1
|
Elsisi DM, Mohamed AM, Seadawy MG, Ahmed A, Abou-Amra ES. One pot multi-component synthesis of novel functionalized pyrazolo furan-2(5H)-one derivatives: in vitro, DFT, molecular docking, and pharmacophore studies, as coronavirus inhibitors. Mol Divers 2025; 29:965-989. [PMID: 39168959 PMCID: PMC11909067 DOI: 10.1007/s11030-024-10885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/23/2024] [Indexed: 08/23/2024]
Abstract
New and facile one-pot approach for the syntheses of 12 derivatives of 3,5-disubstituted furane-2(5H)-one (4a-l) from easily available starting materials. The suitable synthetic procedures for selective synthesis of diverse furane-2(5H)-one derivatives were achieved via multi-component condensation of 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (1), pyruvic acid and different aromatic amines 3a-l in good to high yields and short reaction time by refluxing in acetic acid as well as obtained by another method (method B) when unsaturated arylidene pyruvic acid 6 was refluxed with different aromatic amines in acetic acid but in smaller yield than method A. Structures of the prepared compounds were elucidated by elemental analysis and spectral data as mass, IR, 1H-NMR and 13C-NMR spectroscopy. The antiviral efficacy of compounds 4a-l against SARS-CoV-2 was evaluated using the MTT assay. It was demonstrated that synthetic compounds 4c-e and 4h-j have a potent and selective inhibitory effect on SARS-CoV-2, a strain obtained from Egyptian patients. We utilized density-functional theory (DFT) analyses to deduce the molecular structures and topologies of the more energetic molecules. Molecular docking studies were performed against the SARS-CoV-2 main protease (PDB ID: 6Y84) and the SARS-CoV-2 Nsp9 RNA binding protein (PDB ID: 6W4B) to study the binding mechanism, non-bonding interactions, and binding affinity. Lastly, a hypothetical pharmacophore model was constructed by applying the Molecular Operating Environment (MOE) tool and eleven pharmaceuticals with proven antiviral activity.
Collapse
Affiliation(s)
- Doaa M Elsisi
- Department of Chemistry, Faculty of Science (Girl's Branch), Al-Azhar University, Yousef Abbas Street, Cairo, 11754, Nasr City, Egypt
| | - Ashraf M Mohamed
- Applied Organic Chemistry Department, National Research Centre, Dokki, 12622, Giza, Egypt.
| | - Mohamed G Seadawy
- Biological Prevention Department, Chemical Warfare, Cairo, 11351, Egypt
| | - Aya Ahmed
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed, Cairo, 12588, Egypt
| | - Eman S Abou-Amra
- Department of Chemistry, Faculty of Science (Girl's Branch), Al-Azhar University, Yousef Abbas Street, Cairo, 11754, Nasr City, Egypt.
| |
Collapse
|
2
|
Singh P, Mohanty B. Neurotensin receptor agonist PD149163 modulates LPS-induced enterocyte apoptosis by downregulating TNFR pathway and executioner caspase 3 in endotoxemic mice: insights from in vivo and in silico study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03794-9. [PMID: 39812770 DOI: 10.1007/s00210-025-03794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
This study was designed to evaluate the dose-dependent efficacy of neurotensin receptor-1 (NTSR1) agonist PD149163 in the amelioration of the lipopolysaccharide (LPS)-induced apoptosis in the gastrointestinal tract (GIT) of mice. PD149163 is an analogue of NTS, a GIT tri-decapeptide with anti-inflammatory and anti-oxidative effects. Swiss-albino mice (female/8 weeks/25 ± 2.5 g) were divided into six groups: control; LPS, LPS + PD149163L, and LPS + PD149163H groups were treated with LPS (0.2 μmol/L/kgBW; 5 days), followed by exposure of PD149163 to LPS + PD149163L (10.6 μmol/L/kgBW), and LPS + PD149163H (21.2 μmol/L/kgBW) for 28 days. OnlyPD149163L (10.6 μmol/L/kgBW) and onlyPD149163H (21.2 μmol/L/kgBW) groups were maintained for 28 days. Both the LPS and PD149163 were given intraperitoneally. PD149163 treatment for 4 weeks alleviated the LPS-induced enterocyte apoptosis in a dose-dependent manner. LPS-induced excessive levels of caspase-3, tumour necrosis factor-α, and leptin (biomarkers of LPS-induced apoptosis) in plasma were decreased by PD149163H treatment. Moreover, LPS-induced gut oxidative stress was ameliorated by PD149163H supplementation, as evidenced by the decreased content of malondialdehyde, lipid-hydroperoxide and increased level of superoxide-dismutase, catalase. Furthermore, PD149163H mediated elevation of the plasma anti-apoptotic protein (B-cell leukaemia/lymphoma-2) along with the NTS level contributed to the modulation of LPS-induced enterocyte apoptosis, reflected in histopathology. In vivo results were substantiated with in silico molecular docking analysis that predicted the binding of PD149163-TLR4 complex, suggesting that PD149163 can act as a TLR4 modulator and inhibit the activation of TLR4. The role of PD149163 in ameliorating GIT apoptosis by its anti-apoptotic and antioxidative effects is suggested. Further research may provide significant insights into the therapeutic intervention of PD149163 in apoptosis-related diseases of GIT.
Collapse
Affiliation(s)
- Priya Singh
- Department of Zoology, University of Allahabad, Senate House, University Road, Old Katra, Prayagraj, Uttar Pradesh, 211002, India
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Senate House, University Road, Old Katra, Prayagraj, Uttar Pradesh, 211002, India.
| |
Collapse
|
3
|
Chakraborty A, Ghosh R, Soumya Mohapatra S, Barik S, Biswas A, Chowdhuri S. Repurposing of antimycobacterium drugs for COVID-19 treatment by targeting SARS CoV-2 main protease: An in-silico perspective. Gene 2024; 922:148553. [PMID: 38734190 DOI: 10.1016/j.gene.2024.148553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The global mortality rate has been significantly impacted by the COVID-19 pandemic, caused by the SARS CoV-2 virus. Although the pursuit for a potent antiviral is still in progress, experimental therapies based on repurposing of existing drugs is being attempted. One important therapeutic target for COVID-19 is the main protease (Mpro) that cleaves the viral polyprotein in its replication process. Recently minocycline, an antimycobacterium drug, has been successfully implemented for the treatment of COVID-19 patients. But it's mode of action is still far from clear. Furthermore, it remains unresolved whether alternative antimycobacterium drugs can effectively regulate SARS CoV-2 by inhibiting the enzymatic activity of Mpro. To comprehend these facets, eight well-established antimycobacterium drugs were put through molecular docking experiments. Four of the antimycobacterium drugs (minocycline, rifampicin, clofazimine and ofloxacin) were selected by comparing their binding affinities towards Mpro. All of the four drugs interacted with both the catalytic residues of Mpro (His41 and Cys145). Additionally, molecular dynamics experiments demonstrated that the Mpro-minocyline complex has enhanced stability, experiences reduced conformational fluctuations and greater compactness than other three Mpro-antimycobacterium and Mpro-N3/lopinavir complexes. This research furnishes evidences for implementation of minocycline against SARS CoV-2. In addition, our findings also indicate other three antimycobacterium/antituberculosis drugs (rifampicin, clofazimine and ofloxacin) could potentially be evaluated for COVID-19 therapy.
Collapse
Affiliation(s)
- Ayon Chakraborty
- University Institute of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, India
| | - Rajesh Ghosh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | | | - Subhashree Barik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| | - Snehasis Chowdhuri
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| |
Collapse
|
4
|
García-Aguilar A, Campi-Caballero R, Visoso-Carvajal G, García-Sánchez JR, Correa-Basurto J, García-Machorro J, Espinosa-Raya J. In Vitro Analysis of SARS-CoV-2 Spike Protein and Ivermectin Interaction. Int J Mol Sci 2023; 24:16392. [PMID: 38003581 PMCID: PMC10671224 DOI: 10.3390/ijms242216392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The spike (S) protein of SARS-CoV-2 is a molecular target of great interest for developing drug therapies against COVID-19 because S is responsible for the interaction of the virus with the host cell receptor. Currently, there is no outpatient safety treatment for COVID-19 disease. Furthermore, we consider it of worthy importance to evaluate experimentally the possible interaction of drugs (approved by the Food and Drug Administration) and the S, considering some previously in silico and clinical use. Then, the objective of this study was to demonstrate the in vitro interaction of ivermectin with S. The equilibrium dialysis technique with UV-Vis was performed to obtain the affinity and dissociation constants. In addition, the Drug Affinity Responsive Target Stability (DARTS) technique was used to demonstrate the in vitro interaction of S with ivermectin. The results indicate the interaction between ivermectin and the S with an association and dissociation constant of Ka = 1.22 µM-1 and Kd = 0.81 µM, respectively. The interaction was demonstrated in ratios of 1:50 pmol and 1:100 pmol (S: ivermectin) by the DARTS technique. The results obtained with these two different techniques demonstrate an interaction between S and ivermectin previously explored in silico, suggesting its clinical uses to stop the viral spread among susceptible human hosts.
Collapse
Affiliation(s)
- Alejandra García-Aguilar
- Laboratorio de Neurofarmacología, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México C.P. 11340, Mexico; (A.G.-A.); (R.C.-C.)
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México C.P. 11340, Mexico;
| | - Rebeca Campi-Caballero
- Laboratorio de Neurofarmacología, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México C.P. 11340, Mexico; (A.G.-A.); (R.C.-C.)
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México C.P. 11340, Mexico;
| | - Giovani Visoso-Carvajal
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México C.P. 11340, Mexico;
| | - José Rubén García-Sánchez
- Laboratorio de Oncología Molecular y Estrés Oxidativo, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México C.P. 11340, Mexico;
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México C.P. 11340, Mexico;
| | - Jazmín García-Machorro
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México C.P. 11340, Mexico;
| | - Judith Espinosa-Raya
- Laboratorio de Neurofarmacología, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México C.P. 11340, Mexico; (A.G.-A.); (R.C.-C.)
| |
Collapse
|
5
|
Zhang C, Sui Y, Liu S, Yang M. Anti-Viral Activity of Bioactive Molecules of Silymarin against COVID-19 via In Silico Studies. Pharmaceuticals (Basel) 2023; 16:1479. [PMID: 37895950 PMCID: PMC10610370 DOI: 10.3390/ph16101479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection drove the global coronavirus disease 2019 (COVID-19) pandemic, causing a huge loss of human life and a negative impact on economic development. It is an urgent necessity to explore potential drugs against viruses, such as SARS-CoV-2. Silymarin, a mixture of herb-derived polyphenolic flavonoids extracted from the milk thistle, possesses potent antioxidative, anti-apoptotic, and anti-inflammatory properties. Accumulating research studies have demonstrated the killing activity of silymarin against viruses, such as dengue virus, chikungunya virus, and hepatitis C virus. However, the anti-COVID-19 mechanisms of silymarin remain unclear. In this study, multiple disciplinary approaches and methodologies were applied to evaluate the potential mechanisms of silymarin as an anti-viral agent against SARS-CoV-2 infection. In silico approaches such as molecular docking, network pharmacology, and bioinformatic methods were incorporated to assess the ligand-protein binding properties and analyze the protein-protein interaction network. The DAVID database was used to analyze gene functions, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment. TCMSP and GeneCards were used to identify drug target genes and COVID-19-related genes. Our results revealed that silymarin compounds, such as silybin A/B and silymonin, displayed triplicate functions against SARS-CoV-2 infection, including directly binding with human angiotensin-converting enzyme 2 (ACE2) to inhibit SARS-CoV-2 entry into the host cells, directly binding with viral proteins RdRp and helicase to inhibit viral replication and proliferation, and regulating host immune response to indirectly inhibit viral infection. Specifically, the targets of silymarin molecules in immune regulation were screened out, such as proinflammatory cytokines TNF and IL-6 and cell growth factors VEGFA and EGF. In addition, the molecular mechanism of drug-target protein interaction was investigated, including the binding pockets of drug molecules in human ACE2 and viral proteins, the formation of hydrogen bonds, hydrophobic interactions, and other drug-protein ligand interactions. Finally, the drug-likeness results of candidate molecules passed the criteria for drug screening. Overall, this study demonstrates the molecular mechanism of silymarin molecules against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA;
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, China;
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, China;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
6
|
Pagliarin LG, de Oliveira LM, dos Anjos VNF, de Souza CDBT, Peiter GC, Façanha Wendel C, Dillmann Groto A, Freire de Melo F, Teixeira KN. In silico evidence of Remdesivir action in blood coagulation cascade modulation in COVID-19 treatment. World J Biol Chem 2023; 14:72-83. [PMID: 37547340 PMCID: PMC10401403 DOI: 10.4331/wjbc.v14.i4.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has demonstrated several clinical manifestations which include not only respiratory system issues but also liver, kidney, and other organ injuries. One of these abnormalities is coagulopathies, including thrombosis and disseminated intravascular coagulation. Because of this, the administration of low molecular weight heparin is required for patients that need to be hospitalized. In addition, Remdesivir is an antiviral that was used against Middle East Acute Respiratory Syndrome, Ebola, Acute Respiratory Syndrome, and other diseases, showing satisfactory results on recovery. Besides, there is evidence suggesting that this medication can provide a better prognosis for patients with COVID-19. AIM To investigate in silico the interaction between Remdesivir and clotting factors, pursuing a possibility of using it as medicine. METHODS In this in silico study, the 3D structures of angiotensin-converting enzyme 2 (ACE2), Factor I (fibrinogen), Factor II (prothrombin), Factor III (thromboplastin), Factor V (proaccelerin), Factor VII (proconvertin), Factor VIII (antihemophilic factor A), Factor IX (antihemophilic factor B), Factor X (Stuart-Prower factor), and Factor XI (precursor of thromboplastin (these structures are technically called receptors) were selected from the Protein Data Bank. The structures of the antivirals Remdesivir and Osetalmivir (these structures are called ligands) were selected from the PubChem database, while the structure of Atazanavir was selected from the ZINC database. The software AutoDock Tools (ADT) was used to prepare the receptors for molecular docking. Ions, peptides, water molecules, and other ones were removed from each ligand, and then, hydrogen atoms were added to the structures. The grid box was delimited and calculated using the same software ADT. A physiological environment with pH 7.4 is needed to make the ligands interact with the receptors, and still the software Marvin sketch® (ChemAxon®) was used to forecast the protonation state. To perform molecular docking, ADT and Vina software was connected. Using PyMol® software and Discovery studio® software from BIOVIA, it was possible to analyze the amino acid residues from receptors that were involved in the interactions with the ligands. Ligand tortions, atoms that participated in the interactions, and the type, strength, and duration of the interactions were also analyzed using those software. RESULTS Molecular docking analysis showed that Remdesivir and ACE2 had an affinity energy of -8.8 kcal/moL, forming a complex with eight hydrogen bonds involving seven atoms of Remdesivir and five amino acid residues of ACE2. Remdesivir and prothrombin had an interaction with six hydrogen bonds involving atoms of the drug and five amino acid residues of the clotting factor. Similar to that, Remdesivir and thromboplastin presented interactions via seven hydrogen bonds involving five atoms of the drug and four residues of the clotting factor. While Remdesivir and Factor V established a complex with seven hydrogen bonds between six antiviral atoms and six amino acid residues from the factor, and Factor VII connected with the drug by four hydrogen bonds, which involved three atoms of the drug and three residues of amino acids of the factor. The complex between Remdesivir and Factor IX formed an interaction via 11 hydrophilic bonds with seven atoms of the drug and seven residues of the clotting factor, plus one electrostatic bond and three hydrophobic interactions. Factor X and Remdesivir had an affinity energy of -9.6 kcal/moL, and the complex presented 10 hydrogen bonds and 14 different hydrophobic interactions which involved nine atoms of the drug and 16 amino acid residues of the clotting factor. The interaction between Remdesivir and Factor XI formed five hydrogen bonds involving five amino acid residues of the clotting factor and five of the antiviral atoms. CONCLUSION Because of the in silico significant affinity, Remdesivir possibly could act in the severe acute respiratory syndrome coronavirus 2 infection blockade by interacting with ACE2 and concomitantly act in the modulation of the coagulation cascade preventing the hypercoagulable state.
Collapse
Affiliation(s)
| | | | | | | | - Gabrielle Caroline Peiter
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
| | | | | | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde - Campus Anísio Teixeira, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Kádima Nayara Teixeira
- Campus Toledo, Universidade Federal do Paraná, Toledo 85.919-899, Paraná, Brazil
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
| |
Collapse
|
7
|
Bowen DR, Pathak S, Nadar RM, Parise RD, Ramesh S, Govindarajulu M, Moore A, Ren J, Moore T, Dhanasekaran M. Oxidative stress and COVID-19-associated neuronal dysfunction: mechanisms and therapeutic implications. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1153-1167. [PMID: 37357527 PMCID: PMC10465323 DOI: 10.3724/abbs.2023085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 06/27/2023] Open
Abstract
Severe acute respiratory syndrome (SARS)-CoV-2 virus causes novel coronavirus disease 2019 (COVID-19), and there is a possible role for oxidative stress in the pathophysiology of neurological diseases associated with COVID-19. Excessive oxidative stress could be responsible for the thrombosis and other neuronal dysfunctions observed in COVID-19. This review discusses the role of oxidative stress associated with SARS-CoV-2 and the mechanisms involved. Furthermore, the various therapeutics implicated in treating COVID-19 and the oxidative stress that contributes to the etiology and pathogenesis of COVID-19-induced neuronal dysfunction are discussed. Further mechanistic and clinical research to combat COVID-19 is warranted to understand the exact mechanisms, and its true clinical effects need to be investigated to minimize neurological complications from COVID-19.
Collapse
Affiliation(s)
- Dylan R. Bowen
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Suhrud Pathak
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Rishi M. Nadar
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Rachel D. Parise
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Sindhu Ramesh
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Austin Moore
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Jun Ren
- Department of CardiologyZhongshan Hospital Fudan UniversityShanghai200032China
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWA98195USA
| | - Timothy Moore
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | | |
Collapse
|
8
|
Prabhakaran P, Hebbani AV, Menon SV, Paital B, Murmu S, Kumar S, Singh MK, Sahoo DK, Desai PPD. Insilico generation of novel ligands for the inhibition of SARS-CoV-2 main protease (3CL pro) using deep learning. Front Microbiol 2023; 14:1194794. [PMID: 37448573 PMCID: PMC10338188 DOI: 10.3389/fmicb.2023.1194794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
The recent emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the coronavirus disease (COVID-19) has become a global public health crisis, and a crucial need exists for rapid identification and development of novel therapeutic interventions. In this study, a recurrent neural network (RNN) is trained and optimized to produce novel ligands that could serve as potential inhibitors to the SARS-CoV-2 viral protease: 3 chymotrypsin-like protease (3CLpro). Structure-based virtual screening was performed through molecular docking, ADMET profiling, and predictions of various molecular properties were done to evaluate the toxicity and drug-likeness of the generated novel ligands. The properties of the generated ligands were also compared with current drugs under various phases of clinical trials to assess the efficacy of the novel ligands. Twenty novel ligands were selected that exhibited good drug-likeness properties, with most ligands conforming to Lipinski's rule of 5, high binding affinity (highest binding affinity: -9.4 kcal/mol), and promising ADMET profile. Additionally, the generated ligands complexed with 3CLpro were found to be stable based on the results of molecular dynamics simulation studies conducted over a 100 ns period. Overall, the findings offer a promising avenue for the rapid identification and development of effective therapeutic interventions to treat COVID-19.
Collapse
Affiliation(s)
- Prejwal Prabhakaran
- Department of Biotechnology, New Horizon College of Engineering, Bangalore, India
- Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Ananda Vardhan Hebbani
- Department of Biochemistry, Indian Academy Degree College (Autonomous), Bangalore, India
| | - Soumya V. Menon
- Department of Chemistry and Biochemistry, School of Sciences, Jain (Deemed-to-be) University, Bangalore, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Sneha Murmu
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, India
| | - Sunil Kumar
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, India
| | | | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
9
|
Khorram M, Tarahhomi A, van der Lee A, Excoffier G. Structural, Hirshfeld surface and molecular docking studies of a new organotin(IV)-phosphoric triamide complex and an amidophosphoric acid ester proposed as possible SARS-CoV-2 and Monkeypox inhibitors. Heliyon 2023; 9:e17358. [PMID: 37360112 PMCID: PMC10279467 DOI: 10.1016/j.heliyon.2023.e17358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Phosphoramides and their complexes are attractive compounds due to their significant inhibiting functionality in biological medicine. In this paper, a novel organotin(IV)-phosphoramide complex (Sn(CH3)2Cl2{[(3-Cl)C6H4NH]P(O)[NC4H8O]2}2, 1), derived from a reaction between phosphoric triamide ligand with dimethyltin dichloride, and a new amidophosphoric acid ester ([OCH2C(CH3)2CH2O]P(O)[N(CH3)CH2C6H5], 2), prepared from the condensation of a cyclic chlorophosphate reagent with N-methylbenzylamine, are structurally characterized and in silico investigated as potential SARS-CoV-2 and Monkeypox inhibitors by molecular docking simulation. Both compounds crystallize in the monoclinic crystal system with space group P21/c. The asymmetric unit of the complex 1 consists of one-half molecule, where SnIV is located on an inversion center, while the asymmetric part of 2 consists of one whole molecule. In the complex 1, the tin atom adopts a six-coordinate octahedral geometry with trans groups of (Cl)2, (CH3)2 and (PO)2 (PO = phosphoric triamide ligand). The molecular architecture consists of the N-H⋯Cl hydrogen bonds stretching as a 1D linear arrangement along the b axis with intermediate R22(12) ring motifs, whereas in the case of 2, the crystal packing is devoid of any classical hydrogen bond interaction. Furthermore, a graphical analysis by using Hirshfeld surface method identifies the most important intermolecular interactions being of the type H⋯Cl/Cl⋯H (for 1) and H⋯O/O⋯H (for 1 and 2), covering the hydrogen bond interactions N-H⋯Cl and C-H⋯O═P, respectively, which turn out to be favoured. A biological molecular docking simulation on the studied compounds provides evidence to suggest a significant inhibitory potential against SARS-COV-2 (6LU7) and Monkeypox (4QWO) especially for 6LU7 with a binding energy around -6 kcal/mol competing with current effective drugs against this virus (with a binding energy around -5 and -7 kcal/mol). It is worth noting that this report is the first case of an inhibitory potential evaluation of phosphoramide compounds on Monkeypox.
Collapse
Affiliation(s)
- Maedeh Khorram
- Department of Chemistry, Semnan University, Semnan 35131-19111, Iran
| | - Atekeh Tarahhomi
- Department of Chemistry, Semnan University, Semnan 35131-19111, Iran
| | - Arie van der Lee
- IEM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Grégory Excoffier
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille, France
| |
Collapse
|
10
|
Mortuza MG, Roni MAH, Kumer A, Biswas S, Saleh MA, Islam S, Sadaf S, Akther F. A Computational Study on Selected Alkaloids as SARS-CoV-2 Inhibitors: PASS Prediction, Molecular Docking, ADMET Analysis, DFT, and Molecular Dynamics Simulations. Biochem Res Int 2023; 2023:9975275. [PMID: 37181403 PMCID: PMC10171978 DOI: 10.1155/2023/9975275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/26/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023] Open
Abstract
Despite treatments and vaccinations, it remains difficult to develop naturally occurring COVID-19 inhibitors. Here, our main objective is to find potential lead compounds from the retrieved alkaloids with antiviral and other biological properties that selectively target the main SARS-CoV-2 protease (Mpro), which is required for viral replication. In this work, 252 alkaloids were aligned using Lipinski's rule of five and their antiviral activity was then assessed. The prediction of activity spectrum of substances (PASS) data was used to confirm the antiviral activities of 112 alkaloids. Finally, 50 alkaloids were docked with Mpro. Furthermore, assessments of molecular electrostatic potential surface (MEPS), density functional theory (DFT), and absorption, distribution, metabolism, excretion, and toxicity (ADMET) were performed, and a few of them appeared to have potential as candidates for oral administration. Molecular dynamics simulations (MDS) with a time step of up to 100 ns were used to confirm that the three docked complexes were more stable. It was found that the most prevalent and active binding sites that limit Mpro'sactivity are PHE294, ARG298, and GLN110. All retrieved data were compared to conventional antivirals, fumarostelline, strychnidin-10-one (L-1), 2,3-dimethoxy-brucin (L-7), and alkaloid ND-305B (L-16) and were proposed as enhanced SARS-CoV-2 inhibitors. Finally, with additional clinical or necessary study, it may be able to use these indicated natural alkaloids or their analogs as potential therapeutic candidates.
Collapse
Affiliation(s)
- Md. Golam Mortuza
- Department of Pharmaceutical Sciences, North South University, Dhaka 1217, Bangladesh
| | - Md Abul Hasan Roni
- Department of Science and Humanities, Bangladesh Army International University of Science and Technology, Cumilla 3500, Bangladesh
| | - Ajoy Kumer
- Department of Chemistry, European University of Bangladesh-EUB, Dhaka 1216, Bangladesh
| | - Suvro Biswas
- Miocrobiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Abu Saleh
- Miocrobiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shirmin Islam
- Miocrobiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Samia Sadaf
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Fahmida Akther
- Department of Pharmacy, University of Chittagong, Chittagong 4331, Bangladesh
| |
Collapse
|
11
|
Madhubala D, Patra A, Islam T, Saikia K, Khan MR, Ahmed SA, Borah JC, Mukherjee AK. Snake venom nerve growth factor-inspired designing of novel peptide therapeutics for the prevention of paraquat-induced apoptosis, neurodegeneration, and alteration of metabolic pathway genes in the rat pheochromocytoma PC-12 cell. Free Radic Biol Med 2023; 197:23-45. [PMID: 36669545 DOI: 10.1016/j.freeradbiomed.2023.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Neurodegenerative disorders (ND), associated with the progressive loss of neurons, oxidative stress-mediated production of reactive oxygen species (ROS), and mitochondrial dysfunction, can be treated with synthetic peptides possessing innate neurotrophic effects and neuroprotective activity. Computational analysis of two small synthetic peptides (trideca-neuropeptide, TNP; heptadeca-neuropeptide, HNP) developed from the nerve growth factors from snake venoms predicted their significant interaction with the human TrkA receptor (TrkA). In silico results were validated by an in vitro binding study of the FITC-conjugated custom peptides to rat pheochromocytoma PC-12 cell TrkA receptors. Pre-treatment of PC-12 cells with TNP and HNP induced neuritogenesis and significantly reduced the paraquat (PT)-induced cellular toxicity, the release of lactate dehydrogenase from the cell cytoplasm, production of intracellular ROS, restored the level of antioxidants, prevented alteration of mitochondrial transmembrane potential (ΔΨm) and adenosine triphosphate (ATP) production, and inhibited cellular apoptosis. These peptides lack in vitro cytotoxicity, haemolytic activity, and platelet-modulating properties and do not interfere with the blood coagulation system. Functional proteomic analyses demonstrated the reversal of PT-induced upregulated and downregulated metabolic pathway genes in PC-12 cells that were pre-treated with HNP and revealed the metabolic pathways regulated by HNP to induce neuritogenesis and confer protection against PT-induced neuronal damage in PC-12. The quantitative RT-PCR analysis confirmed that the PT-induced increased and decreased expression of critical pro-apoptotic and anti-apoptotic genes had been restored in the PC-12 cells pre-treated with the custom peptides. A network gene expression profile was proposed to elucidate the molecular interactions among the regulatory proteins for HNP to salvage the PT-induced damage. Taken together, our results show how the peptides can rescue PT-induced oxidative stress, mitochondrial dysfunction, and cellular death and suggest new opportunities for developing neuroprotective drugs.
Collapse
Affiliation(s)
- Dev Madhubala
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India; Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Taufikul Islam
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Kangkon Saikia
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Mojibur R Khan
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Semim Akhtar Ahmed
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Jagat C Borah
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India; Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India.
| |
Collapse
|
12
|
Theoharides TC, Kempuraj D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID. Cells 2023; 12:688. [PMID: 36899824 PMCID: PMC10001285 DOI: 10.3390/cells12050688] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). About 45% of COVID-19 patients experience several symptoms a few months after the initial infection and develop post-acute sequelae of SARS-CoV-2 (PASC), referred to as "Long-COVID," characterized by persistent physical and mental fatigue. However, the exact pathogenetic mechanisms affecting the brain are still not well-understood. There is increasing evidence of neurovascular inflammation in the brain. However, the precise role of the neuroinflammatory response that contributes to the disease severity of COVID-19 and long COVID pathogenesis is not clearly understood. Here, we review the reports that the SARS-CoV-2 spike protein can cause blood-brain barrier (BBB) dysfunction and damage neurons either directly, or via activation of brain mast cells and microglia and the release of various neuroinflammatory molecules. Moreover, we provide recent evidence that the novel flavanol eriodictyol is particularly suited for development as an effective treatment alone or together with oleuropein and sulforaphane (ViralProtek®), all of which have potent anti-viral and anti-inflammatory actions.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
13
|
Jiang Y, Rubin L, Zhou Z, Zhang H, Su Q, Hou ST, Lazarovici P, Zheng W. Pharmacological therapies and drug development targeting SARS-CoV-2 infection. Cytokine Growth Factor Rev 2022; 68:13-24. [PMID: 36266222 PMCID: PMC9558743 DOI: 10.1016/j.cytogfr.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 01/30/2023]
Abstract
The development of therapies for SARS-CoV-2 infection, based on virus biology and pathology, and of large- and small-scale randomized controlled trials, have brought forward several antiviral and immunomodulatory drugs targeting the disease severity. Casirivimab/Imdevimab monoclonal antibodies and convalescent plasma to prevent virus entry, Remdesivir, Molnupiravir, and Paxlovid nucleotide analogs to prevent viral replication, a variety of repurposed JAK-STAT signaling pathway inhibitors, corticosteroids, and recombinant agonists/antagonists of cytokine and interferons have been found to provide clinical benefits in terms of mortality and hospitalization. However, current treatment options face multiple clinical needs, and therefore, in this review, we provide an update on the challenges of the existing therapeutics and highlight drug development strategies for COVID-19 therapy, based on ongoing clinical trials, meta-analyses, and clinical case reports.
Collapse
Affiliation(s)
- Yizhou Jiang
- Centre of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China,Brain Research Centre and Department of Biology, School of Life Science, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, China
| | - Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel
| | - Zhiwei Zhou
- Centre of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Haibo Zhang
- Anesthesia, Critical Care Medicine and Physiology, St. Michael’s Hospital, University of Toronto, Ontario, Canada
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, School of Life Science, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, China,Correspondence to: Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, China
| | - Philip Lazarovici
- Pharmacology, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Wenhua Zheng
- Centre of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China,Correspondence to: Faculty of Health Sciences, University of Macau, Room 3057, Building E12, Avenida de Universidade, Taipa, Macau, China
| |
Collapse
|
14
|
Different phosphoric triamide [HN]3-nP(O)[N]n (n = 1, 2) skeletons lead to identical non-covalent interactions assemblies: X-ray crystallography investigation, Hirshfeld surface analysis and molecular docking study against SARS-CoV-2. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
An Effective Platform for SARS-CoV-2 Prevention by Combining Neutralization and RNAi Technology. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [PMCID: PMC9514696 DOI: 10.1007/s10118-022-2846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
At present, the coronavirus disease 2019 (COVID-19) pandemic is a global health crisis. Scientists all over the globe are urgently looking forward to an effective solution to prevent the spread of the epidemic and avoid more casualties at an early date. In this study, we establish an effective platform for the prevention of SARS-CoV-2 by combining the neutralization strategy and RNAi technology. To protect normal cells from infection, the customized cells are constructed to stably express viral antigenic receptor ACE2 on the cell membrane. These modified cells are used as bait for inducing the viral entry. The transcription and replication activities of viral genome are intercepted subsequently by the intracellular shRNAs, which are complementary to the viral gene fragments. A pseudotyped virus reconstructed from the HIV lentivirus is utilized as a virus model, by which we validate the feasibility and effectiveness of our strategy in vitro. Our work establishes an initial model and lays the foundation for future prevention and treatment of various RNA viruses.
Collapse
|
16
|
A Review on Herbal Secondary Metabolites Against COVID-19 Focusing on the Genetic Variants of SARS-CoV-2. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-129618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: An outbreak of the new coronavirus disease 2019 (COVID-19) was reported in Wuhan, China, in December 2019, subsequently affecting countries worldwide and causing a pandemic. Although several vaccines, such as mRNA vaccines, inactivated vaccines, and adenovirus vaccines, have been licensed in several countries, the danger of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants persists. To date, Alpha (B.1.1.7), Beta (B.1.351, B.1.351.2, B.1.351.3), Delta (B.1.617.2, AY.1, AY.2, AY. 3), Gamma (P.1, P.1.1, P.1.2), and Iota (B.1 .526) circulating in the United States, Kappa (B.1.617.1) in India, Lambda (C.37) in Peru and Mu (B.1.621) in Colombia are considered the variants of concern and interest. Evidence Acquisition: Data were collected through the end of August 2021 by searching PubMed, Scopus, and Google Scholar databases. There were findings from in silico, in vitro cell-based, and non-cell-based investigations. Results: The potential and safety profile of herbal medicines need clarification to scientifically support future recommendations regarding the benefits and risks of their use. Conclusions: Current research results on natural products against SARS-CoV-2 and variants are discussed, and their specific molecular targets and possible mechanisms of action are summarized.
Collapse
|
17
|
Makati AC, Ananda AN, Putri JA, Amellia SF, Setiawan B. Molecular docking of ethanol extracts of katuk leaf ( Sauropus androgynus) on functional proteins of severe acute respiratory syndrome coronavirus 2. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2022; 149:1-5. [PMID: 35668920 PMCID: PMC9158454 DOI: 10.1016/j.sajb.2022.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic has become a major health crisis globally. Alternative treatment approaches include using food sources rich in flavonoid compounds, such as the leaves of katuk plant (Sauropus androgynus). The purpose of this study was to analyze the characteristics of the flavonoid group present in active compounds of katuk leaves (Sauropus androgynus) and to study the mechanism underlying interactions (molecular docking) of these compounds with 3CLpro, Nsp1, Nsp3, RdRp, Nsp7_Nsp8 complex, and PLpro in SARS-CoV-2, and ACE2 in humans. In silico analysis was performed using Hex 8.0. software, which is primary tool of docking analysis. Interaction between the ligand and its receptors were analyzed using the software Discovery studio 4.1. The results of this study indicated that ABCD chains of 3CLpro had the highest bond energy with afzelin (-42.77 Kcal/mol), RdRp Nsp7_Nsp8 complex had the highest bond energy with trifolin (-310.87 Kcal/mol), PLpro had the highest bond energy with afzelin (-190.23 Kcal/mol), Nsp1 had the highest bond energy with afzelin (-286.89 Kcal/mol), Nsp3 had the highest bond energy with trifolin (-334.97 Kcal/mol), and ACE2 had the highest bond energy with trifolin (-307.96 Kcal/mol). Thus, on comparison with conventionally used drugs, the active flavonoid compounds in katuk leaves (Sauropus androgynus) showed specific affinity for 3CLpro, Nsp1, Nsp3, RdRp Nsp7_Nsp8 complex, and PLpro in SARS-CoV-2 and ACE2 in humans. Thus, katuk leaves a potential herbal candidates to derive new drugs or complementary medicines for COVID-19.
Collapse
Affiliation(s)
- Annisa Camellia Makati
- Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, South Kalimantan, Indonesia
| | - Aghnia Nabila Ananda
- Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, South Kalimantan, Indonesia
| | - Jasmine Aisyah Putri
- Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, South Kalimantan, Indonesia
| | - Siti Feritasia Amellia
- Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, South Kalimantan, Indonesia
| | - Bambang Setiawan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, South Kalimantan, Indonesia
| |
Collapse
|
18
|
Niranjan V, Setlur AS, Karunakaran C, Uttarkar A, Kumar KM, Skariyachan S. Scope of repurposed drugs against the potential targets of the latest variants of SARS-CoV-2. Struct Chem 2022; 33:1585-1608. [PMID: 35938064 PMCID: PMC9346052 DOI: 10.1007/s11224-022-02020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022]
Abstract
The unprecedented outbreak of the severe acute respiratory syndrome (SARS) Coronavirus-2, across the globe, triggered a worldwide uproar in the search for immediate treatment strategies. With no specific drug and not much data available, alternative approaches such as drug repurposing came to the limelight. To date, extensive research on the repositioning of drugs has led to the identification of numerous drugs against various important protein targets of the coronavirus strains, with hopes of the drugs working against the major variants of concerns (alpha, beta, gamma, delta, omicron) of the virus. Advancements in computational sciences have led to improved scope of repurposing via techniques such as structure-based approaches including molecular docking, molecular dynamic simulations and quantitative structure activity relationships, network-based approaches, and artificial intelligence-based approaches with other core machine and deep learning algorithms. This review highlights the various approaches to repurposing drugs from a computational biological perspective, with various mechanisms of action of the drugs against some of the major protein targets of SARS-CoV-2. Additionally, clinical trials data on potential COVID-19 repurposed drugs are also highlighted with stress on the major SARS-CoV-2 targets and the structural effect of variants on these targets. The interaction modelling of some important repurposed drugs has also been elucidated. Furthermore, the merits and demerits of drug repurposing are also discussed, with a focus on the scope and applications of the latest advancements in repurposing.
Collapse
Affiliation(s)
- Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka India
| | | | | | - Akshay Uttarkar
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka India
| | - Kalavathi Murugan Kumar
- Department of Bioinformatics, Pondicherry University, Chinna Kalapet, Kalapet, Puducherry, Tamil Nadu India
| | - Sinosh Skariyachan
- Department of Microbiology, St. Pius X College, Rajapuram, Kasaragod, Kerala India
| |
Collapse
|
19
|
Ogunsakin RE, Ebenezer O, Jordaan MA, Shapi M, Ginindza TG. Mapping Scientific Productivity Trends and Hotspots in Remdesivir Research Publications: A Bibliometric Study from 2016 to 2021. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148845. [PMID: 35886696 PMCID: PMC9318242 DOI: 10.3390/ijerph19148845] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023]
Abstract
In response to global efforts to control and exterminate infectious diseases, this study aims to provide insight into the productivity of remdesivir research and highlight future directions. To achieve this, there is a need to summarize and curate evidence from the literature. As a result, this study carried out comprehensive scientific research to detect trends in published articles related to remdesivir using a bibliometric analysis. Keywords associated with remdesivir were used to access pertinent published articles using the Scopus database. A total of 5321 research documents were retrieved, primarily as novel research articles (n = 2440; 46%). The number of publications increased exponentially from 2020 up to the present. The papers published by the top 12 institutions focusing on remdesivir accounted for 25.69% of the overall number of articles. The USA ranked as the most productive country, with 906 documents (37.1%), equivalent to one-third of the global publications in this field. The most productive institution was Icahn School of Medicine, Mount Sinai, in the USA (103 publications). The New England Journal of Medicine was the most cited, with an h-index of 13. The publication of research on remdesivir has gained momentum in the past year. The importance of remdesivir suggests that it needs continued research to help global health organizations detect areas requiring instant action to implement suitable measures. Furthermore, this study offers evolving hotspots and valuable insights into the scientific advances in this field and provides scaling-up analysis and evidence diffusion on remdesivir.
Collapse
Affiliation(s)
- Ropo E. Ogunsakin
- Discipline of Public Health Medicine, School of Nursing & Public Health, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
- Correspondence:
| | - Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.A.J.); (M.S.)
| | - Maryam A. Jordaan
- Department of Chemistry, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.A.J.); (M.S.)
| | - Michael Shapi
- Department of Chemistry, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.A.J.); (M.S.)
| | - Themba G. Ginindza
- Discipline of Public Health Medicine, School of Nursing & Public Health, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
- Cancer & Infectious Diseases Epidemiology Research Unit (CIDERU), College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
20
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
21
|
Kumar S, Kovalenko S, Bhardwaj S, Sethi A, Gorobets NY, Desenko SM, Poonam, Rathi B. Drug repurposing against SARS-CoV-2 using computational approaches. Drug Discov Today 2022; 27:2015-2027. [PMID: 35151891 PMCID: PMC8830191 DOI: 10.1016/j.drudis.2022.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/05/2022] [Accepted: 02/04/2022] [Indexed: 12/11/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has generated a critical need for treatments to reduce morbidity and mortality associated with this disease. However, traditional drug development takes many years, which is not practical solution given the current pandemic. Therefore, a viable option is to repurpose existing drugs. The structural data of several proteins vital for the virus became available shortly after the start of the pandemic. In this review, we discuss the importance of these targets and their available potential inhibitors predicted by the computational approaches. Among the hits identified by computational approaches, 35 candidates were suggested for further evaluation, among which ten drugs are in clinical trials (Phase III and IV) for treating Coronavirus 2019 (COVID-19).
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Miranda House, University of Delhi, Delhi 110007, India
| | - Svitlana Kovalenko
- Department of Organic and Bioorganic Chemistry, State Scientific Institution 'Institute for Single Crystals', National Academy of Sciences of Ukraine, Nauky Ave. 60, Kharkiv 61001, Ukraine
| | - Shakshi Bhardwaj
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, India
| | - Aaftaab Sethi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, India
| | - Nikolay Yu Gorobets
- Department of Organic and Bioorganic Chemistry, State Scientific Institution 'Institute for Single Crystals', National Academy of Sciences of Ukraine, Nauky Ave. 60, Kharkiv 61001, Ukraine.
| | - Sergey M Desenko
- Department of Organic and Bioorganic Chemistry, State Scientific Institution 'Institute for Single Crystals', National Academy of Sciences of Ukraine, Nauky Ave. 60, Kharkiv 61001, Ukraine
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi 110007, India.
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, India.
| |
Collapse
|
22
|
In Silico Screening of Novel TMPRSS2 Inhibitors for Treatment of COVID-19. Molecules 2022; 27:molecules27134210. [PMID: 35807455 PMCID: PMC9268035 DOI: 10.3390/molecules27134210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
COVID-19, a pandemic caused by the virus SARS-CoV-2, has spread globally, necessitating the search for antiviral compounds. Transmembrane protease serine 2 (TMPRSS2) is a cell surface protease that plays an essential role in SARS-CoV-2 infection. Therefore, researchers are searching for TMPRSS2 inhibitors that can be used for the treatment of COVID-19. As such, in this study, based on the crystal structure, we targeted the active site of TMPRSS2 for virtual screening of compounds in the FDA database. Then, we screened lumacaftor and ergotamine, which showed strong binding ability, using 100 ns molecular dynamics simulations to study the stability of the protein–ligand binding process, the flexibility of amino acid residues, and the formation of hydrogen bonds. Subsequently, we calculated the binding free energy of the protein–ligand complex by the MM-PBSA method. The results show that lumacaftor and ergotamine interact with residues around the TMPRSS2 active site, and reached equilibrium in the 100 ns molecular dynamics simulations. We think that lumacaftor and ergotamine, which we screened through in silico studies, can effectively inhibit the activity of TMPRSS2. Our findings provide a basis for subsequent in vitro experiments, having important implications for the development of effective anti-COVID-19 drugs.
Collapse
|
23
|
Elbadawy HA, El‐Dissouky Ali A, Elkashef AA, Foro S, El‐Sayed DS. Zinc (II) facilitated nucleophilic addition on to N‐(4‐chlorophenyl) carbon hydrazonoyl dicyanide and hybrid complex formation: X‐ray, spectral characteristics, DFT, molecular docking, and biological studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hemmat A. Elbadawy
- Chemistry Department, Faculty of Science Alexandria University Alexandria Egypt
| | - Ali El‐Dissouky Ali
- Chemistry Department, Faculty of Science Alexandria University Alexandria Egypt
| | | | - Sabine Foro
- FB Material Wissenschaft, FG Strukturforschung, Technische Universitaet Darmstadt Darmstadt Germany
| | - Doaa S. El‐Sayed
- Chemistry Department, Faculty of Science Alexandria University Alexandria Egypt
| |
Collapse
|
24
|
Khater I, Nassar A. Seeking antiviral drugs to inhibit SARS-CoV-2 RNA dependent RNA polymerase: A molecular docking analysis. PLoS One 2022; 17:e0268909. [PMID: 35639751 PMCID: PMC9154104 DOI: 10.1371/journal.pone.0268909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
Abstract
COVID-19 outbreak associated with the severe acute respiratory syndrome coronavirus (SARS-CoV-2) raised health concerns across the globe and has been considered highly transmissible between people. In attempts for finding therapeutic treatment for the new disease, this work has focused on examining the polymerase inhibitors against the SARS-CoV-2 nsp12 and co-factors nsp8 and nsp7. Several polymerase inhibitors were examined against PDB ID: 6M71 using computational analysis evaluating the ligand's binding affinity to replicating groove to the active site. The findings of this analysis showed Cytarabine of -5.65 Kcal/mol with the highest binding probability (70%) to replicating groove of 6M71. The complex stability was then examined over 19 ns molecular dynamics simulation suggesting that Cytarabine might be possible potent inhibitor for the SARS-CoV-2 RNA Dependent RNA Polymerase.
Collapse
Affiliation(s)
- Ibrahim Khater
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Aaya Nassar
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
- Department of Clinical Research and Leadership, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States of America
| |
Collapse
|
25
|
Najarianzadeh M, Tarahhomi A, Pishgo S, van der Lee A. Experimental and theoretical study of novel amino-functionalized P(V) coordination compounds suggested as inhibitor of M Pro of SARS-COV-2 by molecular docking study. Appl Organomet Chem 2022; 36:e6636. [PMID: 35538930 PMCID: PMC9073987 DOI: 10.1002/aoc.6636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/18/2023]
Abstract
Amino-functionalized P(V) derivatives providing both N- and O-donor modes have attracted interest owing to their potential to form interesting coordination assemblies with applications such as biological drugs. Novel coordination modes of two- and four-dentate tris (pyridin-2-yl)phosphoric triamide OP[NH-2Py]3 as ([Co(II){[O][NH-2Py]P(O)[Ph]}2(DMF)2], 1) and ([Cu(II)Cl{[NH-2Py]2P(O)[N-2Py]}].DMF, 2) have been synthesized and structurally studied. The metal center environment is distorted octahedral for 1 and distorted square pyramidal for 2. The crystal structure of a new complex of Cu(II) with a Cu[N]4[Cl]2 environment ([Cu(II)Cl2(Pyrazole)4], 3) is also investigated. An evaluation of the inhibitory effect against the coronavirus (Main Protease [MPro] of SARS-CoV-2) was carried out by a molecular docking study and illustrates that these compounds have a good interaction tendency with CoV-2, where 1 has the best binding affinity with the biological target comparable with other SARS-CoV-2 drugs. Moreover, theoretical QTAIM and natural bond orbital (NBO) calculations are used to evaluate the metal-oxygen/-nitrogen bonds suggesting that they are mainly electrostatic in nature with a slight covalent contribution. A molecular packing analysis using Hirshfeld surface (HS) analysis shows that N-H … O (in 1 and 2) and N-H … Cl (in 3) hydrogen bonds are the dominant interactions that contribute to the crystal packing cohesion. The semi-empirical PIXEL method indicates that the electrostatic and repulsion energy components in the structures of 1 and 2 and the dispersion and electrostatic components in that of 3 are the major contributors to the total lattice energy.
Collapse
|
26
|
Molecular Docking as a Potential Approach in Repurposing Drugs Against COVID-19: a Systematic Review and Novel Pharmacophore Models. CURRENT PHARMACOLOGY REPORTS 2022; 8:212-226. [PMID: 35381996 PMCID: PMC8970976 DOI: 10.1007/s40495-022-00285-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
Purpose of Review This article provides a review of the recent literature related to the FDA-approved drugs that had been repurposed as potential drug candidates against COVID-19. Moreover, we performed a quality pharmacophore study for frequently studied targets, namely, the main protease, RNA-dependent RNA polymerase, and spike protein. Recent Findings Ever since the COVID-19 pandemic, the whole spectrum of scientific community is still unable to invent an absolute therapeutic agent for COVID-19. Considering such a fact, drug repurposing strategies seem a truly viable approach to develop novel therapeutic interventions. Summery Drug repurposing explores previously approved drugs of known safety and pharmacokinetics profile for possible new effects, reducing the cost, time, and predicting prospective side effects and drug interactions. COVID-19 virulent machinery appeared similar to other viruses, making antiviral agents widely repurposed in pursuit for curative candidates. Our main protease pharmacophoric study revealed multiple features and could be a probable starting point for upcoming research.
Collapse
|
27
|
Delandre O, Gendrot M, Jardot P, Le Bideau M, Boxberger M, Boschi C, Fonta I, Mosnier J, Hutter S, Levasseur A, La Scola B, Pradines B. Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants. Pharmaceuticals (Basel) 2022; 15:445. [PMID: 35455442 PMCID: PMC9024598 DOI: 10.3390/ph15040445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Over the past two years, several variants of SARS-CoV-2 have emerged and spread all over the world. However, infectivity, clinical severity, re-infection, virulence, transmissibility, vaccine responses and escape, and epidemiological aspects have differed between SARS-CoV-2 variants. Currently, very few treatments are recommended against SARS-CoV-2. Identification of effective drugs among repurposing FDA-approved drugs is a rapid, efficient and low-cost strategy against SARS-CoV-2. One of those drugs is ivermectin. Ivermectin is an antihelminthic agent that previously showed in vitro effects against a SARS-CoV-2 isolate (Australia/VI01/2020 isolate) with an IC50 of around 2 µM. We evaluated the in vitro activity of ivermectin on Vero E6 cells infected with 30 clinically isolated SARS-CoV-2 strains belonging to 14 different variants, and particularly 17 strains belonging to six variants of concern (VOC) (variants related to Wuhan, alpha, beta, gamma, delta and omicron). The in vitro activity of ivermectin was compared to those of chloroquine and remdesivir. Unlike chloroquine (EC50 from 4.3 ± 2.5 to 29.3 ± 5.2 µM) or remdesivir (EC50 from 0.4 ± 0.3 to 25.2 ± 9.4 µM), ivermectin showed a relatively homogeneous in vitro activity against SARS-CoV-2 regardless of the strains or variants (EC50 from 5.1 ± 0.5 to 6.7 ± 0.4 µM), except for one omicron strain (EC50 = 1.3 ± 0.5 µM). Ivermectin (No. EC50 = 219, mean EC50 = 5.7 ± 1.0 µM) was, overall, more potent in vitro than chloroquine (No. EC50 = 214, mean EC50 = 16.1 ± 9.0 µM) (p = 1.3 × 10-34) and remdesivir (No. EC50 = 201, mean EC50 = 11.9 ± 10.0 µM) (p = 1.6 × 10-13). These results should be interpreted with caution regarding the potential use of ivermectin in SARS-CoV-2-infected patients: it is difficult to translate in vitro study results into actual clinical treatment in patients.
Collapse
Affiliation(s)
- Océane Delandre
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
| | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
| | - Priscilla Jardot
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Marion Le Bideau
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Manon Boxberger
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Céline Boschi
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Sébastien Hutter
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
| | - Anthony Levasseur
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| |
Collapse
|
28
|
Alotaibi SH, Amer HH, Touil N, Abdel-Moneim AS, Soliman MM, Zaki YH. Synthesis, Characterization and Molecular Docking of New Nucleosides and Schiff Bases Derived from Ampyrone as Antiviral Agents to Contain the COVID-19 Virus. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2045329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Saad H. Alotaibi
- Department of Chemistry, Turabah University College, Taif University, Turabah, Taif, Saudi Arabia
| | - Hamada H. Amer
- Department of Chemistry, Turabah University College, Taif University, Turabah, Taif, Saudi Arabia
| | - Nadia Touil
- Genomic Center for Human Pathologies (GENOPATH), Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
- Unité de Culture Cellulaire, CVMIT, HMI Med V, Rabat, Morocco
| | - Ahmed S. Abdel-Moneim
- Microbiology Department, Virology Division, College of Medicine, Taif University, Turabah, Taif, Saudi Arabia
| | - Mohamed M. Soliman
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Turabah, Taif, Saudi Arabia
| | - Yasser H. Zaki
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
- Department of Chemistry, Faculty of Science and Humanity Studies at Al-Quwayiyah, Shaqra University, Al Quwayiyah, Saudi Arabia
| |
Collapse
|
29
|
Santos TM, Lisboa ABP, Rodrigues W, Gomes H, Abrahão J, Del-Bem LE. Human variation in the protein receptor ACE2 affects its binding affinity to SARS-CoV-2 in a variant-dependent manner. J Biomol Struct Dyn 2022; 41:2947-2955. [PMID: 35196964 DOI: 10.1080/07391102.2022.2042387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
SARS-CoV-2 infection depend on the binding of the viral Spike glycoprotein (S) to the human receptor Angiotensin Converting Enzyme 2 (ACE2) to induce virus-cell membrane fusion. S protein evolved diverse amino acid changes that are possibly linked to more efficient binding to human ACE2, which might explain part of the increase in frequency of SARS-CoV-2 Variants Of Concern (VOCs). In this work, we investigated the role of ACE2 protein variations that are naturally found in human populations and its binding affinity with S protein from SARS-CoV-2 representative genotypes, based on a series of in silico approaches involving molecular modelling, docking and molecular dynamics simulations. Our results indicate that SARS-CoV-2 VOCs bind more efficiently to the human receptor ACE2 than the ancestral Wuhan genotype. Additionally, variations in the ACE2 protein can affect SARS-CoV-2 binding and protein-protein stability, mostly making the interaction weaker and unstable in some cases. We show that some VOCs, such as B.1.1.7 and P.1 are much less sensitive to ACE2 variants, while others like B.1.351 appear to be specifically optimized to bind to the widespread wild-type ACE2 protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thiago M Santos
- Department of Botany, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ayrton B P Lisboa
- Department of Botany, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Wenderson Rodrigues
- Department of Botany, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Helena Gomes
- Department of Botany, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Jônatas Abrahão
- Department of Microbiology, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Luiz-Eduardo Del-Bem
- Department of Botany, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
30
|
Langston JC, Rossi MT, Yang Q, Ohley W, Perez E, Kilpatrick LE, Prabhakarpandian B, Kiani MF. Omics of endothelial cell dysfunction in sepsis. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:R15-R34. [PMID: 35515704 PMCID: PMC9066943 DOI: 10.1530/vb-22-0003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022]
Abstract
During sepsis, defined as life-threatening organ dysfunction due to dysregulated host response to infection, systemic inflammation activates endothelial cells and initiates a multifaceted cascade of pro-inflammatory signaling events, resulting in increased permeability and excessive recruitment of leukocytes. Vascular endothelial cells share many common properties but have organ-specific phenotypes with unique structure and function. Thus, therapies directed against endothelial cell phenotypes are needed to address organ-specific endothelial cell dysfunction. Omics allow for the study of expressed genes, proteins and/or metabolites in biological systems and provide insight on temporal and spatial evolution of signals during normal and diseased conditions. Proteomics quantifies protein expression, identifies protein-protein interactions and can reveal mechanistic changes in endothelial cells that would not be possible to study via reductionist methods alone. In this review, we provide an overview of how sepsis pathophysiology impacts omics with a focus on proteomic analysis of mouse endothelial cells during sepsis/inflammation and its relationship with the more clinically relevant omics of human endothelial cells. We discuss how omics has been used to define septic endotype signatures in different populations with a focus on proteomic analysis in organ-specific microvascular endothelial cells during sepsis or septic-like inflammation. We believe that studies defining septic endotypes based on proteomic expression in endothelial cell phenotypes are urgently needed to complement omic profiling of whole blood and better define sepsis subphenotypes. Lastly, we provide a discussion of how in silico modeling can be used to leverage the large volume of omics data to map response pathways in sepsis.
Collapse
Affiliation(s)
- Jordan C Langston
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, USA
| | | | - Qingliang Yang
- Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania, USA
| | - William Ohley
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Edwin Perez
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Laurie E Kilpatrick
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Balabhaskar Prabhakarpandian
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Mohammad F Kiani
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, USA
- Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Evary YM, Masyita A, Kurnianto AA, Asri RM, Rifai Y. Molecular docking of phytochemical compounds of Momordica charantia as potential inhibitor against SARS-CoV-2. Infect Disord Drug Targets 2022; 22:e130122200221. [PMID: 35049440 DOI: 10.2174/1871526522666220113143358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/30/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has been recently declared as a global public health emergency, where the infection is caused by SARS-CoV-2. Nowadays, there is no specific treatment to cure this infection. SARS-CoV-2 main protease (Mpro) and SARS spike glycoprotein-human ACE2 complex have been recognized as suitable targets for treatment including COVID-19 vaccines. OBJECTIVE In our current study, we identified the potential of Momordica charantia as a prospective alternative and a choice in dietary food during pandemic. MATERIALS AND METHODS A total of 16 bioactive compounds of Momordica charantia were screened for activity against 6LU7 and 6CS2 with AutoDock Vina. RESULTS We found that momordicoside B showed lowest binding energy compared with other compounds. In addition, kuguaglycoside A and cucurbitadienol provide better profiles for drug-like properties based on Lipinski's rule of five. CONCLUSION Our result indicates that these molecules may be further explored as promising candidates against SARS-CoV-2 or just simply suggested that Momordica charantia as one of the best food alternatives to be consumed during pandemic.
Collapse
Affiliation(s)
| | - Ayu Masyita
- Hasanuddin University, Pharmacy Science and Technology Department
| | | | | | - Yusnita Rifai
- Hasanuddin University, Pharmacy Science and Technology Department
| |
Collapse
|
32
|
Does Oxidative Stress Management Help Alleviation of COVID-19 Symptoms in Patients Experiencing Diabetes? Nutrients 2022; 14:nu14020321. [PMID: 35057501 PMCID: PMC8780958 DOI: 10.3390/nu14020321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome (SARS)-CoV-2 virus causes novel coronavirus disease 2019 (COVID-19) with other comorbidities such as diabetes. Diabetes is the most common cause of diabetic nephropathy, which is attributed to hyperglycemia. COVID-19 produces severe complications in people with diabetes mellitus. This article explains how SARS-CoV-2 causes more significant kidney damage in diabetic patients. Importantly, COVID-19 and diabetes share inflammatory pathways of disease progression. SARS-CoV-2 binding with ACE-2 causes depletion of ACE-2 (angiotensin-converting enzyme 2) from blood vessels, and subsequently, angiotensin-II interacts with angiotensin receptor-1 from vascular membranes that produce NADPH (nicotinamide adenine dinucleotide hydrogen phosphate) oxidase, oxidative stress, and constriction of blood vessels. Since diabetes and COVID-19 can create oxidative stress, we hypothesize that COVID-19 with comorbidities such as diabetes can synergistically increase oxidative stress leading to end-stage renal failure and death. Antioxidants may therefore prevent renal damage-induced death by inhibiting oxidative damage and thus can help protect people from COVID-19 related comorbidities. A few clinical trials indicated how effective the antioxidant therapy is against improving COVID-19 symptoms, based on a limited number of patients who experienced COVID-19. In this review, we tried to understand how effective antioxidants (such as vitamin D and flavonoids) can act as food supplements or therapeutics against COVID-19 with diabetes as comorbidity based on recently available clinical, preclinical, or in silico studies.
Collapse
|
33
|
Azeem M, Mustafa G, Mahrosh HS. Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies. Int J Immunopathol Pharmacol 2022; 36:3946320221142793. [PMID: 36442514 PMCID: PMC9716588 DOI: 10.1177/03946320221142793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/14/2022] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE Medicinal herbs are being investigated for medicationhg development against SARS-CoV-2 as a rich source of bioactive chemicals. One of the finest approaches for finding therapeutically effective drug molecules in real time is virtual screening scheme such as molecular docking in conjunction with molecular dynamics (MD) simulation. These virtual techniques provide an ample opportunity for the screening of plausible inhibitors of SARS-CoV-2 different target proteins from a comprehensive and extensive phytochemical library. The study was designed to identify potential phytochemicals by virtual screening against different receptor proteins. METHODS In the current study, a library of plant secondary metabolites was created by manually curating 120 phytochemicals known to have antimicrobial as well as antiviral properties. In the current study, different potential phytochemicals were identified by virtual screening against various selected receptor proteins (i.e., viral main proteases, RNA-dependent RNA polymerase (RdRp), ADP ribose phosphatase, nonstructural proteins NSP7, NSP8, and NSP9) which are key proteins responsible for transcription, replication and maturation of SARS-CoV-2 in the host. Top three phytochemicals were selected against each viral receptor protein based on their best S-scores, RMSD values, molecular interactions, binding patterns and drug-likeness properties. RESULTS The results of molecular docking study revealed that phytochemicals (i.e., baicalin, betaxanthin, epigallocatechin, fomecin A, gallic acid, hortensin, ichangin, kaempferol, limonoic acid, myricetin hexaacetat, pedalitin, quercetin, quercitrin, and silvestrol) have strong antiviral potential against SARS-CoV-2. Additionally, the reported preeminent reliable phytochemicals also revealed toxicity by no means during the evaluation through ADMET profiling. Moreover, the MD simulation study also exhibited thermal stability and stable binding affinity of the pedalitin with SARS-CoV-2 RdRp and SARS-CoV-2 main protease which suggests appreciable efficacy of the lead optimization. CONCLUSION The biological activity and pharmacologically distinguishing characteristics of these lead compounds also satisfied as repurposing antiviral drug contenders and are worth substantial evaluation in the biological laboratory for the recommendation of being plausible antiviral drug candidates against SARS-CoV-2.
Collapse
Affiliation(s)
- Muhammad Azeem
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hafiza S Mahrosh
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
34
|
Snoussi M, Ahmad I, Patel H, Noumi E, Zrieq R, Saeed M, Sulaiman S, Khalifa N, Chabchoub F, De Feo V, M. Gad-Elkareem M, Aouadi K, Kadri A. Lapachol and ( α/ β)-lapachone as inhibitors of SARS-CoV-2 main protease (Mpro) and hACE-2: ADME properties, docking and dynamic simulation approaches. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_251_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|
35
|
Rodriguez K, Saunier F, Rigaill J, Audoux E, Botelho-Nevers E, Prier A, Dickerscheit Y, Pillet S, Pozzetto B, Bourlet T, Verhoeven PO. Evaluation of in vitro activity of copper gluconate against SARS-CoV-2 using confocal microscopy-based high content screening. J Trace Elem Med Biol 2021; 68:126818. [PMID: 34274845 PMCID: PMC8264279 DOI: 10.1016/j.jtemb.2021.126818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/08/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
CONTEXT Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that emerged late in 2019 is the etiologic agent of coronavirus disease 2019 (Covid-19). There is an urgent need to develop curative and preventive therapeutics to limit the current pandemic and to prevent the re-emergence of Covid-19. This study aimed to assess the in vitro activity of copper gluconate against SARS-CoV-2. METHODS Vero E6 cells were cultured with or without copper gluconate 18-24 hours before infection. Cells were infected with a recombinant GFP expressing SARS-CoV-2. Cells were infected with a recombinant GFP expressing SARS-CoV-2. Infected cells were incubated in fresh medium containing varying concentration of copper gluconate (supplemented with bovine serum albumin or not) for an additional 48 -h period. The infection level was measured by the confocal microscopy-based high content screening method. The cell viability in presence of copper gluconate was assessed by XTT and propidium iodide assays. RESULTS The viability of Vero E6 cells exposed to copper gluconate up to 200 μM was found to be similar to that of unexposed cells, but it dropped below 70 % with 400 μM of this agent after 72 h of continuous exposure. The infection rate was 23.8 %, 18.9 %, 20.6 %, 6.9 %, 5.3 % and 5.2 % in cells treated prior infection with 0, 2, 10, 25, 50 and 100 μM of copper gluconate respectively. As compared to untreated cells, the number of infected cells was reduced by 71 %, 77 %, and 78 % with 25, 50, and 100 μM of copper gluconate respectively (p < 0.05). In cells treated only post-infection, the rate of infection dropped by 73 % with 100 μM of copper gluconate (p < 0.05). However, the antiviral activity of copper gluconate was abolished by the addition of bovine serum albumin. CONCLUSION Copper gluconate was found to mitigate SARS-CoV-2 infection in Vero E6 cells but this effect was abolished by albumin, which suggests that copper will not retain its activity in serum. Furthers studies are needed to investigate whether copper gluconate could be of benefit in mucosal administration such as mouthwash, nasal spray or aerosols.
Collapse
Affiliation(s)
- Killian Rodriguez
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France
| | - Florian Saunier
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Infectious Diseases Department, University Hospital of St-Etienne, France
| | - Josselin Rigaill
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, France
| | - Estelle Audoux
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France
| | - Elisabeth Botelho-Nevers
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Infectious Diseases Department, University Hospital of St-Etienne, France
| | - Amélie Prier
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France
| | - Yann Dickerscheit
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France
| | - Sylvie Pillet
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, France
| | - Bruno Pozzetto
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, France
| | - Thomas Bourlet
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, France
| | - Paul O Verhoeven
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, France.
| |
Collapse
|
36
|
Global Pandemic as a Result of Severe Acute Respiratory Syndrome Coronavirus 2 Outbreak: A Biomedical Perspective. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In December 2019, a novel coronavirus had emerged in Wuhan city, China that led to an outbreak resulting in a global pandemic, taking thousands of lives. The infectious virus was later classified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Individuals infected by this novel virus initially exhibit nonspecific symptoms such as dry cough, fever, dizziness and many more bodily complications. From the “public health emergency of international concern” declaration by the World Health Organisation (WHO), several countries have taken steps in controlling the transmission and many researchers share their knowledge on the SARS-COV-2 characteristics and viral life cycle, that may aid in pharmaceutical and biopharmaceutical companies to develop SARS-CoV-2 vaccine and antiviral drugs that interfere with the viral life cycle. In this literature review the origin, classification, aetiology, life cycle, clinical manifestations, laboratory diagnosis and treatment are all reviewed.
Collapse
|
37
|
N JB, Goudgaon N. A comprehensive review on pyrimidine analogs-versatile scaffold with medicinal and biological potential. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Adhikari N, Banerjee S, Baidya SK, Ghosh B, Jha T. Ligand-based quantitative structural assessments of SARS-CoV-2 3CL pro inhibitors: An analysis in light of structure-based multi-molecular modeling evidences. J Mol Struct 2021; 1251:132041. [PMID: 34866654 PMCID: PMC8627846 DOI: 10.1016/j.molstruc.2021.132041] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/10/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Due to COVID-19, the whole world is undergoing a devastating situation, but treatment with no such drug candidates still has been established exclusively. In that context, 69 diverse chemicals with potential SARS-CoV-2 3CLpro inhibitory property were taken into consideration for building different internally and externally validated linear (SW-MLR and GA-MLR), non-linear (ANN and SVM) QSAR, and HQSAR models to identify important structural and physicochemical characters required for SARS-CoV-2 3CLpro inhibition. Importantly, 2-oxopyrrolidinyl methyl and benzylester functions, and methylene (hydroxy) sulphonic acid warhead group, were crucial for retaining higher SARS-CoV-2 3CLpro inhibition. These GA-MLR and HQSAR models were also applied to predict some already repurposed drugs. As per the GA-MLR model, curcumin, ribavirin, saquinavir, sepimostat, and remdesivir were found to be the potent ones, whereas according to the HQSAR model, lurasidone, saquinavir, lopinavir, elbasvir, and paritaprevir were the highly effective SARS-CoV-2 3CLpro inhibitors. The binding modes of those repurposed drugs were also justified by the molecular docking, molecular dynamics (MD) simulation, and binding energy calculations conducted by several groups of researchers. This current work, therefore, may be able to find out important structural parameters to accelerate the COVID-19 drug discovery processes in the future.
Collapse
Affiliation(s)
- Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India, 500078
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
39
|
Wang C, Konecki DM, Marciano DC, Govindarajan H, Williams AM, Wastuwidyaningtyas B, Bourquard T, Katsonis P, Lichtarge O. Identification of evolutionarily stable functional and immunogenic sites across the SARS-CoV-2 proteome and greater coronavirus family. Bioinformatics 2021; 37:4033-4040. [PMID: 34043002 PMCID: PMC8243408 DOI: 10.1093/bioinformatics/btab406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Since the first recognized case of COVID-19, more than 100 million people have been infected worldwide. Global efforts in drug and vaccine development to fight the disease have yielded vaccines and drug candidates to cure COVID-19. However, the spread of SARS-CoV-2 variants threatens the continued efficacy of these treatments. In order to address this, we interrogate the evolutionary history of the entire SARS-CoV-2 proteome to identify evolutionarily conserved functional sites that can inform the search for treatments with broader coverage across the coronavirus family. RESULTS Combining coronavirus family sequence information with the mutations observed in the current COVID-19 outbreak, we systematically and comprehensively define evolutionarily stable sites that may provide useful drug and vaccine targets and which are less likely to be compromised by the emergence of new virus strains. Several experimentally validated effective drugs interact with these proposed target sites. In addition, the same evolutionary information can prioritize cross reactive antigens that are useful in directing multi-epitope vaccine strategies to illicit broadly neutralizing immune responses to the betacoronavirus family. Although the results are focused on SARS-CoV-2, these approaches stem from evolutionary principles that are agnostic to the organism or infective agent. AVAILABILITY AND IMPLEMENTATION The results of this work are made interactively available at http://cov.lichtargelab.org. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chen Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel M Konecki
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - David C Marciano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harikumar Govindarajan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amanda M Williams
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Thomas Bourquard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
40
|
González-Paz L, Hurtado-León ML, Lossada C, Fernández-Materán FV, Vera-Villalobos J, Loroño M, Paz JL, Jeffreys L, Alvarado YJ. Comparative study of the interaction of ivermectin with proteins of interest associated with SARS-CoV-2: A computational and biophysical approach. Biophys Chem 2021; 278:106677. [PMID: 34428682 PMCID: PMC8373590 DOI: 10.1016/j.bpc.2021.106677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/18/2023]
Abstract
The SARS-CoV-2 pandemic has accelerated the study of existing drugs. The mixture of homologs called ivermectin (avermectin-B1a [HB1a] + avermectin-B1b [HB1b]) has shown antiviral activity against SARS-CoV-2 in vitro. However, there are few reports on the behavior of each homolog. We investigated the interaction of each homolog with promising targets of interest associated with SARS-CoV-2 infection from a biophysical and computational-chemistry perspective using docking and molecular dynamics. We observed a differential behavior for each homolog, with an affinity of HB1b for viral structures, and of HB1a for host structures considered. The induced disturbances were differential and influenced by the hydrophobicity of each homolog and of the binding pockets. We present the first comparative analysis of the potential theoretical inhibitory effect of both avermectins on biomolecules associated with COVID-19, and suggest that ivermectin through its homologs, has a multiobjective behavior.
Collapse
Affiliation(s)
- Lenin González-Paz
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), 4001 Maracaibo, Venezuela; Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Estudios Botánicos y Agroforestales (CEBA), Laboratorio de Protección Vegetal (LPV), 4001 Maracaibo, Venezuela.
| | - María Laura Hurtado-León
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), 4001 Maracaibo, Venezuela
| | - Carla Lossada
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Venezuela
| | - Francelys V Fernández-Materán
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Venezuela
| | - Joan Vera-Villalobos
- Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Laboratorio de Análisis Químico Instrumental (LAQUINS), Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Marcos Loroño
- Departamento Académico de Química Analítica e Instrumental, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - J L Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Laura Jeffreys
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Ysaias J Alvarado
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Venezuela.
| |
Collapse
|
41
|
Kumar S, Sharma PP, Upadhyay C, Kempaiah P, Rathi B, Poonam. Multi-targeting approach for nsp3, nsp9, nsp12 and nsp15 proteins of SARS-CoV-2 by Diosmin as illustrated by molecular docking and molecular dynamics simulation methodologies. Methods 2021; 195:44-56. [PMID: 33639316 PMCID: PMC7904494 DOI: 10.1016/j.ymeth.2021.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/01/2022] Open
Abstract
Novel coronavirus SARS-CoV-2continues tospread rapidly worldwide and causing serious health and economic loss. In the absence of any effective treatment, various in-silico approaches are being explored towards the therapeutic discovery against COVID-19. Targeting multiple key enzymes of SARS-CoV-2 with a single potential drug could be an important in-silico strategy to tackle the therapeutic emergency. A number of Food and Drug Administration (FDA) approved drugs entered into clinical stages were originated from multi-target approaches with an increased rate, 16-21% between 2015 and 2017. In this study, we selected an FDA-approved library (Prestwick Chemical Library of 1520 compounds) and implemented in-silico virtual screening against multiple protein targets of SARS-CoV-2 on the Glide module of Schrödinger software (release 2020-1). Compounds were analyzed for their docking scores and the top-ranked against each targeted protein were further subjected to Molecular Dynamics (MD) simulations to assess the binding stability of ligand-protein complexes. A multi-targeting approach was optimized that enabled the analysis of several compounds' binding efficiency with more than one protein targets. It was demonstrated that Diosmin (6) showed the highest binding affinity towards multiple targets with binding free energy (kcal/mol) values of -63.39 (nsp3); -62.89 (nsp9); -31.23 (nsp12); and -65.58 (nsp15). Therefore, our results suggests that Diosmin (6) possesses multi-targeting capability, a potent inhibitor of various non-structural proteins of SARS-CoV-2, and thus it deserves further validation experiments before using as a therapeutic against COVID-19 disease.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Miranda House, University of Delhi, Delhi 110007, India
| | - Prem Prakash Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Hansraj College, University of Delhi, Delhi 110007, India
| | - Charu Upadhyay
- Department of Chemistry, Miranda House, University of Delhi, Delhi 110007, India
| | - Prakasha Kempaiah
- Department of Medicine, Loyola University Stritch School of Medicine, Chicago, IL 60153, United States
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Hansraj College, University of Delhi, Delhi 110007, India
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi 110007, India.
| |
Collapse
|
42
|
Convenient synthesis of flavanone derivatives via oxa-Michael addition using catalytic amount of aqueous cesium fluoride. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
43
|
Yun C, Lee HJ, Lee CJ. Eriodictyol Inhibits the Production and Gene Expression of MUC5AC Mucin via the IκBα-NF-κB p65 Signaling Pathway in Airway Epithelial Cells. Biomol Ther (Seoul) 2021; 29:637-642. [PMID: 34565719 PMCID: PMC8551736 DOI: 10.4062/biomolther.2021.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/11/2021] [Accepted: 08/28/2021] [Indexed: 11/05/2022] Open
Abstract
In this study, we investigated whether eriodictyol exerts an effect on the production and gene expression of MUC5AC mucin in human pulmonary epithelial NCI-H292 cells. The cells were pretreated with eriodictyol for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 h. The effect of eriodictyol on PMA-induced nuclear factor kappa B (NF-κB) signaling pathway was also investigated. Eriodictyol suppressed the MUC5AC mucin production and gene expression induced by PMA via suppression of inhibitory kappa Bα degradation and NF-κB p65 nuclear translocation. These results suggest that eriodictyol inhibits mucin gene expression and production in human airway epithelial cells via regulation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chawon Yun
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
44
|
Zrieq R, Ahmad I, Snoussi M, Noumi E, Iriti M, Algahtani FD, Patel H, Saeed M, Tasleem M, Sulaiman S, Aouadi K, Kadri A. Tomatidine and Patchouli Alcohol as Inhibitors of SARS-CoV-2 Enzymes (3CLpro, PLpro and NSP15) by Molecular Docking and Molecular Dynamics Simulations. Int J Mol Sci 2021; 22:10693. [PMID: 34639036 PMCID: PMC8509278 DOI: 10.3390/ijms221910693] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
Considering the current dramatic and fatal situation due to the high spreading of SARS-CoV-2 infection, there is an urgent unmet medical need to identify novel and effective approaches for prevention and treatment of Coronavirus disease (COVID 19) by re-evaluating and repurposing of known drugs. For this, tomatidine and patchouli alcohol have been selected as potential drugs for combating the virus. The hit compounds were subsequently docked into the active site and molecular docking analyses revealed that both drugs can bind the active site of SARS-CoV-2 3CLpro, PLpro, NSP15, COX-2 and PLA2 targets with a number of important binding interactions. To further validate the interactions of promising compound tomatidine, Molecular dynamics study of 100 ns was carried out towards 3CLpro, NSP15 and COX-2. This indicated that the protein-ligand complex was stable throughout the simulation period, and minimal backbone fluctuations have ensued in the system. Post dynamic MM-GBSA analysis of molecular dynamics data showed promising mean binding free energy 47.4633 ± 9.28, 51.8064 ± 8.91 and 54.8918 ± 7.55 kcal/mol, respectively. Likewise, in silico ADMET studies of the selected ligands showed excellent pharmacokinetic properties with good absorption, bioavailability and devoid of toxicity. Therefore, patchouli alcohol and especially, tomatidine may provide prospect treatment options against SARS-CoV-2 infection by potentially inhibiting virus duplication though more research is guaranteed and secured.
Collapse
Affiliation(s)
- Rafat Zrieq
- Department of Public Health, College of Public Health and Health Informatics, University of Ha’il, Ha’il 81451, Saudi Arabia; (R.Z.); (F.D.A.)
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India; (I.A.); (H.P.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il City, P.O. 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Emira Noumi
- Department of Biology, College of Science, University of Ha’il City, P.O. 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.)
- Laboratory of Bioresources: Integrative Biology and Valorization, (LR14-ES06), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- Phytochem Lab., Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
- BAT Center—Interuniversity Center for Studies on Bioispired Agro-Environmental Technology, University of Napoli “Federico II”, Portici, 80055 Napoli, Italy
| | - Fahad D. Algahtani
- Department of Public Health, College of Public Health and Health Informatics, University of Ha’il, Ha’il 81451, Saudi Arabia; (R.Z.); (F.D.A.)
- Molecular Diagnostic and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81451, Saudi Arabia
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India; (I.A.); (H.P.)
| | - Mohd Saeed
- Department of Biology, College of Science, University of Ha’il City, P.O. 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.)
| | - Munazzah Tasleem
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Shadi Sulaiman
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Ha’il, Ha’il 81451, Saudi Arabia;
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| | - Adel Kadri
- Department of Chemistry, Faculty of Science and Arts of Baljurashi, Albaha University, Al Bahah 65731, Saudi Arabia;
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| |
Collapse
|
45
|
Takahashi JA, Barbosa BVR, Lima MTNS, Cardoso PG, Contigli C, Pimenta LPS. Antiviral fungal metabolites and some insights into their contribution to the current COVID-19 pandemic. Bioorg Med Chem 2021; 46:116366. [PMID: 34438338 PMCID: PMC8363177 DOI: 10.1016/j.bmc.2021.116366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, which started in late 2019, drove the scientific community to conduct innovative research to contain the spread of the pandemic and to care for those already affected. Since then, the search for new drugs that are effective against the virus has been strengthened. Featuring a relatively low cost of production under well-defined methods of cultivation, fungi have been providing a diversity of antiviral metabolites with unprecedented chemical structures. In this review, we present viral RNA infections highlighting SARS-CoV-2 morphogenesis and the infectious cycle, the targets of known antiviral drugs, and current developments in this area such as drug repurposing. We also explored the metabolic adaptability of fungi during fermentation to produce metabolites active against RNA viruses, along with their chemical structures, and mechanisms of action. Finally, the state of the art of research on SARS-CoV-2 inhibitors of fungal origin is reported, highlighting the metabolites selected by docking studies.
Collapse
Affiliation(s)
- Jacqueline Aparecida Takahashi
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Bianca Vianna Rodrigues Barbosa
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Matheus Thomaz Nogueira Silva Lima
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Patrícia Gomes Cardoso
- Department of Biology, Universidade Federal de Lavras, Av. Dr. Sylvio Menicucci, 1001, CEP 37200-900 Lavras, MG, Brazil.
| | - Christiane Contigli
- Cell Biology Service, Research and Development Department, Fundação Ezequiel Dias, R. Conde Pereira Carneiro, 80, CEP 30510-010 Belo Horizonte, MG, Brazil
| | - Lúcia Pinheiro Santos Pimenta
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
46
|
Khater I, Nassar A. In silico molecular docking analysis for repurposing approved antiviral drugs against SARS-CoV-2 main protease. Biochem Biophys Rep 2021; 27:101032. [PMID: 34099985 PMCID: PMC8173495 DOI: 10.1016/j.bbrep.2021.101032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
Developing a safe and effective antiviral treatment takes a decade, however, when it comes to the coronavirus disease (COVID-19), time is a sensitive matter to slow the spread of the pandemic. Screening approved antiviral drugs against COVID-19 would speed the process of finding therapeutic treatment. The current study examines commercially approved drugs to repurpose them against COVID-19 virus main protease using structure-based in-silico screening. The main protease of the coronavirus is essential in the viral replication and is involved in polyprotein cleavage and immune regulation, making it an effective target when developing the treatment. A Number of approved antiviral drugs were tested against COVID-19 virus using molecular docking analysis by calculating the free natural affinity of the binding ligand to the active site pocket and the catalytic residues without forcing the docking of the ligand to active site. COVID-19 virus protease solved structure (PDB ID: 6LU7) is targeted by repurposed drugs. The molecular docking analysis results have shown that the binding of Remdesivir and Mycophenolic acid acyl glucuronide with the protein drug target has optimal binding features supporting that Remdesivir and Mycophenolic acid acyl glucuronide can be used as potential anti-viral treatment against COVID-19 disease.
Collapse
Affiliation(s)
- Ibrahim Khater
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Aaya Nassar
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
- Department of Clinical Research and Leadership, School of Medicine and Health Sciences, George Washington University, Washington DC, USA
| |
Collapse
|
47
|
Khan AU, Khan A, Khan A, Shal B, Aziz A, Ahmed MN, Islam SU, Ali H, Shehzad A, Khan S. Inhibition of NF-κB signaling and HSP70/HSP90 proteins by newly synthesized hydrazide derivatives in arthritis model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1497-1519. [PMID: 33713158 DOI: 10.1007/s00210-021-02075-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/01/2021] [Indexed: 01/02/2023]
Abstract
In the current study, the N-benzylidene-4-((2-hydroxynaphthalene-1-yl) diazenyl) hydrazides (NCHDH and NTHDH) were evaluated against the Carrageenan- and CFA-induced models. During the preliminary investigation, the NCHDH and NTHDH treatment showed marked anti-inflammatory and analgesic activity against the Carrageenan-induced acute model. Once the anti-inflammatory activity was established against acute Carrageenan model, the NCHDH and NTHDH were evaluated against the chronic CFA-induced arthritis model. The NCHDH and NTHDH treatment markedly attenuated the inflammatory and analgesic parameters compared to CFA-treated group. Furthermore, the increase in the oxidative stress and attenuation of antioxidant enzymes has been reported following CFA administration. However, NCHDH and NTHDH treatment significantly induced the antioxidants and attenuated the oxidative stress markers. The CFA administration showed marked tailing of DNA; however, the NCHDH- and NTHDH-treated group preserved DNA integrity. Furthermore, the histological studies showed marked alteration in the CFA-treated group; however, the NCHDH and NTHDH treatment markedly improved the histological features. The Western blot, immunohistology, and ELISA assay revealed marked increase in the Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Jun N-terminal Kinase (JNK), TNF-α, and COX-2 levels; however, the NCHDH and NTHDH attenuated their expressions significantly. Similarly, the NCHDH and NTHDH significantly induced the mRNA expression levels of heat shock proteins. The computational analysis showed significant binding interaction with various protein targets via multiple hydrogens, and hydrophobic bonds. The in vivo pharmacokinetic study was also performed to assess the various pharmacokinetic parameters. In conclusion, the NCHDH and NTHDH treatment showed significant anti-arthritic activity against Carrageenan and CFA models.
Collapse
Affiliation(s)
- Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amna Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Aziz
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Hussain Ali
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Adeeb Shehzad
- Department of Biomedical Engineering & Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
48
|
Abdel-Moneim AS, Abdelwhab EM, Memish ZA. Insights into SARS-CoV-2 evolution, potential antivirals, and vaccines. Virology 2021; 558:1-12. [PMID: 33691216 PMCID: PMC7898979 DOI: 10.1016/j.virol.2021.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
SARS-CoV-2 is a novel coronavirus, spread among humans, and to date, more than 100 million of laboratory-confirmed cases have been reported worldwide. The virus demonstrates 96% similarity to a coronavirus from a horseshoe bat and most probably emerged from a spill over from bats or wild animal(s) to humans. Currently, two variants are circulating in the UK and South Africa and spread to many countries around the world. The impact of mutations on virus replication, virulence and transmissibility should be monitored carefully. Current data suggest recurrent infection with SARS-CoV-2 correlated to the level of neutralising antibodies and with sustained memory responses following infection. Recently, remdesivir was FDA approved for treatment of COVID-19, however many potential antivirals are currently in different clinical trials. Clinical data and experimental studies indicated that licenced vaccines are helpful in controlling the disease. However, the current vaccines should be evaluated against the emerging variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Ahmed S Abdel-Moneim
- Microbiology Department, Virology Division, College of Medicine, Taif University, Al-Taif, Saudi Arabia.
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ziad A Memish
- Research & Innovation Center, King Saud Medical City, Ministry of Health and College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
49
|
Ahsan T, Sajib AA. Repurposing of approved drugs with potential to interact with SARS-CoV-2 receptor. Biochem Biophys Rep 2021; 26:100982. [PMID: 33817352 PMCID: PMC8006196 DOI: 10.1016/j.bbrep.2021.100982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 01/18/2023] Open
Abstract
Respiratory transmission is the primary route of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Angiotensin I converting enzyme 2 (ACE2) is the known receptor of SARS-CoV-2 surface spike glycoprotein for entry into human cells. A recent study reported absent to low expression of ACE2 in a variety of human lung epithelial cell samples. Three bioprojects (PRJEB4337, PRJNA270632 and PRJNA280600) invariably found abundant expression of ACE1 (a homolog of ACE2 and also known as ACE) in human lungs compared to very low expression of ACE2. In fact, ACE1 has a wider and more abundant tissue distribution compared to ACE2. Although it is not obvious from the primary sequence alignment of ACE1 and ACE2, comparison of X-ray crystallographic structures show striking similarities in the regions of the peptidase domains (PD) of these proteins, which is known (for ACE2) to interact with the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Critical amino acids in ACE2 that mediate interaction with the viral spike protein are present and organized in the same order in the PD of ACE1. In silico analysis predicts comparable interaction of SARS-CoV-2 spike protein with ACE1 and ACE2. In addition, this study predicts from a list of 1263 already approved drugs that may interact with ACE2 and/or ACE1 and potentially interfere with the entry of SARS-CoV-2 inside the host cells. Peptidase domains (PD) of ACE1 and ACE2 have striking similarities. In silico analysis predicts comparable interactions of S protein with ACE1 and ACE2. Several approved drugs may be repurposed to interfere with SARS-CoV-2 binding.
Collapse
Affiliation(s)
- Tamim Ahsan
- Department of Genetic Engineering & Biotechnology, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, 1216, Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
50
|
Muhammad S, Hassan SH, Al-Sehemi AG, Shakir HA, Khan M, Irfan M, Iqbal J. Exploring the new potential antiviral constituents of Moringa oliefera for SARS-COV-2 pathogenesis: An in silico molecular docking and dynamic studies. Chem Phys Lett 2021; 767:138379. [PMID: 33518774 PMCID: PMC7835070 DOI: 10.1016/j.cplett.2021.138379] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
The interactions of two crucial proteins of COVID-19 have been investigated with potential antiviral compounds from Moringa oliefera using quantum chemical, molecular docking and dynamic methods. The results of the present investigation show that ellagic acid and apigenin possess the highest binding affinities of -7.1 and -6.5 Kcal.mol-1against nsp9 and -6.9 and -7.1 Kcal.mol-1 against nsp10, respectively. The dynamic behavior of individual proteins and their respective best docked ligand-protein complexes are also studied at 30 ns timescale. Both of these compounds also show the highest intestinal absorption and total clearance rate as compared to the other compounds under present investigation without any toxicity.
Collapse
Affiliation(s)
- Shabbir Muhammad
- Department of Physics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Research Center for Advanced Material Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | | - Abdullah G Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Biosciences and Territory, University of Molise, Italy
| | - Hafiz Abdullah Shakir
- Department of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Muhammad Khan
- Department of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture Faisalabad, 38000 Faisalabad, Pakistan
| |
Collapse
|