1
|
Nohesara S, Mostafavi Abdolmaleky H, Dickerson F, Pinto-Tomas AA, Jeste DV, Thiagalingam S. Associations of microbiome pathophysiology with social activity and behavior are mediated by epigenetic modulations: Avenues for designing innovative therapeutic strategies. Neurosci Biobehav Rev 2025; 174:106208. [PMID: 40350003 DOI: 10.1016/j.neubiorev.2025.106208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 05/02/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
A number of investigations have shown that gut microbiome influences humans' ability to communicate with others, and impairments in social interactions are linked to alterations in gut microbiome composition and diversity, via epigenetic mechanisms. This article reviews the links among gut microbiome, social behavior, and epigenetic shifts relevant to gut microbiome-derived metabolites. First, we discuss how different social determinants of health, such as socioeconomic status, diet, environmental chemicals, migration, ecological conditions, and seasonal changes may influence gut microbiome composition, diversity, and functionality, along with epigenetic alterations and thereby affect social behavior. Next, we consider how gut microbiome-derived metabolites, diet, probiotics, and fecal microbiome transplantation may reduce impairments in social interactions through the adjustment of epigenetic aberrations (e.g., DNA methylation, histone modifications, and microRNAs expression) which may suppress or increase gene expression patterns. Finally, we present the potential benefits and unresolved challenges with the use of gut microbiome-targeted therapeutics in reducing social deficits.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Faith Dickerson
- Stanley Research Program, Sheppard Pratt, Baltimore, MD, USA
| | - Adrian A Pinto-Tomas
- University of Costa Rica, Center for Research in Microscopic Structures and Biochemistry Department, School of Medicine, San Jose, Costa Rica
| | - Dilip V Jeste
- Global Research Network on Social Determinants of Mental Health and Exposomics, La Jolla, CA 92037, USA.
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA; Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
2
|
Logan AC, Mishra P, Prescott SL. The Legalome: Microbiology, Omics and Criminal Justice. Microb Biotechnol 2025; 18:e70129. [PMID: 40072296 PMCID: PMC11898878 DOI: 10.1111/1751-7915.70129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
Advances in neuromicrobiology and related omics technologies have reinforced the idea that unseen microbes play critical roles in human cognition and behaviour. Included in this research is evidence indicating that gut microbes, through direct and indirect pathways, can influence aggression, anger, irritability and antisocial behaviour. Moreover, gut microbes can manufacture chemicals that are known to compromise cognition. For example, recent court decisions in the United States and Europe acknowledge that gut microbes can produce high levels of ethanol, without consumption of alcohol by the defendants. The dismissal of driving while intoxicated charges in these cases-so-called auto-brewery syndrome-highlights the way in which microbiome knowledge will enhance the precision, objectivity and fairness of our legal systems. Here in this opinion essay, we introduce the concept of the 'legalome'-the application of microbiome and omics science to forensic psychiatry and criminal law. We argue that the rapid pace of microbial discoveries, including those that challenge ideas of free will and moral responsibility, will necessitate a reconsideration of traditional legal doctrines and justifications of retributive punishment. The implications extend beyond the courtroom, challenging us to reconsider how environmental factors-from diet to socioeconomic conditions-might shape preventative and rehabilitative efforts through their effects on the microbiome.
Collapse
Affiliation(s)
| | - Pragya Mishra
- University of Allahabad (A Central University)PrayagrajIndia
| | - Susan L. Prescott
- Nova Institute for HealthBaltimoreMarylandUSA
- University of Western AustraliaPerthWestern AustraliaAustralia
- University of MarylandBaltimoreMarylandUSA
| |
Collapse
|
3
|
Nakashima Y, Hibi T, Urakami M, Hoshino M, Morii T, Sugawa H, Katsuta N, Tominaga Y, Takahashi H, Otomo A, Hadano S, Yasuda S, Hokamura A, Imai S, Kinoshita H. Soymilk yogurt prepared using Pediococcus pentosaceus TOKAI 759m ameliorates cognitive function through gut microbiota modulation in high-fat diet mice. Curr Res Food Sci 2025; 10:100993. [PMID: 40026903 PMCID: PMC11869912 DOI: 10.1016/j.crfs.2025.100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Recent studies have confirmed that obesity leads to neuroinflammation and cognitive decline. This study aimed to examine whether soymilk yogurt prepared using Pediococcus pentosaceus TOKAI 759m could prevent cognitive decline and neuroinflammation progression in mice fed a high-fat diet (HFD). C57BL/6NJcl male mice were grouped according to the following dietary interventions and monitored for 15 weeks: (1) normal control diet, (2) HFD, (3) HFD with soymilk (SM), (4) HFD with soymilk yogurt (SY), and (5) HFD with bacterial cells of the starter strain (BC). The levels of inflammatory cytokines in serum and hippocampus were measured. Compared to the HFD group, the SY group scored higher in the novel object recognition test and exhibited lower levels of Interleukin-6 (IL-6) and Tumor Necrosis Factor (TNF)-α in the hippocampus. However, the SM and BC groups did not show these significant changes. Proteomic analysis of the hippocampus revealed three enriched protein clusters in the SY group: synaptic proteins, glycolysis, and mitochondrial ATP formation. Fecal samples were also collected to measure the proportion of gut microbiota using 16S rRNA analysis. Interestingly, the proportion of butyrate-producing bacteria, such as Clostridium and Akkermansia, tended to be higher in the SY group than in the HFD group. An additional in vitro study revealed that the components of SY, such as daidzein, genistein, and adenine, could decrease inflammatory cytokine levels in microglial cells. In conclusion, soymilk yogurt prepared using P. pentosaceus TOKAI 759m may modulate gut microbiota and prevent neuroinflammation, thereby leading to a possible improvement in cognitive function.
Collapse
Affiliation(s)
- Yuki Nakashima
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- JSPS Research Fellowship for Young Scientists, Tokyo, 102-0083, Japan
| | - Tomoyuki Hibi
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| | - Masafumi Urakami
- School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Maki Hoshino
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Taiki Morii
- School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Hikari Sugawa
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Nana Katsuta
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| | - Yuki Tominaga
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Himeno Takahashi
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| | - Asako Otomo
- Molecular Neuropathobiology Laboratory, Department of Physiology, Tokai University School of Medicine, Isehara, Kanagawa, 259- 1193, Japan
| | - Shinji Hadano
- Molecular Neuropathobiology Laboratory, Department of Physiology, Tokai University School of Medicine, Isehara, Kanagawa, 259- 1193, Japan
| | - Shin Yasuda
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Ayaka Hokamura
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Saki Imai
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Hideki Kinoshita
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
- School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Probio Co., Ltd., 1330-1 Futa, Nishihara-mura, Aso-gun, Kumamoto, Japan
| |
Collapse
|
4
|
Lakhawat SS, Mech P, Kumar A, Malik N, Kumar V, Sharma V, Bhatti JS, Jaswal S, Kumar S, Sharma PK. Intricate mechanism of anxiety disorder, recognizing the potential role of gut microbiota and therapeutic interventions. Metab Brain Dis 2024; 40:64. [PMID: 39671133 DOI: 10.1007/s11011-024-01453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/29/2024] [Indexed: 12/14/2024]
Abstract
Anxiety is a widespread psychological disorder affecting both humans and animals. It is a typical stress reaction; however, its longer persistence can cause severe health disorders affecting the day-to-day life activities of individuals. An intriguing facet of the anxiety-related disorder can be addressed better by investigating the role of neurotransmitters in regulating emotions, provoking anxiety, analyzing the cross-talks between neurotransmitters, and, most importantly, identifying the biomarkers of the anxiety. Recent years have witnessed the potential role of the gut microbiota in human health and disorders, including anxiety. Animal models are commonly used to study anxiety disorder as they offer a simpler and more controlled environment than humans. Ultimately, developing new strategies for diagnosing and treating anxiety is of paramount interest to medical scientists. Altogether, this review article shall highlight the intricate mechanisms of anxiety while emphasizing the emerging role of gut microbiota in regulating metabolic pathways through various interaction networks in the host. In addition, the review will foster information about the therapeutic interventions of the anxiety and related disorder.
Collapse
Affiliation(s)
- Sudarshan Singh Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Priyanka Mech
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Jasvinder Singh Bhatti
- Department of Environmental Sciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Sunil Jaswal
- Department of Human Genetics and Molecular Medicine Central University Punjab, Bathinda, 151401, India
| | - Sunil Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
| |
Collapse
|
5
|
Que M, Li S, Xia Q, Li X, Luo X, Zhan G, Luo A. Microbiota-gut-brain axis in perioperative neurocognitive and depressive disorders: Pathogenesis to treatment. Neurobiol Dis 2024; 200:106627. [PMID: 39111702 DOI: 10.1016/j.nbd.2024.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
An increasing number of people undergo anesthesia and surgery. Perioperative neurocognitive and depressive disorders are common central nervous system complications with similar pathogeneses. These conditions pose a deleterious threat to human health and a significant societal burden. In recent years, numerous studies have focused on the role of the gut microbiota and its metabolites in the central nervous system via the gut-brain axis. Its involvement in perioperative neurocognitive and depressive disorders has attracted considerable attention. This review aimed to elucidate the role of the gut microbiota and its metabolites in the pathogenesis of perioperative neurocognitive and depressive disorders, as well as the value of targeted interventions and treatments.
Collapse
Affiliation(s)
- Mengxin Que
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Prescott SL, Holton KF, Lowry CA, Nicholson JJ, Logan AC. The Intersection of Ultra-Processed Foods, Neuropsychiatric Disorders, and Neurolaw: Implications for Criminal Justice. NEUROSCI 2024; 5:354-377. [PMID: 39483285 PMCID: PMC11477939 DOI: 10.3390/neurosci5030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024] Open
Abstract
Over the last decade there has been increasing interest in the links between the consumption of ultra-processed foods and various neuropsychiatric disorders, aggression, and antisocial behavior. Neurolaw is an interdisciplinary field that seeks to translate the rapid and voluminous advances in brain science into legal decisions and policy. An enhanced understanding of biophysiological mechanisms by which ultra-processed foods influence brain and behavior allows for a historical reexamination of one of forensic neuropsychiatry's most famous cases-The People v. White and its associated 'Twinkie Defense'. Here in this Viewpoint article, we pair original court transcripts with emergent research in neurolaw, including nutritional neuroscience, microbiome sciences (legalome), pre-clinical mechanistic research, and clinical intervention trials. Advances in neuroscience, and related fields such as the microbiome, are challenging basic assumptions in the criminal justice system, including notions of universal free will. Recent dismissals of criminal charges related to auto-brewery syndrome demonstrate that courts are open to advances at the intersection of neuromicrobiology and nutritional neuroscience, including those that relate to criminal intent and diminished capacity. As such, it is our contention that experts in the neurosciences will play an increasing role in shaping research that underpins 21st-century courtroom discourse, policy, and decision-making.
Collapse
Affiliation(s)
- Susan L Prescott
- Nova Institute for Health, Baltimore, MD 21231, USA;
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kathleen F Holton
- Departments of Health Studies and Neuroscience, American University, Washington, DC 20016, USA;
| | - Christopher A Lowry
- Department of Integrative Physiology, Department of Psychology and Neuroscience, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA;
| | - Jeffrey J Nicholson
- Law and Government, Humber College Institute of Technology & Advanced Learning, Toronto, ON M9W 5L7, Canada;
| | - Alan C Logan
- Nova Institute for Health, Baltimore, MD 21231, USA;
| |
Collapse
|
7
|
Logan AC, Prescott SL, LaFata EM, Nicholson JJ, Lowry CA. Beyond Auto-Brewery: Why Dysbiosis and the Legalome Matter to Forensic and Legal Psychology. LAWS 2024; 13:46. [DOI: 10.3390/laws13040046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
International studies have linked the consumption of ultra-processed foods with a variety of non-communicable diseases. Included in this growing body of research is evidence linking ultra-processed foods to mental disorders, aggression, and antisocial behavior. Although the idea that dietary patterns and various nutrients or additives can influence brain and behavior has a long history in criminology, in the absence of plausible mechanisms and convincing intervention trials, the topic was mostly excluded from mainstream discourse. The emergence of research across nutritional neuroscience and nutritional psychology/psychiatry, combined with mechanistic bench science, and human intervention trials, has provided support to epidemiological findings, and legitimacy to the concept of nutritional criminology. Among the emergent research, microbiome sciences have illuminated mechanistic pathways linking various socioeconomic and environmental factors, including the consumption of ultra-processed foods, with aggression and antisocial behavior. Here in this review, we examine this burgeoning research, including that related to ultra-processed food addiction, and explore its relevance across the criminal justice spectrum—from prevention to intervention—and in courtroom considerations of diminished capacity. We use auto-brewery syndrome as an example of intersecting diet and gut microbiome science that has been used to refute mens rea in criminal charges. The legalome—microbiome and omics science applied in forensic and legal psychology—appears set to emerge as an important consideration in matters of criminology, law, and justice.
Collapse
Affiliation(s)
| | - Susan L. Prescott
- Nova Institute for Health, Baltimore, MD 21231, USA
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
- Department of Family and Community Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Erica M. LaFata
- Center for Weight, Eating, and Lifestyle Science, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104, USA
| | | | - Christopher A. Lowry
- Departments of Integrative Physiology and Psychology and Neuroscience, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
8
|
Zhang JS, Li S, Cheng X, Tan XC, Huang YL, Dong HJ, Xue R, Zhang Y, Li JC, Feng XX, Deng Y, Zhang YZ. Far-Infrared Therapy Based on Graphene Ameliorates High-Fat Diet-Induced Anxiety-Like Behavior in Obese Mice via Alleviating Intestinal Barrier Damage and Neuroinflammation. Neurochem Res 2024; 49:1735-1750. [PMID: 38530508 DOI: 10.1007/s11064-024-04133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
The consumption of a high-fat diet (HFD) has been implicated in the etiology of obesity and various neuropsychiatric disturbances, including anxiety and depression. Compelling evidence suggests that far-infrared ray (FIR) possesses beneficial effects on emotional disorders. However, the efficacy of FIR therapy in addressing HFD-induced anxiety and the underlying mechanisms remain to be elucidated. Here, we postulate that FIR emitted from a graphene-based therapeutic device may mitigate HFD-induced anxiety behaviors. The graphene-FIR modify the gut microbiota in HFD-mice, particularly by an enriched abundance of beneficial bacteria Clostridiaceae and Erysipelotrichaceae, coupled with a diminution of harmful bacteria Lachnospiraceae, Anaerovoracaceae, Holdemania and Marvinbryantia. Graphene-FIR also improved intestinal barrier function, as evidenced by the augmented expression of the tight junction protein occludin and G protein-coupled receptor 43 (GPR43). In serum level, we observed the decreased free fatty acids (FFA), lipopolysaccharides (LPS), diamine oxidase (DAO) and D-lactate, and increased the glucagon-like peptide-2 (GLP-2) levels in graphene-FIR mice. Simultaneously, inflammatory cytokines IL-6, IL-1β, and TNF-α manifested a decrease subsequent to graphene-FIR treatment in both peripheral and central system. Notably, graphene-FIR inhibited over expression of astrocytes and microglia. We further noticed that the elevated the BDNF and decreased TLR4 and NF-κB expression in graphene-FIR group. Overall, our study reveals that graphene-FIR rescued HFD-induced anxiety via improving the intestine permeability and the integrity of blood-brain barrier, and reduced inflammatory response by down regulating TLR4/NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- Jin-Shui Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Shuo Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xin Cheng
- Hebei North University, Hebei, 075000, China
| | - Xiao-Cui Tan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yu-Long Huang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Hua-Jin Dong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Rui Xue
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jing-Cao Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiao-Xing Feng
- Grahope New Materials Technologies Inc., Shenzhen, 518063, China
| | - Yun Deng
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| | - You-Zhi Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
9
|
Pedrazzi JFC, Hassib L, Ferreira FR, Hallak JC, Del-Bel E, Crippa JA. Therapeutic potential of CBD in Autism Spectrum Disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:149-203. [PMID: 39029984 DOI: 10.1016/bs.irn.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and interaction, as well as restricted and repetitive patterns of behavior. Despite extensive research, effective pharmacological interventions for ASD remain limited. Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa plant, has potential therapeutic effects on several neurological and psychiatric disorders. CBD interacts with the endocannabinoid system, a complex cell-signaling system that plays a crucial role in regulating various physiological processes, maintaining homeostasis, participating in social and behavioral processing, and neuronal development and maturation with great relevance to ASD. Furthermore, preliminary findings from clinical trials indicate that CBD may have a modulatory effect on specific ASD symptoms and comorbidities in humans. Interestingly, emerging evidence suggests that CBD may influence the gut microbiota, with implications for the bidirectional communication between the gut and the central nervous system. CBD is a safe drug with low induction of side effects. As it has a multi-target pharmacological profile, it becomes a candidate compound for treating the central symptoms and comorbidities of ASD.
Collapse
Affiliation(s)
- João F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Lucas Hassib
- Department of Mental Health, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Jaime C Hallak
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Del-Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; National Institute for Science and Technology, Translational Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cannabinoid Research, Mental Health Building, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José A Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
10
|
Schwarcz R, Foo A, Sathyasaikumar KV, Notarangelo FM. The Probiotic Lactobacillus reuteri Preferentially Synthesizes Kynurenic Acid from Kynurenine. Int J Mol Sci 2024; 25:3679. [PMID: 38612489 PMCID: PMC11011989 DOI: 10.3390/ijms25073679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
The gut-brain axis is increasingly understood to play a role in neuropsychiatric disorders. The probiotic bacterium Lactobacillus (L.) reuteri and products of tryptophan degradation, specifically the neuroactive kynurenine pathway (KP) metabolite kynurenic acid (KYNA), have received special attention in this context. We, therefore, assessed relevant features of KP metabolism, namely, the cellular uptake of the pivotal metabolite kynurenine and its conversion to its primary products KYNA, 3-hydroxykynurenine and anthranilic acid in L. reuteri by incubating the bacteria in Hank's Balanced Salt solution in vitro. Kynurenine readily entered the bacterial cells and was preferentially converted to KYNA, which was promptly released into the extracellular milieu. De novo production of KYNA increased linearly with increasing concentrations of kynurenine (up to 1 mM) and bacteria (107 to 109 CFU/mL) and with incubation time (1-3 h). KYNA neosynthesis was blocked by two selective inhibitors of mammalian kynurenine aminotransferase II (PF-048559989 and BFF-122). In contrast to mammals, however, kynurenine uptake was not influenced by other substrates of the mammalian large neutral amino acid transporter, and KYNA production was not affected by the presumed competitive enzyme substrates (glutamine and α-aminoadipate). Taken together, these results reveal substantive qualitative differences between bacterial and mammalian KP metabolism.
Collapse
Affiliation(s)
- Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA; (A.F.); (K.V.S.)
| | | | | | | |
Collapse
|
11
|
Prescott SL, Logan AC, D’Adamo CR, Holton KF, Lowry CA, Marks J, Moodie R, Poland B. Nutritional Criminology: Why the Emerging Research on Ultra-Processed Food Matters to Health and Justice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:120. [PMID: 38397611 PMCID: PMC10888116 DOI: 10.3390/ijerph21020120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
There is mounting concern over the potential harms associated with ultra-processed foods, including poor mental health and antisocial behavior. Cutting-edge research provides an enhanced understanding of biophysiological mechanisms, including microbiome pathways, and invites a historical reexamination of earlier work that investigated the relationship between nutrition and criminal behavior. Here, in this perspective article, we explore how this emergent research casts new light and greater significance on previous key observations. Despite expanding interest in the field dubbed 'nutritional psychiatry', there has been relatively little attention paid to its relevancy within criminology and the criminal justice system. Since public health practitioners, allied mental health professionals, and policymakers play key roles throughout criminal justice systems, a holistic perspective on both historical and emergent research is critical. While there are many questions to be resolved, the available evidence suggests that nutrition might be an underappreciated factor in prevention and treatment along the criminal justice spectrum. The intersection of nutrition and biopsychosocial health requires transdisciplinary discussions of power structures, industry influence, and marketing issues associated with widespread food and social inequalities. Some of these discussions are already occurring under the banner of 'food crime'. Given the vast societal implications, it is our contention that the subject of nutrition in the multidisciplinary field of criminology-referred to here as nutritional criminology-deserves increased scrutiny. Through combining historical findings and cutting-edge research, we aim to increase awareness of this topic among the broad readership of the journal, with the hopes of generating new hypotheses and collaborations.
Collapse
Affiliation(s)
- Susan L. Prescott
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia;
- Nova Institute for Health, Baltimore, MD 21231, USA;
- Department of Family and Community Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- The ORIGINS Project, Telethon Kids Institute, Perth, WA 6009, Australia
| | - Alan C. Logan
- Nova Institute for Health, Baltimore, MD 21231, USA;
| | - Christopher R. D’Adamo
- Nova Institute for Health, Baltimore, MD 21231, USA;
- Department of Family and Community Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Kathleen F. Holton
- Departments of Health Studies and Neuroscience, Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA;
| | - Christopher A. Lowry
- Department of Psychology and Neuroscience, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA;
| | - John Marks
- Department of Criminal Justice, Louisiana State University of Alexandria, Alexandria, LA 71302, USA;
| | - Rob Moodie
- School of Population and Global Health (MSPGH), University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Blake Poland
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5R 0A3, Canada;
| |
Collapse
|
12
|
Zhu J, Zhong Z, Shi L, Huang L, Lin C, He Y, Xia X, Zhang T, Ding W, Yang Y. Gut microbiota mediate early life stress-induced social dysfunction and anxiety-like behaviors by impairing amino acid transport at the gut. Gut Microbes 2024; 16:2401939. [PMID: 39259834 PMCID: PMC11404583 DOI: 10.1080/19490976.2024.2401939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Early life stress alters gut microbiota and increases the risk of neuropsychiatric disorders, including social deficits and anxiety, in the host. However, the role of gut commensal bacteria in early life stress-induced neurobehavioral abnormalities remains unclear. Using the maternally separated (MS) mice, our research has unveiled a novel aspect of this complex relationship. We discovered that the reduced levels of amino acid transporters in the intestine of MS mice led to low glutamine (Gln) levels in the blood and synaptic dysfunction in the medial prefrontal cortex (mPFC). Abnormally low blood Gln levels limit the brain's availability of Gln, which is required for presynaptic glutamate (Glu) and γ-aminobutyric acid (GABA) replenishment. Furthermore, MS resulted in gut microbiota dysbiosis characterized by a reduction in the relative abundance of Lactobacillus reuteri (L. reuteri). Notably, supplementation with L. reuteri ameliorates neurobehavioral abnormalities in MS mice by increasing intestinal amino acid transport and restoring synaptic transmission in the mPFC. In conclusion, our findings on the role of L. reuteri in regulating intestinal amino acid transport and buffering early life stress-induced behavioral abnormalities provide a novel insight into the microbiota-gut-brain signaling basis for emotional behaviors.
Collapse
Affiliation(s)
- Jiushuang Zhu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Zhuoting Zhong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Lijie Shi
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Ling Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Chunqiao Lin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Yan He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Xiuwen Xia
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Tiane Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Youjun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| |
Collapse
|
13
|
Zeng R, Chen J, Peng Y, Xu W, Tao Y, Li M, Zhang R, Meng J, Li Z, Zeng L, Huang J. Microglia are necessary for probiotics supplementation to improve impaired fear extinction caused by pregnancy stress in adult offspring of rats. Neurobiol Stress 2024; 28:100591. [PMID: 38075026 PMCID: PMC10709091 DOI: 10.1016/j.ynstr.2023.100591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/04/2023] [Accepted: 11/12/2023] [Indexed: 10/19/2024] Open
Abstract
The prevention and treatment of fear-related disorders in offspring affected by pregnancy stress remains challenging at clinic. Here, we examined the effects of gut microbiota of stressed pregnant rats on the fear extinction of their offsprings, and the potential mechanisms. We found that gut microbiota transplantation from rats with pregnancy stress to normal pregnant rats impaired fear extinction, induced microglial activation and synaptic phagocytosis, increased synapse loss in offsprings. Probiotics supplement during pregnancy stress partly normalized pregnancy stress-induced gut microbiota dysbiosis of pregnant rats, and promoted fear memory extinction, inhibited fear memory reappearance, and limited microglial activation and synaptic phagocytosis in offsprings. These data revealed that gut microbiota of stressed pregnant mother improved the development of fear-related disorders of offspring, which may be associated with microglial synaptic pruning.
Collapse
Affiliation(s)
- Ru Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jie Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
- Center for Experimental Medicine, Third Xiangya Hospital, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yihan Peng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Weiye Xu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yuanyuan Tao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Ruqi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jingzhuo Meng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Zhiyuan Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Leping Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| |
Collapse
|
14
|
Wu JJ, Wei Z. Advances in the study of the effects of gut microflora on microglia in Alzheimer's disease. Front Mol Neurosci 2023; 16:1295916. [PMID: 38098943 PMCID: PMC10720669 DOI: 10.3389/fnmol.2023.1295916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023] Open
Abstract
Alzheimer's disease (AD) is a central nervous system (CNS) degenerative disorder, is caused by various factors including β-amyloid toxicity, hyperphosphorylation of tau protein, oxidative stress, and others. The dysfunction of microglia has been associated with the onset and advancement of different neurodevelopmental and neurodegenerative disorders, such as AD. The gut of mammals harbors a vast and complex population of microorganisms, commonly referred to as the microbiota. There's a growing recognition that these gut microbes are intrinsically intertwined with mammalian physiology. Through the circulation of metabolites, they establish metabolic symbiosis, enhance immune function, and establish communication with different remote cells, including those in the brain. The gut microbiome plays a crucial part in influencing the development and performance of microglia, as indicated by recent preclinical studies. Dysbiosis of the intestinal flora leads to alterations in the microglia transcriptome that regulate the interconversion of microglia subtypes. This conversation explores recent research that clarifies how gut bacteria, their byproducts, and harmful elements affect the activation and characteristics of microglia. This understanding opens doors to innovative microbial-based therapeutic strategies for early identification and treatment goals in AD.
Collapse
Affiliation(s)
- Jin-Jing Wu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhe Wei
- School of Medicine, Lishui University, Lishui, Zhejiang, China
- Institute of Breast Oncology, Lishui University Medical College, Lishui, Zhejiang, China
| |
Collapse
|
15
|
Huang CL, Chu HF, Wu CC, Deng FS, Wen PJ, Chien SP, Chao CH, Chen YT, Lu MK, Tsai YC. Exopolysaccharide is the potential effector of Lactobacillus fermentum PS150, a hypnotic psychobiotic strain. Front Microbiol 2023; 14:1209067. [PMID: 37469436 PMCID: PMC10352126 DOI: 10.3389/fmicb.2023.1209067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Psychobiotics are a class of probiotics that confer beneficial effects on the mental health of the host. We have previously reported hypnotic effects of a psychobiotic strain, Lactobacillus fermentum PS150 (PS150), which significantly shortens sleep latency in experimental mice, and effectively ameliorate sleep disturbances caused by either caffeine consumption or a novel environment. In the present study, we discovered a L. fermentum strain, GR1009, isolated from the same source of PS150, and found that GR1009 is phenotypically distinct but genetically similar to PS150. Compared with PS150, GR1009 have no significant hypnotic effects in the pentobarbital-induced sleep test in mice. In addition, we found that heat-killed PS150 exhibited hypnotic effects and altered the gut microbiota in a manner similar to live bacteria, suggesting that a heat-stable effector, such as exopolysaccharide (EPS), could be responsible for these effects. Our comparative genomics analysis also revealed distinct genetic characteristics in EPS biosynthesis between GR1009 and PS150. Furthermore, scanning electron microscopy imaging showed a sheet-like EPS structure in PS150, while GR1009 displayed no apparent EPS structure. Using the phenol-sulfate assay, we found that the sugar content value of the crude extract containing EPS (C-EPS) from PS150 was approximately five times higher than that of GR1009, indicating that GR1009 has a lower EPS production activity than PS150. Through the pentobarbital-induced sleep test, we confirmed the hypnotic effects of the C-EPS isolated from PS150, as evidenced by a significant reduction in sleep latency and recovery time following oral administration in mice. In summary, we utilized a comparative approach to delineate differences between PS150 and GR1009 and proposed that EPS may serve as a key factor that mediates the observed hypnotic effect.
Collapse
Affiliation(s)
- Chin-Lin Huang
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Bened Biomedical Co., Ltd., Taipei, Taiwan
| | - Hsu-Feng Chu
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | | | | | - Shao-Ping Chien
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Hsein Chao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ying-Tsong Chen
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
16
|
Jiang Y, Dai Y, Liu Z, Liao Y, Sun S, Kong X, Hu J, Tang Y. The role of IL-23/IL-17 axis in ischemic stroke from the perspective of gut-brain axis. Neuropharmacology 2023; 231:109505. [PMID: 36924925 DOI: 10.1016/j.neuropharm.2023.109505] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Bidirectional communication between central nervous system (CNS) and intestine is mediated by nerve, endocrine, immune and other pathways in gut-brain axis. Many diseases of CNS disturb the homeostasis of intestine and gut microbiota. Similarly, the dysbiosis of intestinal and gut microbiota also promotes the progression and deterioration of CNS diseases. IL-23/IL-17 axis is an important inflammatory axis which is widely involved in CNS diseases such as experimental autoimmune encephalomyelitis (EAE), multiple sclerosis (MS), and ischemic stroke (IS). Attributing to the long anatomically distances between ischemic brain and gut, previous studies on IL-23/IL-17 axis in IS are rarely focused on intestinal tissues. However, recent studies have found that IL-17+T cells in CNS mainly originate from intestine. The activation and migration of IL-17+T cells to CNS is likely to be affected by the altered intestinal homeostasis. These studies promoted the attention of IL-23/IL-17 axis and gut-brain axis. IS is difficult to treat because of its extremely complex pathological mechanism. This review mainly discusses the relationship between IL-23/IL-17 axis and IS from the perspective of gut-brain axis. By analyzing the immune pathways in gut-brain axis, the activation of IL-23/IL-17 axis, the roles of IL-23/IL-17 axis in gut, CNS and other systems after stoke, this review is expected to provide new enlightenments for the treatment strategies of IS.
Collapse
Affiliation(s)
- Yang Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yajie Dai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan Liao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuyong Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xianghe Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jingjing Hu
- Department of Pathology, University of California San Diego, CA92307, USA.
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
17
|
Peng K, Dong W, Luo T, Tang H, Zhu W, Huang Y, Yang X. Butyrate and obesity: Current research status and future prospect. Front Endocrinol (Lausanne) 2023; 14:1098881. [PMID: 36909336 PMCID: PMC9999029 DOI: 10.3389/fendo.2023.1098881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Over the past few decades, increasing prevalence of obesity caused an enormous medical, social, and economic burden. As the sixth most important risk factor contributing to the overall burden of disease worldwide, obesity not only directly harms the human body, but also leads to many chronic diseases such as diabetes, cardiovascular diseases (CVD), nonalcoholic fatty liver disease (NAFLD), and mental illness. Weight loss is still one of the most effective strategies against obesity and related disorders. Recently, the link between intestinal microflora and metabolic health has been constantly established. Butyrate, a four-carbon short-chain fatty acid, is a major metabolite of the gut microbiota that has many beneficial effects on metabolic health. The anti-obesity activity of butyrate has been demonstrated, but its mechanisms of action have not been fully described. This review summarizes current knowledge of butyrate, including its production, absorption, distribution, metabolism, and the effect and mechanisms involved in weight loss and obesity-related diseases. The aim was to contribute to and advance our understanding of butyrate and its role in obesity. Further exploration of butyrate and its pathway may help to identify new anti-obesity.
Collapse
Affiliation(s)
- Ke Peng
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wenjie Dong
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Taimin Luo
- Department of Pharmacy, Chengdu Seventh People’s Hospital, Chengdu, Sichuan, China
| | - Hui Tang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wanlong Zhu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xuping Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
18
|
Ramírez V, González-Palacios P, Baca MA, González-Domenech PJ, Fernández-Cabezas M, Álvarez-Cubero MJ, Rodrigo L, Rivas A. Effect of exposure to endocrine disrupting chemicals in obesity and neurodevelopment: The genetic and microbiota link. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158219. [PMID: 36007653 DOI: 10.1016/j.scitotenv.2022.158219] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Current evidence highlights the importance of the genetic component in obesity and neurodevelopmental disorders (attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and intellectual disability (ID)), given that these diseases have reported an elevated heritability. Additionally, environmental stressors, such as endocrine disrupting chemicals (EDCs) have been classified as obesogens, neuroendocrine disruptors, and microbiota disrupting chemicals (MDCs). For this reason, the importance of this work lies in examining two possible biological mechanistic pathways linking obesity and neurodevelopmental/behavioural disorders: EDCs - gene and EDCs - microbiota interactions. First, we summarise the shared mechanisms of action of EDCs and the common genetic profile in the bidirectional link between obesity and neurodevelopment. In relation to interaction models, evidence from the reviewed studies reveals significant interactions between pesticides/heavy metals and gene polymorphisms of detoxifying and neurotransmission systems and metal homeostasis on cognitive development, ASD and ADHD symptomatology. Nonetheless, available literature about obesity is quite limited. Importantly, EDCs have been found to induce gut microbiota changes through gut-brain-microbiota axis conferring susceptibility to obesity and neurodevelopmental disorders. In view of the lack of studies assessing the impact of EDCs - gene interactions and EDCs - mediated dysbiosis jointly in obesity and neurodevelopment, we support considering genetics, EDCs exposure, and microbiota as interactive factors rather than individual contributors to the risk for developing obesity and neurodevelopmental disabilities at the same time.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada - Avenida de la Ilustración, 114, 18016 Granada, Spain; "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain
| | - Patricia González-Palacios
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
| | | | | | - María Fernández-Cabezas
- Department of Developmental and Educational Psychology, Faculty of Educational Sciences, University of Granada, 18011 Granada, Spain
| | - María Jesús Álvarez-Cubero
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada - Avenida de la Ilustración, 114, 18016 Granada, Spain; Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Ana Rivas
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| |
Collapse
|
19
|
Yang Y, Zhong Z, Wang B, Wang Y. Xiaoyao San ameliorates high-fat diet-induced anxiety and depression via regulating gut microbiota in mice. Biomed Pharmacother 2022; 156:113902. [DOI: 10.1016/j.biopha.2022.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/02/2022] Open
|
20
|
Ilyés T, Silaghi CN, Crăciun AM. Diet-Related Changes of Short-Chain Fatty Acids in Blood and Feces in Obesity and Metabolic Syndrome. BIOLOGY 2022; 11:1556. [PMID: 36358258 PMCID: PMC9687917 DOI: 10.3390/biology11111556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 09/13/2023]
Abstract
Obesity-related illnesses are one of the leading causes of death worldwide. Metabolic syndrome has been associated with numerous health issues. Short-chain fatty acids (SCFAs) have been shown to have multiple effects throughout the body, both directly as well as through specific G protein-coupled receptors. The main SCFAs produced by the gut microbiota are acetate, propionate, and butyrate, which are absorbed in varying degrees from the large intestine, with some acting mainly locally and others systemically. Diet has the potential to influence the gut microbial composition, as well as the type and amount of SCFAs produced. High fiber-containing foods and supplements increase the production of SCFAs and SCFA-producing bacteria in the gut and have been shown to have bodyweight-lowering effects. Dietary supplements, which increase SCFA production, could open the way for novel approaches to weight loss interventions. The aim of this review is to analyze the variations of fecal and blood SCFAs in obesity and metabolic syndrome through a systematic search and analysis of existing literature.
Collapse
Affiliation(s)
| | - Ciprian N. Silaghi
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| | | |
Collapse
|
21
|
Avolio E, Olivito I, Rosina E, Romano L, Angelone T, Bartolo Anna D, Scimeca M, Bellizzi D, D'Aquila P, Passarino G, Alò R, Maria Facciolo R, Bagni C, De Lorenzo A, Canonaco M. Modifications of behavior and inflammation in mice following transplant with fecal microbiota from children with autism. Neuroscience 2022; 498:174-189. [DOI: 10.1016/j.neuroscience.2022.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
22
|
Xie A, Ensink E, Li P, Gordevičius J, Marshall LL, George S, Pospisilik JA, Aho VTE, Houser MC, Pereira PAB, Rudi K, Paulin L, Tansey MG, Auvinen P, Brundin P, Brundin L, Labrie V, Scheperjans F. Bacterial Butyrate in Parkinson's Disease Is Linked to Epigenetic Changes and Depressive Symptoms. Mov Disord 2022; 37:1644-1653. [PMID: 35723531 PMCID: PMC9545646 DOI: 10.1002/mds.29128] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The gut microbiome and its metabolites can impact brain health and are altered in Parkinson's disease (PD) patients. It has been recently demonstrated that PD patients have reduced fecal levels of the potent epigenetic modulator butyrate and its bacterial producers. OBJECTIVES Here, we investigate whether the changes in the gut microbiome and associated metabolites are related to PD symptoms and epigenetic markers in leucocytes and neurons. METHODS Stool, whole blood samples, and clinical data were collected from 55 PD patients and 55 controls. We performed DNA methylation analysis on whole blood samples and analyzed the results in relation to fecal short-chain fatty acid concentrations and microbiota composition. In another cohort, prefrontal cortex neurons were isolated from control and PD brains. We identified genome-wide DNA methylation by targeted bisulfite sequencing. RESULTS We show that lower fecal butyrate and reduced counts of genera Roseburia, Romboutsia, and Prevotella are related to depressive symptoms in PD patients. Genes containing butyrate-associated methylation sites include PD risk genes and significantly overlap with sites epigenetically altered in PD blood leucocytes, predominantly neutrophils, and in brain neurons, relative to controls. Moreover, butyrate-associated methylated-DNA regions in PD overlap with those altered in gastrointestinal (GI), autoimmune, and psychiatric diseases. CONCLUSIONS Decreased levels of bacterially produced butyrate are related to epigenetic changes in leucocytes and neurons from PD patients and to the severity of their depressive symptoms. PD shares common butyrate-dependent epigenetic changes with certain GI and psychiatric disorders, which could be relevant for their epidemiological relation. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Aoji Xie
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Elizabeth Ensink
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Peipei Li
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Juozas Gordevičius
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Lee L Marshall
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Sonia George
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | | | - Velma T E Aho
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Madelyn C Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA.,Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Pedro A B Pereira
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences, Ås, Norway
| | - Lars Paulin
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Malú G Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Neuroscience and Neurology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Petri Auvinen
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Patrik Brundin
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Lena Brundin
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Viviane Labrie
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Warma S, Lee Y, Brietzke E, McIntyre RS. Microbiome abnormalities as a possible link between diabetes mellitus and mood disorders: Pathophysiology and implications for treatment. Neurosci Biobehav Rev 2022; 137:104640. [PMID: 35353985 DOI: 10.1016/j.neubiorev.2022.104640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus and mental health disorders create an immense burden on society worldwide. Knowledge of the cellular and biochemical connections linking these two pathologies has broadened and the mechanism for diet-induced shifts in the microbiota has become more refined. However, there remains limited understanding of the mechanism wherein changes in the microbiota affect the development and severity of these diseases and their interconnectedness. This review examines current literature to highlight a potential mechanism that links specific changes in the microbiome to mental health disorders and diabetes mellitus. Novel data indicate that alterations in the abundance and concentration of bacterium in the gut result in an elevated risk for developing mental and metabolic disorders. Through the mechanisms and downstream effects of short-chain fatty acids and the tryptophan metabolizing pathway, the onset of diabetes is shown to directly affect the development of mental health disorders. This paper provides a possible physiological mechanism connecting these two disorders, which could inform future research and policy decisions limiting the global impact of these diseases.
Collapse
Affiliation(s)
- Sebastian Warma
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON M5S 3J6, Canada
| | - Yena Lee
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Elisa Brietzke
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada; Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON M5S 3J6, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Li F, Feng Y, Liu H, Kong D, Hsueh CY, Shi X, Wu Q, Li W, Wang J, Zhang Y, Dai C. Gut Microbiome and Metabolome Changes in Mice With Acute Vestibular Deficit. Front Cell Infect Microbiol 2022; 12:821780. [PMID: 35444956 PMCID: PMC9013912 DOI: 10.3389/fcimb.2022.821780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Vestibular deficit is a very common disorder in clinical practice and is characterized by vertigo, spontaneous nystagmus, and autonomic nervous symptoms, including nausea, vomiting, and sweating. In addition, the comorbidity of vestibular deficit and anxiety has long been an integral component of the medical literature. Previous studies have suggested that the mechanisms underlying this comorbidity involved overlap of vestibular and cerebellar networks. Emerging evidence has shown that the microbiota–gut–brain axis plays a key role in the regulation of affective disorders. Thus, we hypothesized that the gut microbiota may be involved in the comorbidity of vestibular deficit and anxiety. To verify this, we constructed a unilateral labyrinthectomy mouse model to simulate vestibular deficit. Then, 16S rRNA gene sequencing and liquid chromatography–mass spectrometry (LC-MS) were used to analyze the microbiome and metabolome of the cecal samples collected from mice in the unilateral labyrinthectomy, sham surgery, and control groups. Notably, unilateral labyrinthectomy shaped the composition of the mouse gut microbiome, resulting in increased abundance of Lachnospiraceae NK4A136 group, Odoribacter and Roseburia and decreased abundance of Prevotella and Parasutterella at the genus level. Tax4Fun functional prediction indicated a decrease in tryptophan metabolism in mice in the unilateral labyrinthectomy group. Moreover, functional correlation of changes in gut microbes and metabolites between different groups showed that the oleamide level was negatively correlated with Odoribacter abundance (r = -0.89, p = 0.0002). The butyric acid level was positively correlated with Parasutterella abundance (r = 0.85, p = 0.0010). The propanoate level was negatively correlated with Prevotella abundance (r = -0.81, p = 0.0020). The 20-HETE level was positively correlated with Parasutterella abundance (r = 0.84, p = 0.0013). The altered microbes and metabolites were closely related to the pathogenesis of affective disorders. Our results not only offer novel insights into the vestibular deficit comorbid with anxiety but also build an important basis for future research on this etiology.
Collapse
Affiliation(s)
- Feitian Li
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Yisi Feng
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Hongyan Liu
- Department of Otolaryngology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dedi Kong
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Chi-Yao Hsueh
- Department of Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Xunbei Shi
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Qianru Wu
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Wei Li
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Yibo Zhang
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Chunfu Dai
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- *Correspondence: Chunfu Dai,
| |
Collapse
|
25
|
Yang Y, Ishima T, Wan X, Wei Y, Chang L, Zhang J, Qu Y, Hashimoto K. Microglial depletion and abnormalities in gut microbiota composition and short-chain fatty acids in mice after repeated administration of colony stimulating factor 1 receptor inhibitor PLX5622. Eur Arch Psychiatry Clin Neurosci 2022; 272:483-495. [PMID: 34480631 DOI: 10.1007/s00406-021-01325-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
PLX5622, a brain-penetrant highly specific inhibitor of the colony-stimulating factor 1 receptor (CSF1R), is used to eliminate microglia in the brain. Considering the role of microglia and gut microbiota in the brain homeostasis, this study was undertaken to investigate whether repeated intragastric administration of PLX5622 (65 mg/kg/day for consecutive 7 days) could affect the composition of gut microbiota and the concentration of short-chain fatty acids (SCFAs) in fresh feces of adult mice. Repeated administration of PLX5622 caused significant reductions of the expression of genes and proteins for microglial markers in the prefrontal cortex (PFC) and hippocampus compared to control mice although the elimination of brain's microglia was partial. There was a significant alteration in the β-diversity of intestine microbiota in the PLX5622-treated group. Linear discriminant analysis effect size identified eight significant enriched bacteria as microbial markers for PLX5622-treated group. Repeated administration of PLX5622 affected the relative abundance of several bacteria at the genus and species levels. Furthermore, repeated administration of PLX5622 caused a significant change in lactic acid compared to control group. Interestingly, we found significant correlations between microglial markers in the brain and the relative abundance of several bacteria, suggesting microbiome-microglia crosstalk through the brain-gut axis. These data demonstrate that repeated administration of PLX5622 leads to an abnormal composition of the gut microbiota and lactic acid in adult mice. Therefore, abnormalities in the composition of gut microbiota after repeated treatment of PLX5622 should be considered for behavioral and biological functions in animals treated with CSF1R inhibitors.
Collapse
Affiliation(s)
- Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Tamaki Ishima
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Yan Wei
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Jiancheng Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
26
|
Jantsch J, Tassinari ID, Giovenardi M, Bambini-Junior V, Guedes RP, de Fraga LS. Mood Disorders Induced by Maternal Overnutrition: The Role of the Gut-Brain Axis on the Development of Depression and Anxiety. Front Cell Dev Biol 2022; 10:795384. [PMID: 35155424 PMCID: PMC8826230 DOI: 10.3389/fcell.2022.795384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Since the first evidence suggesting that maternal nutrition can impact the development of diseases in the offspring, much has been elucidated about its effects on the offspring’s nervous system. Animal studies demonstrated that maternal obesity can predispose the offspring to greater chances of metabolic and neurodevelopmental diseases. However, the mechanisms underlying these responses are not well established. In recent years, the role of the gut-brain axis in the development of anxiety and depression in people with obesity has emerged. Studies investigating changes in the maternal microbiota during pregnancy and also in the offspring demonstrate that conditions such as maternal obesity can modulate the microbiota, leading to long-term outcomes in the offspring. Considering that maternal obesity has also been linked to the development of psychiatric conditions (anxiety and depression), the gut-brain axis is a promising target to be further explored in these neuropsychiatric contexts. In the present study, we review the relationship between maternal obesity and anxious and depressive features, exploring the gut-brain axis as a potential mechanism underlying this relationship.
Collapse
Affiliation(s)
- Jeferson Jantsch
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Isadora D’Ávila Tassinari
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Márcia Giovenardi
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire (UCLan), Preston, United Kingdom
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Luciano Stürmer de Fraga
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- *Correspondence: Luciano Stürmer de Fraga,
| |
Collapse
|
27
|
Suda K, Matsuda K. How Microbes Affect Depression: Underlying Mechanisms via the Gut-Brain Axis and the Modulating Role of Probiotics. Int J Mol Sci 2022; 23:ijms23031172. [PMID: 35163104 PMCID: PMC8835211 DOI: 10.3390/ijms23031172] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Accumulating evidence suggests that the gut microbiome influences the brain functions and psychological state of its host via the gut-brain axis, and gut dysbiosis has been linked to several mental illnesses, including major depressive disorder (MDD). Animal experiments have shown that a depletion of the gut microbiota leads to behavioral changes, and is associated with pathological changes, including abnormal stress response and impaired adult neurogenesis. Short-chain fatty acids such as butyrate are known to contribute to the up-regulation of brain-derived neurotrophic factor (BDNF), and gut dysbiosis causes decreased levels of BDNF, which could affect neuronal development and synaptic plasticity. Increased gut permeability causes an influx of gut microbial components such as lipopolysaccharides, and the resultant systemic inflammation may lead to neuroinflammation in the central nervous system. In light of the fact that gut microbial factors contribute to the initiation and exacerbation of depressive symptoms, this review summarizes the current understanding of the molecular mechanisms involved in MDD onset, and discusses the therapeutic potential of probiotics, including butyrate-producing bacteria, which can mediate the microbiota-gut-brain axis.
Collapse
|