1
|
Li Y, Wang T, Li H, Jiang Y, Shen X, Kang N, Guo Z, Zhang R, Lu X, Kang T, Li M, Hou Y, Wu Y. Targeting LKB1-AMPK-SIRT1-induced autophagy and mitophagy pathways improves cerebrovascular homeostasis in APP/PS1 mice. Free Radic Biol Med 2025; 233:400-418. [PMID: 40180019 DOI: 10.1016/j.freeradbiomed.2025.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/14/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common and severe degenerative disorder of the central nervous system in the elderly, profoundly impacting patients' quality of life. However, effective therapeutic agents for AD are still lacking. Bazi Bushen capsule (BZBS) is a traditional Chinese herbal compound with potential neuroprotective effects, yet its underlying mechanisms remain poorly understood. METHODS In this study, we utilized APP/PS1 transgenic mice to assess the therapeutic efficacy of BZBS. Initially, we evaluated the spatial learning and memory of the mice using the Barnes maze. The brain microcirculation was assessed through a small-animal ultrasound system, two-photon in vivo imaging, and micro-computed tomography angiography. Molecular, biochemical, and pathological analyses were conducted on brain tissues. Through network pharmacology, we identified potential intervention pathways and targets for BZBS in the treatment of AD, which we subsequently validated both in vivo and in vitro. Additionally, we employed molecular virtual docking screening and biolayer interferometry to elucidate the direct interactions of ginsenoside Rg5 and ginsenoside Ro in BZBS with AMPK and LKB1 proteins. RESULTS The BZBS intervention significantly enhanced spatial learning and memory in APP/PS1 mice while decreasing Aβ deposition. Furthermore, BZBS protected cerebrovascular homeostasis and mitigated neuroinflammation, as evidenced by decreased blood-brain barrier permeability, increased expression of tight-junction proteins, and restored cerebral blood flow. Mechanistically, ginsenosides Rg5 and Ro in BZBS directly bind to AMPK and LKB1 proteins, activating the LKB1-AMPK-SIRT1 signaling pathway, promoting autophagy and mitochondrial autophagy, and alleviating oxidative stress damage in endothelial cells. CONCLUSIONS BZBS enhances autophagy-related activity, decreases Aβ deposition, and improves endothelial cell homeostasis through the activation of the LKB1-AMPK-SIRT1 signaling pathway, ultimately leading to improved cognitive function in mice with AD. This study highlights the importance of enhancing autophagic activity and maintaining cerebrovascular homeostasis in mitigating cognitive decline in AD, providing evidence and new insights into the application of compound medicines for treating age-related neurological disorders.
Collapse
Affiliation(s)
- Yawen Li
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Tongxing Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Hongrong Li
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China; Hebei Yiling Hospital, Shijiazhuang, 050035, China
| | - Yuning Jiang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaogang Shen
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Ning Kang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Zhifang Guo
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Runtao Zhang
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuan Lu
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Tianyu Kang
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Mengnan Li
- Hebei Medical University, Shijiazhuang, 050017, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China.
| | - Yunlong Hou
- Hebei Medical University, Shijiazhuang, 050017, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China.
| | - Yiling Wu
- Hebei Medical University, Shijiazhuang, 050017, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China.
| |
Collapse
|
2
|
Gao N, Huang Z, Xie J, Gao S, Wang B, Feng H, Bao C, Tian H, Liu X. Cryptotanshinone alleviates cerebral ischemia reperfusion injury by regulating ferroptosis through the PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119800. [PMID: 40222690 DOI: 10.1016/j.jep.2025.119800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Cryptotanshinone (CT) is a kind of Chinese medicine extracted from salvia miltiorrhiza, which has various pharmacological activities and is widely used in the treatment of diseases. AIM OF THE STUDY The objective is to delve into the mechanism by which cryptotanshinone (CT) exerts its effects on rats with the middle cerebral artery occlusion/reperfusion (MCAO/R) model. Additionally, it aims to further assess the interplay between inflammation and oxidative stress, along with the underlying mechanism of CT's anti-ferroptosis function. MATERIALS AND METHODS We constructed the middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats. The effects of cryptotanshinone (CT) were evaluated using 2,3,5 - triphenyltetrazolium chloride (TTC) staining, behavioral assays, immunofluorescence, hematoxylin - eosin (HE) staining, and Nissl staining. Additionally, in vitro, cell viability was assessed by the Cell Counting Kit - 8 (CCK - 8) assay following experimental dosing. Oxygen - glucose deprivation/oxidation (OGD/R) models were established in PC12 and BV2 cells. Flow cytometry was employed to detect cellular reactive oxygen species (ROS) expression. The activities of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-px), and Mitochondrial Membrane Potential Assay Kit with JC-1(JC-1) were measured using biochemical methods. Inflammatory factor levels were determined using enzyme-linked immunosorbent assay (ELISA) kits. Immunoblotting was used to detect the levels of rat phosphatidylinositol 3 - kinase (PI3K), phosphorylated-PI3K (P-PI3K), protein kinase B (AKT), phosphorylated - AKT (P-AKT), nuclear factor erythroid 2 - related factor 2 (Nrf2), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4). RESULTS In rats with the MCAO/R model, CT demonstrated the ability to decrease ROS levels, enhance the activity of glutathione (GSH), mitigate inflammation, augment the activity of glutathione peroxidase 4 (GPX4), inhibit ferroptosis, safeguard neurons, and facilitate the restoration of nerve function. Results from network pharmacology indicated that the action of CT might be mediated via the PI3K/Akt signaling pathway. Simultaneously, in-vivo investigations revealed that CT curbs ferroptosis through the PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathways. CONCLUSION CT can inhibit ferroptosis by inhibiting the vicious cycle between oxidative stress and inflammation, protect neurons and promote motor function recovery.
Collapse
Affiliation(s)
- Nana Gao
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Zongyu Huang
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Jianjie Xie
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Shuang Gao
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Biaobiao Wang
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Huicong Feng
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Cuifen Bao
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China.
| | - He Tian
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China.
| | - Xia Liu
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China.
| |
Collapse
|
3
|
Shen J, Zheng X, Yan M, Feng M, Ding C, Xie S, Xu H. Seasonal Proteomic Variations and Biomarkers in Seasonal Allergic Rhinitis: Insights from Olink Inflammation Profiling. J Inflamm Res 2025; 18:6191-6202. [PMID: 40386182 PMCID: PMC12083496 DOI: 10.2147/jir.s519126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/01/2025] [Indexed: 05/20/2025] Open
Abstract
Purpose Seasonal allergic rhinitis (SAR) is a prevalent inflammatory condition, yet its molecular mechanisms and reliable biomarkers remain incompletely understood. This study aimed to identify key inflammation-related proteins and pathways associated with SAR by investigating seasonal proteomic profile variations and their correlations with SAR symptoms. Patients and Methods Serum samples were collected from nineteen SAR patients during both allergy (in-season, IS) and non-allergy (out-of-season, OS) periods. Differentially expressed proteins (DEPs) were identified using the Olink Target 96 Inflammation panel, which were further analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Spearman correlation analysis was conducted to explore associations between DEPs and SAR symptoms, including sneezing, rhinorrhea, nasal blockage, itchy nose, and itchy eye. Results A total of 36 inflammation-related DEPs were identified, all significantly upregulated in the allergy season. Notable proteins such as glial cell line-derived neurotrophic factor (GDNF), interleukin-18 receptor 1 (IL-18R1), and interleukin-15 receptor alpha (IL-15RA) showed strong correlations with SAR symptoms. Sneezing was associated with IL-2 receptor beta (IL-2RB) (r = 0.415, p = 0.013), rhinorrhea with FMS-related tyrosine kinase 3 ligand (Flt3L) (r = 0.455, p = 0.004), and nasal blockage with osteoprotegerin (OPG) (r = 0.493, p = 0.002). GO analysis revealed enrichments in Ras signaling and small GTPase pathways, while KEGG analysis highlighted immune-related pathways, including PI3K-Akt signaling and cytokine-cytokine receptor interactions. Conclusion This study identified key inflammation-related proteins and pathways that vary seasonally in SAR, offering insights into potential biomarkers and therapeutic targets for SAR management. Further studies are recommended to validate these findings in larger and more diverse populations.
Collapse
Affiliation(s)
- Jiaqi Shen
- School of Public Health, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xinliang Zheng
- School of Public Health, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Mohan Yan
- School of Public Health, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Minqian Feng
- School of Public Health, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Chan Ding
- School of Public Health, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Shuanghua Xie
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People’s Republic of China
| | - Huadong Xu
- School of Public Health, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
4
|
Huang X, Wang L, Ma X, Liu S, Zhao H, Zhang P, Li L, Zhao W, Jia A. Broussonetia papyrifera ameliorates imiquimod-induced psoriasis-like skin inflammation in mice by modulating the TLR4/NF-κB and PI3K/AKT signaling pathways. PLoS One 2025; 20:e0322710. [PMID: 40333872 PMCID: PMC12057870 DOI: 10.1371/journal.pone.0322710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/23/2025] [Indexed: 05/09/2025] Open
Abstract
Psoriasis is a chronic, immune-mediated inflammatory skin disease, and the inflammatory response plays an important role in its development and progression. Psoriasis can appear at any age and occurs around the world. The pathogenesis of psoriasis has not been fully elucidated, and there is currently no effective treatment method in clinical practice. Broussonetia papyrifera is a traditional Chinese medicine that exhibited a significant therapeutic effect on psoriasis in our previous study due to its remarkable anti-inflammatory and anti-oxidant properties. However, its mechanism of action in treating psoriasis is still unclear. The purpose of this study is to evaluate the anti-psoriasis effect of the B. papyrifera leaves extract (PLE) in vivo and to explore its potential effects. PLE effectively alleviated imiquimod (IMQ)-induced psoriasis-like lesions, reduced psoriasis lesion area and severity index, decreased epidermal hyperplasia, ameliorated the oxidative stress-induced changes in the levels of superoxide dismutase (SOD) and malondialdehyde (MDA), and reduced the levels of the inflammatory cytokines TNF-α and IL-17A. PLE can also reduce the protein expression levels of TLR4, MyD88, p-NF-κBp65, p-IκBα, p-PI3K and p-AKT induced by IMQ model. Our findings suggest that PLE is effective in improving psoriasis-like symptoms, which might be ascribed to the inhibition of the TLR4/NF-κB and PI3K/AKT inflammation pathway. Our study demonstrates the potential mechanism of a natural source of PLE for the treatment of psoriasis. However, it is important to note that these findings lack clinical validation, and further studies are required to validate these results in clinical settings. Additionally, PLE shows potential in being a cost-effective alternative compared to existing biologics, which could have broader implications for psoriasis treatment in the future.
Collapse
Affiliation(s)
- Xiaoqiang Huang
- School of Medicine, Huanghe Science & Technology University, Zhengzhou, China
| | - Li Wang
- School of Medicine, Huanghe Science & Technology University, Zhengzhou, China
| | - Xiaoying Ma
- School of Medicine, Huanghe Science & Technology University, Zhengzhou, China
- School of Pharmacy, Henan University, Kaifeng, China
| | - Shunhe Liu
- School of Medicine, Huanghe Science & Technology University, Zhengzhou, China
| | - Hongchang Zhao
- School of Medicine, Huanghe Science & Technology University, Zhengzhou, China
- School of Pharmacy, Henan University, Kaifeng, China
| | - Pengbo Zhang
- School of Medicine, Huanghe Science & Technology University, Zhengzhou, China
- School of Pharmacy, Henan University, Kaifeng, China
| | - Liyan Li
- School of Medicine, Huanghe Science & Technology University, Zhengzhou, China
| | - Wanli Zhao
- School of Medicine, Huanghe Science & Technology University, Zhengzhou, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Nanjing, China
| | - An Jia
- School of Medicine, Huanghe Science & Technology University, Zhengzhou, China
| |
Collapse
|
5
|
Luo X, Niu JY, Chen HS. The potential value of traditional Chinese medicine monomers in cerebral ischemia-reperfusion injury: a network meta-analysis based on animal model. BMC Complement Med Ther 2025; 25:163. [PMID: 40325432 PMCID: PMC12051284 DOI: 10.1186/s12906-025-04899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury (CIRI) is a complex pathological process, which can further aggravate the damage of ischemic tissues. Traditional Chinese medicine (TCM) monomers, bioactive compounds extracted from Chinese herbal medicines, have been demonstrated to have various protective effects against reperfusion injury. This network meta-analysis (NMA) aimed to investigate the optimal treatment strategy of TCM monomers for CIRI in animal models. METHODS Four databases including PubMed, Embase, Web of Science, and Cochrane were searched up to January 06, 2024. First, prospective registration was done at PROSPERO (ID: CRD42024496289), the quality of the included studies was evaluated with SYRCLE's risk of bias tool, and statistical analysis was conducted with Stata Version 18.0 and RStudio. RESULTS In total, 26 studies were included, involving 506 animals and 12 TCM monomers. The results of a meta-analysis demonstrated that, compared to the control group, puerarin, paeoniflorin, hydroxysafflor yellow A, sinomenine, and salvianolic acid significantly reduced mNSS scores. Furthermore, ginsenoside, scutellarin, and baicalein significantly reduced Longa scores. In addition, salvianolic acid treatment significantly decreased brain water content. Regarding infarct volume, bilobalide, baicalein and puerarin all demonstrated remarkable effects. The network meta-analysis suggested that paeoniflorin might be the most effective intervention in terms of mNSS score, with a surface under the cumulative ranking curve (SUCRA) value of 92.8%; Scutellarin might be the most effective intervention to reduce Longa score (SUCRA = 87.6%); And salvianolic acid might be the most effective intervention to reduce brain water content (SUCRA = 98.2%); For infarct volume specifically, bilobalide may be the most effective intervention (SUCRA = 95.5%). In our meta-regression, we found that dose and duration of treatment may contribute to heterogeneity among mNSS studies. CONCLUSION TCM monomers could provide a favorable neuroprotection on CIRI, with heterogeneous protective effects. Given the small number and the differences in quality of included studies, more high-quality, programmatic animal studies were needed to validate our findings. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Xin Luo
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
- Department of Neurology, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, 110016, China
| | - Jing-Yuan Niu
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
- Department of Neurology, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, 110016, China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, 110016, China.
| |
Collapse
|
6
|
Wang L, Guo H, Zhao W, Wang J, Cao X. Oxiracetam ameliorates neurological function after traumatic brain injury through competing endogenous RNA regulatory network. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06797-9. [PMID: 40272502 DOI: 10.1007/s00213-025-06797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
RATIONALE Oxiracetam (ORC) has been demonstrated to improve neurological function resulting from traumatic brain injury (TBI). OBJECTIVES This study aims to explore the precise molecular mechanism of ORC in the treatment of TBI. METHODS TBI rat model was established and treated with ORC. Modified Garcia score, rotarod test and HE staining were employed to evaluate the neuroprotective effects of ORC. Subsequently, RNA-seq was conducted on the hippocampus of sham, TBI and ORC rats to identify differential expression (DE) lncRNAs and mRNAs. Functional analysis of DE lncRNAs and mRNAs was performed. The real-time quantitative polymerase chain reaction (qRT-PCR) was used to determine the expression of DE lncRNAs and DE mRNAs. Western blot was performed to explore important pathway in ceRNA networks. RESULTS ORC has been demonstrated to effectively improve neurological function in TBI rats. A total of 10 ORC-treated DE lncRNAs and 61 DE mRNAs were obtained. A co-expression network comprising 79 lncRNA-mRNA pairs associated with the treatment of ORC was constructed. Furthermore, an lncRNA-miRNA-mRNA regulated ceRNA network was constructed, comprising 15 mRNAs, 41 miRNAs and 10 lncRNAs. Functional enrichment, qRT-PCR, and Western blot analysis showed that ORC improve neurological function of TBI rats by regulating multiple signaling pathways, including the JAK-STAT/PI3K-Akt pathway, as well as affecting the expression of key genes Prlr, Cdkn1a, and Cldn1. CONCLUSION Our study reveals the mechanism of ORC therapy in TBI rats, which mainly relies on the regulation of the JAK-STAT/PI3K-Akt pathway and the influence on the expression of key genes Prlr, Cdkn1a, and Cldn1.
Collapse
Affiliation(s)
- Liyi Wang
- Hospital Infection-Control Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Han Guo
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Weidong Zhao
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Jiahao Wang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Xuhua Cao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, China.
| |
Collapse
|
7
|
Shu H, Liao Q, Chen Z, Liang M, Zhang S, Liu J, Wu Y, Hu P, Luo M, Zhu W, Zhu X, Yang L, Yan T. Flavonoids serve as a promising therapeutic agent for ischemic stroke. Brain Res 2025; 1853:149528. [PMID: 39999903 DOI: 10.1016/j.brainres.2025.149528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Ischemic stroke (IS) continues to be a major public health concern and is characterized by significantly high mortality and disabling rates. Inhibiting nerve cells death and enhancing the repair of ischemic tissue are important treatment concepts for IS. Currently, the mainstream treatment strategies mainly focus on short-term care, which underscores the urgent need for novel therapeutic strategies for long-term care. Emerging data reveal that flavonoids have surfaced as promising candidates for IS patients' long-term care. Flavonoids can alleviate neuroinflammation and anti-apoptosis due to their characteristic pharmacological mechanisms. Clinical evidence suggests that long-term flavonoids intake improves IS patients' long-term outcomes. Though the effect of flavonoids in IS treatment has been explored for decades, the neuroprotective pharmacodynamics have not been well established. Thereby, the aim of current review is to summarize the pathways involved in neuroprotective effect of flavonoids. This review will also advance the potential of flavonoids as a viable clinical candidate for the treatment of IS.
Collapse
Affiliation(s)
- Hongxin Shu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qiuye Liao
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhihao Chen
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Mingyu Liang
- School of life sciences, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Si Zhang
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Junzhe Liu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yanze Wu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ping Hu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ming Luo
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wenping Zhu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xingen Zhu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Li Yang
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Tengfeng Yan
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
8
|
Qin H, Su L, Zhou B, Yang P, Zhu YL, Liang D. Remote Ischemic Postconditioning Improve Cerebral Ischemia-Reperfusion Injury Induced Cognitive Dysfunction through Suppressing Mitochondrial Apoptosis in Hippocampus via TK/BK/B2R-Mediated PI3K/AKT. Mol Neurobiol 2025:10.1007/s12035-025-04864-y. [PMID: 40229456 DOI: 10.1007/s12035-025-04864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025]
Abstract
Remote ischemic postconditioning (RIPostC) is known to improve motor function recovery in animal models, but its efficacy in alleviating cognitive impairment caused by ischemic stroke remains unclear. This study aims to investigate the beneficial role of RIPostC in recovering cognitive impairment induced by cerebral ischemia-reperfusion injury (CIRI). Building upon our previous research findings, we proved that the TK/BK/B2R pathway is crucial for understanding the crosstalk between cognitive impairment and RIPostC. Additionally, in vitro experiments were conducted using the oxygen glucose deprivation/re-oxygenation (OGD/r) HT-22 cell model, which revealed that the mechanism by which RIPostC suppressed mitochondrial apoptosis was mainly through the activation of the B2R/PI3K/AKT signaling pathway, thereby protecting neurons in the ischemic hippocampus from ischemic damage. To investigate the effect of RIPostC on cognitive function recovery following ischemic stroke, we established a rat model using left middle cerebral artery occlusion reperfusion (MCAO/r). 48 h after MCAO/r, rats were subjected to 3 circles of RIPostC therapy daily for 12 consecutive days. HOE140 was used to antagonize the bradykinin 2 receptor (B2R). Cognitive function was assessed using a modified neurological severity score, the Morris water maze, and the novel object recognition test. Local infarct volume in the hippocampus was measured through MRI scanning. The apoptosis rate of hippocampal neurons was quantified using TUNEL staining. Protein expression levels of kallikrein (TK) and mitochondrial apoptosis-related proteins, Cyt c, Bcl-2, Bax, cleaved caspase-3, and cleaved caspase-9, were detected in ischemic hippocampal tissue using Western blot (WB). The expression of bradykinin (BK) in serum and the ischemic penumbra was measured using an enzyme-linked immunosorbent (ELISA) assay. In the cell experiments, the HT-22 cell line and OGD/r model were used to simulate in vitro hippocampal ischemia. WB was performed to detect the expression of apoptosis-related proteins and PI3K/AKT pathway proteins. The apoptosis rate of HT-22 cells was detected using Annexin-V/PI flow cytometry and a cell viability kit. JC-1 staining and reactive oxygen species staining were used to evaluate mitochondrial condition. The PI3K/AKT pathway was inhibited using LY294002. RIPostC significantly upregulated the concentrations of TK and BK in the ischemic hippocampus. Behavioral function tests demonstrated that daily RIPostC therapy for 12 days significantly promoted cognitive function recovery in MCAO/r rats. Through MRI analysis, we found that RIPostC therapy effectively reduced the infarct volume in the hippocampus. Additionally, TUNEL staining and WB results of apoptosis-related proteins showed that RIPostC therapy significantly reduced apoptosis of hippocampal neurons. However, the therapeutic effect of RIPostC was reversed by the B2R antagonist HOE14, indicating that the TK/BK/B2R pathway mediated the neuroprotective effect of RIPostC. Cell experiments further confirmed that BK/B2R significantly attenuated mitochondrial apoptosis induced by ischemia-hypoxia injury in HT-22 cells. In vivo and in vitro results from WB demonstrated that the BK/B2R pathway activated the PI3K/AKT signaling pathway. Finally, the PI3K inhibitor LY294002 reversed the anti-apoptotic effect induced by BK/B2R. RIPostC therapy effectively inhibited mitochondrial apoptosis of hippocampal neurons and significantly alleviated cognitive dysfunction associated with CIRI by regulating the TK/BK/B2R-medated PI3K/AKT pathway. In conclusion, RIPostC represents a promising therapeutic strategy for combating cognitive dysfunction by inhibiting cell apoptosis in hippocampus. Moreover, our results suggest that RIPostC may have a broader protective effect against apoptosis in other ischemia-reperfusion-related diseases.
Collapse
Affiliation(s)
- Haocheng Qin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Lu Su
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bao Zhou
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Pengkun Yang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Yu-Lian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Dan Liang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| |
Collapse
|
9
|
Ye Y, Xie X, Bi Y, Liu Q, Qiu L, Zhao H, Wang C, Zhu W, Zeng T. Nrf2 alleviates acute ischemic stroke induced ferroptosis via regulating xCT/GPX4 pathway. Free Radic Biol Med 2025; 231:153-162. [PMID: 40020881 DOI: 10.1016/j.freeradbiomed.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Ferroptosis is a form of regulating cell death, and iron accumulation in the brain after acute ischemic stroke (AIS) is associated with the triggering of iron metabolism. Nuclear factor erythroid 2-related factor 2 (Nrf2), one of the most critical antioxidant transcription factors in cells, is closely associated with ferroptosis and oxidative stress.In the present study, we explore the intrinsic mechanisms by which Nrf2 exerts neuroprotective effects against AIS-induced ferroptosis.In vivo experiments, we explored the protective effects of AIS induced by middle cerebral artery occlusion (MCAO) and its mechanisms by using intraperitoneal injections of ferrostatin-1 (Fer-1, an inhibitor of ferroptosis), Oltipraz (an agonist of Nrf2) and ML385 (an inhibitor of Nrf2) in wild-type (WT) mice, as well as using Nrf2-/- mice. In vitro experiments, we investigated the mechanism of action of Nrf2 on the establishment of a ferroptosis cell model induced by Erastin by overexpressing or silencing Nrf2 expression using shRNA in SH-SY5Y cells.Ferroptosis played an important role in AIS, and Fer-1 inhibited iron accumulation and alleviated neuronal damage caused by AIS.Oltipraz attenuated AIS-induced neuronal damage and cerebral infarction by increasing cortical blood flow (CBF). Additionally, Oltipraz protected against AIS-induced ferroptosis by reducing oxidative stress and iron overload. Meanwhile, in Oltipraz-treated AIS mice, Nrf2, solute carrier family 7 member 11 (SLC7A11/xCT), and glutathione peroxidase 4 (GPX4) were upregulated. Conversely, ML385 decreased CBF and exacerbated IS-induced neuronal damage. Furthermore, both ML385 treatment and Nrf2 knockout mice exacerbated oxidative stress injury and iron overload and downregulated the expression of both xCT and GPX4. Consistent with the in vivo results, Nrf2 conferred ferroptosis resistance in vitro upon exposure to compounds that induce ferroptosis, by modulating the xCT/GPX4 pathway.The present study confirmed that Nrf2 could attenuate AIS-induced neuronal ferroptosis and oxidative stress by regulating xCT/GPX4.
Collapse
Affiliation(s)
- Yujun Ye
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; School of Combine Traditional Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China; Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuexin Xie
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; School of Combine Traditional Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China; Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiming Bi
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China
| | - Qing Liu
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China
| | - Lingling Qiu
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China
| | - He Zhao
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China
| | - Chengyin Wang
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China.
| | - Weifeng Zhu
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China.
| | - Ting Zeng
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China.
| |
Collapse
|
10
|
Wang T, Chen J, Qu B, Zhou D, Hong Z. Scutellarin Alleviates Bone Marrow Mesenchymal Stromal Cellular Senescence via the Ezh2-Nrf2 Signalling Axis in Diabetes-Induced Bone Loss. Cell Prolif 2025; 58:e13790. [PMID: 39668494 PMCID: PMC11969241 DOI: 10.1111/cpr.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024] Open
Abstract
Currently, there is no specific treatment for diabetes-induced osteoporosis (DOP). Our study identified diabetes-induced cellular senescence, marked by elevated activity of senescence-associated β-galactosidase. Targeting senescent cells holds promise for osteoporosis treatment. We demonstrated that scutellarin (SCU) effectively mitigated bone loss in DOP mice, and co-treatment with SCU significantly reduced diabetes-induced senescence in LepR+MSCs. Furthermore, our research highlighted the role of Nrf2 in SCU's anti-senescence effects on bone. The deletion of Nrf2 impaired SCU's ability to alleviate DOP. Mechanistically, SCU enhances Ezh2 expression and increases H3K27me3 activity at the Keap1 promoter region, leading to Keap1 repression and enhanced Nrf2-ARE signalling. Additionally, SCU notably inhibited cellular senescence and diabetes-related osteoporosis, these effects were significantly reduced in Ezh2LepRcre conditional knockout models. These findings suggest that the Ezh2-Nrf2 signalling axis is crucial for mediating SCU's beneficial effects in this context. Overall, our discoveries provide insights into the mechanisms underlying DOP and propose a potential preventive strategy for this condition.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyInstitute of Neurology and Disease, West China Hospital of Sichuan UniversityChengduChina
- Institute of Brain Science and Brain‐Inspired Technology of West China Hospital, Sichuan UniversityChengduChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduChina
| | - Jiehao Chen
- Animal Laboratory Center, West China Hospital, Sichuan UniversityChengduChina
| | - Bo Qu
- Department of OrthopedicsThe First Affiliated Hospital of Chengdu Medical CollegeChengduChina
| | - Dong Zhou
- Department of NeurologyInstitute of Neurology and Disease, West China Hospital of Sichuan UniversityChengduChina
- Institute of Brain Science and Brain‐Inspired Technology of West China Hospital, Sichuan UniversityChengduChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduChina
| | - Zhen Hong
- Department of NeurologyInstitute of Neurology and Disease, West China Hospital of Sichuan UniversityChengduChina
- Institute of Brain Science and Brain‐Inspired Technology of West China Hospital, Sichuan UniversityChengduChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduChina
| |
Collapse
|
11
|
Long S, Wang Y. Association of TAB2 gene polymorphism with endometrial cancer susceptibility and clinical analysis. Turk J Obstet Gynecol 2025; 22:1-12. [PMID: 40062608 PMCID: PMC11894771 DOI: 10.4274/tjod.galenos.2025.24983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/06/2025] [Indexed: 03/14/2025] Open
Abstract
Objective Transforming growth factor-β-activated kinase 1 binding protein 2 (TAB2) plays a vital role in inflammatory pathways. It has also been considered a potential target for the enhancement of the the antiestrogen effects. Previous evidence has indicated that TAB2 gene variants are associated with several diseases, whereas their potential correlation with endometrial cancer (EC) is unclear. This study aims to initially explore the association between TAB2 gene polymorphisms (rs237028 /AG, rs521845 T/G, and rs652921 T/C) and EC. Materials and Methods Polymerase chain reaction-restriction fragment length polymorphism was applied to determine the genotype composition and the allele frequencies of TAB2 gene variant polymorphisms in 270 EC patients and 294 healthy controls. Results The G allele of rs521845 was related to the increase of EC risk [p=0.08, odds ratio (OR): 0.72, 95% confidence interval (CI): 0.56-0.91]. Moreover, EC risk was associated with rs521845 in different genetic models (p=0.017, OR: 0.63, 95% CI: 0.44-0.91 in the codominant model; p=0.0051, OR: 0.61, 95% CI: 0.43-0.87 in the dominant model). For rs237028, the percentage of AG genotype in patients with highly differentiated tumours (G1) was significantly higher than that in moderately, poorly differentiated patients (G2/G3) (p=0.031, OR: 0.77, 95% CI: 0.45-1.30). Conclusion Our results showed that the rs521845 polymorphism of TAB2, was associated with EC risk, suggesting that TAB2 may play a crucial role in EC prognosis.
Collapse
Affiliation(s)
- Siyu Long
- Sichuan University, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center for Translational Medicine, Laboratory of Molecular Translational Medicine, Sichuan, China
- Sichuan University West China Second University Hospital, Clinic of Andrology/Sichuan Human Sperm Bank, Chengdu, China
| | - Yanyun Wang
- Sichuan University, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center for Translational Medicine, Laboratory of Molecular Translational Medicine, Sichuan, China
| |
Collapse
|
12
|
Hao L, Jia H, Wei F, Zhang J, Zhang J, Guo C, Wang L. CDC42 Regulates the ERK Pathway to Improve Oxygen‒Glucose Deprivation/Reoxygenation-Induced Neural Oxidative Stress and Apoptosis. Mol Neurobiol 2025:10.1007/s12035-025-04768-x. [PMID: 40035949 DOI: 10.1007/s12035-025-04768-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/10/2025] [Indexed: 03/06/2025]
Abstract
CDC42 regulates neural morphology, differentiation, and injury and modifies oxidative stress and neural immune infiltration, but its effect on oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neural injury has not been reported. Therefore, this study aimed to investigate the effects of CDC42 overexpression on neural injury and oxidative stress during the OGD/R process. The OGD/R cellular model was established by culturing HT22 cells in glucose-free medium under hypoxic conditions for 2, 4, or 6 h and then transferring them to complete medium and a standard environment for another 24 h. CDC42 and negative control overexpression vectors (oeCDC42 and oeNC) were transfected into HT22 cells; afterwards, PD98059, a specific ERK inhibitor, was added along with or without oeCDC42. CDC42 expression, cell viability, and superoxide dismutase (SOD) activity were reduced, but cell apoptosis and reactive oxygen species (ROS) were elevated after OGD/R induction in a time-dependent manner. oeCDC42 decreased cell apoptosis and ROS and increased SOD activity in OGD/R-induced HT22 cells, but it did not significantly increase cell viability. Moreover, oeCDC42 positively regulated p-ERK and p-c-Fos expression. In addition, PD98059 decreased cell viability and SOD activity but increased cell apoptosis and ROS in OGD/R-induced HT22 cells; moreover, the effects of PD98059 combined with oeCDC42 also showed similar trends compared to oeCDC42 alone regarding the above indexes. CDC42 can ameliorate OGD/R-induced neural oxidative stress and apoptosis by regulating the ERK pathway.
Collapse
Affiliation(s)
- Lina Hao
- Functional Department, CangZhou Hospital of Integrated TCM-WM HEBEI, Cangzhou, 061001, China
| | - Hongmei Jia
- Functional Department, Hengshui Third People's Hospital, No.7 Chengji Road, Hengshui, 053000, China
| | - Feifei Wei
- Functional Department, Hengshui Third People's Hospital, No.7 Chengji Road, Hengshui, 053000, China.
| | - Junbo Zhang
- Internal Medicine Department, Dacheng County Hospital, Langfang, 065900, China
| | - Jian Zhang
- Internal Medicine-Neurology, Dacheng County Hospital, Langfang, 065900, China
| | - Chunying Guo
- Functional Department, CangZhou Hospital of Integrated TCM-WM HEBEI, Cangzhou, 061001, China
| | - Liying Wang
- Functional Department, CangZhou Hospital of Integrated TCM-WM HEBEI, Cangzhou, 061001, China
| |
Collapse
|
13
|
Shang J, Yang Y, Sun Y, Gao W, Ma K, Wang C, Yu X, Li L, Zheng J, Zhao N, Shu X, Zhang Y. Real-time monitoring of ONOO⁻ in cerebral ischemia-reperfusion injury mouse models using a hydrazine-based NIR fluorescent probe. Redox Biol 2025; 80:103494. [PMID: 39827589 PMCID: PMC11787443 DOI: 10.1016/j.redox.2025.103494] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Accurate and selective techniques for visualizing endogenous peroxynitrite (ONOO-) in cerebral ischemia-reperfusion injury (CIRI) models are essential for understanding its complex pathological processes. Here, we introduced a longwave fluorescent probe TJO for detecting ONOO- rapidly and sensitively, with a low detection limit of 91 nM. Furthermore, TJO exhibits excellent fluorescence imaging capabilities, enabling detailed visualization of ONOO⁻ in CIRI mice model. This highlights its potential for real-time monitoring of ONOO⁻-related pathological conditions.
Collapse
Affiliation(s)
- Jinting Shang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China.
| | - Yan Yang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Yaojian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Wanxia Gao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Kang Ma
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Chen Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Xin Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liping Li
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Jiang Zheng
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Na Zhao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - XiJi Shu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China.
| | - Yibin Zhang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China; College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China.
| |
Collapse
|
14
|
Khan H, Singh A, Singh Y, Sharma D, Dua K, Grewal AK, Singh TG. Pharmacological modulation of PI3K/PTEN/Akt/mTOR/ERK signaling pathways in ischemic injury: a mechanistic perspective. Metab Brain Dis 2025; 40:131. [PMID: 40009091 DOI: 10.1007/s11011-025-01543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Ischemia, also known as ischemia, relates to the reduced blood movement to a cells, muscle group, or organ in the body, culminating in an insufficient amount of oxygen required for cellular metabolism and the maintenance of tissue viability. There are different types of stroke (ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage), and different causes of stroke (e.g., cardioembolic, atherothrombotic, lacunar ischemic strokes, aneurysmal subarachnoid hemorrhage). It also includes other disorders affecting the blood vessels in the brain (e.g., vascular malformations, unruptured aneurysms). Each of these conditions has different characteristics in terms of how common they are and how they are managed. Stroke is the primary and catastrophic clinical presentation of all cerebrovascular diseases. In this review we focused about the importance of PI3K/AKT signaling pathways which are important in the onset of ischemia-reperfusion (I/R) injury. In addition, mTOR, a target that is activated by the PI3K/Akt signaling pathway, is both required and capable of providing enough protection to the heart against harm caused by I/R. Moreover, the signaling pathways that involve PI3K/Akt/Erk/PTEN/mTOR play a crucial role in facilitating the proliferation and maintenance of neurons following an ischemic stroke. The current review summarizes the molecular mechanisms of various signaling pathways in ischemic diseases and suggests targeting its receptors as a preventive approach based on pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Aditi Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Yashvardhan Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Diksha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India.
| |
Collapse
|
15
|
Meng F, Wang J, Wang L, Zou W. Glucose metabolism impairment in major depressive disorder. Brain Res Bull 2025; 221:111191. [PMID: 39788458 DOI: 10.1016/j.brainresbull.2025.111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Major depressive disorder (MDD) is a common mental disorder with chronic tendencies that seriously affect regular work, life, and study. However, its exact pathogenesis remains unclear. Patients with MDD experience systemic and localized impairments in glucose metabolism throughout the disease course, disrupting various processes such as glucose uptake, glycoprotein transport, glycolysis, the tricarboxylic acid cycle (TCA), and oxidative phosphorylation (OXPHOS). These impairments may result from mechanisms including insulin resistance, hyperglycemia-induced damage, oxidative stress, astrocyte abnormalities, and mitochondrial dysfunction, leading to insufficient energy supply, altered synaptic plasticity, neuronal cell death, and functional and structural damage to reward networks. These mechanical changes contribute to the pathogenesis of MDD and severely interfere with the prognosis. Herein, we summarized the impairment of glucose metabolism and its pathophysiological mechanisms in patients with MDD. In addition, we briefly discussed potential pharmacological interventions for glucose metabolism to alleviate MDD, including glucagon-like peptide-1 receptor agonists, metformin, topical insulin, liraglutide, and pioglitazone, to encourage the development of new therapeutics.
Collapse
Affiliation(s)
- Fanhao Meng
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Jing Wang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Long Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China.
| | - Wei Zou
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
16
|
Yao J, Zhang L, Zhou Z, Liu J, Cheng J, Long F, Yuan T. L-ascorbate Alleviates Chronic Obstructive Pulmonary Disease through the EGF/PI3K/AKT Signaling Axis. Curr Med Chem 2025; 32:1846-1864. [PMID: 39192652 DOI: 10.2174/0109298673302394240823114448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND The molecular mechanism of L-ascorbate (Vitamin C) in the treatment of Chronic Obstructive Pulmonary Disease (COPD) has not been fully explained. In this study, we aimed to explore the potential signaling pathways of L-ascorbate in the treatment of COPD. METHODS The non-targeted metabolomics method was used to analyze the differential metabolites in the blood of healthy subjects and COPD patients. The COPD rat model was established by exposing them to Cigarette Smoke (CS). Network pharmacology, molecular docking, and molecular dynamics simulation analyses were performed to analyze the regulatory pathways of the differential metabolites. RESULTS A non-targeted metabolomics analysis revealed metabolic disorders and significantly reduced levels of L-ascorbate in COPD patients compared with healthy subjects. The L-ascorbate intervention reduced lung inflammation and histological damage in COPD rat models. Network pharmacology analysis revealed 280 common targets between L-ascorbate (drug) and COPD (disease), of which seven core targets were MMP3, MME, PCNA, GCLC, SOD2, EDN1, and EGF. According to molecular docking prediction, L-ascorbate had the highest affinity with EGF. Molecular dynamics simulation indicated relatively stable EGF and L-ascorbate complexes. The PI3K/AKT signaling pathway was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analysis. In vivo and in vitro experiments confirmed that L-ascorbate affected COPD by regulating the EGF/PI3K/AKT pathway. CONCLUSION In summary, based on network pharmacology and molecular docking analyses, this study revealed that L-ascorbate affects COPD development by regulating the PI3K/AKT signaling pathway through EGF and thus contributes to the understanding and clinical application of L-ascorbate in the treatment of COPD.
Collapse
Affiliation(s)
- Ji Yao
- Department of Radiology, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Hengyang, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zezhi Zhou
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiqiang Liu
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Cheng
- Department of Clinical Laboratory, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Hengyang, China
| | - Fan Long
- Department of Health Management Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Yuan
- Department of Nutriology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Nie S, Zhang S, Wu R, Zhao Y, Wang Y, Wang X, Zhu M, Huang P. Scutellarin: pharmacological effects and therapeutic mechanisms in chronic diseases. Front Pharmacol 2024; 15:1470879. [PMID: 39575387 PMCID: PMC11578714 DOI: 10.3389/fphar.2024.1470879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024] Open
Abstract
Scutellarin (SCU), a flavonoid glucuronide derived from Scutellaria barbata and Erigeron breviscapus, exhibits broad pharmacological effects with promising therapeutic potential in treating various chronic diseases. It has demonstrated efficacy in modulating multiple biological pathways, including antioxidant, anti-inflammatory, anti-apoptotic, and vasodilatory mechanisms. These protective roles make SCU a valuable compound in treating chronic diseases such as cerebrovascular diseases, cardiovascular diseases, neurodegenerative disorders, and metabolic diseases. Despite its multi-targeted effects, SCU faces challenges such as low bioavailability and limited clinical data, which hinder its widespread therapeutic application. Current research supports its potential to prevent oxidative stress, reduce inflammatory responses, and enhance cell survival in cells and rats. However, more comprehensive studies are required to clarify its molecular mechanisms and to develop strategies that enhance its bioavailability for clinical use. SCU could emerge as a potent therapeutic agent for the treatment of chronic diseases with complex pathophysiological mechanisms. This review examines the current literature on Scutellarin to provide a comprehensive understanding of its pharmacological activity, mechanisms of action, and therapeutic potential in treating chronic diseases.
Collapse
Affiliation(s)
- Shanshan Nie
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Shan Zhang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruipeng Wu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yuhang Zhao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongxia Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinlu Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mingjun Zhu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
18
|
Duan X, Yan L, Zhang W. An Effective Treatment of Fulminant Hepatic Failure: A Single-Center Retrospective Study. EXP CLIN TRANSPLANT 2024; 22:859-864. [PMID: 39663792 DOI: 10.6002/ect.2024.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
OBJECTIVES Fulminant hepatic failure is a critical condition with a high mortality rate. Currently, liver transplantation is considered one of the most effective treatment methods, but the shortage of organ resources has presented a major obstacle. The use of marginal donor livers, including those from syphilis-positive donors, offers new opportunities. This study reviewed and analyzed data from our center to summarize the management experience of using syphilis-positive donor livers to treat fulminant hepatic failure. MATERIALS AND METHODS From January 2016 to December 2021, 17 adult patients with fulminant hepatic failure received liver transplants from syphilis-positive donors at our center. Given the imbalance in several baseline variables, propensity score matching was used. We compared outcomes, including complications, hospital stay, recovery of liver function, and survival rates between groups of patients with syphilis-positive and syphilis-negative grafts. We also reviewed treatment of recipients of syphilis-positive livers. RESULTS No significant differences were shown in complications and hospital stays between recipients of syphilis-positive and syphilis-negative grafts. Both groups showed similar trends in liver function recovery. Patient and graft survival rates were comparable between the groups. Benzathine penicillin effectively protected recipients from syphilis. CONCLUSIONS Use of liver grafts from syphilis-positive donors did not increase morbidity and mortality in recipients. Liver transplant can effectively treat patients with fulminant hepatic failure. In addition, prophylactic use of benzathine penicillin was beneficial.
Collapse
Affiliation(s)
- Xin Duan
- From the Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | | | | |
Collapse
|
19
|
Zhang X, Wang X, Yin L, Wang D, Jiao H, Liu X, Zheng J. HACE1 exerts a neuroprotective role against oxidative stress in cerebral ischemia-reperfusion injury by activating the PI3K/AKT/Nrf2 pathway. Neuroscience 2024; 559:249-262. [PMID: 39244008 DOI: 10.1016/j.neuroscience.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
HECT domain and Ankyrin repeat-containing E3 ubiquitin protein ligase 1 (HACE1) is an E3 ubiquitin ligase involving oxidative stress, an important contributor in cerebral ischemia-reperfusion injury (CIRI). It was proposed to be associated with the PI3K/AKT pathway and Nrf2 nuclear translocation, which are important players of oxidative stress. Therefore, we supposed that HACE1 might affect CIRI by regulating the PI3K/AKT/Nrf2 pathway. Here, we used the transient middle cerebral artery occlusion-reperfusion (tMCAO/R) model to induce CIRI in rats and found lower HACE1 expression in ischemic rats compared with the control. To explore the exact role of HACE1, the lentivirus vector carrying the HACE1 sequence was administrated to rats by intracerebroventricular injection (1 × 109 TU/mL, 9 μL) one week before tMCAO/R operation. HACE1 overexpression alleviated tMCAO/R-induced brain damage in rats. Further studies revealed that it reduced oxidative stress via activating the PI3K/AKT/Nrf2 pathway, thereby inhibiting neuronal apoptosis in the ischemic penumbra of rats with CIRI. Then, differentiated PC12 cells were cultured in oxygen-glucose deprivation-reoxygenation (OGD/R) conditions (OGD: 1 % O2, 94 % N2, and 5 % CO2; R: normal atmosphere) to simulate CIRI in vitro. Similarly, HACE1 overexpression inhibited neuronal apoptosis caused by OGD/R treatment. The PI3K inhibitor LY294002 reversed the inhibitory effects of HACE1 overexpression on oxidative stress in OGD/R-injured cells, accompanied by the inactivated AKT/Nrf2 pathway. Altogether, our results suggest that HACE1 protects against oxidative stress-induced neuronal apoptosis in CIRI by activating the PI3K/AKT/Nrf2 pathway, providing a new insight into the CIRI treatment.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Xiao Wang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Le Yin
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Dan Wang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Hong Jiao
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Xiaodan Liu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Jiaolin Zheng
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
20
|
Zheng T, Jiang T, Ma H, Zhu Y, Wang M. Targeting PI3K/Akt in Cerebral Ischemia Reperfusion Injury Alleviation: From Signaling Networks to Targeted Therapy. Mol Neurobiol 2024; 61:7930-7949. [PMID: 38441860 DOI: 10.1007/s12035-024-04039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/09/2024] [Indexed: 09/21/2024]
Abstract
Ischemia/reperfusion (I/R) injury is a pathological event that results in reperfusion due to low blood flow to an organ. Cerebral ischemia is a common cerebrovascular disease with high mortality, and reperfusion is the current standard intervention. However, reperfusion may further induce cellular damage and dysfunction known as cerebral ischemia/reperfusion injury (CIRI). Currently, strategies for the clinical management of CIRI are limited, necessitating the exploration of novel and efficacious treatment modalities for the benefit of patients. PI3K/Akt signaling pathway is an important cellular process associated with the disease. Stimulation of the PI3K/Akt pathway enhances I/R injury in multiple organs such as heart, brain, lung, and liver. It stands as a pivotal signaling pathway crucial for diminishing cerebral infarction size and safeguarding the functionality of brain tissue after CIRI. During CIRI, activation of the PI3K/Akt pathway exhibits a protective effect on CIRI. Furthermore, activation of the PI3K/Akt pathway has the potential to augment the activity of antioxidant enzymes, resulting in a decrease in reactive oxygen species (ROS) and the associated oxidative stress. Meanwhile, PI3K/Akt plays a neuroprotective role by inhibiting inflammatory responses and apoptosis. For example, PI3K/Akt interacts with NF-κB, Nrf2, and MAPK signaling pathways to mitigate CIRI. This article is aimed to explore the pivotal role and underlying mechanism of PI3K/Akt in ameliorating CIRI and investigate the influence of ischemic preconditioning and post-processing, as well as the impact of pertinent drugs or activators targeting the PI3K/Akt pathway on CIRI. The primary objective is to furnish compelling evidence supporting the activation of PI3K/Akt in the context of CIRI, elucidating its mechanistic intricacies. By doing so, the paper aims to underscore the critical contribution of PI3K/Akt in mitigating CIRI, providing a theoretical foundation for considering the PI3K/Akt pathway as a viable target for CIRI treatment.
Collapse
Affiliation(s)
- Ting Zheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Taotao Jiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongxiang Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yanping Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Manxia Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
21
|
Zhou Y, Gu C, Zhu Y, Zhu Y, Chen Y, Shi L, Yang Y, Lu X, Pang H. Pharmacological effects and the related mechanism of scutellarin on inflammation-related diseases: a review. Front Pharmacol 2024; 15:1463140. [PMID: 39188946 PMCID: PMC11345237 DOI: 10.3389/fphar.2024.1463140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
Inflammation is a biological response of multicellular organisms caused by injuries, pathogens or irritants. An excessive inflammatory response can lead to tissue damage and various chronic diseases. Chronic inflammation is a common feature of many diseases, making the search for drugs to treat inflammation-related diseases urgent. Scutellarin, a natural flavonoid metabolite, is widely used in the treatment of various inflammation-related diseases for its anti-inflammatory, anti-oxidant and anti-cancer activities. Scutellarin can inhibit key inflammatory pathways (PI3K/Akt, MAPK, and NF-κB, etc.) and activate the anti-oxidant related pathways (Nrf2, ARE, ect.), thereby protecting tissues from inflammation and oxidative stress. Modern extraction technologies, such as microwave-assisted, ultrasound assisted, and supercritical fluid extraction, have been utilized to extract scutellarin from Scutellaria and Erigeron genera. These technologies improve efficiency and retain biological activity, making scutellarin suitable for large-scale production. Scutellarin has significant therapeutic effects in treating osteoarthritis, pulmonary fibrosis, kidney injury, and cardiovascular diseases. However, due to its low bioavailability and short half-life, its clinical application is limited. Researchers are exploring innovative formulations (β-cyclodextrin polymers, triglyceride mimetic active ingredients, and liposome precursors, etc.) to improve stability and absorption rates. Despite these challenges, the potential of scutellarin in anti-inflammatory, anti-oxidant, and anti-cancer applications remains enormous. By optimizing formulations, exploring combination therapies, and conducting in-depth mechanistic research, scutellarin can play an important role in treating various inflammatory diseases, providing patients with more and effective treatment options.
Collapse
Affiliation(s)
- Yang Zhou
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Chenlin Gu
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yan Zhu
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yuting Zhu
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yutong Chen
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Li Shi
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yang Yang
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Xin Lu
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Hanqing Pang
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| |
Collapse
|
22
|
Yuan T, Yang HY, Li YP, Shi ZJ, Zhou ZY, You YP, Ke HY, Yan L, Xu LH, Ouyang DY, He XH, Zha QB. Scutellarin inhibits inflammatory PANoptosis by diminishing mitochondrial ROS generation and blocking PANoptosome formation. Int Immunopharmacol 2024; 139:112710. [PMID: 39029229 DOI: 10.1016/j.intimp.2024.112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
PANoptosis is manifested with simultaneous activation of biomarkers for both pyroptotic, apoptotic and necroptotic signaling via the molecular platform PANoptosome and it is involved in pathologies of various inflammatory diseases including hemophagocytic lymphohistiocytosis (HLH). Scutellarin is a flavonoid isolated from herbal Erigeron breviscapus (Vant.) Hand.-Mazz. and has been shown to possess multiple pharmacological effects, but it is unknown whether scutellarin has any effects on PANoptosis and related inflammatory diseases. In this study, we found that scutellarin inhibited cell death in bone marrow-derived macrophages (BMDMs) and J774A.1 cells treated with TGF-β-activated kinase 1 (TAK1) inhibitor 5Z-7-oxozeaenol (OXO) plus lipopolysaccharide (LPS), which has been commonly used to induce PANoptosis. Western blotting showed that scutellarin dose-dependently inhibited the activation biomarkers for pyroptotic (Caspase-1p10 and GSDMD-NT), apoptotic (cleaved Casp3/8/9 and GSDME-NT), and necroptotic (phosphorylated MLKL) signaling. The inhibitory effect of scutellarin was unaffected by NLRP3 or Caspase-1 deletion. Interestingly, scutellarin blocked the assembly of PANoptosome that encompasses ASC, RIPK3, Caspase-8 and ZBP1, suggesting its action on upstream signaling. Consistent with this, scutellarin inhibited mitochondrial damage and mitochondrial reactive oxygen species (mtROS) generation in cells treated with OXO+LPS. Further, mito-TEMPO that can scavenge mtROS significantly inhibited OXO+LPS-induced PANoptotic cell death. In line with the in vitro results, scutellarin markedly alleviated systemic inflammation, multiple organ injury, and activation of PANoptotic biomarkers in mice with HLH. Collectively, our data suggest that scutellarin can inhibit PANoptosis by suppressing mitochondrial damage and mtROS generation and thereby mitigating multiple organ injury in mice with inflammatory disorders.
Collapse
Affiliation(s)
- Tao Yuan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Center of Reproductive Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| | - Hai-Yan Yang
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ya-Ping Li
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zhi-Ya Zhou
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Ping You
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hua-Yu Ke
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Liang Yan
- Center of Reproductive Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| | - Li-Hui Xu
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dong-Yun Ouyang
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Center of Reproductive Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Xian-Hui He
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Center of Reproductive Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China.
| | - Qing-Bing Zha
- Center of Reproductive Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China.
| |
Collapse
|
23
|
Jia XY, Yang Y, Jia XT, Jiang DL, Fu LY, Tian H, Yang XY, Zhao XY, Liu KL, Kang YM, Yu XJ. Capsaicin pretreatment attenuates salt-sensitive hypertension by alleviating AMPK/Akt/Nrf2 pathway in hypothalamic paraventricular nucleus. Front Neurosci 2024; 18:1416522. [PMID: 38872941 PMCID: PMC11169651 DOI: 10.3389/fnins.2024.1416522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Background Long term hypertension seriously promotes target organ damage in the brain and heart, and has increasingly become serious public health problem worldwide. The anti-hypertensive effects of capsaicin has been reported, however, the role and mechanism of capsaicin within the brain on salt-induced hypertension have yet to be elucidated. This study aimed to verify the hypothesis that capsaicin attenuates salt-induced hypertension via the AMPK/Akt/Nrf2 pathway in hypothalamic paraventricular nucleus (PVN). Methods Dahl salt-sensitive (Dahl S) rats were used as animal model for the present study. Rats were randomly divided into four groups based on their dietary regimen (0.3% normal salt diet and 8% high salt diet) and treatment methods (infusion of vehicle or capsaicin in the PVN). Capsaicin was chronically administered in the PVN throughout the animal experiment phase of the study that lasted 6 weeks. Results Our results demonstrated that PVN pretreatment with capsaicin can slow down raise of the blood pressure elevation and heart rate (HR) of Dahl S hypertensive rats given high salt diet. Interestingly, the cardiac hypertrophy was significantly improved. Furthermore, PVN pretreatment with capsaicin induced decrease in the expression of mRNA expression of NADPH oxidase-2 (NOX2), inducible nitric oxide synthase (iNOS), NOX4, p-IKKβ and proinflammatory cytokines and increase in number of positive cell level for Nrf2 and HO-1 in the PVN of Dahl S hypertensive rats. Additionally, the protein expressions of phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT) were decreased, phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were increased after the PVN pretreatment with capsaicin. Conclusion Capsaicin pretreatment attenuates salt-sensitive hypertension by alleviating AMPK/Akt/iNOS pathway in the PVN.
Collapse
Affiliation(s)
- Xiu-Yue Jia
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yu Yang
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Department of Pharmacology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xiao-Tao Jia
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Department of Neurology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Da-Li Jiang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li-Yan Fu
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Hua Tian
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xin-Yan Yang
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xin-Yue Zhao
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Kai-Li Liu
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yu-Ming Kang
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Jing Yu
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
24
|
Wang L, Jia JX, Zhang SB, Song W, Yan XS, Huo DS, Wang H, Wu LE, Yang ZJ. The protective effect and mechanism of glycosides of cistanche deserticola on rats in middle cerebral artery occlusion (MCAO) model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:448-456. [PMID: 38557302 DOI: 10.1080/15287394.2024.2337365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) occurs frequently clinically as a complication following cardiovascular resuscitation resulting in neuronal damage specifically to the hippocampal CA1 region with consequent cognitive impairment. Apoptosis and oxidative stress were proposed as major risk factors associated with CIRI development. Previously, glycosides obtained from Cistanche deserticola (CGs) were shown to play a key role in counteracting CIRI; however, the underlying mechanisms remain to be determined. This study aimed to investigate the neuroprotective effect of CGs on subsequent CIRI in rats. The model of CIRI was established for 2 hr and reperfusion for 24 hr by middle cerebral artery occlusion (MCAO) model. The MCAO rats were used to measure the antioxidant and anti-apoptotic effects of CGs on CIRI. Neurological function was evaluated by the Longa neurological function score test. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to detect the area of cerebral infarction. Nissl staining was employed to observe neuronal morphology. TUNEL staining was used to detect neuronal apoptosis, while Western blot determined protein expression levels of factors for apoptosis-related and PI3K/AKT/Nrf2 signaling pathway. Data demonstrated that CGs treatment improved behavioral performance, brain injury, and enhanced antioxidant and anti-apoptosis in CIRI rats. In addition, CGs induced activation of PI3K/AKT/Nrf2 signaling pathway accompanied by inhibition of the expression of apoptosis-related factors. Evidence indicates that CGs amelioration of CIRI involves activation of the PI3K/AKT/Nrf2 signaling pathway associated with increased cellular viability suggesting these glycosides may be considered as an alternative compound for CIRI treatment.
Collapse
Affiliation(s)
- Lu Wang
- Department of Neurology, The First Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Jian-Xin Jia
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Shi-Bin Zhang
- Department of Human Anatomy, Baotou Medical College, Baotou, China
| | - Wei Song
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Xu-Sheng Yan
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Dong-Sheng Huo
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - He Wang
- School of Health Sciences, University of Newcastle, Newcastle, Australia
| | - Li-E Wu
- Department of Neurology, The First Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Zhan-Jun Yang
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
- Department of Human Anatomy, Chifeng University, Chifeng, China
| |
Collapse
|
25
|
Huang WT, Chen XJ, Lin YK, Shi JF, Li H, Wu HD, Jiang RL, Chen S, Wang X, Tan XX, Chen KY, Wang P. FGF17 protects cerebral ischemia reperfusion-induced blood-brain barrier disruption via FGF receptor 3-mediated PI3K/AKT signaling pathway. Eur J Pharmacol 2024; 971:176521. [PMID: 38522639 DOI: 10.1016/j.ejphar.2024.176521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Maintaining blood-brain barrier (BBB) integrity is critical components of therapeutic approach for ischemic stroke. Fibroblast growth factor 17 (FGF17), a member of FGF8 superfamily, exhibits the strongest expression throughout the wall of all major arteries during development. However, its molecular action and potential protective role on brain endothelial cells after stroke remains unclear. Here, we observed reduced levels of FGF17 in the serum of patients with ischemic stroke, as well as in the brains of mice subjected to middle cerebral artery occlusion (MCAO) injury and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced brain microvascular endothelial cells (bEnd.3) cells. Moreover, treatment with exogenous recombinant human FGF17 (rhFGF17) decreased infarct volume, improved neurological deficits, reduced Evans Blue leakage and upregulated the expression of tight junctions in MCAO-injured mice. Meanwhile, rhFGF17 increased cell viability, enhanced trans-endothelial electrical resistance, reduced sodium fluorescein leakage, and alleviated reactive oxygen species (ROS) generation in OGD/R-induced bEnd.3 cells. Mechanistically, the treatment with rhFGF17 resulted in nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear accumulation and upregulation of heme oxygenase-1 (HO-1) expression. Additionally, based on in-vivo and in-vitro research, rhFGF17 exerted protective effects against ischemia/reperfusion (I/R) -induced BBB disruption and endothelial cell apoptosis through the activation of the FGF receptor 3/PI3K/AKT signaling pathway. Overall, our findings indicated that FGF17 may hold promise as a novel therapeutic strategy for ischemic stroke patients.
Collapse
Affiliation(s)
- Wen-Ting Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiong-Jian Chen
- Department of Pharmacy, Wenzhou Central Hospital, Wenzhou, 325099, China
| | - Yu-Kai Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jun-Feng Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hao-Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ruo-Lin Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shuai Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xian-Xi Tan
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Ke-Yang Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children' Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Peng Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
26
|
Li J, Wei G, Song Z, Chen Z, Gu J, Zhang L, Wang Z. SIRT5 Regulates Ferroptosis through the Nrf2/HO-1 Signaling Axis to Participate in Ischemia-Reperfusion Injury in Ischemic Stroke. Neurochem Res 2024; 49:998-1007. [PMID: 38170384 DOI: 10.1007/s11064-023-04095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
This work aimed to study the role and mechanism of SIRT5 regulation of ferroptosis in cerebral ischemia-reperfusion (I/R) injury. A model of middle cerebral artery occlusion in rats was prepared using the method of thread occlusion. The ferroptosis inhibitor was injected intraperitoneally while the SIRT5 interfering lentivirus were injected into the brain, and neurological disorders were scored in the rats. TTC staining was used to detect infarct volume, and immunohistochemistry was used to detect the expression of SIRT5 in tissues. Rat hippocampal neuronal cells H19-7 were transduced with SIRT5 interfering lentivirus and ferroptosis was induced using erastin. The CCK8 detection kit was used to detect cell viability. Commercial kits were used to detect levels of iron ions, ROS, MDA, SOD, and inflammatory factor (TNF-α and IL-6) in brain tissue or cell supernatant. Western blot was used to detect the expression changes of ferroptosis related proteins GPX4, Nrf2, and HO-1 in tissues or cells. Compared with the sham group, the MCAO model group showed higher levels of neurological impairment score, increased cerebral infarction volume, iron ions, inflammatory factors, and oxidative stress levels in rats. Compared with the MCAO group, the MCAO + fer-1 group exhibited lower levels of neurological impairment scores, cerebral infarction volume, decreased iron ions, inflammatory factors, and oxidative stress levels in rats. Meanwhile, compared with the MCAO + DMSO/LV-shRNA group, the MCAO + fer-1/LV-shSIRT5 group showed a significant decrease in neurological impairment scores, cerebral infarction volume, iron ions, inflammatory factors, and oxidative stress levels in rats. In vitro experiments have found that LV-shSIRT5 can prevent erastin-induced cell ferroptosis. In summary, SIRT5 regulates ferroptosis through the Nrf2/HO-1 signaling axis to participate in ischemia-reperfusion injury in ischemic stroke.
Collapse
Affiliation(s)
- Jian Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
- Department of Neurosurgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Wuxi, China
| | - Gao Wei
- Department of Neurology, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Zhaoming Song
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Zhouqing Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Jingyu Gu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Li Zhang
- Department of Neurosurgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| |
Collapse
|
27
|
Xu Y, Jia B, Li J, Li Q, Luo C. The Interplay between Ferroptosis and Neuroinflammation in Central Neurological Disorders. Antioxidants (Basel) 2024; 13:395. [PMID: 38671843 PMCID: PMC11047682 DOI: 10.3390/antiox13040395] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Central neurological disorders are significant contributors to morbidity, mortality, and long-term disability globally in modern society. These encompass neurodegenerative diseases, ischemic brain diseases, traumatic brain injury, epilepsy, depression, and more. The involved pathogenesis is notably intricate and diverse. Ferroptosis and neuroinflammation play pivotal roles in elucidating the causes of cognitive impairment stemming from these diseases. Given the concurrent occurrence of ferroptosis and neuroinflammation due to metabolic shifts such as iron and ROS, as well as their critical roles in central nervous disorders, the investigation into the co-regulatory mechanism of ferroptosis and neuroinflammation has emerged as a prominent area of research. This paper delves into the mechanisms of ferroptosis and neuroinflammation in central nervous disorders, along with their interrelationship. It specifically emphasizes the core molecules within the shared pathways governing ferroptosis and neuroinflammation, including SIRT1, Nrf2, NF-κB, Cox-2, iNOS/NO·, and how different immune cells and structures contribute to cognitive dysfunction through these mechanisms. Researchers' findings suggest that ferroptosis and neuroinflammation mutually promote each other and may represent key factors in the progression of central neurological disorders. A deeper comprehension of the common pathway between cellular ferroptosis and neuroinflammation holds promise for improving symptoms and prognosis related to central neurological disorders.
Collapse
Affiliation(s)
- Yejia Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Bowen Jia
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Qianqian Li
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
- School of Forensic Medicine, Wannan Medical College, Wuhu 241002, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
28
|
Xie Y, Sun G, Tao Y, Zhang W, Yang S, Zhang L, Lu Y, Du G. Current advances on the therapeutic potential of scutellarin: an updated review. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:20. [PMID: 38436812 PMCID: PMC10912075 DOI: 10.1007/s13659-024-00441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Scutellarin is widely distributed in Scutellaria baicalensis, family Labiatae, and Calendula officinalis, family Asteraceae, and belongs to flavonoids. Scutellarin has a wide range of pharmacological activities, it is widely used in the treatment of cerebral infarction, angina pectoris, cerebral thrombosis, coronary heart disease, and other diseases. It is a natural product with great research and development prospects. In recent years, with in-depth research, researchers have found that wild scutellarin also has good therapeutic effects in anti-tumor, anti-inflammatory, anti-oxidation, anti-virus, treatment of metabolic diseases, and protection of kidney. The cancer treatment involves glioma, breast cancer, lung cancer, renal cancer, colon cancer, and so on. In this paper, the sources, pharmacological effects, in vivo and in vitro models of scutellarin were summarized in recent years, and the current research status and future direction of scutellarin were analyzed.
Collapse
Affiliation(s)
- Yifei Xie
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, China
| | - Guotong Sun
- Pharmaceutical College of Henan University, Kaifeng, 475004, China
| | - Yue Tao
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen Zhang
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, China
| | - Shiying Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li Zhang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yang Lu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Guanhua Du
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|