1
|
Radoszkiewicz K, Rybkowska P, Szymanska M, Krzesniak NE, Sarnowska A. The influence of biomimetic conditions on neurogenic and neuroprotective properties of dedifferentiated fat cells. Stem Cells 2025; 43:sxae066. [PMID: 39576128 PMCID: PMC11811640 DOI: 10.1093/stmcls/sxae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/30/2024] [Indexed: 02/12/2025]
Abstract
In the era of a constantly growing number of reports on the therapeutic properties of dedifferentiated, ontogenetically rejuvenated cells and their use in the treatment of neurological diseases, the optimization of their derivation and long-term culture methods seem to be crucial. One of the solutions is seen in the use of dedifferentiated fat cells (DFATs) that are characterized by a greater homogeneity. Moreover, these cells seem to possess a higher expression of transcriptional factors necessary to maintain pluripotency (stemness-related transcriptional factors) as well as a greater ability to differentiate in vitro into 3 embryonic germ layers, and a high proliferative potential in comparison to adipose stem/stromal cells. However, the neurogenic and neuroprotective potential of DFATs is still insufficiently understood; hence, our research goal was to contribute to our current knowledge of the subject. To recreate the brain's physiological (biomimetic) conditions, the cells were cultured at 5% oxygen concentration. The neural differentiation capacity of DFATs was assessed in the presence of the N21 supplement containing the factors that are typically found in the natural environment of the neural cell niche or in the presence of cerebrospinal fluid and under various spatial conditions (microprinting). The neuroprotective properties of DFATs were assessed using the coculture method with the ischemically damaged nerve tissue.
Collapse
Affiliation(s)
- Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| | - Paulina Rybkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| | - Magdalena Szymanska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| | - Natalia Ewa Krzesniak
- Department of Plastic and Reconstructive Surgery, Centre of Postgraduate Medical Education, Prof. W. Orlowski Memorial Hospital, 00‐416 Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| |
Collapse
|
2
|
Capossela L, Gatto A, Ferretti S, Di Sarno L, Graglia B, Massese M, Soligo M, Chiaretti A. Multifaceted Roles of Nerve Growth Factor: A Comprehensive Review with a Special Insight into Pediatric Perspectives. BIOLOGY 2024; 13:546. [PMID: 39056738 PMCID: PMC11273967 DOI: 10.3390/biology13070546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Nerve growth factor (NGF) is a neurotrophic peptide largely revealed for its ability to regulate the growth and survival of peripheral sensory, sympathetic, and central cholinergic neurons. The pro-survival and regenerative properties of neurotrophic factors propose a therapeutic potential in a wide range of brain diseases, and NGF, in particular, has appeared as an encouraging potential treatment. In this review, a summary of clinical studies regarding NGF and its therapeutic effects published to date, with a specific interest in the pediatric context, will be attempted. NGF has been studied in neurological disorders such as hypoxic-ischemic encephalopathy, traumatic brain injury, neurobehavioral and neurodevelopmental diseases, congenital malformations, cerebral infections, and in oncological and ocular diseases. The potential of NGF to support neuronal survival, repair, and plasticity in these contexts is highlighted. Emerging therapeutic strategies for NGF delivery, including intranasal administration as well as advanced nanotechnology-based methods, are discussed. These techniques aim to enhance NGF bioavailability and target specificity, optimizing therapeutic outcomes while minimizing systemic side effects. By synthesizing current research, this review underscores the promise and challenges of NGF-based therapies in pediatric neurology, advocating for continued innovation in delivery methods to fully harness NGF's therapeutic potential.
Collapse
Affiliation(s)
- Lavinia Capossela
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| | - Antonio Gatto
- Institute of Pediatrics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.G.); (M.M.)
| | - Serena Ferretti
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| | - Lorenzo Di Sarno
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| | - Benedetta Graglia
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| | - Miriam Massese
- Institute of Pediatrics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.G.); (M.M.)
| | - Marzia Soligo
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle Ricerche (CNR), 00133 Rome, Italy;
| | - Antonio Chiaretti
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| |
Collapse
|
3
|
Guo W, Liu K, Wang Y, Ge X, Ma Y, Qin J, Zhang C, Zhao Y, Shi C. Neurotrophins and neural stem cells in posttraumatic brain injury repair. Animal Model Exp Med 2024; 7:12-23. [PMID: 38018458 PMCID: PMC10961886 DOI: 10.1002/ame2.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023] Open
Abstract
Traumatic brain injury (TBI) is the main cause of disability, mental health disorder, and even death, with its incidence and social costs rising steadily. Although different treatment strategies have been developed and tested to mitigate neurological decline, a definitive cure for these conditions remains elusive. Studies have revealed that various neurotrophins represented by the brain-derived neurotrophic factor are the key regulators of neuroinflammation, apoptosis, blood-brain barrier permeability, neurite regeneration, and memory function. These factors are instrumental in alleviating neuroinflammation and promoting neuroregeneration. In addition, neural stem cells (NSC) contribute to nerve repair through inherent neuroprotective and immunomodulatory properties, the release of neurotrophins, the activation of endogenous NSCs, and intercellular signaling. Notably, innovative research proposals are emerging to combine BDNF and NSCs, enabling them to synergistically complement and promote each other in facilitating injury repair and improving neuron differentiation after TBI. In this review, we summarize the mechanism of neurotrophins in promoting neurogenesis and restoring neural function after TBI, comprehensively explore the potential therapeutic effects of various neurotrophins in basic research on TBI, and investigate their interaction with NSCs. This endeavor aims to provide a valuable insight into the clinical treatment and transformation of neurotrophins in TBI, thereby promoting the progress of TBI therapeutics.
Collapse
Affiliation(s)
- Wenwen Guo
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
- Gansu University of Traditional Chinese MedicineLanzhouP.R. China
| | - Ke Liu
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
- Gansu University of Traditional Chinese MedicineLanzhouP.R. China
| | - Yinghua Wang
- Medical College of Yan'an UniversityYan'anP.R. China
| | - Xu Ge
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| | - Yifan Ma
- Gansu University of Traditional Chinese MedicineLanzhouP.R. China
| | - Jing Qin
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| | - Caiqin Zhang
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| | - Ya Zhao
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| | - Changhong Shi
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| |
Collapse
|
4
|
Yatoo MI, Bahader GA, Beigh SA, Khan AM, James AW, Asmi MR, Shah ZA. Neuroprotection or Sex Bias: A Protective Response to Traumatic Brain Injury in the Females. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:906-916. [PMID: 37592792 DOI: 10.2174/1871527323666230817102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023]
Abstract
Traumatic brain injury (TBI) is a major healthcare problem and a common cause of mortality and morbidity. Clinical and preclinical research suggests sex-related differences in short- and longterm outcomes following TBI; however, males have been the main focus of TBI research. Females show a protective response against TBI. Female animals in preclinical studies and women in clinical trials have shown comparatively better outcomes against mild, moderate, or severe TBI. This reflects a favorable protective nature of the females compared to the males, primarily attributed to various protective mechanisms that provide better prognosis and recovery in the females after TBI. Understanding the sex difference in the TBI pathophysiology and the underlying mechanisms remains an elusive goal. In this review, we provide insights into various mechanisms related to the anatomical, physiological, hormonal, enzymatic, inflammatory, oxidative, genetic, or mitochondrial basis that support the protective nature of females compared to males. Furthermore, we sought to outline the evidence of multiple biomarkers that are highly potential in the investigation of TBI's prognosis, pathophysiology, and treatment and which can serve as objective measures and novel targets for individualized therapeutic interventions in TBI treatment. Implementations from this review are important for the understanding of the effect of sex on TBI outcomes and possible mechanisms behind the favorable response in females. It also emphasizes the critical need to include females as a biological variable and in sufficient numbers in future TBI studies.
Collapse
Affiliation(s)
- Mohammad I Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Shuhama, Alusteng, Srinagar, 190006, Jammu and Kashmir, India
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Shafayat A Beigh
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Shuhama, Alusteng, Srinagar, 190006, Jammu and Kashmir, India
| | - Adil M Khan
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Shuhama, Alusteng, Srinagar, 190006, Jammu and Kashmir, India
| | - Antonisamy William James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Maleha R Asmi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
5
|
Yap RS, Kumar J, Teoh SL. Potential Neuroprotective Role of Neurotrophin in Traumatic Brain Injury. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1189-1202. [PMID: 38279761 DOI: 10.2174/0118715273289222231219094225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
Traumatic brain injury (TBI) is a major global health issue that affects millions of people every year. It is caused by any form of external force, resulting in temporary or permanent impairments in the brain. The pathophysiological process following TBI usually involves excitotoxicity, mitochondrial dysfunction, oxidative stress, inflammation, ischemia, and apoptotic cell death. It is challenging to find treatment for TBI due to its heterogeneous nature, and no therapeutic interventions have been approved thus far. Neurotrophins may represent an alternative approach for TBI treatment because they influence various functional activities in the brain. The present review highlights recent studies on neurotrophins shown to possess neuroprotective roles in TBI. Neurotrophins, specifically brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have demonstrated reduced neuronal death, alleviated neuroinflammatory responses and improved neurological functions following TBI via their immunomodulatory, anti-inflammatory and antioxidant properties. Further studies are required to ensure the efficacy and safety of neurotrophins to be used as TBI treatment in clinical settings.
Collapse
Affiliation(s)
- Rei Shian Yap
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Gatto A, Capossela L, Conti G, Eftimiadi G, Ferretti S, Manni L, Curatola A, Graglia B, Di Sarno L, Calcagni ML, Di Giuda D, Cecere S, Romeo DM, Soligo M, Picconi E, Piastra M, Della Marca G, Staccioli S, Ruggiero A, Cocciolillo F, Pulitanò S, Chiaretti A. Intranasal human-recombinant NGF administration improves outcome in children with post-traumatic unresponsive wakefulness syndrome. Biol Direct 2023; 18:61. [PMID: 37789391 PMCID: PMC10546699 DOI: 10.1186/s13062-023-00418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Severe traumatic brain injury (TBI) is one of the most dramatic events in pediatric age and, despite advanced neuro-intensive care, the survival rate of these patients remains low. Children suffering from severe TBI show long-term sequelae, more pronounced in behavioral, neurological and neuropsychological functions leading to, in the most severe cases, an unresponsive wakefulness syndrome (UWS). Currently, no effective treatments can restore neuronal loss or produce significant improvement in these patients. In experimental animal models, human- recombinant Nerve Growth Factor (hr-NGF) promotes neural recovery supporting neuronal growth, differentiation and survival of brain cells and up-regulating the neurogenesis-associated processes. Only a few studies reported the efficacy of intranasal hr-NGF administration in children with post- traumatic UWS. METHODS Children with the diagnosis of post-traumatic UWS were enrolled. These patients underwent a treatment with intranasal hr-NGF administration, at a total dose of 50 gamma/kg, three times a day for 7 consecutive days. The treatment schedule was performed for 4 cycles, at one month distance each. Neuroradiogical evaluation by Positron Emission Tomography scan (PET), Single Photon Emission Computed Tomography (SPECT), Electroencephalography (EEG), and Power Spectral Density (PSD) was determined before the treatment and one month after the end. Neurological assessment was also deepened by using modified Ashworth Scale, Gross Motor Function Measure, and Disability Rating Scale. RESULTS Three children with post-traumatic UWS were treated. hr-NGF administration improved functional (PET and SPECT) and electrophysiological (EEG and PSD) assessment. Also clinical conditions improved, mainly for the reduction of spasticity and with the acquisition of voluntary movements, facial mimicry, attention and verbal comprehension, ability to cry, cough reflex, oral motility, and feeding capacity, with a significant improvement of their neurological scores. No side effects were reported. CONCLUSION These promising results and the ease of administration of this treatment make it worthwhile to be investigated further, mainly in the early stages from severe TBI and in patients with better baseline neurological conditions, to explore more thoroughly the benefits of this new approach on neuronal function recovery after traumatic brain damage.
Collapse
Affiliation(s)
- Antonio Gatto
- Dipartimento di Pediatria, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Lavinia Capossela
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgio Conti
- Terapia Intensiva Pediatrica, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Gemma Eftimiadi
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serena Ferretti
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigi Manni
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Antonietta Curatola
- Dipartimento di Pediatria, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Benedetta Graglia
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorenzo Di Sarno
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Lucia Calcagni
- UOC di Medicina Nucleare, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniela Di Giuda
- UOC di Medicina Nucleare, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Cecere
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Domenico Marco Romeo
- Unità di Neurologia Pediatrica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Marzia Soligo
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Enzo Picconi
- Terapia Intensiva Pediatrica, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Marco Piastra
- Terapia Intensiva Pediatrica, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Giacomo Della Marca
- Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Susanna Staccioli
- Dipartimento di Neuroriabilitazione Intensiva, Ospedale Pediatrico "Bambino Gesù", Rome, Italy
| | - Antonio Ruggiero
- Oncologia Pediatrica, Fondazione Policlinico Universitario A.Gemelli IRCCS - Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabrizio Cocciolillo
- UOC di Medicina Nucleare, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Pulitanò
- Terapia Intensiva Pediatrica, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Antonio Chiaretti
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy.
- Department of Women's Health Sciences, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy.
| |
Collapse
|
7
|
Lindblad C, Rostami E, Helmy A. Interleukin-1 Receptor Antagonist as Therapy for Traumatic Brain Injury. Neurotherapeutics 2023; 20:1508-1528. [PMID: 37610701 PMCID: PMC10684479 DOI: 10.1007/s13311-023-01421-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Traumatic brain injury is a common type of acquired brain injury of varying severity carrying potentially deleterious consequences for the afflicted individuals, families, and society. Following the initial, traumatically induced insult, cellular injury processes ensue. These are believed to be amenable to treatment. Among such injuries, neuroinflammation has gained interest and has become a specific focus for both experimental and clinical researchers. Neuroinflammation is elicited almost immediately following trauma, and extend for a long time, possibly for years, after the primary injury. In the acute phase, the inflammatory response is characterized by innate mechanisms such as the activation of microglia which among else mediates cytokine production. Among the earliest cytokines to emerge are the interleukin- (IL-) 1 family members, comprising, for example, the agonist IL-1β and its competitive antagonist, IL-1 receptor antagonist (IL-1ra). Because of its early emergence following trauma and its increased concentrations also after human TBI, IL-1 has been hypothesized to be a tractable treatment target following TBI. Ample experimental data supports this, and demonstrates restored neurological behavior, diminished lesion zones, and an attenuated inflammatory response following IL-1 modulation either through IL-1 knock-out experiments, IL-1β inhibition, or IL-1ra treatment. Of these, IL-1ra treatment is likely the most physiological. In addition, recombinant human IL-1ra (anakinra) is already approved for utilization across a few rheumatologic disorders. As of today, one randomized clinical controlled trial has utilized IL-1ra inhibition as an intervention and demonstrated its safety. Further clinical trials powered for patient outcome are needed in order to demonstrate efficacy. In this review, we summarize IL-1 biology in relation to acute neuroinflammatory processes following TBI with a particular focus on current evidence for IL-1ra treatment both in the experimental and clinical context.
Collapse
Affiliation(s)
- Caroline Lindblad
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
- Department of Neurosurgery, Uppsala University Hospital, entrance 85 floor 2, Akademiska Sjukhuset, 751 85, Uppsala, Sweden.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Elham Rostami
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Neurosurgery, Uppsala University Hospital, entrance 85 floor 2, Akademiska Sjukhuset, 751 85, Uppsala, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Rejdak K, Sienkiewicz-Jarosz H, Bienkowski P, Alvarez A. Modulation of neurotrophic factors in the treatment of dementia, stroke and TBI: Effects of Cerebrolysin. Med Res Rev 2023; 43:1668-1700. [PMID: 37052231 DOI: 10.1002/med.21960] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophic factors (NTFs) are involved in the pathophysiology of neurological disorders such as dementia, stroke and traumatic brain injury (TBI), and constitute molecular targets of high interest for the therapy of these pathologies. In this review we provide an overview of current knowledge of the definition, discovery and mode of action of five NTFs, nerve growth factor, insulin-like growth factor 1, brain derived NTF, vascular endothelial growth factor and tumor necrosis factor alpha; as well as on their contribution to brain pathology and potential therapeutic use in dementia, stroke and TBI. Within the concept of NTFs in the treatment of these pathologies, we also review the neuropeptide preparation Cerebrolysin, which has been shown to resemble the activities of NTFs and to modulate the expression level of endogenous NTFs. Cerebrolysin has demonstrated beneficial treatment capabilities in vitro and in clinical studies, which are discussed within the context of the biochemistry of NTFs. The review focuses on the interactions of different NTFs, rather than addressing a single NTF, by outlining their signaling network and by reviewing their effect on clinical outcome in prevalent brain pathologies. The effects of the interactions of these NTFs and Cerebrolysin on neuroplasticity, neurogenesis, angiogenesis and inflammation, and their relevance for the treatment of dementia, stroke and TBI are summarized.
Collapse
Affiliation(s)
- Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | | | | | - Anton Alvarez
- Medinova Institute of Neurosciences, Clinica RehaSalud, Coruña, Spain
| |
Collapse
|
9
|
Tsitsipanis C, Miliaraki M, Paflioti E, Lazarioti S, Moustakis N, Ntotsikas K, Theofanopoulos A, Ilia S, Vakis A, Simos P, Venihaki M. Inflammation biomarkers IL‑6 and IL‑10 may improve the diagnostic and prognostic accuracy of currently authorized traumatic brain injury tools. Exp Ther Med 2023; 26:364. [PMID: 37408863 PMCID: PMC10318605 DOI: 10.3892/etm.2023.12063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 07/07/2023] Open
Abstract
Traumatic brain injury (TBI) is currently one of the leading causes of mortality and disability worldwide. At present, no reliable inflammatory or specific molecular neurobiomarker exists in any of the standard models proposed for TBI classification or prognostication. Therefore, the present study was designed to assess the value of a group of inflammatory mediators for evaluating acute TBI, in combination with clinical, laboratory and radiological indices and prognostic clinical scales. In the present single-centre, prospective observational study, 109 adult patients with TBI, 20 adult healthy controls and a pilot group of 17 paediatric patients with TBI from a Neurosurgical Department and two intensive care units of University General Hospital of Heraklion, Greece were recruited. Blood measurements using the ELISA method, of cytokines IL-6, IL-8 and IL-10, ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein, were performed. Compared with those in healthy control individuals, elevated IL-6 and IL-10 but reduced levels of IL-8 were found on day 1 in adult patients with TBI. In terms of TBI severity classifications, higher levels of IL-6 (P=0.001) and IL-10 (P=0.009) on day 1 in the adult group were found to be associated with more severe TBI according to widely used clinical and functional scales. Moreover, elevated IL-6 and IL-10 in adults were found to be associated with more serious brain imaging findings (rs<0.442; P<0.007). Subsequent multivariate logistic regression analysis in adults revealed that early-measured (day 1) IL-6 [odds ratio (OR)=0.987; P=0.025] and UCH-L1 (OR=0.993; P=0.032) are significant independent predictors of an unfavourable outcome. In conclusion, results from the present study suggest that inflammatory molecular biomarkers may prove to be valuable diagnostic and prognostic tools for TBI.
Collapse
Affiliation(s)
- Christos Tsitsipanis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Marianna Miliaraki
- Pediatric Intensive Care Unit, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Elina Paflioti
- Department of Clinical Chemistry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Sofia Lazarioti
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Nikolaos Moustakis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Konstantinos Ntotsikas
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | | | - Stavroula Ilia
- Pediatric Intensive Care Unit, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Antonis Vakis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Panagiotis Simos
- Department of Psychiatry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
10
|
Involvement of Microbiome Gut–Brain Axis in Neuroprotective Effect of Quercetin in Mouse Model of Repeated Mild Traumatic Brain Injury. Neuromolecular Med 2022:10.1007/s12017-022-08732-z. [DOI: 10.1007/s12017-022-08732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
|
11
|
Study on NGF and VEGF during the Equine Perinatal Period-Part 2: Foals Affected by Neonatal Encephalopathy. Vet Sci 2022; 9:vetsci9090459. [PMID: 36136675 PMCID: PMC9503474 DOI: 10.3390/vetsci9090459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Neonatal Encephalopathy (NE) may be caused by hypoxic ischemic insults or inflammatory insults and modified by innate protective or excitatory mechanisms. Understanding the underlying pathophysiology is important in formulating a rational approach to diagnosis. The preliminary aim was to clinically characterize a population of foals spontaneously affected by NE. The study aimed to: (i) evaluate nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) levels in plasma samples obtained in the affected population at parturition from the mare’s jugular vein, umbilical cord vein and foal’s jugular vein, as well as in amniotic fluid; (ii) evaluate the NGF and VEGF content in the plasma of foals affected by NE during the first 72 h of life/hospitalization; (iii) evaluate NGF and VEGF levels at birth/admission in relation to selected mare’s and foal’s clinical parameters; (iv) evaluate the relationship between the two trophic factors and thyroid hormone levels (TT3 and TT4) in the first 72 h of life/hospitalization; and (v) assess the mRNA expression of NGF, VEGF and brain-derived neurotrophic factor (BDNF), and their cell surface receptors, in the placenta of mares that delivered foals affected by NE. Thirteen affected foals born from mares hospitalized for peripartum monitoring (group NE) and twenty affected foals hospitalized after birth (group exNE) were included in the study. Dosage of NGF and VEGF levels was performed using commercial ELISA kits, whereas NGF, VEGF, and BDNF placental gene expression was performed using a semi-quantitative real-time PCR. In group NE, NGF levels decreased significantly from T0 to T24 (p = 0.0447) and VEGF levels decreased significantly from T0 to T72 (p = 0.0234), whereas in group exNE, only NGF levels decreased significantly from T0 to T24 (p = 0.0304). Compared to healthy foals, a significant reduction of TT3 levels was observed in both NE (T24, p = 0.0066; T72 p = 0.0003) and exNE (T0, p = 0.0082; T24, p < 0.0001; T72, p < 0.0001) groups, whereas a significant reduction of TT4 levels was observed only in exNE group (T0, p = 0.0003; T24, p = 0.0010; T72, p = 0.0110). In group NE, NGF levels were positively correlated with both TT3 (p = 0.0475; r = 0.3424) and TT4 levels (p = 0.0063; r = 0.4589). In the placenta, a reduced expression of NGF in the allantois (p = 0.0033) and a reduced expression of BDNF in the amnion (p = 0.0498) were observed. The less pronounced decrease of the two trophic factors compared to healthy foals, their relationship with thyroid hormones over time, and the reduced expression of NGF and BDNF in placental tissues of mares that delivered affected foals, could be key regulators in the mechanisms of equine NE.
Collapse
|
12
|
Neurotrophin Signaling Impairment by Viral Infections in the Central Nervous System. Int J Mol Sci 2022; 23:ijms23105817. [PMID: 35628626 PMCID: PMC9146244 DOI: 10.3390/ijms23105817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Neurotrophins, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3), NT-4, and NT-5, are proteins involved in several important functions of the central nervous system. The activation of the signaling pathways of these neurotrophins, or even by their immature form, pro-neurotrophins, starts with their recognition by cellular receptors, such as tropomyosin receptor kinase (Trk) and 75 kD NT receptors (p75NTR). The Trk receptor is considered to have a high affinity for attachment to specific neurotrophins, while the p75NTR receptor has less affinity for attachment with neurotrophins. The correct functioning of these signaling pathways contributes to proper brain development, neuronal survival, and synaptic plasticity. Unbalanced levels of neurotrophins and pro-neurotrophins have been associated with neurological disorders, illustrating the importance of these molecules in the central nervous system. Furthermore, reports have indicated that viruses can alter the normal levels of neurotrophins by interfering with their signaling pathways. This work discusses the importance of neurotrophins in the central nervous system, their signaling pathways, and how viruses can affect them.
Collapse
|
13
|
Nwafor DC, Brichacek AL, Foster CH, Lucke-Wold BP, Ali A, Colantonio MA, Brown CM, Qaiser R. Pediatric Traumatic Brain Injury: An Update on Preclinical Models, Clinical Biomarkers, and the Implications of Cerebrovascular Dysfunction. J Cent Nerv Syst Dis 2022; 14:11795735221098125. [PMID: 35620529 PMCID: PMC9127876 DOI: 10.1177/11795735221098125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/14/2022] [Indexed: 11/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of pediatric morbidity and mortality. Recent studies suggest that children and adolescents have worse post-TBI outcomes and take longer to recover than adults. However, the pathophysiology and progression of TBI in the pediatric population are studied to a far lesser extent compared to the adult population. Common causes of TBI in children are falls, sports/recreation-related injuries, non-accidental trauma, and motor vehicle-related injuries. A fundamental understanding of TBI pathophysiology is crucial in preventing long-term brain injury sequelae. Animal models of TBI have played an essential role in addressing the knowledge gaps relating to pTBI pathophysiology. Moreover, a better understanding of clinical biomarkers is crucial to diagnose pTBI and accurately predict long-term outcomes. This review examines the current preclinical models of pTBI, the implications of pTBI on the brain's vasculature, and clinical pTBI biomarkers. Finally, we conclude the review by speculating on the emerging role of the gut-brain axis in pTBI pathophysiology.
Collapse
Affiliation(s)
- Divine C. Nwafor
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- West Virginia University School of Medicine, Morgantown, WV, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Allison L. Brichacek
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Chase H. Foster
- Department of Neurosurgery, George Washington University Hospital, Washington D.C., USA
| | | | - Ahsan Ali
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | - Candice M. Brown
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Rabia Qaiser
- Department of Neurosurgery, Baylor Scott and White, Temple, TX, USA
| |
Collapse
|
14
|
Biomarkers in Moderate to Severe Pediatric Traumatic Brain Injury: A Review of the Literature. Pediatr Neurol 2022; 130:60-68. [PMID: 35364462 PMCID: PMC9038667 DOI: 10.1016/j.pediatrneurol.2022.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Despite decades of research, outcomes in pediatric traumatic brain injury (pTBI) remain highly variable. Brain biofluid-specific biomarkers from pTBI patients may allow us to diagnose and prognosticate earlier and with a greater degree of accuracy than conventional methods. This manuscript reviews the evidence surrounding current brain-specific biomarkers in pTBI and assesses the temporal relationship between the natural history of the traumatic brain injury (TBI) and measured biomarker levels. METHODS A literature search was conducted in the Ovid, PubMed, MEDLINE, and Cochrane databases seeking relevant publications. The study selection and screening process were documented in a Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram. Extraction forms included developmental stages of patients, type and biofluid source of biomarkers, brain injury type, and other relevant data. RESULTS The search strategy identified 443 articles, of which 150 examining the biomarkers of our interest were included. The references retrieved were examined thoroughly and discussed at length with a pediatric neurocritical care intensivist specializing in pTBI and a Ph.D. scientist with a high degree of involvement in TBI biomarker research, authoring a vast amount of literature in this field. CONCLUSIONS TBI biomarkers might serve as valuable tools in the diagnosis and prognosis of pTBI. However, while each biomarker has its advantages, they are not without limitations, and therefore, further research is critical in pTBI biomarkers.
Collapse
|
15
|
Lin PH, Kuo LT, Luh HT. The Roles of Neurotrophins in Traumatic Brain Injury. LIFE (BASEL, SWITZERLAND) 2021; 12:life12010026. [PMID: 35054419 PMCID: PMC8780368 DOI: 10.3390/life12010026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023]
Abstract
Neurotrophins are a collection of structurally and functionally related proteins. They play important roles in many aspects of neural development, survival, and plasticity. Traumatic brain injury (TBI) leads to different levels of central nervous tissue destruction and cellular repair through various compensatory mechanisms promoted by the injured brain. Many studies have shown that neurotrophins are key modulators of neuroinflammation, apoptosis, blood–brain barrier permeability, memory capacity, and neurite regeneration. The expression of neurotrophins following TBI is affected by the severity of injury, genetic polymorphism, and different post-traumatic time points. Emerging research is focused on the potential therapeutic applications of neurotrophins in managing TBI. We conducted a comprehensive review by organizing the studies that demonstrate the role of neurotrophins in the management of TBI.
Collapse
Affiliation(s)
- Ping-Hung Lin
- Department of Medical Education, School of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Hui-Tzung Luh
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 235, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-956279587
| |
Collapse
|
16
|
Kobeissy FH, Shakkour Z, Hayek SE, Mohamed W, Gold MS, Wang KKW. Elevation of Pro-inflammatory and Anti-inflammatory Cytokines in Rat Serum after Acute Methamphetamine Treatment and Traumatic Brain Injury. J Mol Neurosci 2021; 72:158-168. [PMID: 34542809 DOI: 10.1007/s12031-021-01886-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
The use of methamphetamine (METH) is a growing worldwide epidemic that bears grave societal implications. METH is known to exert its neurotoxic effects on the dopaminergic and serotonergic systems of the brain. In addition to this classical studied mechanism of damage, findings from our laboratory and others have shown that acute METH treatment and mechanical injury, i.e. traumatic brain injury (TBI), share common cell injury mechanism(s). Since neuro-inflammation is a signature event in TBI, we hypothesize that certain cytokine levels might also be altered in rat brain exposed to an acute METH insult. In this study, using a cytokine antibody array chip, we evaluated the serum levels of 19 cytokines in rats 24 h after exposure to a 40 mg/kg acute regimen of METH. Data were compared to rats subjected to experimental TBI using the controlled cortical impact (CCI) injury model and saline controls. Sandwich ELISA method was used to further validate some of the findings obtained from the antibody cytokine array. We confirmed that three major inflammatory-linked cytokines (IL-1β, IL-6, and IL-10) were elevated in the METH and TBI groups compared to the saline group. Such finding suggests the involvement of an inflammatory process in these brain insults, indicating that METH use is, in fact, a stressor to the immune system where systemic involvement of an altered cytokine profile may play a major role in mediating chemical brain injury after METH use.
Collapse
Affiliation(s)
- Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Gainesville, FL, USA.,Department of Emergency Medicine, University of Florida, Gainesville, FL, USA
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samer El Hayek
- Department of Psychiatry, American University of Beirut, Beirut, Lebanon
| | - Wael Mohamed
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Al Minufya, Egypt.,Basic medical science department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Mark S Gold
- Washington University School of Medicine, Department of Psychiatry, and National Council, Washington University in St. Louis, Institute for Public Health, St. Louis, MO, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Gainesville, FL, USA. .,Department of Emergency Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
The Role of BDNF in Experimental and Clinical Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22073582. [PMID: 33808272 PMCID: PMC8037220 DOI: 10.3390/ijms22073582] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury is one of the leading causes of mortality and morbidity in the world with no current pharmacological treatment. The role of BDNF in neural repair and regeneration is well established and has also been the focus of TBI research. Here, we review experimental animal models assessing BDNF expression following injury as well as clinical studies in humans including the role of BDNF polymorphism in TBI. There is a large heterogeneity in experimental setups and hence the results with different regional and temporal changes in BDNF expression. Several studies have also assessed different interventions to affect the BDNF expression following injury. Clinical studies highlight the importance of BDNF polymorphism in the outcome and indicate a protective role of BDNF polymorphism following injury. Considering the possibility of affecting the BDNF pathway with available substances, we discuss future studies using transgenic mice as well as iPSC in order to understand the underlying mechanism of BDNF polymorphism in TBI and develop a possible pharmacological treatment.
Collapse
|
18
|
Shi AC, Rohlwink U, Scafidi S, Kannan S. Microglial Metabolism After Pediatric Traumatic Brain Injury - Overlooked Bystanders or Active Participants? Front Neurol 2021; 11:626999. [PMID: 33569038 PMCID: PMC7868439 DOI: 10.3389/fneur.2020.626999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Microglia play an integral role in brain development but are also crucial for repair and recovery after traumatic brain injury (TBI). TBI induces an intense innate immune response in the immature, developing brain that is associated with acute and chronic changes in microglial function. These changes contribute to long-lasting consequences on development, neurologic function, and behavior. Although alterations in glucose metabolism are well-described after TBI, the bulk of the data is focused on metabolic alterations in astrocytes and neurons. To date, the interplay between alterations in intracellular metabolic pathways in microglia and the innate immune response in the brain following an injury is not well-studied. In this review, we broadly discuss the microglial responses after TBI. In addition, we highlight reported metabolic alterations in microglia and macrophages, and provide perspective on how changes in glucose, fatty acid, and amino acid metabolism can influence and modulate the microglial phenotype and response to injury.
Collapse
Affiliation(s)
- Aria C Shi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ursula Rohlwink
- Neuroscience Institute and Division of Neurosurgery, University of Cape Town, Cape Town, South Africa.,The Francis Crick Institute, London, United Kingdom
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
19
|
Cuff SM, Merola JP, Twohig JP, Eberl M, Gray WP. Toll-like receptor linked cytokine profiles in cerebrospinal fluid discriminate neurological infection from sterile inflammation. Brain Commun 2020; 2:fcaa218. [PMID: 33409494 PMCID: PMC7772097 DOI: 10.1093/braincomms/fcaa218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/12/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Rapid determination of an infective aetiology causing neurological inflammation in the cerebrospinal fluid can be challenging in clinical practice. Post-surgical nosocomial infection is difficult to diagnose accurately, as it occurs on a background of altered cerebrospinal fluid composition due to the underlying pathologies and surgical procedures involved. There is additional diagnostic difficulty after external ventricular drain or ventriculoperitoneal shunt surgery, as infection is often caused by pathogens growing as biofilms, which may fail to elicit a significant inflammatory response and are challenging to identify by microbiological culture. Despite much research effort, a single sensitive and specific cerebrospinal fluid biomarker has yet to be defined which reliably distinguishes infective from non-infective inflammation. As a result, many patients with suspected infection are treated empirically with broad-spectrum antibiotics in the absence of definitive diagnostic criteria. To begin to address these issues, we examined cerebrospinal fluid taken at the point of clinical equipoise to diagnose cerebrospinal fluid infection in 14 consecutive neurosurgical patients showing signs of inflammatory complications. Using the guidelines of the Infectious Diseases Society of America, six cases were subsequently characterized as infected and eight as sterile inflammation. Twenty-four contemporaneous patients with idiopathic intracranial hypertension or normal pressure hydrocephalus were included as non-inflamed controls. We measured 182 immune and neurological biomarkers in each sample and used pathway analysis to elucidate the biological underpinnings of any biomarker changes. Increased levels of the inflammatory cytokine interleukin-6 and interleukin-6-related mediators such as oncostatin M were excellent indicators of inflammation. However, interleukin-6 levels alone could not distinguish between bacterially infected and uninfected patients. Within the patient cohort with neurological inflammation, a pattern of raised interleukin-17, interleukin-12p40/p70 and interleukin-23 levels delineated nosocomial bacteriological infection from background neuroinflammation. Pathway analysis showed that the observed immune signatures could be explained through a common generic inflammatory response marked by interleukin-6 in both nosocomial and non-infectious inflammation, overlaid with a toll-like receptor-associated and bacterial peptidoglycan-triggered interleukin-17 pathway response that occurred exclusively during infection. This is the first demonstration of a pathway dependent cerebrospinal fluid biomarker differentiation distinguishing nosocomial infection from background neuroinflammation. It is especially relevant to the commonly encountered pathologies in clinical practice, such as subarachnoid haemorrhage and post-cranial neurosurgery. While requiring confirmation in a larger cohort, the current data indicate the potential utility of cerebrospinal fluid biomarker strategies to identify differential initiation of a common downstream interleukin-6 pathway to diagnose nosocomial infection in this challenging clinical cohort.
Collapse
Affiliation(s)
- Simone M Cuff
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Joseph P Merola
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Jason P Twohig
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - William P Gray
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
20
|
Tylicka M, Matuszczak E, Hermanowicz A, Dębek W, Karpińska M, Kamińska J, Koper-Lenkiewicz OM. BDNF and IL-8, But Not UCHL-1 and IL-11, Are Markers of Brain Injury in Children Caused by Mild Head Trauma. Brain Sci 2020; 10:brainsci10100665. [PMID: 32987792 PMCID: PMC7598703 DOI: 10.3390/brainsci10100665] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 11/27/2022] Open
Abstract
The aim of the study was to check whether the plasma levels of brain-derived neurotrophic factor (BDNF), interleukin-8 (IL-8), interleukin-11 (IL-11) and ubiquitin C-terminal hydrolase L1 (UCHL-1) change in children with mild head trauma (N = 29) compared to controls (N = 13). Protein concentration in children with mild head trauma (12 children with mild concussion without loss of consciousness and 17 children with severe concussion and loss of consciousness) and the control group were measured by means of the Enzyme-Linked Immunosorbent Assay (ELISA) method. IL-8 and BDNF concentration was statistically higher in the group of children with mild head trauma (9.89 pg/mL and 2798.00 pg/mL, respectively) compared to the control group (7.52 pg/mL and 1163.20 pg/mL, respectively). BDNF concentration was significantly higher in children with severe concussion and loss of consciousness (3826.00 pg/mL) than in the control group. None of the tested proteins differed significantly between children with mild concussion without loss of consciousness and children with severe concussion and loss of consciousness. BDNF and IL-8 may be sensitive markers of brain response to mild head trauma in children. The lack of statistical differences for BDNF and IL-8 between children with mild or severe concussion could indicate that their elevated levels may not result from significant structural brain damage but rather reflect a functional disturbance.
Collapse
Affiliation(s)
- Marzena Tylicka
- Department of Biophysics, Medical University of Białystok, Mickiewicza 2a, 15-089 Białystok, Poland;
- Correspondence: (M.T.); (O.M.K.-L.)
| | - Ewa Matuszczak
- Department of Pediatric Surgery and Urology, Medical University of Białystok, Waszyngtona 17, 15-274 Białystok, Poland; (E.M.); (A.H.); (W.D.)
| | - Adam Hermanowicz
- Department of Pediatric Surgery and Urology, Medical University of Białystok, Waszyngtona 17, 15-274 Białystok, Poland; (E.M.); (A.H.); (W.D.)
| | - Wojciech Dębek
- Department of Pediatric Surgery and Urology, Medical University of Białystok, Waszyngtona 17, 15-274 Białystok, Poland; (E.M.); (A.H.); (W.D.)
| | - Maria Karpińska
- Department of Biophysics, Medical University of Białystok, Mickiewicza 2a, 15-089 Białystok, Poland;
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Waszyngtona 15A, 15-269 Białystok, Poland;
| | - Olga Martyna Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Waszyngtona 15A, 15-269 Białystok, Poland;
- Correspondence: (M.T.); (O.M.K.-L.)
| |
Collapse
|
21
|
Gudasheva TA, Povarnina PY, Tarasiuk AV, Seredenin SB. Low-molecular mimetics of nerve growth factor and brain-derived neurotrophic factor: Design and pharmacological properties. Med Res Rev 2020; 41:2746-2774. [PMID: 32808322 DOI: 10.1002/med.21721] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
To overcome the limitations of the clinical use of neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), scientists have been trying to create their low-molecular-weight mimetics having improved pharmacokinetic properties and lacking side effects of full-sized proteins since the 90s of the last century. The efforts of various research groups have led to the production of peptide and nonpeptide mimetics, being agonists or modulators of the corresponding Trk or p75 receptors that reproduced the therapeutic effects of full-sized proteins. This review discusses different strategies and approaches to the design of such compounds. The relationship between the structure of the mimetics obtained and their action mechanisms and pharmacological properties are analyzed. Special attention is paid to the dipeptide mimetics of individual NGF and BDNF loops having different patterns of activation of Trk receptors signal transduction pathways, phosphoinositide 3-kinase/protein kinase B and mitogen-activated protein kinase/extracellular signal-regulated kinase, which allowed to evaluate the contribution of each pathway to different pharmacological effects. In conclusion, data on therapeutically promising compounds being at different stages of preclinical and clinical studies are summarized.
Collapse
Affiliation(s)
- Tatiana A Gudasheva
- Medicinal Chemistry Department, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - Polina Y Povarnina
- Medicinal Chemistry Department, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - Aleksey V Tarasiuk
- Medicinal Chemistry Department, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - Sergey B Seredenin
- Department of Pharmacogenetics, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| |
Collapse
|
22
|
Ma C, Wu X, Shen X, Yang Y, Chen Z, Sun X, Wang Z. Sex differences in traumatic brain injury: a multi-dimensional exploration in genes, hormones, cells, individuals, and society. Chin Neurosurg J 2019; 5:24. [PMID: 32922923 PMCID: PMC7398330 DOI: 10.1186/s41016-019-0173-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/20/2019] [Indexed: 11/10/2022] Open
Abstract
Traumatic brain injury (TBI) is exceptionally prevalent in society and often imposes a massive burden on patients' families and poor prognosis. The evidence reviewed here suggests that gender can influence clinical outcomes of TBI in many aspects, ranges from patients' mortality and short-term outcome to their long-term outcome, as well as the incidence of cognitive impairment. We mainly focused on the causes and mechanisms underlying the differences between male and female after TBI, from both biological and sociological views. As it turns out that multiple factors contribute to the gender differences after TBI, not merely the perspective of gender and sex hormones. Centered on this, we discussed how female steroid hormones exert neuroprotective effects through the anti-inflammatory and antioxidant mechanism, along with the cognitive impairment and the social integration problems it caused. As to the treatment, both instant and long-term treatment of TBI requires adjustments according to gender. A further study with more focus on this topic is therefore suggested to provide better treatment options for these patients.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006 China
| | - Xin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006 China
| | - Xiaotian Shen
- Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yanbo Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006 China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006 China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006 China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006 China
| |
Collapse
|
23
|
Simpson SL, Grayson S, Peterson JH, Moore JJ, Mhanna MJ, Perez MK, Rezaee F, Piedimonte G. Serum neurotrophins at birth correlate with respiratory and neurodevelopmental outcomes of premature infants. Pediatr Pulmonol 2019; 54:303-312. [PMID: 30575339 PMCID: PMC7306099 DOI: 10.1002/ppul.24218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/03/2018] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Preterm birth is a significant cause of infant morbidity and mortality, which are primarily the result of respiratory and neurodevelopmental complications. However, no objective biomarker is currently available to predict at birth the risk and severity of such complications. Thus, we sought to determine whether serum neurotrophins concentrations measured at birth correlate with risk for later development of bronchopulmonary dysplasia (BPD) and long-term neurodevelopmental outcomes. METHODS This study prospectively included 223 newborns admitted to neonatal intensive care units (NICU) and divided into three groups: (i) preterm infants who developed BPD; (ii) preterm infants who did not develop BPD; (iii) term infants. An exploratory cohort was enrolled in West Virginia, followed by a validation cohort recruited in four NICUs in Ohio. Specimens for serum and tracheal neurotrophins concentrations were collected within 48 h of admission. Infants requiring a fraction of inspired oxygen >0.21 for at least 28 days were diagnosed with BPD. Neurodevelopmental outcomes were extrapolated from Bayley Scales of Infant Development-Third Edition (BSID-III) administered at the 24-month follow-up visit. RESULTS Serum brain-derived neurotrophic factor (BDNF) concentration at birth had significant negative correlation with later diagnosis of BPD (P = 0.011) and with duration of invasive ventilation and oxygen supplementation (P = 0.009 and 0.015, respectively). Serum nerve growth factor (NGF) concentration at birth had significant positive correlation with BSID-III cognitive and language composite scores at 24 months (P < 0.001 and 0.010, respectively). CONCLUSIONS These data suggest that serum neurotrophins concentrations measured at birth provide prognostic information on subsequent respiratory and neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Samantha L Simpson
- Lerner Research Institute, Cleveland Clinic Foundation, Center for Pediatric Research, Cleveland, Ohio
| | - Stephanie Grayson
- Department of Pediatrics, West Virginia University, Morgantown, West Virginia
| | - Jennifer H Peterson
- Lerner Research Institute, Cleveland Clinic Foundation, Center for Pediatric Research, Cleveland, Ohio
| | - John J Moore
- Department of Pediatrics, MetroHealth Medical Center, Cleveland, Ohio
| | - Maroun J Mhanna
- Department of Pediatrics, MetroHealth Medical Center, Cleveland, Ohio
| | - Miriam K Perez
- Lerner Research Institute, Cleveland Clinic Foundation, Center for Pediatric Research, Cleveland, Ohio
| | - Fariba Rezaee
- Lerner Research Institute, Cleveland Clinic Foundation, Center for Pediatric Research, Cleveland, Ohio
| | - Giovanni Piedimonte
- Lerner Research Institute, Cleveland Clinic Foundation, Center for Pediatric Research, Cleveland, Ohio
| |
Collapse
|
24
|
Bodnar CN, Morganti JM, Bachstetter AD. Depression following a traumatic brain injury: uncovering cytokine dysregulation as a pathogenic mechanism. Neural Regen Res 2018; 13:1693-1704. [PMID: 30136679 PMCID: PMC6128046 DOI: 10.4103/1673-5374.238604] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A substantial number of individuals have long-lasting adverse effects from a traumatic brain injury (TBI). Depression is one of these long-term complications that influences many aspects of life. Depression can limit the ability to return to work, and even worsen cognitive function and contribute to dementia. The mechanistic cause for the increased depression risk associated with a TBI remains to be defined. As TBI results in chronic neuroinflammation, and priming of glia to a secondary challenge, the inflammatory theory of depression provides a promising framework for investigating the cause of depression following a TBI. Increases in cytokines similar to those seen in depression in the general population are also increased following a TBI. Biomarker levels of cytokines peak within hours-to-days after the injury, yet pro-inflammatory cytokines may still be elevated above physiological levels months-to-years following TBI, which is the time frame in which post-TBI depression can persist. As tumor necrosis factor α and interleukin 1 can signal directly at the neuronal synapse, pathophysiological levels of these cytokines can detrimentally alter neuronal synaptic physiology. The purpose of this review is to outline the current evidence for the inflammatory hypothesis of depression specifically as it relates to depression following a TBI. Moreover, we will illustrate the potential synaptic mechanisms by which tumor necrosis factor α and interleukin 1 could contribute to depression. The association of inflammation with the development of depression is compelling; however, in the context of post-TBI depression, the role of inflammation is understudied. This review attempts to highlight the need to understand and treat the psychological complications of a TBI, potentially by neuroimmune modulation, as the neuropsychiatric disabilities can have a great impact on the rehabilitation from the injury, and overall quality of life.
Collapse
Affiliation(s)
- Colleen N Bodnar
- Spinal Cord & Brain Injury Research Center, University of Kentucky; Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Josh M Morganti
- Department of Neuroscience, University of Kentucky; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Adam D Bachstetter
- Spinal Cord & Brain Injury Research Center, University of Kentucky; Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
25
|
Rajkumar R, Bhaya B, Mamilla D, Czech T, Kisseih E, Saini A, Chouthai N. A preliminary evaluation of glial cell line-derived neurotrophic factor (GDNF) levels in cerebrospinal fluid across various gestational ages and clinical conditions of the neonate. Int J Dev Neurosci 2017; 65:61-65. [PMID: 29031644 DOI: 10.1016/j.ijdevneu.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/23/2017] [Accepted: 10/04/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND This study aims to investigate glial cell derived neurotrophic factor (GDNF) levels in newborns' umbilical cord blood and cerebrospinal fluid across various perinatal growth parameters and clinical conditions. METHODS Cord blood from 20 newborns and 58 residual CSF samples (stored after completion of clinical testing) were collected. GDNF levels were determined using GDNF ELISA kits from R&D Systems in triplicates with appropriate controls to eliminate background. RESULTS Cord blood GDNF levels were significantly higher (p=0.004) in preterm newborns (n=6) (115.05±57.17,pg/ml) when compared to term newborns (n=14) (19.67±10.67,pg/ml). GDNF levels in CSF trended (p=0.07) higher in term newborns (n=10) (19.56±9.11,pg/ml) when compared to preterm newborns at term or post term corrected gestational ages (n=5) (14.49±3.53,pg/ml). CONCLUSIONS GDNF levels in preterm newborns were higher in cord blood and lower in CSF as compared to term newborns. It is important to further study circulating and CSF-GDNF levels in newborns at different gestational ages and clinical conditions.
Collapse
Affiliation(s)
- Rahul Rajkumar
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Wayne State University, Detroit, MI, United States; Bloomberg School of Public Health, Department of International Health, Johns Hopkins University, Baltimore, MD, United States
| | - Bhavana Bhaya
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Wayne State University, Detroit, MI, United States; University Medical Center, Department of Internal Medicine, University of Nevada-Las Vegas, Las Vegas, NV, United States
| | - Divya Mamilla
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Wayne State University, Detroit, MI, United States
| | - Theresa Czech
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Wayne State University, Detroit, MI, United States; Ann and Robert H. Lurie Children's Hospital, Department of Pediatrics, Division of Pediatric Neurology, Northwestern University, Chicago, IL, United States
| | - Esther Kisseih
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Wayne State University, Detroit, MI, United States
| | - Arun Saini
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Wayne State University, Detroit, MI, United States; Le Bonheur Children's Hospital, Department of Pediatrics, Division of Critical Care, University of Tennessee, Memphis, TN, United States
| | - Nitin Chouthai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
26
|
Zeiler FA, Thelin EP, Czosnyka M, Hutchinson PJ, Menon DK, Helmy A. Cerebrospinal Fluid and Microdialysis Cytokines in Severe Traumatic Brain Injury: A Scoping Systematic Review. Front Neurol 2017; 8:331. [PMID: 28740480 PMCID: PMC5502380 DOI: 10.3389/fneur.2017.00331] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/23/2017] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To perform two scoping systematic reviews of the literature on cytokine measurement in: 1. cerebral microdialysis (CMD) and 2. cerebrospinal fluid (CSF) in severe traumatic brain injury (TBI) patients. METHODS Two separate systematic reviews were conducted: one for CMD cytokines and the second for CSF cytokines. Both were conducted in severe TBI (sTBI) patients only. DATA SOURCES Articles from MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library (inception to October 2016), reference lists of relevant articles, and gray literature were searched. STUDY SELECTION Two reviewers independently identified all manuscripts utilizing predefined inclusion/exclusion criteria. A two-tier filter of references was conducted. DATA EXTRACTION Patient demographic and study data were extracted to tables. RESULTS There were 19 studies identified describing the analysis of cytokines via CMD in 267 sTBI patients. Similarly, there were 32 studies identified describing the analysis of CSF cytokines in 1,363 sTBI patients. The two systematic reviews demonstrated: 1. limited literature available on CMD cytokine measurement in sTBI, with some preliminary data supporting feasibility of measurement and associations between cytokines and patient outcome. 2. Various CSF measured cytokines may be associated with patient outcome at 6-12 months, including interleukin (IL)-1b, IL-1ra, IL-6, IL-8, IL-10, and tumor necrosis factor 3. There is little to no literature in support of an association between CSF cytokines and neurophysiologic or tissue outcomes. CONCLUSION The evaluation of CMD and CSF cytokines is an emerging area of the literature in sTBI. Further, large prospective multicenter studies on cytokines in CMD and CSF need to be conducted.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Department of Surgery, Section of Neurosurgery, University of Manitoba, Winnipeg, MB, Canada
- Clinician Investigator Program, University of Manitoba, Winnipeg, MB, Canada
- Department of Anesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Peter J. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David K. Menon
- Department of Anesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
27
|
Neurotrauma: The Crosstalk between Neurotrophins and Inflammation in the Acutely Injured Brain. Int J Mol Sci 2017; 18:ijms18051082. [PMID: 28524074 PMCID: PMC5454991 DOI: 10.3390/ijms18051082] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/25/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality among young individuals worldwide. Understanding the pathophysiology of neurotrauma is crucial for the development of more effective therapeutic strategies. After the trauma occurs, immediate neurologic damage is produced by the traumatic forces; this primary injury triggers a secondary wave of biochemical cascades together with metabolic and cellular changes, called secondary neural injury. In the scenario of the acutely injured brain, the ongoing secondary injury results in ischemia and edema culminating in an uncontrollable increase in intracranial pressure. These areas of secondary injury progression, or areas of “traumatic penumbra”, represent crucial targets for therapeutic interventions. Neurotrophins are a class of signaling molecules that promote survival and/or maintenance of neurons. They also stimulate axonal growth, synaptic plasticity, and neurotransmitter synthesis and release. Therefore, this review focuses on the role of neurotrophins in the acute post-injury response. Here, we discuss possible endogenous neuroprotective mechanisms of neurotrophins in the prevailing environment surrounding the injured areas, and highlight the crosstalk between neurotrophins and inflammation with focus on neurovascular unit cells, particularly pericytes. The perspective is that neurotrophins may represent promising targets for research on neuroprotective and neurorestorative processes in the short-term following TBI.
Collapse
|
28
|
Zhao H, Alam A, San CY, Eguchi S, Chen Q, Lian Q, Ma D. Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments. Brain Res 2017; 1665:1-21. [PMID: 28396009 DOI: 10.1016/j.brainres.2017.03.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/02/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Neuronal cell injury, as a consequence of acute or chronic neurological trauma, is a significant cause of mortality around the world. On a molecular level, the condition is characterized by widespread cell death and poor regeneration, which can result in severe morbidity in survivors. Potential therapeutics are of major interest, with a promising candidate being brain-derived neurotrophic factor (BDNF), a ubiquitous agent in the brain which has been associated with neural development and may facilitate protective and regenerative effects following injury. This review summarizes the available information on the potential benefits of BDNF and the molecular mechanisms involved in several pathological conditions, including hypoxic brain injury, stroke, Alzheimer's disease and Parkinson's disease. It further explores the methods in which BDNF can be applied in clinical and therapeutic settings, and the potential challenges to overcome.
Collapse
Affiliation(s)
- Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Azeem Alam
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Chun-Yin San
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Shiori Eguchi
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Qian Chen
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK; Department of Anaesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qingquan Lian
- Department of Anesthesiology, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK.
| |
Collapse
|
29
|
Chuang JY, Kao TJ, Lin SH, Wu AC, Lee PT, Su TP, Yeh SH, Lee YC, Wu CC, Chang WC. Specificity protein 1-zinc finger protein 179 pathway is involved in the attenuation of oxidative stress following brain injury. Redox Biol 2016; 11:135-143. [PMID: 27918959 PMCID: PMC5144757 DOI: 10.1016/j.redox.2016.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 01/13/2023] Open
Abstract
After sudden traumatic brain injuries, secondary injuries may occur during the following days or weeks, which leads to the accumulation of reactive oxygen species (ROS). Since ROS exacerbate brain damage, it is important to protect neurons against their activity. Zinc finger protein 179 (Znf179) was shown to act as a neuroprotective factor, but the regulation of gene expression under oxidative stress remains unknown. In this study, we demonstrated an increase in Znf179 protein levels in both in vitro model of hydrogen peroxide (H2O2)-induced ROS accumulation and animal models of traumatic brain injury. Additionally, we examined the sub-cellular localization of Znf179, and demonstrated that oxidative stress increases Znf179 nuclear shuttling and its interaction with specificity protein 1 (Sp1). Subsequently, the positive autoregulation of Znf179 expression, which is Sp1-dependent, was further demonstrated using luciferase reporter assay and green fluorescent protein (GFP)-Znf179-expressing cells and transgenic mice. The upregulation of Sp1 transcriptional activity induced by the treatment with nerve growth factor (NGF) led to an increase in Znf179 levels, which further protected cells against H2O2-induced damage. However, Sp1 inhibitor, mithramycin A, was shown to inhibit NGF effects, leading to a decrease in Znf179 expression and lower cellular protection. In conclusion, the results obtained in this study show that Znf179 autoregulation through Sp1-dependent mechanism plays an important role in neuroprotection, and NGF-induced Sp1 signaling may help attenuate more extensive (ROS-induced) damage following brain injury. Znf179 levels increase in vitro after hydrogen peroxide treatment. Znf179 levels increase in vivo in traumatic brain injury mouse model. Oxidative stress increases Znf179 translocation to nucleus. Znf179 autoregulates its expression through Sp1-dependent mechanism. Sp1-Znf179 pathway plays an important role in neuroprotection.
Collapse
Affiliation(s)
- Jian-Ying Chuang
- Graduate Institute of Neural Regenerative Medicine, Taipei Medical University, Taipei 110, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 110, Taiwan.
| | - Tzu-Jen Kao
- Graduate Institute of Neural Regenerative Medicine, Taipei Medical University, Taipei 110, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 110, Taiwan.
| | - Shu-Hui Lin
- Graduate Institute of Neural Regenerative Medicine, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Medical Science, Taipei Medical University, Taipei 110, Taiwan.
| | - An-Chih Wu
- Graduate Institute of Neural Regenerative Medicine, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Medical Science, Taipei Medical University, Taipei 110, Taiwan.
| | - Pin-Tse Lee
- Cellular Pathobiology Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA.
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA.
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350, Taiwan.
| | - Yi-Chao Lee
- Graduate Institute of Neural Regenerative Medicine, Taipei Medical University, Taipei 110, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 110, Taiwan.
| | - Chung-Che Wu
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan.
| | - Wen-Chang Chang
- Graduate Institute of Medical Science, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
30
|
Corrigan F, Arulsamy A, Teng J, Collins-Praino LE. Pumping the Brakes: Neurotrophic Factors for the Prevention of Cognitive Impairment and Dementia after Traumatic Brain Injury. J Neurotrauma 2016; 34:971-986. [PMID: 27630018 DOI: 10.1089/neu.2016.4589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and death worldwide, affecting as many as 54,000,000-60,000,000 people annually. TBI is associated with significant impairments in brain function, impacting cognitive, emotional, behavioral, and physical functioning. Although much previous research has focused on the impairment immediately following injury, TBI may have much longer-lasting consequences, including neuropsychiatric disorders and cognitive impairment. TBI, even mild brain injury, has also been recognized as a significant risk factor for the later development of dementia and Alzheimer's disease. Although the link between TBI and dementia is currently unknown, several proposed mechanisms have been put forward, including alterations in glucose metabolism, excitotoxicity, calcium influx, mitochondrial dysfunction, oxidative stress, and neuroinflammation. A treatment for the devastating long-term consequences of TBI is desperately needed. Unfortunately, however, no such treatment is currently available, making this a major area of unmet medical need. Increasing the level of neurotrophic factor expression in key brain areas may be one potential therapeutic strategy. Of the neurotrophic factors, granulocyte-colony stimulating factor (G-CSF) may be particularly effective for preventing the emergence of long-term complications of TBI, including dementia, because of its ability to reduce apoptosis, stimulate neurogenesis, and increase neuroplasticity.
Collapse
Affiliation(s)
- Frances Corrigan
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Alina Arulsamy
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Jason Teng
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Lyndsey E Collins-Praino
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| |
Collapse
|
31
|
Song JN, Liu ZW, Sui L, Zhang BF, Zhao YL, Ma XD, Gu H. Dynamic expression of nerve growth factor and its receptor TrkA after subarachnoid hemorrhage in rat brain. Neural Regen Res 2016; 11:1278-84. [PMID: 27651776 PMCID: PMC5020827 DOI: 10.4103/1673-5374.189193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Delayed ischemic neurologic deficit after subarachnoid hemorrhage results from loss of neural cells. Nerve growth factor and its receptor TrkA may promote regeneration of neural cells, but their expression after subarachnoid hemorrhage remains unclear. In the present study, a rat model of subarachnoid hemorrhage was established using two injections of autologous blood into the cistern magna. Immunohisto-chemical staining suggested that the expression of nerve growth factor and TrkA in the cerebral cortex and brainstem increased at 6 hours, peaked at 12 hours and decreased 1 day after induction of subarachnoid hemorrhage, whereas the expression in the hippocampus increased at 6 hours, peaked on day 1, and decreased 3 days later. Compared with those for the rats in the sham and saline groups, neurobehavioral scores decreased significantly 12 hours and 3 days after subarachnoid hemorrhage (P < 0.05). These results suggest that the expression of nerve growth factor and its receptor TrkA is dynamically changed in the rat brain and may thus participate in neuronal survival and nerve regeneration after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jin-Ning Song
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zun-Wei Liu
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Long Sui
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Department of Neurosurgery, the 521 Hospital of China North Industries Group, Xi'an, Shaanxi Province, China
| | - Bin-Fei Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yong-Lin Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xu-Dong Ma
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hua Gu
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
32
|
Reuter-Rice K, Eads JK, Berndt SB, Bennett E. Chapter 6 state of the science of pediatric traumatic brain injury: biomarkers and gene association studies. ANNUAL REVIEW OF NURSING RESEARCH 2016; 33:185-217. [PMID: 25946386 DOI: 10.1891/0739-6686.33.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Our objective is to review the most widely used biomarkers and gene studies reported in pediatric traumatic brain injury (TBI) literature, to describe their findings, and to discuss the discoveries and gaps that advance the understanding of brain injury and its associated outcomes. Ultimately, we aim to inform the science for future research priorities. DATA SOURCES We searched PubMed, MEDLINE, CINAHL, and the Cochrane Database of Systematic Reviews for published English language studies conducted in the last 10 years to identify reviews and completed studies of biomarkers and gene associations in pediatric TBI. Of the 131 biomarker articles, only 16 were specific to pediatric TBI patients, whereas of the gene association studies in children with TBI, only four were included in this review. CONCLUSION Biomarker and gene attributes are grossly understudied in pediatric TBI in comparison to adults. Although recent advances recognize the importance of biomarkers in the study of brain injury, the limited number of studies and genomic associations in the injured brain has shown the need for common data elements, larger sample sizes, heterogeneity, and common collection methods that allow for greater understanding of the injured pediatric brain. By building on to the consortium of interprofessional scientists, continued research priorities would lead to improved outcome prediction and treatment strategies for children who experience a TBI. IMPLICATIONS FOR NURSING RESEARCH Understanding recent advances in biomarker and genomic studies in pediatric TBI is important because these advances may guide future research, collaborations, and interventions. It is also important to ensure that nursing is a part of this evolving science to promote improved outcomes in children with TBIs.
Collapse
|
33
|
What are the progesterone-induced changes of the outcome and the serum markers of injury, oxidant activity and inflammation in diffuse axonal injury patients? Int Immunopharmacol 2016; 32:103-110. [DOI: 10.1016/j.intimp.2016.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 01/10/2016] [Accepted: 01/14/2016] [Indexed: 02/06/2023]
|
34
|
Simon D, Nascimento RIMD, Filho EMR, Bencke J, Regner A. Plasma brain-derived neurotrophic factor levels after severe traumatic brain injury. Brain Inj 2015; 30:23-8. [PMID: 26555864 DOI: 10.3109/02699052.2015.1077993] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Severe traumatic brain injury (TBI) is associated with a 30-70% mortality rate. Nevertheless, in clinical practice there are no effective biomarkers for the prediction of fatal outcome following severe TBI. Therefore, the aim was to determine whether brain-derived neurotrophic factor (BDNF) plasma levels are associated with intensive care unit (ICU) mortality in patients with severe TBI. METHODS This prospective study enrolled 120 male patients who suffered severe TBI (Glasgow Coma Scale 3-8 at emergency room admission). The plasma BDNF level was determined at ICU admission (mean 6.4 hours after emergency room admission). RESULTS Severe TBI was associated with a 35% mortality rate and 64% of the patients presented severe TBI with multi-trauma. The mean plasma BDNF concentration among the severe TBI victims was 704.2 ± 63.4 pg ml(-1) (±SEM). Nevertheless, there were no significant differences between BDNF levels in the survivor (700.2 ± 82.8 pg ml(-1)) or non-survivor (711.6 ± 97.4 pg ml(-1)) groups (p = 0.238) or in the isolated TBI (800.4 ± 117.4 pg ml(-1)) or TBI with multi-trauma groups (650.5 ± 73.9 pg ml(-1)) (p = 0.109). CONCLUSIONS Plasma BDNF concentrations did not correlate with either short-term fatal outcome or type of injury following severe TBI.
Collapse
Affiliation(s)
- Daniel Simon
- a Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde .,b Laboratório de Biomarcadores do Trauma , Universidade Luterana do Brasil , Canoas , Brazil , and.,c Curso de Medicina , Universidade Luterana do Brasil , Canoas , Brazil
| | | | | | - Jane Bencke
- b Laboratório de Biomarcadores do Trauma , Universidade Luterana do Brasil , Canoas , Brazil , and
| | - Andrea Regner
- a Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde .,b Laboratório de Biomarcadores do Trauma , Universidade Luterana do Brasil , Canoas , Brazil , and.,c Curso de Medicina , Universidade Luterana do Brasil , Canoas , Brazil
| |
Collapse
|
35
|
Korley FK, Diaz-Arrastia R, Wu AHB, Yue JK, Manley GT, Sair HI, Van Eyk J, Everett AD, Okonkwo DO, Valadka AB, Gordon WA, Maas AIR, Mukherjee P, Yuh EL, Lingsma HF, Puccio AM, Schnyer DM. Circulating Brain-Derived Neurotrophic Factor Has Diagnostic and Prognostic Value in Traumatic Brain Injury. J Neurotrauma 2015; 33:215-25. [PMID: 26159676 DOI: 10.1089/neu.2015.3949] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is important for neuronal survival and regeneration. We investigated the diagnostic and prognostic values of serum BDNF in traumatic brain injury (TBI). We examined serum BDNF in two independent cohorts of TBI cases presenting to the emergency departments (EDs) of the Johns Hopkins Hospital (JHH; n = 76) and San Francisco General Hospital (SFGH, n = 80), and a control group of JHH ED patients without TBI (n = 150). Findings were subsequently validated in the prospective, multi-center Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Pilot study (n = 159). We investigated the association between BDNF, glial fibrillary acidic protein (GFAP), and ubiquitin C-terminal hydrolase-L1 (UCH-L1) and recovery from TBI at 6 months in the TRACK-TBI Pilot cohort. Incomplete recovery was defined as having either post-concussive syndrome or a Glasgow Outcome Scale Extended score <8 at 6 months. Median day-of-injury BDNF concentrations (ng/mL) were lower among TBI cases (JHH TBI, 17.5 and SFGH TBI, 13.8) than in JHH controls (60.3; p = 0.0001). Among TRACK-TBI Pilot subjects, median BDNF concentrations (ng/mL) were higher in mild (8.3) than in moderate (4.3) or severe TBI (4.0; p = 0.004. In the TRACK-TBI cohort, the 75 (71.4%) subjects with very low BDNF values (i.e., <the 1st percentile for non-TBI controls, <14.2 ng/mL) had higher odds of incomplete recovery than those who did not have very low values (odds ratio, 4.0; 95% confidence interval [CI]: 1.5-11.0). The area under the receiver operator curve for discriminating complete and incomplete recovery was 0.65 (95% CI: 0.52-0.78) for BDNF, 0.61 (95% CI: 0.49-0.73) for GFAP, and 0.55 (95% CI: 0.43-0.66) for UCH-L1. The addition of GFAP/UCH-L1 to BDNF did not improve outcome prediction significantly. Day-of-injury serum BDNF is associated with TBI diagnosis and also provides 6-month prognostic information regarding recovery from TBI. Thus, day-of-injury BDNF values may aid in TBI risk stratification.
Collapse
Affiliation(s)
- Frederick K Korley
- 1 Department of Emergency Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Ramon Diaz-Arrastia
- 2 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Alan H B Wu
- 3 Clinical Chemistry Laboratory, San Francisco General Hospital , San Francisco, California
| | - John K Yue
- 4 Department of Neurological Surgery, University of California San Francisco , San Francisco, California
| | - Geoffrey T Manley
- 4 Department of Neurological Surgery, University of California San Francisco , San Francisco, California
| | - Haris I Sair
- 5 Department of Radiology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Jennifer Van Eyk
- 6 Department of Medicine, the Advanced Clinical Biosystems Research Institute , Cedars Sinai Medical Center, Los Angeles, California
| | - Allen D Everett
- 7 Department of Pediatrics, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | | | - David O Okonkwo
- 8 The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Investigators .,9 Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Alex B Valadka
- 8 The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Investigators .,10 Seton Brain and Spine Institute , Austin, Texas
| | - Wayne A Gordon
- 8 The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Investigators .,11 Department of Rehabilitation Medicine, Mount Sinai School of Medicine , New York, New York
| | - Andrew I R Maas
- 8 The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Investigators .,12 Department of Neurosurgery, Antwerp University Hospital , Edegem, Belgium
| | - Pratik Mukherjee
- 8 The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Investigators .,13 Department of Radiology and Biomedical Imaging University of California San Francisco , San Francisco, California
| | - Esther L Yuh
- 8 The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Investigators .,13 Department of Radiology and Biomedical Imaging University of California San Francisco , San Francisco, California
| | - Hester F Lingsma
- 8 The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Investigators .,14 Department of Public Health Center for Medical Decision Making Erasmas Medical Center , Rotterdam, the Netherlands
| | - Ava M Puccio
- 8 The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Investigators .,9 Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - David M Schnyer
- 8 The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Investigators .,15 Department of Psychology, University of Texas , Austin, Texas
| |
Collapse
|
36
|
Morley WA, Seneff S. Diminished brain resilience syndrome: A modern day neurological pathology of increased susceptibility to mild brain trauma, concussion, and downstream neurodegeneration. Surg Neurol Int 2014; 5:97. [PMID: 25024897 PMCID: PMC4093745 DOI: 10.4103/2152-7806.134731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/31/2014] [Indexed: 12/11/2022] Open
Abstract
The number of sports-related concussions has been steadily rising in recent years. Diminished brain resilience syndrome is a term coined by the lead author to describe a particular physiological state of nutrient functional deficiency and disrupted homeostatic mechanisms leading to increased susceptibility to previously considered innocuous concussion. We discuss how modern day environmental toxicant exposure, along with major changes in our food supply and lifestyle practices, profoundly reduce the bioavailability of neuro-critical nutrients such that the normal processes of homeostatic balance and resilience are no longer functional. Their diminished capacity triggers physiological and biochemical 'work around' processes that result in undesirable downstream consequences. Exposure to certain environmental chemicals, particularly glyphosate, the active ingredient in the herbicide, Roundup(®), may disrupt the body's innate switching mechanism, which normally turns off the immune response to brain injury once danger has been removed. Deficiencies in serotonin, due to disruption of the shikimate pathway, may lead to impaired melatonin supply, which reduces the resiliency of the brain through reduced antioxidant capacity and alterations in the cerebrospinal fluid, reducing critical protective buffering mechanisms in impact trauma. Depletion of certain rare minerals, overuse of sunscreen and/or overprotection from sun exposure, as well as overindulgence in heavily processed, nutrient deficient foods, further compromise the brain's resilience. Modifications to lifestyle practices, if widely implemented, could significantly reduce this trend of neurological damage.
Collapse
Affiliation(s)
| | - Stephanie Seneff
- Spoken Language Systems Group, Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge MA 02139, USA
| |
Collapse
|
37
|
Daoud H, Alharfi I, Alhelali I, Charyk Stewart T, Qasem H, Fraser DD. Brain injury biomarkers as outcome predictors in pediatric severe traumatic brain injury. Neurocrit Care 2014; 20:427-435. [PMID: 23943317 DOI: 10.1007/s12028-013-9879-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND To systematically review the literature on brain injury biomarkers, defined as any injury biomarker detected in cerebrospinal fluid (CSF) or blood injury biomarkers primarily expressed in the brain parenchyma, to determine outcome prediction in pediatric severe traumatic brain injury (sTBI). METHODS A search of MEDLINE(®), EMBASE(®), PsycINFO(®), Pubmed(®), and the Cochrane Database, as well as grey literature sources, personal contacts, hand searches, and reference lists. The search terms used were traumatic brain injury, biomarkers, prognosis, and children. No language, publication type, or publication date restrictions were imposed. All articles were critically reviewed by two clinicians independently. RESULTS A total of 7,150 articles were identified initially with 16 studies identified for review. Eighteen different biomarkers were examined; 11 in CSF and 7 in blood. Outcomes assessed included either in-hospital mortality or functional state (hospital discharge, 3-months or 6-months; Glasgow Outcome Scale or Pediatric Cerebral Performance Category). Significant correlations were established between sTBI outcomes and various biomarkers in CSF (IL-6, IL-8, IL-1β, S100β, NGF, NSE, DCX, ET-1, HMGB-1, cytochrome C) and blood (GFAP, NF-H, UCH-L1, SBDP-145, leptin). Mixed results were obtained for blood S100β. Outcome did not correlate with several biomarkers in either CSF (BDNF, GDNF, α-Syn) or blood (NSE, MBP). The Class of Evidence was considered II in 1 study and III in the remaining 15 studies. CONCLUSIONS Based on the status of current sTBI biomarker research, we recommend that future research should be directed at both novel biomarker discovery and validation of biomarker panels in large, well-designed longitudinal studies.
Collapse
Affiliation(s)
- Hani Daoud
- Department of Paediatrics, Western University, London, ON, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Chiaretti A, Capozzi D, Mariotti P, Valentini P, Manni L, Buonsenso D, Fantacci C, Ferrara P. Increased levels of neurotrophins in the cerebrospinal fluid of children with Epstein-Barr virus meningoencephalitis. Int J Infect Dis 2014; 20:52-7. [PMID: 24406738 DOI: 10.1016/j.ijid.2013.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/12/2013] [Accepted: 11/16/2013] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the expression of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in the cerebrospinal fluid (CSF) of children with Epstein-Barr virus (EBV)-induced meningoencephalitis (ME) in order to establish a possible correlation with laboratory findings and neurological manifestations. METHODS A prospective observational clinical study was performed on 10 children with viral ME, five of them with EBV-induced ME. As controls, we used CSF samples collected from children admitted with febrile seizures. Neurotrophin levels were measured using an enzyme immunoassay. RESULTS Significantly higher levels of BDNF and NGF were detected in all patients with viral ME compared to controls. Moreover, in patients with EBV-induced ME, the neurotrophin levels were higher than in those with other viral ME. Of note, in children with EBV-induced ME, we found a significant correlation between neurotrophic factor levels and the number of lymphocytes in the CSF (p<0.001). In these patients we also found a significant correlation between BDNF expression and the blood platelet count (p<0.001). Interestingly, two patients with EBV-induced ME showed a correlation between neurotrophin increase and persistent brain abnormalities, such as prolonged alteration of mental status, psychomotor agitation, and athetosis. CONCLUSIONS Viral ME induces an early and strong increased biosynthesis of neurotrophic factors. This neurotrophin over-expression is likely to play a key role in the mechanisms of neuronal inflammation and in the severity of brain damage, particularly in EBV-induced ME.
Collapse
Affiliation(s)
- Antonio Chiaretti
- Department of Pediatrics, Catholic University of the Sacred Heart, A. Gemelli Hospital, Largo Gemelli, I-00168 Rome, Italy.
| | - Domenico Capozzi
- Department of Pediatrics, Catholic University of the Sacred Heart, A. Gemelli Hospital, Largo Gemelli, I-00168 Rome, Italy
| | - Paolo Mariotti
- Pediatric Neurology, Catholic University of the Sacred Heart, A. Gemelli Hospital, Rome, Italy
| | - Piero Valentini
- Department of Pediatrics, Catholic University of the Sacred Heart, A. Gemelli Hospital, Largo Gemelli, I-00168 Rome, Italy
| | - Luigi Manni
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Danilo Buonsenso
- Department of Pediatrics, Catholic University of the Sacred Heart, A. Gemelli Hospital, Largo Gemelli, I-00168 Rome, Italy
| | - Claudia Fantacci
- Department of Pediatrics, Catholic University of the Sacred Heart, A. Gemelli Hospital, Largo Gemelli, I-00168 Rome, Italy
| | - Pietro Ferrara
- Department of Pediatrics, Catholic University of the Sacred Heart, A. Gemelli Hospital, Largo Gemelli, I-00168 Rome, Italy
| |
Collapse
|
39
|
Álvarez XA, Figueroa J, Muresanu D. Peptidergic drugs for the treatment of traumatic brain injury. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.12.95] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Traumatic brain injury (TBI) is a devastating medical condition that has an enormous socioeconomic impact because it affects more than 10 million people annually worldwide and is associated with high rates of hospitalization, mortality and disability. Although TBI survival has improved continuously for decades, particularly in developing countries, implementation of an effective drug therapy for TBI represents an unmet clinical need. All confirmatory trials conducted to date with drugs targeting a single TBI pathological pathway failed to show clinical efficacy, probably because TBI pathophysiology involves multiple cellular and molecular mechanisms of secondary brain damage. According to current scientific evidence of the participation of peptide-mediated mechanisms in the processes of brain injury and repair after TBI, peptidergic drugs represent a multimodal therapy alternative to improve acute outcome and long-term recovery in TBI patients. Preliminary randomized-controlled clinical trials and open-label studies conducted to date with the peptidergic drug Cerebrolysin® (Ever Neuro Pharma GmbH, Unterach, Austria) and with the endogenous neuropeptides progesterone and erythropoietin, showed positive clinical results. Cerebrolysin-treated patients had a faster clinical recovery, a shorter hospitalization time and a better long-term outcome. Treatment with progesterone showed advantages over placebo regarding TBI mortality and clinical outcome, whereas erythropoietin only reduced mortality. Further validation of these promising findings in confirmatory randomized-controlled clinical trials is warranted. This article reviews the scientific basis and clinical evidence on the development of multimodal peptidergic drugs as a therapeutic option for the effective treatment of TBI patients.
Collapse
Affiliation(s)
| | - Jesús Figueroa
- Rehabilitation Department, Santiago University Hospital, Santiago de Compostela, Spain
| | - Dafin Muresanu
- Department of Neurology, University of Medicine & Pharmacy ‘Iuliu Hatieganu’, Cluj-Napoca, Romania
| |
Collapse
|
40
|
Papa L, Ramia MM, Kelly JM, Burks SS, Pawlowicz A, Berger RP. Systematic review of clinical research on biomarkers for pediatric traumatic brain injury. J Neurotrauma 2013; 30:324-38. [PMID: 23078348 DOI: 10.1089/neu.2012.2545] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract The objective was to systematically review the medical literature and comprehensively summarize clinical research performed on biomarkers for pediatric traumatic brain injury (TBI) and to summarize the studies that have assessed serum biomarkers acutely in determining intracranial lesions on CT in children with TBI. The search strategy included a literature search of PubMed,(®) MEDLINE,(®) and the Cochrane Database from 1966 to August 2011, as well as a review of reference lists of identified studies. Search terms used included pediatrics, children, traumatic brain injury, and biomarkers. Any article with biomarkers of traumatic brain injury as a primary focus and containing a pediatric population was included. The search initially identified 167 articles. Of these, 49 met inclusion and exclusion criteria and were critically reviewed. The median sample size was 58 (interquartile range 31-101). The majority of the articles exclusively studied children (36, 74%), and 13 (26%) were studies that included both children and adults in different proportions. There were 99 different biomarkers measured in these 49 studies, and the five most frequently examined biomarkers were S100B (27 studies), neuron-specific enolase (NSE) (15 studies), interleukin (IL)-6 (7 studies), myelin basic protein (MBP) (6 studies), and IL-8 (6 studies). There were six studies that assessed the relationship between serum markers and CT lesions. Two studies found that NSE levels ≥15 ng/mL within 24 h of TBI was associated with intracranial lesions. Four studies using serum S100B were conflicting: two studies found no association with intracranial lesions and two studies found a weak association. The flurry of research in the area over the last decade is encouraging but is limited by small sample sizes, variable practices in sample collection, inconsistent biomarker-related data elements, and disparate outcome measures. Future studies of biomarkers for pediatric TBI will require rigorous and more uniform research methodology, common data elements, and consistent performance measures.
Collapse
Affiliation(s)
- Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, FL 32806, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Sarkaki AR, Khaksari Haddad M, Soltani Z, Shahrokhi N, Mahmoodi M. Time- and Dose-Dependent Neuroprotective Effects of Sex Steroid Hormones on Inflammatory Cytokines after a Traumatic Brain Injury. J Neurotrauma 2013; 30:47-54. [DOI: 10.1089/neu.2010.1686] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ali Reza Sarkaki
- Physiology Research Center, Ahwaz University of Medical Sciences, Ahwaz, Iran
| | - Mohammad Khaksari Haddad
- Neuroscience Research Center and Bam International Unit, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Mahmoodi
- Department of Biochemistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
42
|
Zappaterra MW, Lehtinen MK. The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell Mol Life Sci 2012; 69:2863-78. [PMID: 22415326 DOI: 10.1007/s00018-012-0957-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 12/11/2022]
Abstract
The cerebrospinal fluid (CSF) has attracted renewed interest as an active signaling milieu that regulates brain development, homeostasis, and disease. Advances in proteomics research have enabled an improved characterization of the CSF from development through adulthood, and key neurogenic signaling pathways that are transmitted via the CSF are now being elucidated. Due to its immediate contact with neural stem cells in the developing and adult brain, the CSF's ability to swiftly distribute signals across vast distances in the central nervous system is opening avenues to novel and exciting therapeutic approaches. In this review, we will discuss the development of the choroid plexus-CSF system, and review the current literature on how the CSF actively regulates mammalian brain development, behavior, and responses to traumatic brain injury.
Collapse
Affiliation(s)
- Mauro W Zappaterra
- Department of Physical Medicine and Rehabilitation, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA.
| | | |
Collapse
|
43
|
Abstract
Nerve Growth Factor (NGF) was initially studied for its role as a key player in the regulation of peripheral innervations. However, the successive finding of its release in the bloodstream of male mice following aggressive encounters and its presence in the central nervous system led to the hypothesis that variations in brain NGF levels, caused by psychosocial stressor, and the related alterations in emotionality, could be functional to the development of proper strategies to cope with the stressor itself and thus to survive. Years later this vision is still relevant, and the body of evidence on the role of NGF has been strengthened and expanded from trophic factor playing a role in brain growth and differentiation to a much more complex messenger, involved in psychoneuroendocrine plasticity.
Collapse
|
44
|
Khaksari M, Soltani Z, Shahrokhi N, Moshtaghi G, Asadikaram G. The role of estrogen and progesterone, administered alone and in combination, in modulating cytokine concentration following traumatic brain injury. Can J Physiol Pharmacol 2011; 89:31-40. [PMID: 21186375 DOI: 10.1139/y10-103] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytokines play an important role in the pathophysiology of traumatic brain injury (TBI). This study was designed to determine the effects of administering progesterone (P) and estrogen (E), alone and in combination, on brain water content, blood-brain barrier (BBB) disturbance, and brain level of cytokines following diffuse TBI. Ovariectomized rats were divided into 9 groups, treated with vehicle, E1, E2, P1, P2, E1+P1, E1+P2, E2+P1, and E2+P2. Levels of BBB disruption (5 h), cytokines, and water content (24 h) were evaluated after TBI induced by the Marmarou method. Physiological (E1 and P1) and pharmacological (E2 and P2) doses of estrogen and progesterone were administered 30 min after TBI. Water content in the E1+P2-treated group was higher than in the E1-treated group. The inhibitory effect of E2 on water content was reduced by adding progesterone. The inhibitory effect of E1 and E2 on Evans blue content was reduced by treatment with E1+P1 and E2+P2, respectively. The brain level of IL-1β was reduced in E1 and E2, after TBI. In the E2+P2-treated group, this level was higher than in the E2-treated group. The brain level of TGF-β was also elevated by the administration of progesterone and estrogen alone, and reduced when the hormones were administered in combination. In conclusion, a combined administration of progesterone and estrogen inhibited the decreasing effects of administration of progesterone and estrogen alone on water content and BBB disruption that mediated to change the proinflammatory cytokines.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Neuroscience Research Center, Kerman University of Medical Sciences, Iran.
| | | | | | | | | |
Collapse
|
45
|
Blaylock RL, Maroon J. Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy-A unifying hypothesis. Surg Neurol Int 2011; 2:107. [PMID: 21886880 PMCID: PMC3157093 DOI: 10.4103/2152-7806.83391] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/06/2011] [Indexed: 12/17/2022] Open
Abstract
Some individuals suffering from mild traumatic brain injuries, especially repetitive mild concussions, are thought to develop a slowly progressive encephalopathy characterized by a number of the neuropathological elements shared with various neurodegenerative diseases. A central pathological mechanism explaining the development of progressive neurodegeneration in this subset of individuals has not been elucidated. Yet, a large number of studies indicate that a process called immunoexcitotoxicity may be playing a central role in many neurodegenerative diseases including chronic traumatic encephalopathy (CTE). The term immunoexcitotoxicity was first coined by the lead author to explain the evolving pathological and neurodevelopmental changes in autism and the Gulf War Syndrome, but it can be applied to a number of neurodegenerative disorders. The interaction between immune receptors within the central nervous system (CNS) and excitatory glutamate receptors trigger a series of events, such as extensive reactive oxygen species/reactive nitrogen species generation, accumulation of lipid peroxidation products, and prostaglandin activation, which then leads to dendritic retraction, synaptic injury, damage to microtubules, and mitochondrial suppression. In this paper, we discuss the mechanism of immunoexcitotoxicity and its link to each of the pathophysiological and neurochemical events previously described with CTE, with special emphasis on the observed accumulation of hyperphosphorylated tau.
Collapse
Affiliation(s)
- Russell L Blaylock
- Theoretical Neurosciences, LLC Visiting Professor of Biology, Belhaven University, Jackson, MS 315 Rolling Meadows Rd, Ridgeland, MS 39157, USA
| | | |
Collapse
|
46
|
Bonneh-Barkay D, Zagadailov P, Zou H, Niyonkuru C, Figley M, Starkey A, Wang G, Bissel SJ, Wiley CA, Wagner AK. YKL-40 expression in traumatic brain injury: an initial analysis. J Neurotrauma 2011; 27:1215-23. [PMID: 20486806 DOI: 10.1089/neu.2010.1310] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
YKL-40 (chitinase 3-like protein 1) is expressed in a broad spectrum of inflammatory conditions and cancers. We have previously reported that YKL-40 levels are elevated in the cerebrospinal fluid (CSF) of macaques and humans with lentiviral encephalitis, as well as multiple sclerosis (MS). The current study assessed temporal CSF YKL-40 levels in subjects with severe traumatic brain injury (TBI; Glasgow Coma Scale [GCS] score <or=8). We also evaluated temporal expression of YKL-40 after parasagittal controlled cortical impact (CCI) injury over the parietal cortex (2.8 mm deep, 4 m/sec). We demonstrate that CSF YKL-40 levels are elevated after acute TBI, and that YKL-40 levels are higher in patients who died following injury than in patients who survived. YKL-40 levels significantly correlate with CSF levels of inflammatory cytokines such as interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), as well as the inflammatory marker C-reactive protein (CRP). After CCI, in situ hybridization (ISH) showed that YKL-40 transcription is primarily associated with reactive astrocytes in pericontusional cortex. Tissue YKL-40 transcription time course analysis after CCI showed that YKL40 transcription in astrocytes began 1 day after injury, remained elevated for several days, and then declined by day 12. Similarly to our temporal CSF measurements in humans, YKL-40 induction after CCI is coincident with IL-1beta expression. Taken together these findings demonstrate that YKL-40 is induced in astrocytes during acute neuroinflammation, is temporally related to inflammatory mediator expression, and may be a useful biomarker for understanding secondary injury and for patient prognosis.
Collapse
Affiliation(s)
- Dafna Bonneh-Barkay
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zou X, Li Y, Wang T, Zhou C, Zeng H. Determination of Nerve Growth Factor in Rat Spinal Cord by Capillary Electrophoresis-Based Immunoassay with a Laser Induced Fluorescence Detector. Chromatographia 2011. [DOI: 10.1007/s10337-010-1844-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
Sjödin MO, Bergquist J, Wetterhall M. Mining ventricular cerebrospinal fluid from patients with traumatic brain injury using hexapeptide ligand libraries to search for trauma biomarkers. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:2003-12. [DOI: 10.1016/j.jchromb.2010.05.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/12/2010] [Accepted: 05/23/2010] [Indexed: 10/19/2022]
|
49
|
Abstract
PURPOSE OF REVIEW Traumatic brain injury is the main cause of childhood disability and death. In this review, we highlight recent original findings and emerging themes from published literature on children with serious traumatic brain injury. RECENT FINDINGS We focus this review on lessons learned from our recent randomized clinical trial of hypothermia therapy in severe traumatic brain injury in children and on bedside neuromonitoring. We propose that integrating the measurement of biomarkers into clinical care as surrogate endpoints and as potential prognostic markers would allow us to evaluate earlier the effect of injury and clinical care in children after traumatic brain injury. Several methods are now more readily available to monitor cerebral physiology in children. These methods include indices evaluating the integrity of cerebral autoregulation, such as the pressure reactivity index derived from values obtained from intracranial pressure measurements, flow velocity measurements from transcranial Doppler ultrasonography or from cerebral oximetry. Other methods allow the evaluation of coma with the nonlinear analysis of electroencephalography or the evaluation of cerebral metabolism and cell death pathways with biomarkers from serum, cerebral spinal fluid, and cerebral microdialysis. SUMMARY We suggest expanding clinical functional neuromonitoring to help clinicians understand the burden of exposure to physiological variables and response to therapies during intensive care in order to enhance the management of critically ill children with traumatic brain injury.
Collapse
|
50
|
Kalish H, Phillips TM. Analysis of neurotrophins in human serum by immunoaffinity capillary electrophoresis (ICE) following traumatic head injury. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 878:194-200. [PMID: 19896422 DOI: 10.1016/j.jchromb.2009.10.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 10/20/2022]
Abstract
Neurotrophins, including brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), and beta-nerve growth factor (beta-NGF), play an active role in the development, maintenance and survival of cells of the central nervous system (CNS). Previous research has indicated that a decrease in concentrations of these neurotrophins is often associated with cell death and ultimately patient demise. However, much of the research conducted analyses of samples taken directly from the CNS, i.e., of samples that are not readily available in clinical trauma centers. In an attempt to obtain a method for evaluating neurotrophins in a more readily accessible matrix, i.e., serum, a precise and accurate immunoaffinity capillary electrophoresis (ICE) method was developed and applied to measure neurotrophins in serum from patients with various degrees of head injury. The five neurotrophins of interest were extracted and concentrated by specific immunochemically immobilized antibodies, bound directly to the capillary wall, and eluted and separated in approximately 10min. NT-3, BDNF, CNTF and beta-NGF showed a marked decrease in concentration as the severity of the head injury increased: mild versus severe: 91% decrease for NT-3; 93 % decrease for BDNF; 93 % decrease for CNTF; and a 87 % decrease for beta-NGF. This decrease in concentration is consistent with the neuro-protective roles that neurotrophins play in the maintenance and survival of neuronal cells. The results obtained by the ICE method were closely comparable with those generated by a commercially available ELISA method.
Collapse
Affiliation(s)
- Heather Kalish
- Ultramicro Immunodiagnostics Section, Laboratory of Bioengineering & Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD USA.
| | | |
Collapse
|