1
|
Baidoo I, Sarbadhikary P, Abrahamse H, George BP. Metal-based nanoplatforms for enhancing the biomedical applications of berberine: current progress and future directions. Nanomedicine (Lond) 2025; 20:851-868. [PMID: 40110809 PMCID: PMC11999359 DOI: 10.1080/17435889.2025.2480051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
The isoquinoline alkaloid berberine, a bioactive compound derived from various plants, has demonstrated extensive therapeutic potential. However, its clinical application is hindered by poor water solubility, low bioavailability, rapid metabolism, and insufficient targeting. Metal-based nanoplatforms offer promising solutions, enhancing drug stability, controlled release, and targeted delivery. This review comprehensively explores the synthesis, physicochemical properties, and biomedical applications of metal-based nanocarriers, including gold, silver, iron oxide, zinc oxide, selenium, and magnetic nanoparticles, for berberine delivery to improve berberine's therapeutic efficacy. Recent advancements in metal-based nanocarrier systems have significantly improved berberine delivery by enhancing cellular uptake, extending circulation time, and enabling site-specific targeting. However, metal-based nanoplatforms encounter several limitations of potential toxicity, limited large-scale productions, and regulatory constraints. Addressing these limitations necessitates extensive studies on biocompatibility, long-term safety, and clinical translation. By summarizing the latest innovations and clinical perspectives, this review aims to guide future research toward optimizing berberine-based nanomedicine for improved therapeutic efficacy.
Collapse
Affiliation(s)
- Isaac Baidoo
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
2
|
Alpaslan Ağaçdiken A, Göktaş Z. Berberine-induced browning and energy metabolism: mechanisms and implications. PeerJ 2025; 13:e18924. [PMID: 39931072 PMCID: PMC11809318 DOI: 10.7717/peerj.18924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Obesity has become a global pandemic. The approaches researched to prevent it include decreasing energy intake and/or enhancing energy expenditure. Therefore, research on brown adipose tissue is of great importance. Brown adipose tissue is characterized by its high mitochondrial content. Mitochondrial uncoupling protein 1 (UCP1) releases energy as heat instead of chemical energy. Thermogenesis increases energy expenditure. Berberine, a phytochemical widely used in Asian countries, has positive effects on body weight control. While the precise mechanisms behind this effect remain unclear, the adenosine monophosphate-activated protein kinase (AMPK) pathway is known to play a crucial role. Berberine activates AMPK through phosphorylation, significantly impacting brown adipose tissue by enhancing lipolytic activity and increasing the expression of UCP1, peroxisome proliferator-activated receptor γ-co-activator-1α (PGC1α), and PR domain containing 16 (PRDM16). While investigating the mechanism of action of berberine, both the AMPK pathway is being examined in more detail and alternative pathways are being explored. One such pathway is growth differentiation factor 15 (GDF15), known for its appetite-suppressing effect. Berberine's low stability and bioavailability, which are the main obstacles to its clinical use, have been improved through the development of nanotechnological methods. This review examines the potential mechanisms of berberine on browning and summarizes the methods developed to enhance its effect.
Collapse
Affiliation(s)
| | - Zeynep Göktaş
- Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Liu X, Liang Q, Wang Y, Xiong S, Yue R. Advances in the pharmacological mechanisms of berberine in the treatment of fibrosis. Front Pharmacol 2024; 15:1455058. [PMID: 39372209 PMCID: PMC11450235 DOI: 10.3389/fphar.2024.1455058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
The rising incidence of fibrosis poses a major threat to global public health, and the continuous exploration of natural products for the effective treatment of fibrotic diseases is crucial. Berberine (BBR), an isoquinoline alkaloid, is widely used clinically for its anti-inflammatory, anti-tumor and anti-fibrotic pharmacological effects. Until now, researchers have worked to explore the mechanisms of BBR for the treatment of fibrosis, and multiple studies have found that BBR attenuates fibrosis through different pathways such as TGF-β/Smad, AMPK, Nrf2, PPAR-γ, NF-κB, and Notch/snail axis. This review describes the anti-fibrotic mechanism of BBR and its derivatives, and the safety evaluation and toxicity studies of BBR. This provides important therapeutic clues and strategies for exploring new drugs for the treatment of fibrosis. Nevertheless, more studies, especially clinical studies, are still needed. We believe that with the continuous implementation of high-quality studies, significant progress will be made in the treatment of fibrosis.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qingzhi Liang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | | | - Shuai Xiong
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Shayan E, Maheri F, Aflaki F, Mousavi SE, Zarrindast MR, Fakhraei N, Rezayat Sorkhabadi SM, Shushtarian SMM. Synergistic effects of citicoline and silymarin nanomicelles in restraint stress-exposed mice. Behav Brain Res 2024; 464:114929. [PMID: 38428646 DOI: 10.1016/j.bbr.2024.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
This study evaluated the effects of citicoline and silymarin nanomicelles (SMnm) in repeated restraint stress (RRS). METHOD Mice were exposed to RRS for four consecutive days, 2 hrs. daily. On day 5 of the study, SMnm (25 and 50 mg/kg, i.p.) and citicoline (25 and 75 mg/kg), and a combination of them (25 mg/kg, i.p.) were initiated. On day 18, anxiety-like behavior, behavioral despair, and exploratory behavior were evaluated. The prefrontal cortex (PFC) and the hippocampus were dissected measuring brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and tumor necrosis factor-alpha (TNF-α) through Western Blot and ELISA, respectively. RESULTS In RR-exposed mice, anxiety-like behavior in the elevated plus maze (EPM) was enhanced by reductions in open arm time (OAT%) P < 0.001, and open arm entry (OAE%) P < 0.001. In the forced swimming test (FST), the immobility increased P < 0.001 while the swimming and climbing reduced P < 0.001. In the open field test (OFT), general motor activity was raised P < 0.05. Further, body weights reduced P < 0.001, and tissue BDNF and pCREB expressions decreased P < 0.001 while TNF-α increased P < 0.001. Conversely, SMnm, citicoline and their combination could reduce anxiety-like behavior P < 0.001. The combination group reduced the depressive-like behaviors P < 0.001. Moreover, body weights were restored P < 0.001. Besides, BDNF and pCREB expressions increased while TNF-α reduced, P < 0.001. CONCLUSION The combination synergistically improved emotion-like behaviors, alleviating the inflammation and upregulating the hippocampal BDNF-mediated CREB signaling pathway.
Collapse
Affiliation(s)
- Elham Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Maheri
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Aflaki
- Department of Biophysics and Biochemistry, Faculty of Advance Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyyedeh-Elaheh Mousavi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nahid Fakhraei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed-Mohammad-Masoud Shushtarian
- Department of Biophysics and Biochemistry, Faculty of Advance Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Wu L, Huang W, Peng K, Wang Y, Chen Q, Lu B. Enhancing the stability, BBB permeability and neuroprotective activity of verbascoside in vitro using lipid nanocapsules in combination with menthol. Food Chem 2023; 414:135682. [PMID: 36827775 DOI: 10.1016/j.foodchem.2023.135682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
Verbascoside (VER) shows promising neuroprotective activity. However, the instability and low permeability in crossing the blood-brain barrier (BBB) greatly hinder its application. In the present study, verbascoside was encapsulated into lipid nanocapsules (LNC) by reverse micelle (RM) to increase its stability. Besides, we used VER-RM-LNC combined with an envoy drug, menthol, to improve its BBB permeability and neuroprotective activity. VER-RM-LNC was prepared by the phase inversion temperature method, resulting in an encapsulation efficiency of nearly 85 %. The formulated VER-RM-LNC was stable for 6 months at 4 °C. VER encapsulated into LNC possessed enhanced stability and a reduced release profile. Menthol increased the cellular uptake and the permeability of VER-RM-LNC in the BBB model in vitro. In addition, the improved neuroprotective activity of VER through incubation with menthol and VER-RM-LNC was verified in the neurotoxic human brain microvascular endothelial cells model induced by Aβ25-35.
Collapse
Affiliation(s)
- Lipeng Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Weisu Huang
- Zhejiang Institute of Economics and Trade, Hangzhou 310058, China
| | - Kejie Peng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Yixuan Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Qi Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China.
| |
Collapse
|
6
|
Jadhav S, Yadav A. Phytoconstituents Based Nanomedicines for the Management of Diabetes: A Review. Pharm Nanotechnol 2023; 11:217-237. [PMID: 36654462 DOI: 10.2174/2211738511666230118095936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/13/2022] [Accepted: 10/12/2022] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus (DM) is a life-threatening multifactorial metabolic syndrome that is still one of the most difficult unsolved health concerns. Different herbal drugs have been proposed to be useful in treating diabetes and its associated complications. Two major obstacles in plant extracts are their limited solubility and bioavailability of lipophilic bioactive components. Applying nanotechnology has opened new avenues to improve solubility, bioavailability, compliance, and efficacy by overcoming the pharmacokinetic and biopharmaceutical obstacles associated with herbal extracts and phytochemicals. Herbal nanomedicines can overcome the drawbacks of conventional therapy of DM, its complications like delayed wound healing, and also decrease the side effects of synthetic drugs. The targeted delivery of herbal nanoparticles employing nano-pumps, nanorobots, smart cells, and nanosized herbal medications is recognized today as one of the most far-reaching discoveries in the therapy of DM. This paper focuses on using nanotechnology and herbal therapies to manage diabetes effectively. The review provides a detailed and up-to-date overview of phytonanoformulations in treating diabetes and its consequences.
Collapse
Affiliation(s)
- Shailaja Jadhav
- Department of Pharmaceutics, Government College of Pharmacy, Karad, Shivaji University, Karad, 415004, India
| | - Adhikarao Yadav
- Department of Pharmaceutics, Government College of Pharmacy, Karad, Shivaji University, Karad, 415004, India
| |
Collapse
|
7
|
Gao Y, Sun J, Wang S, Huxiao L, Xu Y, Zhang H. DSPE-PEG polymer enhanced berberine absorption specifically in the small intestine of rats through paracellular passway. J Pharm Pharmacol 2023:7161498. [PMID: 37177975 DOI: 10.1093/jpp/rgad028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVES This study focuses on investigating the potential impact of DSPE-PEG polymers on intestinal absorption and related mechanism of berberine in rats. METHODS Effect of DSPE-PEG polymer on intestinal absorption of berberine was investigated with an in situ closed-loop method in rats. To confirm the safety of DSPE-PEG polymer, morphological observation of rat intestine and measurement of biological markers in the intestinal perfusion of rats was performed. Underling mechanism behind promoting action of DSPE-PEG polymer was explored from its impact on the P-gp function and tight junction using in vitro diffusion chamber system, Caco-2 monolayer cells and western blot. KEY FINDINGS DSPE-PEG polymer demonstrated significant enhancement action on the berberine absorption in rats without any obvious membrane toxicity. DSPE-PEG polymer (1.0%, w/v) induced the most significant promoting effect on berberine absorption specifically in the small intestine of rats. Results of mechanistic studies revealed that DSPE-PEG polymer might not regulate intestinal P-gp function, but significantly down-regulated the expression of tight junction-related proteins, which accordingly led to loosening the tight junctions of intestinal epithelium cells, and consequently increased paracellular absorption of berberine in rats. CONCLUSIONS DSPE-PEG polymer, as an excellent absorption enhancer, seems very promising in increasing oral bioavailability of berberine.
Collapse
Affiliation(s)
- Yang Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jianmei Sun
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Shucong Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Lisong Huxiao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yali Xu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Hailong Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Murakami T, Bodor E, Bodor N. Approaching strategy to increase the oral bioavailability of berberine, a quaternary ammonium isoquinoline alkaloid: Part 2. Development of oral dosage formulations. Expert Opin Drug Metab Toxicol 2023; 19:139-148. [PMID: 37060323 DOI: 10.1080/17425255.2023.2203858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
INTRODUCTION Berberine (BBR) possesses a wide variety of pharmacological activities. However, the oral bioavailability of BBR is low due to extensive intestinal first-pass metabolism by cytochrome P450s (CYPs), insufficient absorption due to low solubility and P-glycoprotein (P-gp)-mediated efflux transport, and hepatic first-pass metabolism in rats. AREAS COVERED Various dosage formulations were developed to increase the oral bioavailability of BBR by overcoming the reducing factors. This article provides the developing strategy of oral dosage formulations of BBR based on the physicochemical (low solubility, formation of salts/ion-pair complex) and pharmacokinetic properties (substrate of P-gp/CYPs, extensive intestinal first-pass metabolism). Literature was searched by using PubMed. EXPERT OPINION Here, formulations increasing the dissolution rates/solubility; formulations containing a P-gp inhibitor; formulations containing solubilizer exhibiting P-gp and/or CYPs inhibitors; formulations containing absorption enhancers; gastro/duodenal retentive formulations; lipid-based formulations; formulations targeting lymphatic transport; and physicochemical modifications increasing lipophilicity were reviewed. Among these formulations, formulations that can reduce intestinal first-pass metabolisms such as formulations containing CYPs inhibitor(s) and formulations containing absorption enhancer(s) significantly increased the oral bioavailability of BBR. Further studies on other dosing routes that can avoid first-pass metabolism such as the rectal route would also be important to increase the bioavailability of BBR.
Collapse
Affiliation(s)
| | - Erik Bodor
- Bodor Laboratories Inc, Miami, Florida33137, USA
| | - Nicholas Bodor
- Bodor Laboratories Inc, Miami, Florida33137, USA
- College of Pharmacy, University of Florida, Gainesville, Florida32611, USA
| |
Collapse
|
9
|
Khoshandam A, Imenshahidi M, Hosseinzadeh H. Pharmacokinetic of berberine, the main constituent of Berberis vulgaris L.: A comprehensive review. Phytother Res 2022; 36:4063-4079. [PMID: 36221815 DOI: 10.1002/ptr.7589] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022]
Abstract
Barberry (Berberis vulgaris L.) is a medicinal plant and its main constituent is an isoquinoline alkaloid named berberine that has multiple pharmacological effects such as antioxidant, anti-microbial, antiinflammatory, anticancer, anti-diabetes, anti-dyslipidemia, and anti-obesity. However, it has restricted clinical uses due to its very poor solubility and bioavailability (less than 1%). It undergoes demethylenation, reduction, and cleavage of the dioxymethylene group in the first phase of metabolism. Its phase two reactions include glucuronidation, sulfation, and methylation. The liver is the main site for berberine distribution. Berberine could excrete in feces, urine, and bile. Fecal excretion of berberine (11-23%) is higher than urinary and biliary excretion routes. However, a major berberine metabolite is excreted in urine greater than in feces. Concomitant administration of berberine with other drugs such as metformin, cyclosporine A, digoxin, etc. may result in important interactions. Thus, in this review, we gathered and dissected any related animal and human research articles regarding the pharmacokinetic parameters of berberine including bioavailability, metabolism, distribution, excretion, and drug-drug interactions. Also, we discussed and gathered various animal and human studies regarding the developed products of berberine with better bioavailability and consequently, better therapeutic effects.
Collapse
Affiliation(s)
- Arian Khoshandam
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Hassanein EHM, Ibrahim IM, Abd-Alhameed EK, Mohamed NM, Ross SA. Protective effects of berberine on various kidney diseases: Emphasis on the promising effects and the underlined molecular mechanisms. Life Sci 2022; 306:120697. [PMID: 35718235 DOI: 10.1016/j.lfs.2022.120697] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/28/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Berberine (BBR) is a pentacyclic benzylisoquinoline alkaloid that can be found in diversity of medicinal plants. BBR has a wide range of pharmacological bioactivities, in addition when administrated orally, it has a broad safety margin. It has been used as an antidiarrheal, antimicrobial, and anti-diabetic drug in Ayurvedic and Chinese medicine. Several scholars have found that BBR has promising renoprotective effects against different renal illnesses, including diabetic nephropathy, renal fibrosis, renal ischemia, renal aging, and renal stones. Also, it has renoprotective effects against nephrotoxicity induced by chemotherapy, heavy metal, aminoglycosides, NSAID, and others. These effects imply that BBR has an evolving therapeutic potential against acute renal failure and chronic renal diseases. Hence, we report herein the beneficial therapeutic renoprotective properties of BBR, as well as the highlighted molecular mechanism. In conclusion, the studies discussed throughout this review will afford a comprehensive overview about renoprotective effect of BBR and its therapeutic impact on different renal diseases.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | | | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Samir A Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
11
|
Expatiating the Pharmacological and Nanotechnological Aspects of the Alkaloidal Drug Berberine: Current and Future Trends. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123705. [PMID: 35744831 PMCID: PMC9229453 DOI: 10.3390/molecules27123705] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022]
Abstract
Traditionally, herbal compounds have been the focus of scientific interest for the last several centuries, and continuous research into their medicinal potential is underway. Berberine (BBR) is an isoquinoline alkaloid extracted from plants that possess a broad array of medicinal properties, including anti-diarrheal, anti-fibrotic, antidiabetic, anti-inflammatory, anti-obesity, antihyperlipidemic, antihypertensive, antiarrhythmic, antidepressant, and anxiolytic effects, and is frequently utilized as a traditional Chinese medicine. BBR promotes metabolisms of glucose and lipids by activating adenosine monophosphate-activated protein kinase, stimulating glycolysis and inhibiting functions of mitochondria; all of these ameliorate type 2 diabetes mellitus. BBR has also been shown to have benefits in congestive heart failure, hypercholesterolemia, atherosclerosis, non-alcoholic fatty liver disease, Alzheimer’s disease, and polycystic ovary syndrome. BBR has been investigated as an interesting pharmacophore with the potential to contribute significantly to the research and development of novel therapeutic medicines for a variety of disorders. Despite its enormous therapeutic promise, the clinical application of this alkaloid was severely limited because of its unpleasant pharmacokinetic characteristics. Poor bioavailability, limited absorption, and poor water solubility are some of the obstacles that restricted its use. Nanotechnology has been suggested as a possible solution to these problems. The present review aims at recent updates on important therapeutic activities of BBR and different types of nanocarriers used for the delivery of BBR in different diseases.
Collapse
|
12
|
Cao RY, Zheng Y, Zhang Y, Jiang L, Li Q, Sun W, Gu W, Cao W, Zhou L, Zheng H, Yang J. Berberine on the Prevention and Management of Cardiometabolic Disease: Clinical Applications and Mechanisms of Action. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1645-1666. [PMID: 34488551 DOI: 10.1142/s0192415x21500762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Berberine is an alkaloid from several medicinal plants originally used to treat diarrhea and dysentery as a traditional Chinese herbal medicine. In recent years, berberine has been discovered to exhibit a wide spectrum of biological activities in the treatment of diverse diseases ranging from cancer and neurological dysfunctions to metabolic disorders and heart diseases. This review article summarizes the clinical practice and laboratory exploration of berberine for the treatment of cardiometabolic and heart diseases, with a focus on the novel insights and recent advances of the underlying mechanisms recognized in the past decade. Berberine was found to display pleiotropic therapeutic effects against dyslipidemia, hyperglycemia, hypertension, arrhythmia, and heart failure. The mechanisms of berberine for the treatment of cardiometabolic disease involve combating inflammation and oxidative stress such as inhibiting proprotein convertase subtilisin/kexin 9 (PCSK9) activation, regulating electrical signals and ionic channels such as targeting human ether-a-go-go related gene (hERG) currents, promoting energy metabolism such as activating adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, modifying gut microbiota to promote transforming of berberine into its intestine-absorbable form, and interacting with non-coding RNAs via targeting multiple signaling pathways such as AMPK, mechanistic target of rapamycin (mTOR), etc. Collectively, berberine appears to be safe and well-tolerated in clinical practice, especially for those who are intolerant to statins. Knowledge from this field may pave the way for future development of more effective pharmaceutical approaches for managing cardiometabolic risk factors and preventing heart diseases.
Collapse
Affiliation(s)
- Richard Y Cao
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Yuntao Zheng
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China.,CVD Collaborative Program of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China
| | - Ying Zhang
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Lingling Jiang
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Qing Li
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Wanqun Sun
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Wenqin Gu
- Department of Rehabilitation, Shanghai Xuhui Fengling Community Healthcare Service Center, Shanghai 200032, P. R. China
| | - Weifeng Cao
- Department of Rehabilitation, Shanghai Xuhui Fengling Community Healthcare Service Center, Shanghai 200032, P. R. China
| | - Linyan Zhou
- Department of Rehabilitation, Shanghai Xuhui Caohejing Community Healthcare Service Center, Shanghai 200235, P. R. China
| | - Hongchao Zheng
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Jian Yang
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| |
Collapse
|
13
|
Bhasin J, Thakur B, Kumar S, Chopra V. Tree Turmeric: A Super Food and Contemporary Nutraceutical of 21st Century - A Laconic Review. J Am Coll Nutr 2021; 41:728-746. [PMID: 34757887 DOI: 10.1080/07315724.2021.1958104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Since ancient times the medicinal plants have been under use as food and potential therapeutic agent for the management of overall health and the use of all plant parts including fruits, seeds, is well reported in the literature. One such plant is Berberis aristata which is rich in vitamins, minerals, and various phytochemicals amongst which Berberine is the principal bioactive compound with a range of reported health benefits, and some of the commercial formulations like Rasaut, Darvyadi Leha are being used for the treatments of jaundice, malaria, typhoid fever, inflammation, eye infection, diarrhea, wound healing, etc. The hepatoprotective, antidiabetic, antitumor, anti-cancerous, properties are the recent additions to its functional importance. Berberine has significant bioactivities in the treatments of different diseases. Besides its remarkable applications, the berberine has low efficacy due to its low solubility in water, poor absorption, and low bioavailability. This problem can be solved by using some techniques like Nanotechnology which has been found to increase its solubility in water, bioavailability, and absorption and hence provide a better delivery system of berberine. This review illuminates the therapeutic applications of the plant Berberis aristata, scientific validation to its traditional uses, role of berberine in the treatment of various diseases through its different bioactivities, major flaws in berberine treatment, and the role of nanotechnology in minimizing those flaws and increasing its overall efficacy. Key teaching pointsPlant Berberis aristata has been used since ancient times for the treatment of various ailments like jaundice, hepatitis, fever, bleeding, inflammation, diarrhea, malaria, skin and eye infections, chronic rheumatism, and urinary disorders.Berberine is the major and most significant phytochemical among numerous phytochemicals present in plant Berberis aristata.Berberine has significantly shown many potent effect against emerging diseases like cancer and diabetes. Besides that, it has also shown antioxidant, anti-inflamation, antimicrobial, hepatoprotective, and anti-gastrointestinal disorder properties.Berberine can be very effective in overcoming the demerits of berberine treatment like poor aqueous solubility, low bioavailability, and poor absorption in the human body in the treatment of various diseases.
Collapse
Affiliation(s)
- Jasleen Bhasin
- Faculty of Technology and Sciences, Lovely Professional University, Phagwara, India
| | - Baneet Thakur
- Department of Food Technology and Nutrition, Lovely Professional University Faculty of Technology and Sciences, Phagwara, India
| | - Satish Kumar
- Food Technology and Nutrition, Dr. YS Parmar University of Horticulture and Forestry, Solan, India
| | - Vikas Chopra
- Department of Food Science and Technology, PAU, Ludhiana, Ludhiana, India
| |
Collapse
|
14
|
Development of Natural Polysaccharide-Based Nanoparticles of Berberine to Enhance Oral Bioavailability: Formulation, Optimization, Ex Vivo, and In Vivo Assessment. Polymers (Basel) 2021; 13:polym13213833. [PMID: 34771389 PMCID: PMC8588213 DOI: 10.3390/polym13213833] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/29/2023] Open
Abstract
The phytogenous alkaloid berberine (BBR) has become a potential drug for the treatment of diabetes, hyperlipidemia, and cancer. However, its therapeutic potential is limited because ofpoor intestinal absorption due to its efflux by the P-gp expressed in the intestinal lumen. Therefore, we aimed to design and fabricate a nanoparticulate system for delivery of BBR employing naturally derived biodegradable and biocompatible polymers, mainly chitosan and alginate, to enhance the oral bioavailability of BBR. A chitosan-alginate nanoparticle system loaded with BBR (BNPs) was formulated by ionic gelation method and was optimized by employing a three-factor, three-level Box-Behnken statistical design. BNPs were characterized for various physicochemical properties, ex vivo, and in vivo evaluations. The optimized BNPs were found to be 202.2 ± 4.9 nm in size, with 0.236 ± 0.02 of polydispersity index, zeta potential -14.8 ± 1.1 mV, and entrapment efficiency of 85.69 ± 2.6%. BNPs showed amorphous nature with no prominent peak in differential scanning calorimetry (DSC) investigation. Similarly, fourier-transform infrared spectroscopy (FTIR) studies did not reveal any interaction between BBR and excipients used. The drug release followed Higuchi kinetics, since these plots demonstrated the highest linearity (R2 = 0.9636), and the mechanism of release was determined to be anomalous or non-Fickian in nature. An ex-vivo gut permeation study showed that BNPs were better internalized into the cells and more highly permeated through the intestine. Furthermore, in vivo pharmacokinetic analysis in female Wistar rats showed a 4.10-fold increase in the oral bioavailability of BBR from BNPs as compared to BBR suspension. With these findings, we have gained new insight into the effective delivery of poorly soluble and permeable drugs via a chitosan-alginate nanoparticle system to improve the therapeutic performance of an oral nanomedicine.
Collapse
|
15
|
Azadi R, Mousavi SE, Kazemi NM, Yousefi-Manesh H, Rezayat SM, Jaafari MR. Anti-inflammatory efficacy of Berberine Nanomicelle for improvement of cerebral ischemia: formulation, characterization and evaluation in bilateral common carotid artery occlusion rat model. BMC Pharmacol Toxicol 2021; 22:54. [PMID: 34600570 PMCID: PMC8487542 DOI: 10.1186/s40360-021-00525-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 09/21/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Berberine (BBR) is a plant alkaloid that possesses anti-inflammatory and anti-oxidant effects with low oral bioavailability. In this study, micelle formulation of BBR was investigated to improve therapeutic efficacy and examined its effect on the secretion of inflammatory cytokines in cerebral ischemia in the animal model. MATERIAL AND METHODS Nano formulation was prepared by thin-film hydration method, and characterized by particle size, zeta potential, morphology, encapsulation efficacy, and drug release in Simulated Gastric Fluid (SGF) and Simulated Intestine Fluid (SIF). Then, Wistar rats were pretreated with the drug (100 mg/kg) and nano-drug (25, 50, 75, 100 mg/kg) for 14 days. Then, on the fourteenth day, stroke induction was accomplished by Bilateral Common Carotid Artery Occlusion (BCCAO); after that, Tumor Necrosis Factor - Alpha (TNF-α), Interleukin - 1 Beta (IL-1ß), and Malondialdehyde (MDA) levels were measured in the supernatant of the whole brain, then the anti-inflammatory effect of BBR formulations was examined. RESULT AND DISCUSSION Micelles were successfully formed with appropriate characteristics and smaller sizes than 20 nm. The Poly Dispersity Index (PDI), zeta potential, encapsulation efficacy of micelles was 0.227, - 22 mV, 81%, respectively. Also, the stability of nano micelles was higher in SGF as compared to SIF. Our outcomes of TNF-a, IL-1B, and MDA evaluation show a significant ameliorating effect of the Berberine (BBR) and BBR-loaded micelles in pretreated groups. CONCLUSION Our experimental data show that pretreated groups in different doses (nano BBR 100, 75, 50 mg/kg, and BBR 100 mg/kg) successfully showed decreased levels of the inflammatory factors in cerebral ischemia compared with the stroke group and pretreated group with nano BBR in the dose of 25 mg/kg. Nano BBR formulation with a lower dose can be a better candidate than conventional BBR formulation to reduce oxidative and inflammatory factors in cerebral ischemia. Therefore, BBR-loaded micelle formulation could be a promising protective agent on cerebral ischemia.
Collapse
Affiliation(s)
- Roza Azadi
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyyedeh Elaheh Mousavi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Negar Motakef Kazemi
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hasan Yousefi-Manesh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Department of Pharmaceutical Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Qi Y, Liu G. Berberine-10-hydroxy camptothecine-loaded lipid microsphere for the synergistic treatment of liver cancer by inhibiting topoisomerase and HIF-1α. Drug Deliv 2021; 28:171-182. [PMID: 33427515 PMCID: PMC7808750 DOI: 10.1080/10717544.2020.1870020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
10-HCPT is a topoisomerase I inhibitor effective in the treatment of liver cancer but its use is hampered by its resistance. The expression of hypoxia-inducible factor-1α (HIF-1α) is reportedly upregulated in liver cancer tissues, which is directly linked to the resistance of 10-HCPT. While BBR can significantly decrease the level of HIF-1α according to the literature report. Thus, the aim of this study was to prepare a novel intravenous 10-HCPT-BBR-loaded lipid microsphere (LM) and evaluate their synergistic effect on liver cancer treatment. The optimal preparation mainly included 10.0% oil phase (medium-chain triglyceride:long-chain triglyceride = 1:1), emulsifier (egg lecithin E80 and pluronic F68), antioxidant (0.02% NaHSO3), and pH regulator (0.1 mol/L Hcl). Then, the behaviors of BBR-10-HCPT loaded LM in vitro and in vivo were systematically investigated. In vitro, it showed an obvious sustained-release effect in different release mediums, good physicochemical stability at accelerated and long-term storage conditions, and great anti-proliferative capability toward human liver cancer Hep-3B cells. In vivo, the prepared LM exhibited a longer half-life and higher AUC compared to BBR injection and 10-HCPT injection. More importantly, it was found that The LM was distributed more in the liver, spleen, and tumors, but less in the lungs and heart, especially in the lung. And then, it showed significant inhibition of tumor growth against nude mouse with Hep-3B tumor, and the tumor inhibition rate reached 91.55%. Thus, the data obtained in our study suggested that BBR combined with 10-HCPT can raise curative effect and reduce the toxicity of 10-HCPT.
Collapse
Affiliation(s)
- Yingjie Qi
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, P. R. China
| | - Guangxuan Liu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, P. R. China
| |
Collapse
|
17
|
Pharmacokinetics and Pharmacological Activities of Berberine in Diabetes Mellitus Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9987097. [PMID: 34471420 PMCID: PMC8405293 DOI: 10.1155/2021/9987097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine (TCM) has good clinical application prospects in diabetes treatment. In addition, TCM is less toxic and/or has fewer side effects and provides various therapeutic effects. Berberine (BBR) is isolated as the main component in many TCM kinds (e.g., Rhizoma Coptidis and Berberidis Cortex). Furthermore, BBR can reduce blood sugar and blood fat, alleviate inflammation, and improve the state of patients. Based on the recent study results of BBR in diabetes treatment, the BBR pharmacokinetics and mechanism on diabetes are mainly studied, and the specific molecular mechanism of related experimental BBR is systematically summarized and analyzed. Clinical studies have proved that BBR has a good therapeutic effect on diabetes, suggesting that BBR may be a promising drug candidate for diabetes. More detailed BBR mechanisms and pathways of BBR need to be studied further in depth, which will help understand the BBR pharmacology in diabetes treatment.
Collapse
|
18
|
Paul RK, Kesharwani P, Raza K. Recent update on nano-phytopharmaceuticals in the management of diabetes. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2046-2068. [PMID: 34228585 DOI: 10.1080/09205063.2021.1952381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Due to changed lifestyle and other reasons, diabetes has become one of the common metabolic disorder of the globe. Numerous therapeutic options are available, which controls the plasma glucose levels. However, most of the drugs are associated with some undesired side effects. Owing to the side effects and enhanced understanding of the phytochemicals, an inclination toward herbal medicine is seen in the population. These herbal products are also associated with concerns like poor aqueous solubility, compromised permeation, and a low degree of bioavailability. So, the emergence of nanotechnology in the herbal medicine is required to nullify the associated concerns of conventional antidiabetic drugs. The present review aims to compile the literature available for the nano-interventions pertinent to herbal products for diabetes management.
Collapse
Affiliation(s)
- Rakesh Kumar Paul
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
19
|
Bansod S, Saifi MA, Godugu C. Molecular updates on berberine in liver diseases: Bench to bedside. Phytother Res 2021; 35:5459-5476. [PMID: 34056769 DOI: 10.1002/ptr.7181] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Liver diseases are life-threatening illnesses and are the major cause of mortality and morbidity worldwide. These may include liver fibrosis, liver cirrhosis, and drug-induced liver toxicity. Liver diseases have a wide prevalence globally and the fifth most common cause of death among all gastrointestinal disorders. Several novel therapeutic approaches have emerged for the therapy of liver diseases that may provide better clinical outcomes with improved safety. The use of phytochemicals for the amelioration of liver diseases has gained considerable popularity. Berberine (BBR), an isoquinoline alkaloid of the protoberberine type, has emerged as a promising molecule for the treatment of gastrointestinal disorders. Accumulating studies have proved the hepatoprotective effects of BBR. BBR has been shown to modulate multiple signaling pathways implicated in the pathogenesis of liver diseases including Akt/FoxO2, PPAR-γ, Nrf2, insulin, AMPK, mTOR, and epigenetic pathways. In the present review, we have emphasized the important pharmacological activities and mechanisms of BBR in liver diseases. Further, we have reviewed various pharmacokinetic and toxicological barriers of this promising phytoconstituent. Finally, formulation-based novel approaches are also summarized to overcome the clinical hurdles for BBR.
Collapse
Affiliation(s)
- Sapana Bansod
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
20
|
Niu J, Yuan M, Chen C, Wang L, Tang Z, Fan Y, Liu X, Ma YJ, Gan Y. Berberine-Loaded Thiolated Pluronic F127 Polymeric Micelles for Improving Skin Permeation and Retention. Int J Nanomedicine 2020; 15:9987-10005. [PMID: 33324058 PMCID: PMC7733396 DOI: 10.2147/ijn.s270336] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022] Open
Abstract
Background Challenges associated with local antibacterial and anti-inflammatory drugs include low penetration and retention of drugs at the expected action site. Additionally, improving these challenges allows for the prevention of side effects that are caused by drug absorption into the systemic circulation and helps to safely treat local skin diseases. Methods In the current study, we successfully prepared a thiolated pluronic F127 polymer micelles (BTFM), which binds to keratin through a disulphide bond, to produce skin retention. In addition, the small particle size of polymer micelles promotes the penetration of carriers into the skin. The current study was divided into two experiments: an in vitro experiment; an in vivo experiment that involved the penetration of the micelle-loaded drugs into the skin of rats, the skin irritation test and the anti-inflammatory activity of the drug-loaded micelles on dimethyl benzene-induced ear edema in mice. Results Results from our in vitro transdermal experiment revealed that the amount of drug absorbed through the skin was decreased after the drug was loaded in the BTFM. Further, results from the vivo study, which used fluorescence microscopy to identify the location of the BTFM after penetration, revealed that there was strong fluorescence in the epidermis layer, but there was no strong fluorescence in the deep skin layer. In addition, the BTFM had a very good safety profile with no potentially hazardous skin irritation and transdermal administration of BTFM could significantly suppress ear edema induced by dimethyl benzene. Therefore, these findings indicated that BTFM reduced the amount of drug that entered the systemic circulation. Our results also demonstrated that the BTFM had a certain affinity for keratin. Conclusion Our experimental results suggest that the BTFM may be an effective drug carrier for local skin therapy with good safety profile.
Collapse
Affiliation(s)
- Jiangxiu Niu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Ming Yuan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Chenchen Chen
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Liye Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Zigui Tang
- Department of Pharmacy, Henan Medical College, Zhengzhou 451191, People's Republic of China
| | - Yanli Fan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Xianghui Liu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Yu Jiao Ma
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| | - Yu Gan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, People's Republic of China
| |
Collapse
|
21
|
Rambaran TF. Nanopolyphenols: a review of their encapsulation and anti-diabetic effects. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3110-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AbstractPolyphenols are believed to possess numerous health benefits and can be grouped as phenolic acids, flavonoids or non-flavonoids. Research involving the synthesis of nanopolyphenols has attracted interest in the areas of functional food, nutraceutical and pharmaceutical development. This is in an effort to overcome current challenges which limit the application of polyphenols such as their rapid elimination, low water-solubility, instability at low pH, and their particle size. In the synthesis of nanopolyphenols, the type of nanocarrier used, the nanoencapsulation technique employed and the type of polymers that constitute the drug delivery system are crucial. For this review, all mentioned factors which can influence the therapeutic efficacy of nanopolyphenols were assessed. Their efficacy as anti-diabetic agents was also evaluated in 33 publications. Among these were phenolic acid (1), flavonoids (13), non-flavonoids (17) and polyphenol-rich extracts (2). The most researched polyphenols were quercetin and curcumin. Nanoparticles were the main nanocarrier and the size of the nanopolyphenols ranged from 15 to 333 nm with encapsulation efficiency and drug loading capacities of 56–97.7% and 4.2–53.2%, respectively. The quantity of nanomaterial administered orally ranged from 1 to 300 mg/kg/day with study durations of 1–70 days. Most studies compared the effect of the nanopolyphenol to its free-form and, in all but three cases, significantly greater effects of the former were reported. Assessment of the polyphenol to understand its properties and the subsequent synthesis of its nanoencapsulated form using suitable nanocarriers, polymers and encapsulation techniques can result in effective therapeutic agents for the treatment of diabetes.
Collapse
|
22
|
Carresi C, Gliozzi M, Musolino V, Scicchitano M, Scarano F, Bosco F, Nucera S, Maiuolo J, Macrì R, Ruga S, Oppedisano F, Zito MC, Guarnieri L, Mollace R, Tavernese A, Palma E, Bombardelli E, Fini M, Mollace V. The Effect of Natural Antioxidants in the Development of Metabolic Syndrome: Focus on Bergamot Polyphenolic Fraction. Nutrients 2020; 12:E1504. [PMID: 32455840 PMCID: PMC7284500 DOI: 10.3390/nu12051504] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Metabolic syndrome (MetS) represents a set of clinical findings that include visceral adiposity, insulin-resistance, high triglycerides (TG), low high-density lipoprotein cholesterol (HDL-C) levels and hypertension, which is linked to an increased risk of developing type 2 diabetes mellitus (T2DM) and atherosclerotic cardiovascular disease (ASCVD). The pathogenesis of MetS involves both genetic and acquired factors triggering oxidative stress, cellular dysfunction and systemic inflammation process mainly responsible for the pathophysiological mechanism. In recent years, MetS has gained importance due to the exponential increase in obesity worldwide. However, at present, it remains underdiagnosed and undertreated. The present review will summarize the pathogenesis of MetS and the existing pharmacological therapies currently used and focus attention on the beneficial effects of natural compounds to reduce the risk and progression of MetS. In this regard, emerging evidence suggests a potential protective role of bergamot extracts, in particular bergamot flavonoids, in the management of different features of MetS, due to their pleiotropic anti-oxidative, anti-inflammatory and lipid-lowering effects.
Collapse
Affiliation(s)
- Cristina Carresi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Federica Scarano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Francesca Bosco
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Saverio Nucera
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Roberta Macrì
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Stefano Ruga
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Rocco Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
- Department of Medicine, Chair of Cardiology, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Annamaria Tavernese
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
- Department of Medicine, Chair of Cardiology, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Ezio Bombardelli
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Massimo Fini
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
- IRCCS San Raffaele Pisana, 00163 Roma, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| |
Collapse
|
23
|
The Quest to Enhance the Efficacy of Berberine for Type-2 Diabetes and Associated Diseases: Physicochemical Modification Approaches. Biomedicines 2020; 8:biomedicines8040090. [PMID: 32325761 PMCID: PMC7235753 DOI: 10.3390/biomedicines8040090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Berberine is a quaternary isoquinoline alkaloid that has been isolated from numerous plants which are still in use today as medicine and herbal supplements. The great deal of enthusiasm for intense research on berberine to date is based on its diverse pharmacological effects via action on multiple biological targets. Its poor bioavailability resulting from low intestinal absorption coupled with its efflux by the action of P-glycoprotein is, however, the major limitation. In this communication, the chemical approach of improving berberine's bioavailability and pharmacological efficacy is scrutinised with specific reference to type-2 diabetes and associated diseases such as hyperlipidaemia and obesity. The application of modern delivery systems, research from combination studies to preparation of berberine structural hybrids with known biologically active compounds (antidiabetic, antihyperlipidaemic and antioxidant), as well as synthesis approaches of berberine derivative are presented. Improvement of bioavailability and efficacy through in vitro and ex vivo transport studies, as well as animal models of bioavailability/efficacy in lipid metabolism and diabetes targets are discussed.
Collapse
|
24
|
Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. Int J Mol Sci 2020; 21:E2217. [PMID: 32210082 PMCID: PMC7139625 DOI: 10.3390/ijms21062217] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus is a life-threatening metabolic syndrome. Over the past few decades, the incidence of diabetes has climbed exponentially. Several therapeutic approaches have been undertaken, but the occurrence and risk still remain unabated. Several plant-derived small molecules have been proposed to be effective against diabetes and associated vascular complications via acting on several therapeutic targets. In addition, the biocompatibility of these phytochemicals increasingly enhances the interest of exploiting them as therapeutic negotiators. However, poor pharmacokinetic and biopharmaceutical attributes of these phytochemicals largely restrict their clinical usefulness as therapeutic agents. Several pharmaceutical attempts have been undertaken to enhance their compliance and therapeutic efficacy. In this regard, the application of nanotechnology has been proven to be the best approach to improve the compliance and clinical efficacy by overturning the pharmacokinetic and biopharmaceutical obstacles associated with the plant-derived antidiabetic agents. This review gives a comprehensive and up-to-date overview of the nanoformulations of phytochemicals in the management of diabetes and associated complications. The effects of nanosizing on pharmacokinetic, biopharmaceutical and therapeutic profiles of plant-derived small molecules, such as curcumin, resveratrol, naringenin, quercetin, apigenin, baicalin, luteolin, rosmarinic acid, berberine, gymnemic acid, emodin, scutellarin, catechins, thymoquinone, ferulic acid, stevioside, and others have been discussed comprehensively in this review.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Biswajit Mukherjee
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
25
|
Mortazavi H, Nikfar B, Esmaeili SA, Rafieenia F, Saburi E, Chaichian S, Heidari Gorji MA, Momtazi-Borojeni AA. Potential cytotoxic and anti-metastatic effects of berberine on gynaecological cancers with drug-associated resistance. Eur J Med Chem 2019; 187:111951. [PMID: 31821990 DOI: 10.1016/j.ejmech.2019.111951] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
Gynaecological disorders, such as cervical, ovarian, and endometrial cancers are the second most prevalent cancer types in women worldwide. Therapeutic approaches for gynaecological cancers involve chemotherapy, radiation, and surgery. However, lifespan is not improved, and novel medications are required. Among various phytochemicals, berberine, a well-known natural product, has been shown to be a promising cancer chemopreventive agent. Pharmacokinetics, safety, and efficacy of berberine have been investigated in the several experiments against numerous diseases. Here, we aimed to provide a literature review from available published investigations showing the anticancer effects of berberine and its various synthetic analogues against gynaecological disorders, including cervical, ovarian, and endometrial cancers. In conclusion, berberine has been found to efficiently inhibit viability, proliferation, and migration of cancer cells, mainly, via induction of apoptosis by both mitochondrial dependent and -independent pathways. Additionally, structural modification of berberine showed that berberine analogues can improve its antitumor effects against gynaecological cancers.
Collapse
Affiliation(s)
- Hamed Mortazavi
- Geriatric Care Research Center, Department of Geriatric Nursing, School of Nursing and Midwifery, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Rafieenia
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Heidari Gorji
- Diabetes Research Center, Department of Medical-Surgical Nursing, Nasibeh Faculty of Nursing and Midwifery, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Halal Research Center of IRI, FDA, Tehran, Iran; Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Raju M, Kulkarni YA, Wairkar S. Therapeutic potential and recent delivery systems of berberine: A wonder molecule. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103517] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
27
|
Sun X, Bandara N. Applications of reverse micelles technique in food science: A comprehensive review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Wei C, Wang Q, Weng W, Wei Q, Xie Y, Adu-Frimpong M, Toreniyazov E, Ji H, Xu X, Yu J. The characterisation, pharmacokinetic and tissue distribution studies of TPGS modified myricetrin mixed micelles in rats. J Microencapsul 2019; 36:278-290. [DOI: 10.1080/02652048.2019.1622606] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Chunmei Wei
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Wen Weng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Qiuyu Wei
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Yujiao Xie
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Michael Adu-Frimpong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Elmurat Toreniyazov
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
- Department of Plant Protection Breeding and Seed Science, Tashkent State Agricultural University (Nukus branch), Nukus, The Republic of Uzbekistan
| | - Hao Ji
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, People’s Republic of China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| |
Collapse
|
29
|
Zhang J, Zhou J, Zhang T, Niu Z, Wang J, Guo J, Li Z, Zhang Z. Facile Fabrication of an Amentoflavone-Loaded Micelle System for Oral Delivery To Improve Bioavailability and Hypoglycemic Effects in KKAy Mice. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12904-12913. [PMID: 30860811 DOI: 10.1021/acsami.9b03275] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In order to increase the oral bioavailability and antidiabetic effect of amentoflavone with multimechanisms, an oral micelle system was developed by using a N-vinyl pyrrolidone-maleate-guerbet alcohol monoester polymer for the first time, which was designated as P(NVP-MGAM)/AF. After oral administration, P(NVP-MGAM)/AF enhanced the oral bioavailability of amentoflavone, which was approximately 3.2 times that of amentoflavone solution. The animal study using the KKAy insulin-resistant diabetes mouse model indicated that it regulates the expression and activity of downstream signaling factors and proteins by lowering blood lipids, reducing inflammatory responses and activating the peroxisome proliferator-activated receptor (PPAR) γ signaling pathway and PI3K/Akt signaling pathway. After being made into micelles, it is more effective because of its better absorbability and bioavailability. The results from this study provide a theoretical basis for the clinical application of amentoflavone for diabetes treatment. The oral micelles of P(NVP-MGAM)/AF may become one of the most potent drugs in the treatment of diabetes mellitus, which opens up a new way for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Junxia Zhang
- Henan Institute for Food and Drug Control , Zhengzhou 543000 , P. R. China
- School of Pharmaceutical Sciences , Zhengzhou University , 100 Kexue Avenue , Zhengzhou 450001 , P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Zhengzhou 450001 , Henan Province , P. R. China
| | - Jichun Zhou
- Henan Institute for Food and Drug Control , Zhengzhou 543000 , P. R. China
| | - Tingting Zhang
- Henan Institute for Food and Drug Control , Zhengzhou 543000 , P. R. China
| | - Zhenxi Niu
- School of Pharmaceutical Sciences , Zhengzhou University , 100 Kexue Avenue , Zhengzhou 450001 , P. R. China
- College of Pharmacy , Children's Hospital Affiliated to Zhengzhou University , Zhengzhou 450018 , P. R. China
| | - Juan Wang
- Henan Institute for Food and Drug Control , Zhengzhou 543000 , P. R. China
| | - Jiaomei Guo
- Henan Institute for Food and Drug Control , Zhengzhou 543000 , P. R. China
| | - Zhenguo Li
- Henan Institute for Food and Drug Control , Zhengzhou 543000 , P. R. China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences , Zhengzhou University , 100 Kexue Avenue , Zhengzhou 450001 , P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Zhengzhou 450001 , Henan Province , P. R. China
| |
Collapse
|
30
|
Imenshahidi M, Hosseinzadeh H. Berberine and barberry (Berberis vulgaris): A clinical review. Phytother Res 2019; 33:504-523. [PMID: 30637820 DOI: 10.1002/ptr.6252] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/20/2018] [Accepted: 11/03/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
31
|
Jia J, Zhang K, Zhou X, Zhou D, Ge F. Precise Dissolution Control and Bioavailability Evaluation for Insoluble Drug Berberine via a Polymeric Particle Prepared Using Supercritical CO₂. Polymers (Basel) 2018; 10:polym10111198. [PMID: 30961123 PMCID: PMC6290634 DOI: 10.3390/polym10111198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 11/16/2022] Open
Abstract
It is still controversial whether poor aqueous solubility is the most primary reason for the low oral bioavailability of insoluble drugs. Therefore, in this study, berberine-loaded solid polymeric particles (BPs) of varied dissolution profiles with β-cyclodextrin (β-CD) as carrier were fabricated using solution-enhanced dispersion by supercritical fluids (SEDS), and the relationship between dissolution and berberine (BBR) bioavailability was evaluated. Dissolution property was controlled via particle morphology manipulation, which was achieved by adjusting several key operating parameters during the SEDS process. Characterization on BP using infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction indicated that BBR was dispersed in amorphous form, while nuclear magnetic resonance spectroscopy showed that methoxy groups of BBR were included into the cavities of β-CD. In vivo pharmacokinetic studies showed that oral bioavailability increased by about 54% and 86% when the dissolution rate of BBR was increased by 51% and 83%, respectively. The entry speed of BBR into the bloodstream was also advanced with the degree of dissolution enhancement. It seemed that dissolution enhancement gave positive effect to the oral bioavailability of berberine, but this might not be the crucial point. Meanwhile, supercritical CO₂ technology is a promising method for pharmaceutical research due to its advantages in regulating drug-dosage properties.
Collapse
Affiliation(s)
- Jingfu Jia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Kerong Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xue Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Dan Zhou
- Nansha Research Institute of Sun Yat-Sen University, Guangzhou 511458, China.
| | - Fahuan Ge
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
32
|
Li N, Wang N, Wu T, Qiu C, Wang X, Jiang S, Zhang Z, Liu T, Wei C, Wang T. Preparation of curcumin-hydroxypropyl-β-cyclodextrin inclusion complex by cosolvency-lyophilization procedure to enhance oral bioavailability of the drug. Drug Dev Ind Pharm 2018; 44:1966-1974. [DOI: 10.1080/03639045.2018.1505904] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ning Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| | - Ning Wang
- School of Biomedical Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Tingni Wu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| | - Changlu Qiu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| | - Xueting Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| | - Shaohong Jiang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| | - Zina Zhang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| | - Ting Liu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| | - Chunliu Wei
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
33
|
Mirhadi E, Rezaee M, Malaekeh-Nikouei B. Nano strategies for berberine delivery, a natural alkaloid of Berberis. Biomed Pharmacother 2018; 104:465-473. [DOI: 10.1016/j.biopha.2018.05.067] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 01/31/2023] Open
|
34
|
Update on the Benefits and Mechanisms of Action of the Bioactive Vegetal Alkaloid Berberine on Lipid Metabolism and Homeostasis. CHOLESTEROL 2018; 2018:7173920. [PMID: 30057809 PMCID: PMC6051272 DOI: 10.1155/2018/7173920] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023]
Abstract
Elevation of circulating levels of blood cholesterol, especially LDL cholesterol, and/or the decrease of HDL cholesterol levels have long been recognized as primary risk factors for developing atherosclerosis that leads to cardiovascular and cerebrovascular disease. Hypertriglyceridemia is an independent risk factor that is known to contribute to the development of atherosclerosis. Thus, various interventional efforts aimed at reducing hypercholesterolemia and hypertriglyceridemia have been practiced clinically for decades to reduce morbidity and mortality risk associated with deleterious cardiovascular and cerebrovascular events. As such, many drugs have been developed and clinically used to treat hypocholesteremia and/or hypertriglyceridemia; however, dietary approaches including supplements along with changes in nutrition and lifestyle have become increasingly attractive and acceptable methods used to control borderline or moderately increased levels of blood cholesterol and triacylglycerols. In this regard, the use of a plant/herbal bioactive compound, berberine (BBR), has recently been studied extensively in terms of its efficacy as well as its mechanisms of action and safety as an alternative intervention that beneficially modulates blood lipids. The aim of this review is to provide a comprehensive update on BBR research, new concepts and directions in terms of product development and current challenges, and future prospects of using BBR to manage diseases and complications associated with dyslipidemia.
Collapse
|
35
|
Improvement of intestinal transport, absorption and anti-diabetic efficacy of berberine by using Gelucire44/14: In vitro, in situ and in vivo studies. Int J Pharm 2018; 544:46-54. [DOI: 10.1016/j.ijpharm.2018.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/28/2022]
|
36
|
Creation of an assessment system for measuring the bitterness of azithromycin-containing reverse micelles. Asian J Pharm Sci 2018; 13:343-352. [PMID: 32104408 PMCID: PMC7032229 DOI: 10.1016/j.ajps.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/22/2018] [Indexed: 11/23/2022] Open
Abstract
We aimed to develop a novel method for assessing the bitterness of azithromycin-containing reverse micelles (AM-containing RMs). Azithromycin-containing reverse micelles were prepared by processing Lipoid E80 and medium chain triglycerides via a freeze-drying method. The bitterness threshold of azithromycin was determined by human taste test, and an equation was derived to correlate the azithromycin concentrations and bitterness scores of standard solutions. Simulated salivary fluids and sampling times were fixed based on the drug release profile of AM-containing RMs, with Zithromax® (a commercial formulation of azithromycin) used as the control. The drug release concentrations from stimulated salivary fluids were then used to assess the bitterness of AM-containing RMs and Zithromax®. Afterward, the oral bioavailability of both formulations was evaluated by in vivo experiments in male Wistar rats. The results showed that the bitterness threshold of azithromycin standard solutions was between 25.3 µg/ml and 30.4 µg/ml. Thereafter, we calculated that the bitterness scores and the drug release concentrations of the azithromycin-containing reverse micelle formulation were similar to those of Zithromax® at each time point after 10 min of dispersal in simulated salivary fluid. In addition, the AUC0−t after oral administration of AM-containing RMs was 1.75-fold (P < 0.05) higher than that of Zithromax®. In conclusions, a system for assessing bitterness was developed using an in vitro drug release evaluation method and a human taste test panel. We found that the bitterness of azithromycin was successfully masked by reverse micelles, which also improved the oral bioavailability of azithromycin compared to that of Zithromax®.
Collapse
|
37
|
Gao Y, Jin X, Sun Y, Xu F, Zhang M. Production and investigation of sustained berberine pellet drug release system. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2017.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Lu Z, Bu C, Hu W, Zhang H, Liu M, Lu M, Zhai G. Preparation and in vitro and in vivo evaluation of quercetin-loaded mixed micelles for oral delivery. Biosci Biotechnol Biochem 2018; 82:238-246. [DOI: 10.1080/09168451.2017.1419852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
Quercetin (QT) is a plant polyphenol with various pharmacological properties. However, the low water solubility limits its therapeutic efficacy. In the present study, QT-loaded sodium taurocholate-Pluronic P123 (QT-loaded ST/P123) mixed micelles were developed and characterized, and the effect of the formulation on improving the water solubility of QT was investigated. QT-loaded ST/P123 mixed micelles were prepared by thin film hydration-direct dissolution and optimized by uniform design. The optimal formulation possessed high drug loading (12.6%) and entrapment efficiency (95.9%) in small (16.20 nm) spherically-shaped micelles. A low critical micelle concentration indicated that the micelles were stable, and they showed a sustained release pattern, as determined in vitro in simulated gastric fluid and intestinal fluid. Pharmacokinetic evaluation showed the Cmax and AUC0–24 were 1.8-fold and 1.6-fold higher than the QT suspension. The present results indicate that QT-loaded ST/P123 micelles are potential candidates to improve the solubility and oral bioavailability of QT.
Collapse
Affiliation(s)
- Zhen Lu
- Department of Pharmacy, Taian Rongjun Hospital of Shandong Province, Taian, China
| | - Cuiping Bu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, China
| | - Weicheng Hu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, China
| | - Hui Zhang
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, China
| | - Mengrui Liu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, China
| | - Meiqi Lu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, China
| |
Collapse
|
39
|
Xu Z, Feng W, Shen Q, Yu N, Yu K, Wang S, Chen Z, Shioda S, Guo Y. Rhizoma Coptidis and Berberine as a Natural Drug to Combat Aging and Aging-Related Diseases via Anti-Oxidation and AMPK Activation. Aging Dis 2017; 8:760-777. [PMID: 29344415 PMCID: PMC5758350 DOI: 10.14336/ad.2016.0620] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 06/20/2017] [Indexed: 12/25/2022] Open
Abstract
Aging is the greatest risk factor for human diseases, as it results in cellular growth arrest, impaired tissue function and metabolism, ultimately impacting life span. Two different mechanisms are thought to be primary causes of aging. One is cumulative DNA damage induced by a perpetuating cycle of oxidative stress; the other is nutrient-sensing adenosine monophosphate-activated protein kinase (AMPK) and rapamycin (mTOR)/ ribosomal protein S6 (rpS6) pathways. As the main bioactive component of natural Chinese medicine rhizoma coptidis (RC), berberine has recently been reported to expand life span in Drosophila melanogaster, and attenuate premature cellular senescence. Most components of RC including berberine, coptisine, palmatine, and jatrorrhizine have been found to have beneficial effects on hyperlipidemia, hyperglycemia and hypertension aging-related diseases. The mechanism of these effects involves multiple cellular kinase and signaling pathways, including anti-oxidation, activation of AMPK signaling and its downstream targets, including mTOR/rpS6, Sirtuin1/ forkhead box transcription factor O3 (FOXO3), nuclear factor erythroid-2 related factor-2 (Nrf2), nicotinamide adenine dinucleotide (NAD+) and nuclear factor-κB (NF-κB) pathways. Most of these mechanisms converge on AMPK regulation on mitochondrial oxidative stress. Therefore, such evidence supports the possibility that rhizoma coptidis, in particular berberine, is a promising anti-aging natural product, and has pharmaceutical potential in combating aging-related diseases via anti-oxidation and AMPK cellular kinase activation.
Collapse
Affiliation(s)
- Zhifang Xu
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,2Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wei Feng
- 3South Branch of Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing 102618, China
| | - Qian Shen
- 4Dongfang hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Nannan Yu
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Kun Yu
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shenjun Wang
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,2Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhigang Chen
- 4Dongfang hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Seiji Shioda
- 5Peptide Drug Innovation, Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa, Tokyo 142-8501, Japan
| | - Yi Guo
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,2Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| |
Collapse
|
40
|
Al-Awady MJ, Fauchet A, Greenway GM, Paunov VN. Enhanced antimicrobial effect of berberine in nanogel carriers with cationic surface functionality. J Mater Chem B 2017; 5:7885-7897. [PMID: 32264390 DOI: 10.1039/c7tb02262j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report a strong enhancement in the antimicrobial action of berberine encapsulated into polyacrylic acid-based nanogels followed by further surface functionalisation with a cationic polyelectrolyte (PDAC). Due to the highly developed surface area, the nanogel carrier amplifies the contact of berberine with microbial cells and increases its antimicrobial efficiency. We show that such cationic nanogel carriers of berberine can adhere directly to the cell membranes and maintain a very high concentration of berberine directly on the cell surface. We demonstrated that the antimicrobial action of the PDAC-coated nanogel loaded with berberine on E. coli and C. reinhardtii is much higher than that of the equivalent solution of free berberine due to the electrostatic adhesion between the positively charged nanogel particles and the cell membranes. Our results also showed a marked increase in their antimicrobial action at shorter incubation times compared to the non-coated nanogel particles loaded with berberine under the same conditions. We attribute this boost in the antimicrobial effect of these cationic nanocarriers to their accumulation on the cell membranes which sustains a high concentration of released berberine causing cell death within much shorter incubation times. This study can provide a blueprint for boosting the action of other cationic antimicrobial agents by encapsulating them into nanogel carriers functionalised with a cationic surface layer. This nanotechnology-based approach could lead to the development of more effective wound dressings, disinfecting agents, antimicrobial surfaces, and antiseptic and antialgal/antibiofouling formulations.
Collapse
Affiliation(s)
- Mohammed J Al-Awady
- School of Mathematics and Physical Sciences (Chemistry), University of Hull, Hull, HU67RX, UK.
| | | | | | | |
Collapse
|
41
|
Fu Y, Liu Y, Fang Y, Qi X, Cao D. Physicochemical Characterization of Lecithin/Isopropyl Myristate Reverse Micelles. ChemistrySelect 2017. [DOI: 10.1002/slct.201701174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yan Fu
- Department of Pharmaceutics, School of Pharmacy; Hebei Medical University; NO.361 Zhongshan East Road, Chang'an district ShiJiaZhuang, Hebei province 050017 PR China
| | - Yan Liu
- Department of Pharmaceutics, School of Pharmacy; Hebei Medical University; NO.361 Zhongshan East Road, Chang'an district ShiJiaZhuang, Hebei province 050017 PR China
| | - Yu Fang
- Department of Pharmaceutics, School of Pharmacy; Hebei Medical University; NO.361 Zhongshan East Road, Chang'an district ShiJiaZhuang, Hebei province 050017 PR China
| | - Xiaodan Qi
- Department of Pharmaceutics, School of Pharmacy; Hebei Medical University; NO.361 Zhongshan East Road, Chang'an district ShiJiaZhuang, Hebei province 050017 PR China
| | - Deying Cao
- Department of Pharmaceutics, School of Pharmacy; Hebei Medical University; NO.361 Zhongshan East Road, Chang'an district ShiJiaZhuang, Hebei province 050017 PR China
| |
Collapse
|
42
|
Preparation of Multifunctional Liposomes as a Stable Vaccine Delivery-Adjuvant System by Procedure of Emulsification-Lyophilization. Methods Mol Biol 2016; 1404:635-649. [PMID: 27076327 DOI: 10.1007/978-1-4939-3389-1_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Liposomes have been proven to be useful carriers for vaccine antigens and can be modified as a versatile vaccine adjuvant-delivery system (VADS). To fulfill efficiently both functions of adjuvant and delivery, the liposomes are often modified with different functional molecules, such as lipoidal immunopotentiators, APC (antigen-presenting cell) targeting ligands, steric stabilization polymers, and charged lipids. Also, to overcome the weakness of instability, vaccines are often lyophilized as a dry product. In this chapter the procedure of emulsification-lyophilization (PEL) is introduced as an efficient method for preparing a stable anhydrous precursor to the multifunctional liposomes which bear dual modifications with APC targeting molecule of the mannosylated cholesterol and the adjuvant material of monophosphoryl lipid A. The techniques and procedures for synthesis of APC targeting molecule, i.e., the mannosylated cholesterol, and for characterization of the multifunctional liposomes are also described.
Collapse
|
43
|
Imenshahidi M, Hosseinzadeh H. Berberis Vulgaris and Berberine: An Update Review. Phytother Res 2016; 30:1745-1764. [PMID: 27528198 DOI: 10.1002/ptr.5693] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/04/2016] [Accepted: 07/16/2016] [Indexed: 01/30/2023]
Abstract
Berberine is an isoquinoline alkaloid present in several plants, including Coptis sp. and Berberis sp. Berberine is a customary component in Chinese medicine, and is characterized by a diversity of pharmacological effects. An extensive search in electronic databases (PubMed, Scopus, Ovid, Wiley, ProQuest, ISI, and Science Direct) were used to identify the pharmacological and clinical studies on Berberis vulgaris and berberine, during 2008 to 2015, using 'berberine' and 'Berberis vulgaris' as search words. We found more than 1200 new article studying the properties and clinical uses of berberine and B. vulgaris, for treating tumor, diabetes, cardiovascular disease, hyperlipidemia, inflammation, bacterial and viral infections, cerebral ischemia trauma, mental disease, Alzheimer disease, osteoporosis, and so on. In this article, we have updated the pharmacological effects of B. vulgaris and its active constituent, berberine. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
Wang X, Wang N, Li N, Zhen Y, Wang T. Multifunctional particle-constituted microneedle arrays as cutaneous or mucosal vaccine adjuvant-delivery systems. Hum Vaccin Immunother 2016; 12:2075-2089. [PMID: 27159879 DOI: 10.1080/21645515.2016.1158368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
To overcome drawbacks of current injection vaccines, such as causing needle phobia, needing health professionals for inoculation, and generating dangerous sharps wastes, researchers have designed novel vaccines that are combined with various microneedle arrays (MAs), in particular, with the multifunctional particle-constructed MAs (MPMAs). MPMAs prove able to enhance vaccine stability through incorporating vaccine ingredients in the carrier, and can be painlessly inoculated by minimally trained workers or by self-administration, leaving behind no metal needle pollution while eliciting robust systemic and mucosal immunity to antigens, thanks to delivering vaccines to cutaneous or mucosal compartments enriched in professional antigen-presenting cells (APCs). Especially, MPMAs can be easily integrated with functional molecules fulfilling targeting vaccine delivery or controlling immune response toward a Th1 or Th2 pathway to generate desired immunity against pathogens. Herein, we introduce the latest research and development of various MPMAs which are a novel but promising vaccine adjuvant delivery system (VADS).
Collapse
Affiliation(s)
- Xueting Wang
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Ning Wang
- b School of Medical Engineering, Hefei University of Technology , Hefei , China
| | - Ning Li
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Yuanyuan Zhen
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Ting Wang
- a School of Pharmacy, Anhui Medical University , Hefei , China
| |
Collapse
|
45
|
Shen R, Kim JJ, Yao M, Elbayoumi TA. Development and evaluation of vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate-mixed polymeric phospholipid micelles of berberine as an anticancer nanopharmaceutical. Int J Nanomedicine 2016; 11:1687-700. [PMID: 27217747 PMCID: PMC4853014 DOI: 10.2147/ijn.s103332] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Berberine (Brb) is an active alkaloid occurring in various common plant species, with well-recognized potential for cancer therapy. Brb not only augments the efficacy of antineoplastic chemotherapy and radiotherapy but also exhibits direct antimitotic and proapoptotic actions, along with distinct antiangiogenic and antimetastatic activities in a variety of tumors. Despite its low systemic toxicity, several pharmaceutical challenges limit the application of Brb in cancer therapy (ie, extremely low solubility and permeability, very poor pharmacokinetics (PKs), and oral bioavailability). Among lipid-based nanocarriers investigated recently for Brb, stealth amphiphilic micelles of polymeric phospholipid conjugates were studied here as a promising strategy to improve Brb delivery to tumors. Specifically, physicochemically stable micelles made of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (PEG-PE) mixed with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) (PEG-succinate ester of vitamin E), in a 3:1 M ratio, increased Brb solubilization by 300%. Our PEG-PE/TPGS-mixed micelles firmly retained the incorporated Brb, displaying extended-release profile in simulated media, with up to 30-fold projected improvement in simulated PKs of Brb. Owing to the markedly better uptake of Brb-containing mixed micelles in vitro, our Brb-mixed micelles nanoformulation significantly amplified apoptosis and overall cytotoxic effectiveness against monolayer and spheroid cultures of human prostate carcinomas (16- to 18-fold lower half-maximal inhibitory concentration values in PC3 and LNPaC, respectively), compared to free Brb. Mixed PEG-PE/TPGS micelles represent a promising delivery platform for the sparingly soluble anticancer agent, Brb, encouraging further pharmaceutical development of this drug for cancer therapy.
Collapse
Affiliation(s)
- Roger Shen
- Department of Family Medicine, Northeastern Health Systems-Tahlequah City Hospital, Tahlequah, OK, USA
| | - Jane J Kim
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Glendale, AZ, USA
| | - Mingyi Yao
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Glendale, AZ, USA; Nanomedicine Center of Excellence in Translational Nanomedicine, Midwestern University, Glendale, AZ, USA
| | - Tamer A Elbayoumi
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Glendale, AZ, USA; Nanomedicine Center of Excellence in Translational Nanomedicine, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
46
|
Liu CS, Zheng YR, Zhang YF, Long XY. Research progress on berberine with a special focus on its oral bioavailability. Fitoterapia 2016; 109:274-82. [PMID: 26851175 DOI: 10.1016/j.fitote.2016.02.001] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
|
47
|
Xu H, Yang P, Ma H, Yin W, Wu X, Wang H, Xu D, Zhang X. Amphiphilic block copolymers-based mixed micelles for noninvasive drug delivery. Drug Deliv 2016; 23:3063-3071. [PMID: 26926462 DOI: 10.3109/10717544.2016.1149743] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hongyan Xu
- Department of Pharmacy, People’s Hospital of Linzi District, Linzi, China
| | - Peimin Yang
- Department of Pharmacy, People’s Hospital of Linzi District, Linzi, China
| | - Haifeng Ma
- Department of Pharmacy, People’s Hospital of Linzi District, Linzi, China
| | - Weidong Yin
- Department of Pharmacy, People’s Hospital of Linzi District, Linzi, China
| | - Xiangxia Wu
- Department of Pharmacy, People’s Hospital of Linzi District, Linzi, China
| | - Hui Wang
- Department of Pharmacy, People’s Hospital of Linzi District, Linzi, China
| | - Dongmei Xu
- Department of Pharmacy, People’s Hospital of Linzi District, Linzi, China
| | - Xia Zhang
- Department of Pharmacy, People’s Hospital of Linzi District, Linzi, China
| |
Collapse
|
48
|
Preparation of the Multifunctional Liposome-Containing Microneedle Arrays as an Oral Cavity Mucosal Vaccine Adjuvant-Delivery System. Methods Mol Biol 2016; 1404:651-667. [PMID: 27076328 DOI: 10.1007/978-1-4939-3389-1_42] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, the multifunctional liposome-constituted microneedle arrays (LiposoMAs) have been proven to be an interesting vaccine adjuvant-delivery system (VADS) that are stable and can be vaccinated via oral cavity mucosal route. When given to mice at oral mucosa, the LiposoMAs can effectively eliminate the ingredient loss caused by chewing, swallowing, and saliva flowing and can, thus, elicit robust systemic as well as mucosal immunoresponses against the loaded antigens. In addition, the LiposoMAs can induce a mixed Th1/Th2 immunoresponse and strong cellular/humoral immunity due to special adjuvanticity and targeting delivery functions of the nanoparticulate VADS. In this chapter, the preparation, characterization as well as mucosal vaccination of the LiposoMAs are introduced. In addition, the methods for sampling mouse organs, tissues, and cells and for evaluation of the immunization efficacy are mainly included.
Collapse
|
49
|
Pirillo A, Catapano AL. Berberine, a plant alkaloid with lipid- and glucose-lowering properties: From in vitro evidence to clinical studies. Atherosclerosis 2015; 243:449-61. [DOI: 10.1016/j.atherosclerosis.2015.09.032] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/01/2015] [Accepted: 09/24/2015] [Indexed: 02/07/2023]
|
50
|
Nguyen TBT, Li S, Deratani A. Reverse micelles prepared from amphiphilic polylactide- b -poly(ethylene glycol) block copolymers for controlled release of hydrophilic drugs. Int J Pharm 2015; 495:154-161. [DOI: 10.1016/j.ijpharm.2015.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
|