatitis, cold fever, and sore throat. Recently, DMY and AG were shown to have a beneficial effect on lipid metabolism disorder. However, the mechanisms of how DMY and AG protect the liver during lipid metabolism disorder remain unclear. In this study, we first analyzed the chemical compounds of AG by HPLC-DAD-ESI-IT-TOF-MSn. Of the 31 compounds detected, 29 were identified based on previous results. Then, the effects of DMY and AG on high-fat diet hamster livers were studied and the metabolite levels and metabolic pathway activity of the liver were explored by 1H NMR metabolomics. Compared to the high-fat diet group, supplementation of AG and DMY attenuated the high-fat-induced increase in body weight, liver lipid deposition, serum triglycerides and total cholesterol levels, and normalized endogenous metabolite concentrations. PCA and PLS-DA score plots demonstrated that while the metabolic profiles of hamsters fed a high-fat diet supplemented with DMY or AG were both far from those of hamsters fed a normal diet or a high-fat diet alone, they were similar to each other. Our data suggest that the underlying mechanism of the protective effect of DMY and AG might be related to an attenuation of the deleterious effect of high-fat diet-induced hyperlipidemia on multiple metabolic pathways including amino acid metabolism, ketone body metabolism, energy metabolism, tricarboxylic acid cycle, and enhanced fatty acid oxidation.
Collapse
|
27
|
Liu J, Meng Q, Liang X, Zhuang R, Yuan D, Ge X, Cao H, Lin F, Gong X, Fan H, Wang B, Zhou X, Liu Z. A novel small molecule compound VCP979 improves ventricular remodeling in murine models of myocardial ischemia/reperfusion injury. Int J Mol Med 2019; 45:353-364. [PMID: 31789413 PMCID: PMC6984775 DOI: 10.3892/ijmm.2019.4413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/25/2019] [Indexed: 11/06/2022] Open
Abstract
Persistent ventricular remodeling following myocardial ischemia/reperfusion (MI/R) injury results in functional decompensation and eventual progression to heart failure. VCP979, a novel small‑molecule compound developed in‑house, possesses anti‑inflammatory and anti‑fibrotic activities. In the present study, no significant pathological effect was observed following the administration of VCP979 on multiple organs in mice and no difference of aspartate transaminase/alanine aminotransferase/lactate dehydrogenase levels was found in murine serum. Treatment with VCP979 ameliorated cardiac dysfunction, pathological myocardial fibrosis and hypertrophy in murine MI/R injury models. The administration of VCP979 also inhibited the infiltration of inflammatory cells and the pro‑inflammatory cytokine expression in hearts post MI/R injury. Further results revealed that the addition of VCP979 prevented the primary neonatal cardiac fibroblasts (NCFs) from Angiotensin II (Ang II)‑induced collagen synthesis and neonatal cardiac myocytes (NCMs) hypertrophy. In addition, VCP979 attenuated the activation of p38‑mitogen‑activated protein kinase in both Ang II‑induced NCFs and hearts subjected to MI/R injury. These findings indicated that the novel small‑molecule compound VCP979 can improve ventricular remodeling in murine hearts against MI/R injury, suggesting its potential therapeutic function in patients subjected to MI/R injury.
Collapse
Affiliation(s)
- Jing Liu
- Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Xiaoting Liang
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Rulin Zhuang
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Dongsheng Yuan
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Xinyu Ge
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Hao Cao
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Fang Lin
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Xin Gong
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Huimin Fan
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Binghui Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Zhongmin Liu
- Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
28
|
Ma JQ, Sun YZ, Ming QL, Tian ZK, Yang HX, Liu CM. Ampelopsin attenuates carbon tetrachloride-induced mouse liver fibrosis and hepatic stellate cell activation associated with the SIRT1/TGF-β1/Smad3 and autophagy pathway. Int Immunopharmacol 2019; 77:105984. [DOI: 10.1016/j.intimp.2019.105984] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
|
29
|
Martínez-Coria H, Mendoza-Rojas MX, Arrieta-Cruz I, López-Valdés HE. Preclinical Research of Dihydromyricetin for Brain Aging and Neurodegenerative Diseases. Front Pharmacol 2019; 10:1334. [PMID: 31780947 PMCID: PMC6859532 DOI: 10.3389/fphar.2019.01334] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Brain aging and neurodegenerative diseases share the hallmarks of slow and progressive loss of neuronal cells. Flavonoids, a subgroup of polyphenols, are broadly present in food and beverage and numerous studies have suggested that it could be useful for preventing or treating neurodegenerative diseases in humans. Dihydromyricetin (DHM) is one of the main flavonoids of some Asian medicinal plants that are used to treat diverse illness. The effects of DHM have been studied in different in vitro systems of oxidative damage and neuroinflammation, as well as in animal models of several neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Here we analyzed the most important effects of DHM, including its antioxidant, anti-inflammatory, and neuroprotective effects, as well as its ability to restore GABA neurotransmission and improve motor and cognitive behavior. We propose new areas of research that might contribute to a better understanding of the mechanism of action of this flavonoid, which could help develop a new therapy for aging and age-related brain diseases.
Collapse
Affiliation(s)
- Hilda Martínez-Coria
- Division de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Laboratorio Experimental de Enfermedades Neurodegenerativas, UNAM-INNyN, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”,Ciudad de México, Mexico
| | - Martha X. Mendoza-Rojas
- Unidad Periférica de Neurociencias, UNAM-INNyN, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”,Ciudad de México, Mexico
| | - Isabel Arrieta-Cruz
- Departamento de Investigación Básica, Instituto Nacional de Geriatría,Ciudad de México, Mexico
| | - Héctor E. López-Valdés
- Division de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Unidad Periférica de Neurociencias, UNAM-INNyN, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”,Ciudad de México, Mexico
| |
Collapse
|
30
|
AT1R-Mediated Apoptosis of Bone Marrow Mesenchymal Stem Cells Is Associated with mtROS Production and mtDNA Reduction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4608165. [PMID: 31772704 PMCID: PMC6854225 DOI: 10.1155/2019/4608165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/02/2023]
Abstract
Angiotensin II (Ang II) is used as an inducer for the differentiation of mesenchymal stem cells (MSCs). Whether the commonly used doses of Ang II for MSC differentiation affect cell apoptosis has not been elucidated. In this study, we investigated the effect of Ang II on the apoptosis of bone marrow MSCs (BMMSCs), and its relations to the activation of Ang II receptor-1- (AT1R-) signaling, mitochondrial ROS (mtROS) generation, and mitochondrial DNA (mtDNA) leakage. AT1R expression in BMMSCs was identified by immunostaining and Western-blotting assays. BMMSC viability was measured by MTT assay following exposure to 1 nM~1 mM Ang II for 12 hours. Cell apoptosis, mtROS, and mtDNA levels were detected by FAM-FLICA® Poly Caspase, MitoSOX™ superoxide, and PicoGreen staining, respectively. The expressions of Bcl2 and Bax were measured by Western-blotting assays. Next, we used losartan to block AT1R-signaling and subsequently measured apoptosis, mtROS, and mtDNA levels, again. The maximum viability of BMMSCs was in response to 100 nM Ang II, after that it began to decrease with the increase of Ang II doses, indicating that Ang II (≧1 μM) may cause apoptosis of BMMSCs. As expected, 1 μM and 10 μM Ang II both caused BMMSC apoptosis. Furthermore, 1 μM and 10 μM Ang II could also induce mtROS generation and cause a marked mtDNA leakage. The application of losartan markedly inhibited Ang II-induced mtROS production, mtDNA leakage, and BMMSC apoptosis. In conclusion, the activation of AT1R-signaling stimulates apoptosis of BMMSCs, which is associated mtROS production and mtDNA reduction.
Collapse
|
31
|
Liu D, Mao Y, Ding L, Zeng XA. Dihydromyricetin: A review on identification and quantification methods, biological activities, chemical stability, metabolism and approaches to enhance its bioavailability. Trends Food Sci Technol 2019; 91:586-597. [PMID: 32288229 PMCID: PMC7127391 DOI: 10.1016/j.tifs.2019.07.038] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/21/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dihydromyricetin (DMY) is an important plant flavonoid, which has received great attention due to its health-benefiting activities, including antioxidant, antimicrobial, anti-inflammatory, anticancer, antidiabetic and neuroprotective activities. DMY capsules have been sold in US as a nutraceutical supplement to prevent alcoholic hangovers. The major disadvantage associated with DMY is its chemical instability and poor bioavailability caused by the combined effects of its low solubility and poor membrane permeability. This limits its practical use in the food and pharmaceutical fields. SCOPE AND APPROACH The present paper gives an overview of the current methods for the identification and quantification of DMY. Furthermore, recent findings regarding the main biological properties and chemical stability of DMY, the metabolism of DMY as well as different approaches to increase DMY bioavailability in both aqueous and lipid phases are discussed. KEY FINDINGS AND CONCLUSIONS Current trends on identification and quantification of DMY have been focused on spectral and chromatographic techniques. Many factors such as heat, pH, metal ions, could affect the chemical stability of DMY. Despite the diverse biological effects of DMY, DMY faces with the problem of poor bioavailability. Utilization of different delivery systems including solid dispersion, nanocapsule, microemuslion, cyclodextrin inclusion complexes, co-crystallization, phospholipid complexes, and chemical or enzymatic acylation has the potential to improve both the solubility and bioavailability. DMY digested in laboratory animals undergoes reduction, dehydroxylation, methylation, glucuronidation, and sulfation. Novel DMY delivery systems and basic pharmacokinetic studies of encapsulated DMY on higher animals and humans might be required in the future.
Collapse
Affiliation(s)
- Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yiqin Mao
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Lijun Ding
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xin-An Zeng
- South China University of Technology, School of Food Science & Engineering, Guangzhou, 510640, Guangdong, PR China
| |
Collapse
|
32
|
Xu M, Hua Y, Qi Y, Meng G, Yang S. Exogenous hydrogen sulphide supplement accelerates skin wound healing via oxidative stress inhibition and vascular endothelial growth factor enhancement. Exp Dermatol 2019; 28:776-785. [PMID: 30927279 DOI: 10.1111/exd.13930] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/18/2019] [Indexed: 12/15/2022]
Abstract
Hydrogen sulphide (H2 S) is an important gasotransmitter with several physiological functions. However, the roles and the detailed mechanisms of H2 S on skin wound healing are not known well. In the present study, 129S1/SvImJ mice were intraperitoneally injected with NaHS (50 μmol/kg/d) for 2 weeks. Then, a round wound of 6 mm diameter with depth into the dermis was made. The skin wound area, blood perfusion, superoxide production, malondialdehyde (MDA) levels, total antioxidant capacity (T-AOC), expression of vascular endothelial growth factor (VEGF), dynamin-related protein 1 (DRP1) and optic atrophy 1 (OPA1) were measured. After NaHS (50 μmol/L) pre-administration for 4 hours, cell migration rate, DRP1, OPA1 and α-smooth muscle actin (α-SMA) expression, superoxide production and mitochondrial membrane potential in primary skin fibroblasts were measured. Tube formation in human umbilical vein endothelial cells (HUVECs) and cell migration in human keratinocytes were also measured. The results showed that NaHS pretreatment significantly accelerated wound healing and improved blood flow in the wound after operation. NaHS increased VEGF expression in the wound and promoted tube formation in HUVECs. Meanwhile, NaHS attenuated reactive oxygen species (ROS) production, suppressed MDA level but restored T-AOC in the wound. NaHS also promoted skin fibroblasts migration and α-SMA expression after scratch. Moreover, NaHS alleviated ROS, increased mitochondrial membrane potential, decreased DRP1 but enhanced OPA1 expression in skin fibroblasts after scratch. NaHS also accelerated human keratinocytes migration after scratch. Taken together, exogenous H2 S supplementary accelerated the skin wound healing, which might be related to oxidative stress inhibition and VEGF enhancement.
Collapse
Affiliation(s)
- Mengting Xu
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yuyun Hua
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yan Qi
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
33
|
Dihydromyricetin Ameliorates Cardiac Ischemia/Reperfusion Injury through Sirt3 Activation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6803943. [PMID: 31139646 PMCID: PMC6500683 DOI: 10.1155/2019/6803943] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/20/2018] [Accepted: 03/07/2019] [Indexed: 11/30/2022]
Abstract
During myocardial infarction, quickly opening the occluded coronary artery is a major method to save the ischemic myocardium. However, it also induces reperfusion injury, resulting in a poor prognosis. Alleviating the reperfusion injury improves the prognosis of the patients. Dihydromyricetin (DHM), a major component in the Ampelopsis grossedentata, has numerous biological functions. This study aims to clarify the effects of DHM under the ischemia/reperfusion (I/R) condition. We elucidated the role of Sirt3 in the cardiomyocyte response to DHM based on the hearts and primary cardiomyocytes. Cardiac function, mitochondrial biogenesis, and infarct areas were examined in the different groups. We performed Western blotting to detect protein expression levels after treatments. In an in vitro study, primary cardiomyocytes were treated with Hypoxia/Reoxygenation (H/R) to simulate the I/R. DHM reduced the infarct area and improved cardiac function. Furthermore, mitochondrial dysfunction was alleviated after DHM treatment. Moreover, DHM alleviated oxidative stress indicated by decreased ROS and MnSOD. However, the beneficial function of DHM was abolished after removing the Sirt3. On the other hand, the mitochondrial function was improved after DHM intervention in vitro study. Interestingly, Sirt3 downregulation inhibited the beneficial function of DHM. Therefore, the advantages of DHM are involved in the improvement of mitochondrial function and decreased oxidative stress through the upregulation of Sirt3. DHM offers a promising therapeutic avenue for better outcome in the patients with cardiac I/R injury.
Collapse
|
34
|
Ye X, Pang Z, Zhu N. Dihydromyricetin attenuates hypertrophic scar formation by targeting activin receptor-like kinase 5. Eur J Pharmacol 2019; 852:58-67. [PMID: 30807748 DOI: 10.1016/j.ejphar.2019.02.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022]
Abstract
Hypertrophic scar (HPS) is a manifestation of abnormal tissue repair, representing excessive extracellular matrix production and abnormal function of fibroblasts, for which no satisfactory treatment is available at present. Here we identified a natural product of flavonoid, dihydromyricetin, could effectively attenuate HPS formation. We showed that local intradermal injection of dihydromyricetin (50 μM) reduced the gross scar area, cross-sectional size of the scar and the scar elevation index in a mechanical load-induced mouse model. In addition, dihydromyricetin treatment also markedly decreased collagen density of the scar tissue. Furthermore, both in vitro and in vivo study both demonstrated that dihydromyricetin inhibited the proliferation, activation, contractile and migration abilities of hypertrophic scar-derived fibroblasts (HSFs) but did not affect HSFs apoptosis. Western blot analysis revealed that dihydromyricetin could down-regulate the phosphorylation of Smad2 and Smad3 of TGF-β signaling. Such bioactivity of dihydromyricetin may result from its selective binding to the catalytic region of activin receptor-like kinase 5 (ALK5), as suggested by the molecular docking study and kinase binding assay (12.26 μM). Above all, dihydromyricetin may prove to be a promising agent for the treatment of HPS and other fibroproliferative disorders.
Collapse
Affiliation(s)
- Xiaolu Ye
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Zhiying Pang
- Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ningwen Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Dalcin AJF, Vizzotto BS, Bochi GV, Guarda NS, Nascimento K, Sagrillo MR, Moresco RN, Schuch AP, Ourique AF, Gomes P. Nanoencapsulation of the flavonoid dihydromyricetin protects against the genotoxicity and cytotoxicity induced by cationic nanocapsules. Colloids Surf B Biointerfaces 2019; 173:798-805. [DOI: 10.1016/j.colsurfb.2018.10.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023]
|
36
|
Guo L, Zhang H, Yan X. Protective effect of dihydromyricetin revents fatty liver through nuclear factor‑κB/p53/B‑cell lymphoma 2‑associated X protein signaling pathways in a rat model. Mol Med Rep 2018; 19:1638-1644. [PMID: 30592279 PMCID: PMC6390035 DOI: 10.3892/mmr.2018.9783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/31/2018] [Indexed: 01/23/2023] Open
Abstract
Dihydromyricetin is the major flavonoid in vine tea, whose pharmacological action has attracted increasing attention in recent years. The triglyceride, albumin (ALB), alanine aminotransferase, aspartate aminotransferase, malondialdehyde, superoxide dismutase, glutathione (GSH), GSH peroxidase, tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-18 expression levels were measured using enzyme-linked immunosorbent assay kits. The protein levels of ALB and collagen I, PPARα, NF-κB, p53 and Bax were used to measure using western blotting. The results revealed that dihydromyricetin prevented the development of fatty liver, and inhibited oxidative stress, inflammation and apoptosis in a fatty liver rat model. In addition, treatment with dihydromyricetin inhibited the levels of ALB and collagen I, while it induced peroxisome proliferator-activated receptor α protein expression. Dihydromyricetin also suppressed the protein expression levels of nuclear factor (NF)-κB, p53 and B-cell lymphoma 2-associated X protein (Bax) in the rat model. Collectively, it is concluded that dihydromyricetin exerted a protective effect on fatty liver through NF-κB/p53/Bax signaling pathways in a rat model.
Collapse
Affiliation(s)
- Lu Guo
- Department of Hepatopathy, Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Haifeng Zhang
- Department of Hepatopathy, Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Xiuping Yan
- Department of Hepatopathy, Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| |
Collapse
|
37
|
Liang J, Wu J, Wang F, Zhang P, Zhang X. Semaphoring 4D is required for the induction of antioxidant stress and anti-inflammatory effects of dihydromyricetin in colon cancer. Int Immunopharmacol 2018; 67:220-230. [PMID: 30562683 DOI: 10.1016/j.intimp.2018.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022]
Abstract
Semaphorin 4D (Sema4D) has been involved in cancer progression, the expression of which is associated with the poor clinical outcomes of some cancer patients. Dihydromyricetin (DMY) has antitumor potentials for different types of human cancer cells. However, the pharmacological effects of DMY on colon cancer (CC) or the regulatory effects of Sema4D on this process remain largely unknown. In the present study, we aimed to evaluate the effects of DMY on CC, and to elucidate the role of Sema4D in DMY-induced antitumor effects. DMY inhibited the proliferation and growth of Colo-205 colon cancer cells significantly in vivo and in vitro. DMY inhibited reactive oxygen species (ROS) and malondialdehyde (MDA) levels, but increased glutathione (GSH) level. Moreover, the activities of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and heme oxygenase 1 (HO-1) were enhanced by DMY treatment in vitro, showing strong anti-oxidative stress effect. In addition, DMY inhibited the secretion of interleukin 1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor (TNF-α) in the supernatant of Colo-205 culture medium. Besides, the expressions of cyclooxygenase (COX-2) and inducible nitric oxide synthase (iNOS) were suppressed by DMY in dose-dependent manners in vivo, showing potent anti-inflammatory effect. Further investigations showed that DMY suppressed the expression and secretion of Sema4D in Colo-205 cells and tissues. Interestingly, overexpression of Sema4D significantly weakened the regulatory effects of DMY on oxidative stress. Furthermore, overexpression of Sema4D significantly attenuated the anti-inflammatory effects of DMY. Collectively, we drew a conclusion that the anti-colon cancer effect of DMY was attributed to its negative modulation on oxidative stress and inflammation via suppression of Sema4D. The findings broaden the width and depth of molecular mechanisms involved in the DMY action, facilitating the development of DMY in anti-colon cancer therapies.
Collapse
Affiliation(s)
- Jun Liang
- Oncology Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jing Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Fei Wang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Pengfei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xuemei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
38
|
Jin B, Zhu J, Shi HM, Wen ZC, Wu BW. YAP activation promotes the transdifferentiation of cardiac fibroblasts to myofibroblasts in matrix remodeling of dilated cardiomyopathy. ACTA ACUST UNITED AC 2018; 52:e7914. [PMID: 30484494 PMCID: PMC6262745 DOI: 10.1590/1414-431x20187914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/27/2018] [Indexed: 11/29/2022]
Abstract
Yes-associated protein (YAP) is an important regulator of cellular proliferation and transdifferentiation. However, little is known about the mechanisms underlying myofibroblast transdifferentiation in dilated cardiomyopathy (DCM). We investigated the role of YAP in the pathological process of cardiac matrix remodeling. A classic model of DCM was established in BALB/c mice by immunization with porcine cardiac myosin. Cardiac fibroblasts were isolated from neonatal Sprague-Dawley rats by density gradient centrifugation. The expression levels of α-smooth muscle actin (α-SMA) and collagen volume fraction (CVF) were significantly increased in DCM mice. Angiotensin II (Ang II)-mediated YAP activation promoted the proliferation and transdifferentiation of neonatal rat cardiac fibroblasts, and this effect was significantly suppressed in the shRNA YAP + Ang II group compared with the shRNA Control + Ang II group in vitro (2.98±0.34 ×105vs 5.52±0.82 ×105, P<0.01). Inhibition of endogenous Ang II-stimulated YAP improved the cardiac function by targeting myofibroblast transdifferentiation to attenuate matrix remodeling in vivo. In the valsartan group, left ventricular ejection fraction and fractional shortening were significantly increased compared with the DCM group (52.72±5.51% vs 44.46±3.01%, P<0.05; 34.84±3.85% vs 26.65±3.12%, P<0.01). Our study demonstrated that YAP was a regulator of cardiac myofibroblast differentiation, and regulation of YAP signaling pathway contributed to improve cardiac function of DCM mice, possibly in part by decreasing myofibroblast transdifferentiation to inhibit matrix remodeling.
Collapse
Affiliation(s)
- Bo Jin
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hai-Ming Shi
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhi-Chao Wen
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bang-Wei Wu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Dihydromyricetin from ampelopsis grossedentata protects against vascular neointimal formation via induction of TR3. Eur J Pharmacol 2018; 838:23-31. [PMID: 30194942 DOI: 10.1016/j.ejphar.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 11/21/2022]
Abstract
Vine tea has been used as a medicinal herb in traditional Chinese medicine for hundreds of years. As the most abundant ingredient in vine tea, Dihydromyricetin (DHM) has been reported to exert anti-inflammatory, antioxidant, and anti-cardiovascular disease. However, the role of DHM in injury-induced neointimal formation remains poorly characterized. We determined the effects of DHM on ligation-induced carotid artery neointimal formation. We found that ligation-induced carotid artery neointimal formation could be significantly attenuated by DHM treatment. We provide evidence that DHM increases orphan nuclear receptor TR3 expression in smooth muscle cell (SMC) and carotid artery. Moreover, overexpression and loss-of-function strategies of TR3 were done to overexpression and knockdown of TR3, and demonstrate that DHM promotes SMC differentiation, however, inhibits SMC proliferation and migration, via regulating expression of TR3. Collectively, we reveal that DHM may be a therapeutic agent for the treatment of injury-induced vascular diseases.
Collapse
|
40
|
Li DJ, Tong J, Zeng FY, Guo M, Li YH, Wang H, Wang P. Nicotinic ACh receptor α7 inhibits PDGF-induced migration of vascular smooth muscle cells by activating mitochondrial deacetylase sirtuin 3. Br J Pharmacol 2018; 176:4388-4401. [PMID: 30270436 DOI: 10.1111/bph.14506] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE PDGF-BB is an angiogenic factor involved in cardiovascular diseases. Here, we investigated the possible effects of activation of the nicotinic ACh receptor α7 subtype (α7nAChR) on PDGF-BB-induced proliferation and migration in vascular smooth muscle cells (VSMCs). EXPERIMENTAL APPROACH PNU-282987, a selective α7nAChR pharmacological agonist, was used to activate α7nAChR. The influences of α7nAChR activation on PDGF-BB-induced proliferation and migration, as well as the phosphorylation of focal adhesion kinase (FAK)/Src, a pro-migration signalling pathway, were determined in VSMCs. A variety of biochemical assays were applied to explore the underlying molecular mechanisms. KEY RESULTS PDGF-BB induced pronounced migration and proliferation of VSMCs. Activation of α7nAChRs by PNU-282987 blocked PDGF-BB-induced migration but not proliferation in wild-type (WT) VSMCs, whereas this effect was absent in α7nAChR-knockout VSMCs. Accordingly, PNU-282987 attenuated PDGF-BB-induced phosphorylation of FAKTyr397 and SrcTyr416 in WT VSMCs. Mechanistically, PNU-282987 suppressed PDGF-BB-induced oxidative stress, as demonstrated by the alterations in ROS, H2 O2 content, superoxide anion and total antioxidant activity. A sirtuin 3 (SIRT3) inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine or shRNA-mediated SIRT3 knockdown abolished the inhibitory effect of PNU-282987. PNU-282987 did not modulate SIRT3 protein expression but enhanced mitochondrial SIRT3 deacetylase activity. In line with this action, PNU-282987 enhanced the deacetylation of mitochondrial FoxO3. Lastly, PNU-282987 corrected the PDGF-BB-induced mitochondrial dysfunction by increasing mitochondrial citrate synthase activity, ATP content and nicotinamide adenine dinucleotide pool. CONCLUSIONS Pharmacological activation of α7nAChRs inhibits PDGF-BB-induced VSMC migration by activating the mitochondrial deacetylase SIRT3, implying an important role for α7nAChRs in mitochondria biology and PDGF-related diseases. LINKED ARTICLES This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China.,Ninghai First Hospital, Zhejiang, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China.,Ninghai First Hospital, Zhejiang, China
| | - Fei-Yan Zeng
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China.,Ninghai First Hospital, Zhejiang, China
| | - Mengqi Guo
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai, China
| | - Yong-Hua Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai, China
| | - Pei Wang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai, China.,Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
41
|
Zhang J, Chen Y, Luo H, Sun L, Xu M, Yu J, Zhou Q, Meng G, Yang S. Recent Update on the Pharmacological Effects and Mechanisms of Dihydromyricetin. Front Pharmacol 2018; 9:1204. [PMID: 30410442 PMCID: PMC6209623 DOI: 10.3389/fphar.2018.01204] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022] Open
Abstract
As the most abundant natural flavonoid in rattan tea, dihydromyricetin (DMY) has shown a wide range of pharmacological effects. In addition to the general characteristics of flavonoids, DMY has the effects of cardioprotection, anti-diabetes, hepatoprotection, neuroprotection, anti-tumor, and dermatoprotection. DMY was also applied for the treatment of bacterial infection, osteoporosis, asthma, kidney injury, nephrotoxicity and so on. These effects to some extent enrich the understanding about the role of DMY in disease prevention and therapy. However, to date, we still have no outlined knowledge about the detailed mechanism of DMY, which might be related to anti-oxidation and anti-inflammation. And the detailed mechanisms may be associated with several different molecules involved in cellular apoptosis, oxidative stress, and inflammation, such as AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), protein kinase B (Akt), nuclear factor-κB (NF-κB), nuclear factor E2-related factor 2 (Nrf2), ATP-binding cassette transporter A1 (ABCA1), peroxisome proliferator-activated receptor-γ (PPARγ) and so on. Here, we summarized the current pharmacological developments of DMY as well as possible mechanisms, aiming to push the understanding about the protective role of DMY as well as its preclinical assessment of novel application.
Collapse
Affiliation(s)
- Jingyao Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Pharmacology, School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Huiqin Luo
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Pharmacology, School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Linlin Sun
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Pharmacology, School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Mengting Xu
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Pharmacology, School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Jin Yu
- Department of Pharmacology, School of Pharmacy, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Qigang Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Guoliang Meng
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
42
|
Chen Y, Luo HQ, Sun LL, Xu MT, Yu J, Liu LL, Zhang JY, Wang YQ, Wang HX, Bao XF, Meng GL. Dihydromyricetin Attenuates Myocardial Hypertrophy Induced by Transverse Aortic Constriction via Oxidative Stress Inhibition and SIRT3 Pathway Enhancement. Int J Mol Sci 2018; 19:E2592. [PMID: 30200365 PMCID: PMC6164359 DOI: 10.3390/ijms19092592] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022] Open
Abstract
Dihydromyricetin (DMY), one of the flavonoids in vine tea, exerts several pharmacological actions. However, it is not clear whether DMY has a protective effect on pressure overload-induced myocardial hypertrophy. In the present study, male C57BL/6 mice aging 8⁻10 weeks were subjected to transverse aortic constriction (TAC) surgery after 2 weeks of DMY (250 mg/kg/day) intragastric administration. DMY was given for another 2 weeks after surgery. Blood pressure, myocardial structure, cardiomyocyte cross-sectional area, cardiac function, and cardiac index were observed. The level of oxidative stress in the myocardium was assessed with dihydroethidium staining. Our results showed that DMY had no significant effect on the blood pressure. DMY decreased inter ventricular septum and left ventricular posterior wall thickness, relative wall thickness, cardiomyocyte cross-sectional areas, as well as cardiac index after TAC. DMY pretreatment also significantly reduced arterial natriuretic peptide (ANP), brain natriuretic peptide (BNP) mRNA and protein expressions, decreased reactive oxygen species production and malondialdehyde (MDA) level, while increased total antioxidant capacity (T-AOC), activity of superoxide dismutase (SOD), expression of sirtuin 3 (SIRT3), forkhead-box-protein 3a (FOXO3a) and SOD2, and SIRT3 activity in the myocardium of mice after TAC. Taken together, DMY ameliorated TAC induced myocardial hypertrophy in mice related to oxidative stress inhibition and SIRT3 pathway enhancement.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
- School of Medicine, Nantong University, Nantong 226001, China.
| | - Hui-Qin Luo
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Lin-Lin Sun
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Meng-Ting Xu
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Jin Yu
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Lu-Lu Liu
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Jing-Yao Zhang
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Yu-Qin Wang
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Hong-Xia Wang
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Xiao-Feng Bao
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Guo-Liang Meng
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
- School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
43
|
Evans LW, Ferguson BS. Food Bioactive HDAC Inhibitors in the Epigenetic Regulation of Heart Failure. Nutrients 2018; 10:E1120. [PMID: 30126190 PMCID: PMC6115944 DOI: 10.3390/nu10081120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
- Environmental Science & Health, University of Nevada, Reno, NV 89557, USA.
| | - Bradley S Ferguson
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
44
|
Ni YF, Wang H, Gu QY, Wang FY, Wang YJ, Wang JL, Jiang B. Gemfibrozil has antidepressant effects in mice: Involvement of the hippocampal brain-derived neurotrophic factor system. J Psychopharmacol 2018. [PMID: 29534628 DOI: 10.1177/0269881118762072] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Major depressive disorder has become one of the most serious neuropsychiatric disorders worldwide. However, currently available antidepressants used in clinical practice are ineffective for a substantial proportion of patients and always have side effects. Besides being a lipid-regulating agent, gemfibrozil is an agonist of peroxisome proliferator-activated receptor-α (PPAR-α). We investigated the antidepressant effects of gemfibrozil on C57BL/6J mice using the forced swim test (FST) and tail suspension test (TST), as well as the chronic unpredictable mild stress (CUMS) model of depression. The changes in brain-derived neurotrophic factor (BDNF) signaling cascade in the brain after CUMS and gemfibrozil treatment were further assessed. Pharmacological inhibitors and lentivirus-expressed short hairpin RNA (shRNA) were also used to clarify the antidepressant mechanisms of gemfibrozil. Gemfibrozil exhibited significant antidepressant actions in the FST and TST without affecting the locomotor activity of mice. Chronic gemfibrozil administration fully reversed CUMS-induced depressive-like behaviors in the FST, TST and sucrose preference test. Gemfibrozil treatment also restored CUMS-induced inhibition of the hippocampal BDNF signaling pathway. Blocking PPAR-α and BDNF but not the serotonergic system abolished the antidepressant effects of gemfibrozil on mice. Gemfibrozil produced antidepressant effects in mice by promoting the hippocampal BDNF system.
Collapse
Affiliation(s)
- Yu-Fei Ni
- 1 Nantong Maternal and Child Health Care Hospital, China
| | - Hao Wang
- 2 Department of Pharmacology, School of Pharmacy, Nantong University, China
| | - Qiu-Yan Gu
- 1 Nantong Maternal and Child Health Care Hospital, China
| | - Fei-Ying Wang
- 1 Nantong Maternal and Child Health Care Hospital, China
| | - Ying-Jie Wang
- 2 Department of Pharmacology, School of Pharmacy, Nantong University, China
| | - Jin-Liang Wang
- 2 Department of Pharmacology, School of Pharmacy, Nantong University, China
| | - Bo Jiang
- 2 Department of Pharmacology, School of Pharmacy, Nantong University, China
| |
Collapse
|
45
|
Dihydromyricetin Attenuates TNF- α-Induced Endothelial Dysfunction through miR-21-Mediated DDAH1/ADMA/NO Signal Pathway. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1047810. [PMID: 29682517 PMCID: PMC5850903 DOI: 10.1155/2018/1047810] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/24/2018] [Indexed: 12/22/2022]
Abstract
Accumulating studies demonstrate that dihydromyricetin (DMY), a compound extracted from Chinese traditional herb, Ampelopsis grossedentata, attenuates atherosclerotic process by improvement of endothelial dysfunction. However, the underlying mechanism remains poorly understood. Thus, the aim of this study is to investigate the potential mechanism behind the attenuating effects of DMY on tumor necrosis factor alpha- (TNF-α-) induced endothelial dysfunction. In response to TNF-α, microRNA-21 (miR-21) expression was significantly increased in human umbilical vein endothelial cells (HUVECs), in line with impaired endothelial dysfunction as evidenced by decreased tube formation and migration, endothelial nitric oxide synthase (eNOS) (ser1177) phosphorylation, dimethylarginine dimethylaminohydrolases 1 (DDAH1) expression and metabolic activity, and nitric oxide (NO) concentration as well as increased asymmetric dimethylarginine (ADMA) levels. In contrast, DMY or blockade of miR-21 expression ameliorated endothelial dysfunction in HUVECs treated with TNF-α through downregulation of miR-21 expression, whereas these effects were abolished by overexpression of miR-21. In addition, using a nonspecific NOS inhibitor, L-NAME, also abrogated the attenuating effects of DMY on endothelial dysfunction. Taken together, these data demonstrated that miR-21-mediated DDAH1/ADMA/NO signal pathway plays an important role in TNF-α-induced endothelial dysfunction, and DMY attenuated endothelial dysfunction induced by TNF-α in a miR-21-dependent manner.
Collapse
|
46
|
The Versatile Effects of Dihydromyricetin in Health. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1053617. [PMID: 28947908 PMCID: PMC5602609 DOI: 10.1155/2017/1053617] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/27/2017] [Indexed: 01/02/2023]
Abstract
Dihydromyricetin is a flavonoid isolated from Ampelopsis grossedentata, which is traditionally used in China. Dihydromyricetin exhibits health-benefiting activities with minimum adverse effects. Dihydromyricetin has been demonstrated to show antioxidative, anti-inflammatory, anticancer, antimicrobial, cell death-mediating, and lipid and glucose metabolism-regulatory activities. Dihydromyricetin may scavenge ROS to protect against oxidative stress or potentiate ROS generation to counteract cancer cells selectively without any effects on normal cells. However, the low bioavailability of dihydromyricetin limits its potential applications. Recent research has gained positive and promising data. This review will discuss the versatile effects and clinical prospective of dihydromyricetin.
Collapse
|