1
|
Bedogni G, Michelena LV, Seremeta K, Okulik N, Salomon C. Exploring the Dissolution, Solid-state Properties, and Long-term Storage Stability of Cryoprotectant-free Fenbendazole Nanoparticles. AAPS PharmSciTech 2024; 25:199. [PMID: 39198340 DOI: 10.1208/s12249-024-02921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Fenbendazole is an antiparasitic drug widely used in veterinary medicine to treat parasitic infections caused in animals like cattle, horses, sheep, and dogs. Recently, it has been repositioned as a potential alternative for cancer treatment. However, it is a highly hydrophobic molecule (0.9 ug/mL), which can compromise its dissolution rate and absorption. Thus, this work aimed to apply a nanotechnological approach to improve drug solubility and dissolution performance. Fenbendazole nanoparticles stabilized by different poloxamers were obtained by lyophilization without cryoprotectants. The behavior of the drug in the solid state was analyzed by X-ray diffractometry, differential scanning calorimetry, and infrared spectroscopy. The nanosystems were also evaluated for solubility and dissolution rate. A long-term stability evaluation was performed for three years at room temperature. The yields of the lyophilization ranged between 75 and 81% for each lot. The nanoparticles showed a submicron size (< 340 nm) and a low polydispersity depending on the stabilizer. The physicochemical properties of the prepared systems indicated a remarkable amorphization of the drug, which influenced its solubility and dissolution performance. The drug dissolution from both the fresh and aged nanosystems was significantly higher than that of the raw drug. In particular, nanoparticles prepared with poloxamer 407 showed no significant modifications in their particle size in three years of storage. Physical stability studies indicated that the obtained systems prepared with P188, P237, and P407 suffered certain recrystallization during long storage at 25 °C. These findings confirm that selected poloxamers exhibited an important effect in formulating fenbendazole nanosystems with improved dissolution.
Collapse
Affiliation(s)
- Giselle Bedogni
- Instituto de Química Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIR-CONICET), Suipacha 531, Rosario, 2000, Argentina
| | - Lina Vargas Michelena
- Instituto de Química Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIR-CONICET), Suipacha 531, Rosario, 2000, Argentina
| | - Katia Seremeta
- Departamento de Ciencias Básicas y Aplicadas, Universidad Nacional del Chaco Austral, Cte. Fernández 755, Pcia. Roque Sáenz Peña, Chaco, 3700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chaco, Presidencia Roque Sáenz Peña, Argentina
| | - Nora Okulik
- Departamento de Ciencias Básicas y Aplicadas, Universidad Nacional del Chaco Austral, Cte. Fernández 755, Pcia. Roque Sáenz Peña, Chaco, 3700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chaco, Presidencia Roque Sáenz Peña, Argentina
| | - Claudio Salomon
- Instituto de Química Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIR-CONICET), Suipacha 531, Rosario, 2000, Argentina.
- Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Argentina.
| |
Collapse
|
2
|
Tian F, Chen W, Gu X, Guan W, Cai L. Thawing of Frozen Hairtail ( Trichiurus lepturus) with Graphene Nanoparticles Combined with Radio Frequency: Variations in Protein Aggregation, Structural Characteristics, and Stability. Foods 2024; 13:1632. [PMID: 38890861 PMCID: PMC11171875 DOI: 10.3390/foods13111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Efficient thawing can preserve the quality of frozen hairtail (Trichiurus lepturus) close to that of fresh hairtail. In contrast to air thawing (AT) and radio-frequency thawing (RT), this study looked at how graphene oxide (GO) and graphene magnetic (GM) nanoparticles paired with RT affect the microstructure and protein conformation of hairtails after thawing. The results suggested that GM-RT can reduce the myofibrillar protein (MP) damage and be more effective than other thawing treatments, like AT, RT, and GO-RT, in maintaining the microstructure of hairtail. The particle size and zeta potential showed that GM-RT could reduce the aggregation of MP during the thawing process compared to other thawing methods. Moreover, the texture of the hairtail after GM-RT exhibited higher hardness (1185.25 g), elasticity (2.25 mm), and chewiness (5.75 mJ) values compared to other thawing treatments. Especially compared with RT, the GM-RT treatment displayed significant improvements in hardness (27.24%), a considerable increase in springiness (92.23%), and an increase in chewiness (57.96%). GO-RT and GM-RT significantly reduced the centrifugal loss. The scanning electron microscopy results demonstrated that the effect of GM-RT was more akin to that of a fresh sample (FS) and characterized by a well-organized microstructure. In conclusion, GM-RT effectively diminished the MP aggregation and improved the texture of thawed fish. It can be regarded as a viable alternative thawing technique to enhance MP stability, which is vital for preserving meat quality.
Collapse
Affiliation(s)
- Fang Tian
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (F.T.); (W.C.); (X.G.)
| | - Wenyuchu Chen
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (F.T.); (W.C.); (X.G.)
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China
| | - Xiaohan Gu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (F.T.); (W.C.); (X.G.)
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China
| | - Weiliang Guan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Luyun Cai
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China
- School of Chemical and Biological Engineering, NingboTech University, Ningbo 315100, China
| |
Collapse
|
3
|
Khil NHS, Sharma S, Sharma PK, Alam A. Several Applications of Solid Lipid Nanoparticles in Drug Delivery. Curr Mol Med 2024; 24:1077-1090. [PMID: 37475554 DOI: 10.2174/1566524023666230720110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 07/22/2023]
Abstract
Rapid progress is being made in the area of nanotechnology; solid lipid nanoparticles are currently at the forefront of research and development. They have the capability of becoming employed in an extensive number of applications, including the delivery of medications, clinical treatment, and research, in addition to uses in other areas of academic inquiry that could benefit from their utilisation. This article presents a thorough analysis of solid lipid nanoparticles, covering subjects such as their goals, preparation strategy, applications, advantages, and possible remedies for the issues that have been raised. This review provides a discussion of solid lipids that is both in-depth and comprehensive. Studies that investigate the manner in which SLNs are prepared and the routes via which they are administered are typical. Aspects concerning the route of administration of SLNs as well as the destiny of the carriers in vivo are also investigated in this paper.
Collapse
Affiliation(s)
| | - Shaweta Sharma
- Department of Pharmacy, School of Medical & Allied Sciences, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical & Allied Sciences, Greater Noida, Uttar Pradesh, India
| | - Aftab Alam
- Department of Pharmacy, School of Medical & Allied Sciences, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
4
|
Kumar V, Kaushik NK, Tiwari SK, Singh D, Singh B. Green synthesis of iron nanoparticles: Sources and multifarious biotechnological applications. Int J Biol Macromol 2023; 253:127017. [PMID: 37742902 DOI: 10.1016/j.ijbiomac.2023.127017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Green synthesis of iron nanoparticles is a highly fascinating research area and has gained importance due to reliable, sustainable and ecofriendly protocol for synthesizing nanoparticles, along with the easy availability of plant materials and their pharmacological significance. As an alternate to physical and chemical synthesis, the biological materials, like microorganisms and plants are considered to be less costly and environment-friendly. Iron nanoparticles with diverse morphology and size have been synthesized using biological extracts. Microbial (bacteria, fungi, algae etc.) and plant extracts have been employed in green synthesis of iron nanoparticles due to the presence of various metabolites and biomolecules. Physical and biochemical properties of biologically synthesized iron nanoparticles are superior to that are synthesized using physical and chemical agents. Iron nanoparticles have magnetic property with thermal and electrical conductivity. Iron nanoparticles below a certain size (generally 10-20 nm), can exhibit a unique form of magnetism called superparamagnetism. They are non-toxic and highly dispersible with targeted delivery, which are suitable for efficient drug delivery to the target. Green synthesized iron nanoparticles have been explored for multifarious biotechnological applications. These iron nanoparticles exhibited antimicrobial and anticancerous properties. Iron nanoparticles adversely affect the cell viability, division and metabolic activity. Iron nanoparticles have been used in the purification and immobilization of various enzymes/proteins. Iron nanoparticles have shown potential in bioremediation of various organic and inorganic pollutants. This review describes various biological sources used in the green synthesis of iron nanoparticles and their potential applications in biotechnology, diagnostics and mitigation of environmental pollutants.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India
| | - Naveen Kumar Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh 201313, India
| | - S K Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Davender Singh
- Department of Physics, RPS Degree College, Balana, Satnali Road, Mahendragarh 123029, Haryana, India
| | - Bijender Singh
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India; Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
5
|
Kasbaum FE, de Carvalho DM, de Jesus Rodrigues L, Cardoso G, Pinho LAG, Martins FT, Cunha-Filho M, Taveira SF, Marreto RN. Development of Lipid Polymer Hybrid Drug Delivery Systems Prepared by Hot-Melt Extrusion. AAPS PharmSciTech 2023; 24:156. [PMID: 37468721 DOI: 10.1208/s12249-023-02610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023] Open
Abstract
This study sought to develop polymer-lipid hybrid solid dispersions containing the poorly soluble drug lopinavir (LPV) by hot-melt extrusion (HME). Hence, the lipid and polymeric adjuvants were selected based on miscibility and compatibility studies. Film casting was used to assess the miscibility, whereas thermal, spectroscopic, and chromatographic analyses were employed to evaluate drug-excipient compatibility. Extrudates were obtained and characterized by physicochemical tests, including in vitro LPV dissolution. Preformulation studies led to select the most appropriate materials, i.e., the polymers PVPVA and Soluplus®, the plasticizers polyethylene glycol 400 and Kolliphor® HS15, phosphatidylcholine, and sodium taurodeoxycholate. HME processing did not result in LPV degradation and significantly increased entrapment efficiency (93.8% ± 2.8 for Soluplus® extrudate against 19.8% ± 0.5 of the respective physical mixture). LPV dissolution was also increased from the extrudates compared to the corresponding physical mixtures (p < 0.05). The dissolution improvement was considerably greater for the Soluplus®-based formulation (24.3 and 2.8-fold higher than pure LPV and PVPVA-based extrudate after 120 min, respectively), which can be attributed to the more pronounced effects of HME processing on the average size and LPV solid-state properties in the Soluplus® extrudates. Transmission electron microscopy and chemical microanalysis suggested that the polymer-lipid interactions in Soluplus®-based formulation depended on thermal processing.
Collapse
Affiliation(s)
- Fritz Eduardo Kasbaum
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO, 74605-170, Brazil
| | - Danilo Monteiro de Carvalho
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO, 74605-170, Brazil
| | - Laís de Jesus Rodrigues
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO, 74605-170, Brazil
| | - Gleidson Cardoso
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO, 74605-170, Brazil
| | - Ludmila Alvim Gomes Pinho
- Laboratory of Food, Drug and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | | | - Marcilio Cunha-Filho
- Laboratory of Food, Drug and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Stephânia Fleury Taveira
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO, 74605-170, Brazil
| | - Ricardo Neves Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO, 74605-170, Brazil.
| |
Collapse
|
6
|
Gurumukhi VC, Sonawane VP, Tapadiya GG, Bari SB, Surana SJ, Chalikwar SS. Quality-by-design based fabrication of febuxostat-loaded nanoemulsion: Statistical optimization, characterizations, permeability, and bioavailability studies. Heliyon 2023; 9:e15404. [PMID: 37128342 PMCID: PMC10148101 DOI: 10.1016/j.heliyon.2023.e15404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
The present work deals with QbD-based development of FEB-loaded nanoemulsion (FEB-NE) in order to enhance bioavailability and permeability. In the beginning, the risk assessment was performed on different experimental variables using the Ishikawa diagram followed by FMEA study in order to find critical process parameter (CPP) and critical material attributes (CMAs). To build quality in nanoemulsion, the quality target product profiles (QTPP) and critical quality attributes (CQAs) were determined. The different batches of FEB-NE were produced by the microemulsification-probe sonication method. Effect of varying levels of independent variables such as oil concentration (X1), Smix concentration (X3), and amplitude (X3) on responses such as globule size (Y1), zeta potential (Y2), and entrapment efficiency (Y3) were studied using Box-Behnken design (BDD). FEB-NE formulation was optimized using a graphical and numerical method. The optimized formulation concentrations and their responses (CQAs) were located as design space in an overlay plot. The spherical shapes of globules were visualized by surface morphology using AFM and TEM. In vitro dissolution study showed 93.32% drug release from the optimized FEB-NE formulation. The drug release mechanism followed by the formulation was the Higuchi-matrix kinetics with a regression coefficient of 0.9236 (R2). FEB-NE showed enhanced permeability using PAMPA (artificial non-cell membrane) and everted gut sac model method. The developed optimized FEB-NE exhibited the enhancement of bioavailability by 2.48 fold as compared to FEB-suspension using Wistar rats suggesting improvement of solubility of a lipophilic drug. The optimized batch remained stable for 90 days at 4 °C and 25 °C. Thus, QbD-based development of FEB-NE can be useful for a better perspective on a commercial scale.
Collapse
Affiliation(s)
- Vishal C. Gurumukhi
- Department of Pharmaceutical Quality Assurance, Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad 431010, Maharashtra, India
| | - Vivek P. Sonawane
- Department of IPQA, Micro Labs Ltd, Verna Industrial Estate, Goa 403722, India
| | - Ganesh G. Tapadiya
- Department of Pharmaceutical Quality Assurance, Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad 431010, Maharashtra, India
| | - Sanjaykumar B. Bari
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India
| | - Sanjay J. Surana
- Department of Industrial Pharmacy and Pharmaceutical Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India
| | - Shailesh S. Chalikwar
- Department of Industrial Pharmacy and Pharmaceutical Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India
- Corresponding author. Department of Industrial Pharmacy and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India.
| |
Collapse
|
7
|
Sivadasan D, Ramakrishnan K, Mahendran J, Ranganathan H, Karuppaiah A, Rahman H. Solid Lipid Nanoparticles: Applications and Prospects in Cancer Treatment. Int J Mol Sci 2023; 24:6199. [PMID: 37047172 PMCID: PMC10094605 DOI: 10.3390/ijms24076199] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Recent advancements in drug delivery technologies paved a way for improving cancer therapeutics. Nanotechnology emerged as a potential tool in the field of drug delivery, overcoming the challenges of conventional drug delivery systems. In the field of nanotechnology, solid lipid nanoparticles (SLNs) play a vital role with a wide range of diverse applications, namely drug delivery, clinical medicine, and cancer therapeutics. SLNs establish a significant role owing to their ability to encapsulate hydrophilic and hydrophobic compounds, biocompatibility, ease of surface modification, scale-up feasibility, and possibilities of both active and passive targeting to various organs. In cancer therapy, SLNs have emerged as imminent nanocarriers for overcoming physiological barriers and multidrug resistance pathways. However, there is a need for special attention to be paid to further improving the conceptual understanding of the biological responses of SLNs in cancer therapeutics. Hence, further research exploration needs to be focused on the determination of the structure and strength of SLNs at the cellular level, both in vitro and in vivo, to develop potential therapeutics with reduced side effects. The present review addresses the various modalities of SLN development, SLN mechanisms in cancer therapeutics, and the scale-up potential and regulatory considerations of SLN technology. The review extensively focuses on the applications of SLNs in cancer treatment.
Collapse
Affiliation(s)
- Durgaramani Sivadasan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | | | - Janani Mahendran
- Department of Pharmaceutics, College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore 641002, TN, India
| | - Hariprasad Ranganathan
- Department of Pharmaceutical Analysis, PSG College of Pharmacy, Coimbatore 641004, TN, India
| | - Arjunan Karuppaiah
- Department of Pharmaceutics, Karpagam College of Pharmacy, Coimbatore 641032, TN, India
| | - Habibur Rahman
- Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore 641004, TN, India
| |
Collapse
|
8
|
Aanish Ali M, Rehman N, Park TJ, Basit MA. Antiviral role of nanomaterials: a material scientist's perspective. RSC Adv 2022; 13:47-79. [PMID: 36605642 PMCID: PMC9769549 DOI: 10.1039/d2ra06410c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The present world continues to face unprecedented challenges caused by the COVID-19 pandemic. Collaboration between researchers of multiple disciplines is the need of the hour. There is a need to develop antiviral agents capable of inhibiting viruses and tailoring existing antiviral drugs for efficient delivery to prevent a surge in deaths caused by viruses globally. Biocompatible systems have been designed using nanotechnological principles which showed appreciable results against a wide range of viruses. Many nanoparticles can act as antiviral therapeutic agents if synthesized by the correct approach. Moreover, nanoparticles can act as carriers of antiviral drugs while overcoming their inherent drawbacks such as low solubility, poor bioavailability, uncontrolled release, and side effects. This review highlights the potential of nanomaterials in antiviral applications by discussing various studies and their results regarding antiviral potential of nanoparticles while also suggesting future directions to researchers.
Collapse
Affiliation(s)
- Muhammad Aanish Ali
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad 44000 Pakistan
| | - Nagina Rehman
- Department of Zoology, Government College University Allama Iqbal Road Faisalabad 38000 Pakistan
| | - Tae Joo Park
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan 15588 Republic of Korea
| | - Muhammad Abdul Basit
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad 44000 Pakistan
| |
Collapse
|
9
|
Vasam M, Goulikar RK. Approaches for designing and delivering solid lipid nanoparticles of distinct antitubercular drugs. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:828-843. [PMID: 36341573 DOI: 10.1080/09205063.2022.2144791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tuberculosis (TB) is still the biggest infectious disease among adults globally, which effects the social and biological lives of patients as well as the economic liability of healthcare systems. Current treatment regime has challenges with drug resistant (MDR/XDR) strains and the failure of standard therapeutic interventions against these TB strains. In the recent years, several nanocarrier-based drug delivery systems developed (including lipid-based) with anti-tuberculosis drugs via targeted delivery to improve the therapeutic outcomes. In this review, we attempt to summarize on the composition of the reported solid lipid-based particles (SLNPs), their various production methodologies, and properties of the delivery system, and their influence on cellular and pharmacokinetic aspects are also discussed. Besides, we have highlighted anti-TB drugs delivering via lipid-based systems have shown promising outcomes, however clinical translation of such systems is still under investigation. Based on recent advancements and reports, it is recommended that future efforts be made to accelerate the translational development of lipid-based nanocarriers to improve TB treatment.
Collapse
Affiliation(s)
- Mallikarjun Vasam
- Chaitanya (Deemed to be University)-Pharmacy, Hanamkonda, Warangal, Telangana, India
| | - Rama Krishna Goulikar
- Chaitanya (Deemed to be University)-Pharmacy, Hanamkonda, Warangal, Telangana, India
| |
Collapse
|
10
|
Fayed ND, Essa EA, El Maghraby GM. Menthol augmented niosomes for enhanced intestinal absorption of lopinavir. Pharm Dev Technol 2022; 27:956-964. [PMID: 36227222 DOI: 10.1080/10837450.2022.2136195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Lopinavir is effective in treatment of HIV infection but experiences low oral bioavailability due to poor solubility, pre-systemic metabolism, and P-gp intestinal efflux. Co-processing with menthol enhanced its dissolution and intestinal permeability. Niosomes comprising Span 60, cholesterol and poloxamer 407 were formulated in absence and presence of menthol. These were evaluated for size, morphology, entrapment efficiency (EE%), lopinavir release and intestinal absorption. The later employed in situ rabbit intestinal absorption model. Niosomes were spherical with vesicle size of 140.2 ± 23 and 148.2 ± 27nm for standard and menthol containing niosomes, respectively. The EE% values were 94.4% and 96.3% for both formulations, respectively. Niosomes underwent slow release during the time course of absorption with menthol hastening lopinavir release, but the release did not exceed 9%. Niosmoal encapsulation enhanced lopinavir intestinal absorption compared with drug solution. This was reflected from the fraction absorbed from duodenum which was 24.15%, 73.09% and 83.23% for solution, standard niosomes and menthol containing vesicles, respectively. These values were 34.32%, 80.8% and 86.56% for the same formulations in case of jejuno-ileum. Lopinavir absorption from niosomes didn't depend on release supporting intact vesicle absorption. The study introduced menthol containing niosomes as carriers for enhanced lopinavir intestinal absorption.
Collapse
Affiliation(s)
- Noha D Fayed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ebtesam A Essa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
11
|
Moura RBP, Andrade LM, Alonso L, Alonso A, Marreto RN, Taveira SF. Combination of lipid nanoparticles and iontophoresis for enhanced lopinavir skin permeation: Impact of electric current on lipid dynamics. Eur J Pharm Sci 2022; 168:106048. [PMID: 34699938 DOI: 10.1016/j.ejps.2021.106048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
Nanostructured lipid carriers (NLC)-loaded with lopinavir (LPV) were developed for its iontophoretic transdermal delivery. Electronic paramagnetic resonance (EPR) spectroscopy of fatty acid spin labels and differential scanning calorimetry (DSC) were applied to investigate the lipid dynamic behavior of NLC before and after the electrical current. In vitro release and permeation studies, with and without anodic and cathodic iontophoresis were also performed. NLC-LPV had nanometric size (179.0 ± 2.5 nm), high drug load (∼x223C 4.14%) and entrapment efficiency (EE) (∼x223C 80%). NLC-LPV was chemically and physically stable after applying an electric current. The electrical current reduced EE after 3 h (67.21 ± 2.64%), resulting in faster LPV in vitro release. EPR demonstrated that iontophoresis decreased NLC lipid dynamics, which is a long-lasting effect. DSC studies demonstrated that electrical current could trigger the polymorphic transition of NLC and drug solubilization in the lipid matrix. NLC-LPV, combined with iontophoresis, allowed drug quantification in the receptor medium, unlike unloaded drugs. Cathodic iontophoresis enabled the quantification of about 7.9 µg/cm2 of LPV in the receptor medium. Passive NLC-LPV studies had to be done for an additional 42 h to achieve similar concentrations. Besides, anodic iontophoresis increased by 1.8-fold the amount of LPV in the receptor medium, demonstrating a promising antiviral therapy strategy.
Collapse
Affiliation(s)
- Rayssa Barbary Pedroza Moura
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO 74605-170, Brazil
| | - Lígia Marquez Andrade
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO 74605-170, Brazil
| | - Lais Alonso
- Instituto de Física, Universidade Federal de Goiás (UFG). Av. Esperança, s/n, Campus Samambaia, Goiânia, GO 74690-900, Brazil
| | - Antonio Alonso
- Instituto de Física, Universidade Federal de Goiás (UFG). Av. Esperança, s/n, Campus Samambaia, Goiânia, GO 74690-900, Brazil
| | - Ricardo Neves Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO 74605-170, Brazil
| | - Stephânia Fleury Taveira
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO 74605-170, Brazil.
| |
Collapse
|
12
|
Pandya P, Giram P, Bhole RP, Chang HI, Raut SY. Nanocarriers based oral lymphatic drug targeting: Strategic bioavailability enhancement approaches. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Abo-Zalam HB, El-Denshary ES, Abdelsalam RM, Khalil IA, Khattab MM, Hamzawy MA. Therapeutic advancement of simvastatin-loaded solid lipid nanoparticles (SV-SLNs) in treatment of hyperlipidemia and attenuating hepatotoxicity, myopathy and apoptosis: Comprehensive study. Biomed Pharmacother 2021; 139:111494. [PMID: 34243595 DOI: 10.1016/j.biopha.2021.111494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 11/28/2022] Open
Abstract
This study set out to optimize simvastatin (SV) in lipid nanoparticles (SLNs) to improve bioavailability, efficacy and alleviate adverse effects. Simvastatin-loaded solid lipid nanoparticles (SV-SLNs) were prepared by hot-melt ultrasonication method and optimized by box-Behnken experimental design. Sixty Wister albino rats were randomly assigned into six groups and treated daily for 16 weeks: control group, the group fed with 20 g of high-fat diet (HFD), group treated with vehicle (20 mg/kg, P.O.) for last four weeks, group treated with HFD and SV (20 mg/kg, P.O.) / or SV-SLNs (20 mg/kg/day, P.O.) / or SV-SLNs (5 mg/kg, P.O.) at last four weeks. Blood, liver tissues, and quadriceps muscles were collected for biochemical analysis, histological and immunohistochemical assays. The optimized SV-SLNS showed a particle-size 255.2 ± 7.7 nm, PDI 0.31 ± 0.09, Zeta-potential - 19.30 ± 3.25, and EE% 89.81 ± 2.1%. HFD showed severe changes in body weight liver functions, lipid profiles, atherogenic index (AIX), albumin, glucose, insulin level, alkaline phosphatase as well as muscle injury, oxidative stress biomarkers, and protein expression of caspase-3. Simvastatin treatment in animals feed with HFD showed a significant improvement of all tested parameters, but it was associated with hepatotoxicity, myopathy, and histological changes in quadriceps muscles. SV-SLNs exhibited a significant improvement of all biochemical, histological examinations, and immunohistochemical assays. SV-SLNs (5 mg/kg) treatment returns all measured parameters to control itself. These results represent that SV-SLNs is a promising candidate as a drug carrier for delivering SV with maximum efficacy and limited adverse reaction.
Collapse
Affiliation(s)
- Hagar B Abo-Zalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 6th of October University, 6th of October, Giza, Egypt
| | - Ezzeldein S El-Denshary
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, New Giza University, Giza, Egypt
| | - Islam A Khalil
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12566, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A Hamzawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt.
| |
Collapse
|
14
|
Gharpure S, Ankamwar B. Use of nanotechnology in combating coronavirus. 3 Biotech 2021; 11:358. [PMID: 34221822 PMCID: PMC8238387 DOI: 10.1007/s13205-021-02905-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/19/2021] [Indexed: 10/25/2022] Open
Abstract
Recent COVID-19 pandemic situation caused due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affected global health as well as economics. There is global attention on prevention, diagnosis as well as treatment of COVID-19 infection which would help in easing the current situation. The use of nanotechnology and nanomedicine has been considered to be promising due to its excellent potential in managing various medical issues such as viruses which is a major threat. Nanoparticles have shown great potential in various biomedical applications and can prove to be of great use in antiviral therapy, especially over other conventional antiviral agents. This review focusses on the pathophysiology of SARS-CoV-2 and the progression of the COVID-19 disease followed by currently available treatments for the same. Use of nanotechnology has been elaborated by exploiting various nanoparticles like metal and metal oxide nanoparticles, carbon-based nanoparticles, quantum dots, polymeric nanoparticles as well as lipid-based nanoparticles along with its mechanism of action against viruses which can prove to be beneficial in COVID-19 therapeutics. However, it needs to be considered that use of these nanotechnology-based approaches in COVID-19 therapeutics only aids the human immunity in fighting the infection. The main function is performed by the immune system in combatting any infection.
Collapse
Affiliation(s)
- Saee Gharpure
- Bio-Inspired Materials Research Laboratory, Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune, 411007 India
| | - Balaprasad Ankamwar
- Bio-Inspired Materials Research Laboratory, Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune, 411007 India
| |
Collapse
|
15
|
Targeted delivery of lopinavir to HIV reservoirs in the mesenteric lymphatic system by lipophilic ester prodrug approach. J Control Release 2021; 329:1077-1089. [DOI: 10.1016/j.jconrel.2020.10.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 01/03/2023]
|
16
|
One-step extrusion of concentrated lidocaine lipid nanocarrier (LNC) dispersions. Int J Pharm 2020; 589:119817. [PMID: 32866646 DOI: 10.1016/j.ijpharm.2020.119817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 12/23/2022]
Abstract
Lipid nanocarriers (LNCs) have been successfully produced by many methods including high pressure homogenization, sonication and microemulsification, but it remains very difficult to produce dispersions with greater than 30% LNCs, volume average particle diameter less than 150 nm, and concentration of drugs useful for topical products. This research is the first to propose and demonstrate extrusion to manufacture highly concentrated drug containing LNC dispersions continuously and economically in a single step. By treating crude emulsions in a twin-screw extruder which has sections for homogenizing, mixing and fast-cooling inside the extruder, lidocaine-loaded LNC dispersions were successfully generated with lipid concentration up to 60% and particle diameters less than 50 nm. Electrical conductivity and birefringence measurements indicate that in the lidocaine system, lamellar microemulsions are intermediate structures and compositions with low lipid concentrations that do not present evidence of lamellar structures fail to give nanoparticles when processed. This paper also presents a new method for measuring kinetics of drug release from nanoparticles based on pH stat titration. Sufficiently precise data from pH stat titration allows determination of rate laws for release occurring on a time scale of minutes versus hours or days. The release rate of lidocaine from extruded 35% lipid nanoparticles was constant (zero order release kinetics) through the first hour (40% of drug release), a valuable property for drug delivery.
Collapse
|
17
|
Yukuyama MN, de Araujo GLB, de Souza A, Löbenberg R, Barbosa EJ, Henostroza MAB, Rocha NPD, de Oliveira IF, Folchini BR, Peroni CM, Masiero JF, Bou-Chacra NA. Cancer treatment in the lymphatic system: A prospective targeting employing nanostructured systems. Int J Pharm 2020; 587:119697. [PMID: 32750440 DOI: 10.1016/j.ijpharm.2020.119697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022]
Abstract
Cancer related to lymphangiogenesis has gained a great deal of attention in recent decades ever since specific markers of this intriguing system were discovered. Unlike the blood system, the lymphatic system has unique features that can advance cancer in future metastasis, or, conversely, can provide an opportunity to prevent or treat this disease that affects people worldwide. The aim of this review is to show the recent research of cancer treatment associated with the lymphatic system, considered one of the main gateways for disseminating metastatic cells to distant organs. Nanostructured systems based on theranostics and immunotherapies can offer several options for this complex disease. Precision targeting and accumulation of nanomaterials into the tumor sites and their elimination, or targeting the specific immune defense cells to promote optimal regression of cancer cells are highlighted in this paper. Moreover, therapies based on nanostructured systems through lymphatic systems may reduce the side effects and toxicity, avoid first pass hepatic metabolism, and improve patient recovery. We emphasize the general understanding of the association between the immune and lymphatic systems, their interaction with tumor cells, the mechanisms involved and the recent developments in several nanotechnology treatments related to this disease.
Collapse
Affiliation(s)
- Megumi Nishitani Yukuyama
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Gabriel Lima Barros de Araujo
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil.
| | - Aline de Souza
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Raimar Löbenberg
- Division of Pharmaceutical Sciences, Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy & Health Research, University of Alberta, 11361 - 87 Avenue, Room 3-142-K, Edmonton, AB T6G 2E1, Canada
| | - Eduardo José Barbosa
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Mirla Anali Bazán Henostroza
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Nataly Paredes da Rocha
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Isabela Fernandes de Oliveira
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Beatriz Rabelo Folchini
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Camilla Midori Peroni
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Jessica Fagionato Masiero
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Nádia Araci Bou-Chacra
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil.
| |
Collapse
|
18
|
Routray SB, Patra CN, Raju R, Panigrahi KC, Jena GK. Lyophilized SLN of Cinnacalcet HCl: BBD enabled optimization, characterization and pharmacokinetic study. Drug Dev Ind Pharm 2020; 46:1080-1091. [PMID: 32486863 DOI: 10.1080/03639045.2020.1775632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: The objective of the present research is to formulate solid lipid nanoparticles (SLN) of CH to improve its oral bioavailability.Methods: Cinnacalcet hydrochloride (CH) exhibits poor oral bioavailability of 20 to 25% because of low aqueous solubility and first pass metabolism. The SLN formulations were optimized using Box-Behnken Design. SLN formulation was prepared using hot homogenization technique followed by ultra-sonication and evaluated. The optimized SLN formulation was lyophilized to improve the stability of the formulation further.Results: Compritol 888 ATO (COM), Soya lecithin (SL) and poloxamer 188 (POL) were selected as lipid, surfactant and co-surfactant respectively. For optimistaion, the desirable goal was fixed for variour responses vis-a-vis entrapment efficiency (EE), particle size (PS) and (time taken for diffusion of 85% drug) T85%. The optimized single dose of SLN obtained using BBD consisting of 30 mg of CH, 100 mg of COM, 150 mg of SL and 0.1% w/v of POL. The pharmacokinetic study revealed that optimized SLN and lyophilized SLN were found to increase the oral bioavailability nearly two times compared to an aqueous suspension of pure drug.Conclusion: Thus lyophilized SLN formulation explicated the potential of lipid-based nanoparticles as a potential carrier in improving the oral delivery and stability of CH.
Collapse
Affiliation(s)
- Sudhansu Bhusan Routray
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik, University of Technology, Rourkela, India
| | - Ch Niranjan Patra
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik, University of Technology, Rourkela, India
| | - Rajarani Raju
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik, University of Technology, Rourkela, India
| | - Kahnu Charan Panigrahi
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik, University of Technology, Rourkela, India
| | - Goutam Kumar Jena
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik, University of Technology, Rourkela, India
| |
Collapse
|
19
|
Shaveta S, Singh J, Afzal M, Kaur R, Imam SS, Alruwaili NK, Alharbi KS, Alotaibi NH, Alshammari MS, Kazmi I, Yasir M, Goyel A, Ameeduzzafar. Development of solid lipid nanoparticle as carrier of pioglitazone for amplification of oral efficacy: Formulation design optimization, in-vitro characterization and in-vivo biological evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101674] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Gurumukhi VC, Bari SB. Fabrication of efavirenz loaded nano-formulation using quality by design (QbD) based approach: Exploring characterizations and in vivo safety. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Effects of different thawing methods on the quality of largemouth bass (Micropterus salmonides). Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108908] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Sun Y, Chen D, Pan Y, Qu W, Hao H, Wang X, Liu Z, Xie S. Nanoparticles for antiparasitic drug delivery. Drug Deliv 2019; 26:1206-1221. [PMID: 31746243 PMCID: PMC6882479 DOI: 10.1080/10717544.2019.1692968] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 11/05/2022] Open
Abstract
As an emerging novel drug carrier, nanoparticles provide a promising way for effective treatment of parasitic diseases by overcoming the shortcomings of low bioavailability, poor cellular permeability, nonspecific distribution and rapid elimination of antiparasitic drugs from the body. In recent years, some kinds of ideal nanocarriers have been developed for antiparasitic drug delivery. In this review, the progress of the enhanced antiparasitic effects of different nanoparticles payload and their influencing factors were firstly summarized. Secondly, the transport and disposition process in the body were reviewed. Finally, the challenges and prospects of nanoparticles for antiparasitic drug delivery were proposed. This review will help scholars to understand the development trend of nanoparticles in the treatment of parasitic diseases and explore strategies in the development of more efficient nanocarriers to overcome the difficulty in the treatment of parasite infections in the future.
Collapse
Affiliation(s)
- Yuzhu Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Wei Qu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| |
Collapse
|
23
|
Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Emerging Lipid Based Drug Delivery Systems. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-02017-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Gong Y, Chowdhury P, Nagesh PKB, Cory TJ, Dezfuli C, Kodidela S, Singh A, Yallapu MM, Kumar S. Nanotechnology approaches for delivery of cytochrome P450 substrates in HIV treatment. Expert Opin Drug Deliv 2019; 16:869-882. [PMID: 31328582 DOI: 10.1080/17425247.2019.1646725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: Antiretroviral therapy (ART) has led to a significant reduction in HIV-1 morbidity and mortality. Many antiretroviral drugs (ARVs) are metabolized by cytochrome P450 (CYP) pathway, and the majority of these drugs are also either CYP inhibitors or inducers and few possess both activities. These CYP substrates, when used for HIV treatment in the conventional dosage form, have limitations such as low systemic bioavailability, potential drug-drug interactions, and short half-lives. Thus, an alternative mode of delivery is needed in contrast to conventional ARVs. Areas covered: In this review, we summarized the limitations of conventional ARVs in HIV treatment, especially for ARVs which are CYP substrates. We also discussed the preclinical and clinical studies using the nanotechnology strategy to overcome the limitations of these CYP substrates. The preclinical studies and clinical studies published from 2000 to February 2019 were discussed. Expert opinion: Since preclinical and clinical studies for prevention and treatment of HIV using nanotechnology approaches have shown considerable promise in recent years, nanotechnology could become an alternative strategy for daily oral therapy as a future treatment.
Collapse
Affiliation(s)
- Yuqing Gong
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Pallabita Chowdhury
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Prashanth K B Nagesh
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Theodore J Cory
- b Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Chelsea Dezfuli
- b Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Sunitha Kodidela
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Ajay Singh
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Murali M Yallapu
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Santosh Kumar
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
25
|
Panigrahi KC, Patra CN, Rao MEB. Quality by Design Enabled Development of Oral Self-Nanoemulsifying Drug Delivery System of a Novel Calcimimetic Cinacalcet HCl Using a Porous Carrier: In Vitro and In Vivo Characterisation. AAPS PharmSciTech 2019; 20:216. [PMID: 31172322 DOI: 10.1208/s12249-019-1411-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/03/2019] [Indexed: 11/30/2022] Open
Abstract
In this present research, work quality by design-enabled development of cinacalcet HCl (CH)-loaded solid self-nanoemulsifying drug delivery system (S-SNEDDS) was conducted using a porous carrier in order to achieve immediate drug release and better oral bioavailability. Capmul MCM (CAP), Tween 20 (TW 20) and Transcutol P (TRP) were selected as excipients. Cumulative % drug release at 30 min (Q30), emulsification times (ET), mean globule size (GS) and polydispersity index (PDI) were identified as critical quality attributes (CQAs). Factor mode effect analysis (FMEA) and Taguchi screening design were applied for screening of factors. The optimised single dose of S-SNEDDS obtained using Box-Behnken design (BBD) consisted of 30 mg of CH, 50 mg of CAP, 149.75 mg of TW 20, 55 mg of TRP and 260.75 mg of Neusilin US2. It showed an average Q30 of 97.6%, ET of 23.3 min, GS of 89.5 nm and PDI of 0.211. DSC, XRD and SEM predict the amorphous form of S-SNEDDS. In vivo pharmacokinetic study revealed better pharmacokinetic parameters of S-SNEDDS. The above study concluded that the optimised S-SNEDDS is effective to achieve the desired objective. Graphical Abstract.
Collapse
|
26
|
Raza A, Sime FB, Cabot PJ, Maqbool F, Roberts JA, Falconer JR. Solid nanoparticles for oral antimicrobial drug delivery: a review. Drug Discov Today 2019; 24:858-866. [PMID: 30654055 DOI: 10.1016/j.drudis.2019.01.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/15/2018] [Accepted: 01/08/2019] [Indexed: 01/11/2023]
Abstract
Most microbial infectious diseases can be treated successfully with the remarkable array of antimicrobials current available; however, antimicrobial resistance, adverse effects, and the high cost of antimicrobials are crucial health challenges worldwide. One of the common efforts in addressing this issue lies in improving the existing antibacterial delivery systems. Solid nanoparticles (SNPs) have been widely used as promising strategies to overcome these challenges. In addition, oral delivery is the most common method of drug administration with high levels of patient acceptance. Formulation into NPs can improve drug stability in the harsh gastrointestinal (GI) tract environment, providing opportunities for targeting specific sites in the GI tract, increasing drug solubility and bioavailability, and providing sustained release in the GI tract. Here, we discuss SNPs for the oral delivery of antimicrobials, including solid lipid NPs (SLNs), polymeric NPs (PNs), mesoporous silica NPs (MSNs) and hybrid NPs (HNs). We also discussed about the role of nanotechnology in IV to oral antimicrobial therapy development as well as challenges, clinical transformation, and limitations of SNPs for oral antimicrobial drug delivery.
Collapse
Affiliation(s)
- Aun Raza
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Fekade Bruck Sime
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Peter J Cabot
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia
| | - Faheem Maqbool
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia
| | - Jason A Roberts
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia; Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - James Robert Falconer
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
27
|
El-Housiny S, Shams Eldeen MA, El-Attar YA, Salem HA, Attia D, Bendas ER, El-Nabarawi MA. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study. Drug Deliv 2018; 25:78-90. [PMID: 29239242 PMCID: PMC6058711 DOI: 10.1080/10717544.2017.1413444] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/01/2017] [Indexed: 11/04/2022] Open
Abstract
Solid lipid nanoparticles (SLNs) are very potential formulations for topical delivery of antifungal drugs. Hence, the purpose of this research was to formulate the well-known antifungal agent Fluconazole (FLZ)-loaded SLNs topical gel to improve its efficiency for treatment of Pityriasis Versicolor (PV). FLZ-SLNs were prepared by modified high shear homogenization and ultrasonication method using different concentration of solid lipid (Compritol 888 ATO, Precirol ATO5) and surfactant (Cremophor RH40, Poloxamer 407). The physicochemical properties and the in vitro release study for all FLZ-SLNs were investigated. Furthermore, the optimized FLZ-SLN formula was incorporated into gel using Carpobol 934. A randomized controlled clinical trial (RCT) of potential batches was carried out on 30 well diagnosed PV patients comparing to market product Candistan® 1% cream. Follow up was done for 4 weeks by clinical and KOH examinations. The results showed that FlZ-SLNs were almost spherical shape having colloidal sizes with no aggregation. The drug entrapment efficiency ranged from 55.49% to 83.04%. The zeta potential values lie between -21 and -33 mV presenting good stability. FLZ showed prolonged in vitro release from SLNs dispersion and its Carbapol gel following Higuchi order equation. Clinical studies registered significant improvement (p < .05) in therapeutic response (1.4-fold; healing%, 4-fold; complete eradication) in terms of clinical cure and mycological cure rate from PV against marketed cream. Findings of the study suggest that the developed FLZ loaded SLNs topical gels have superior significant fast therapeutic index in treatment of PV over commercially available Candistan® cream.
Collapse
Affiliation(s)
- Shaimaa El-Housiny
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and InformationCairoEgypt
| | | | - Yasmina Ahmed El-Attar
- Department of Dermatology and venereology, Faculty of Medicine, Tanat UniversityTantaEgypt
| | - Hoda A. Salem
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar UniversityCairoEgypt
| | - Dalia Attia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, The British University in Egypt (BUE)CairoEgypt
| | - Ehab R. Bendas
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in EgyptCairoEgypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo UniversityCairoEgypt
| |
Collapse
|
28
|
Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, Rosenholm JM. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics 2018; 10:E191. [PMID: 30340327 PMCID: PMC6321253 DOI: 10.3390/pharmaceutics10040191] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022] Open
Abstract
Solid lipid nanoparticles (SLNs) are nanocarriers developed as substitute colloidal drug delivery systems parallel to liposomes, lipid emulsions, polymeric nanoparticles, and so forth. Owing to their unique size dependent properties and ability to incorporate drugs, SLNs present an opportunity to build up new therapeutic prototypes for drug delivery and targeting. SLNs hold great potential for attaining the goal of targeted and controlled drug delivery, which currently draws the interest of researchers worldwide. The present review sheds light on different aspects of SLNs including fabrication and characterization techniques, formulation variables, routes of administration, surface modifications, toxicity, and biomedical applications.
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Kuldeep K Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Abo Akademi University, 20520 Turku, Finland.
| | - Asit Verma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Nishika Yadav
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Sourav Thakur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Abo Akademi University, 20520 Turku, Finland.
| |
Collapse
|
29
|
Fachinetti N, Rigon RB, Eloy JO, Sato MR, dos Santos KC, Chorilli M. Comparative Study of Glyceryl Behenate or Polyoxyethylene 40 Stearate-Based Lipid Carriers for Trans-Resveratrol Delivery: Development, Characterization and Evaluation of the In Vitro Tyrosinase Inhibition. AAPS PharmSciTech 2018; 19:1401-1409. [PMID: 29404955 DOI: 10.1208/s12249-018-0961-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/21/2018] [Indexed: 12/21/2022] Open
Abstract
Trans-resveratrol (RSV) is a natural compound with several properties, such as the ability to inhibit the tyrosinase enzyme, with potential application as a skin-lightning agent and for the treatment of skin disorders associated with hyperpigmentation and melanogenesis. However, the drug faces several drawbacks which altogether limit its therapeutic application. Thus, drug loading into nanocarriers emerge as an alternative to circumvent these problems. Herein, nanostructured lipid carriers (NLCs) have been employed for RSV encapsulation, with comparison of two different lipids, glyceryl behenate (more hydrophobic), and polyoxyethylene 40 (PEG 40) stearate. PEG 40 stearate-containing NLCs presented smaller particle size and polydispersity compared with glyceryl behenate, attributed to better emulsification and nanoparticle formation, resulting in higher RSV encapsulation efficiency. Drug was loaded in both carriers as a molecular dispersion. Furthermore, the formulations had very low RSV release, which occurred due to the crystallinity degree of lipid matrix, in accordance with the DSC data. Moreover, RSV cytotoxicity against L-929 cells was not increased when loaded into nanocarriers. Interestingly, RSV-loaded formulation prepared with PEG-40 stearate resulted on greater tyrosinase inhibition than RSV solution and formulation containing glyceryl behenate, equivalent to 1.31 and 1.83 times higher, respectively, demonstrating that the incorporation of RSV into NLC allowed an enhanced tyrosinase inhibitory activity. Overall, the results obtained herein evidence potential for future in vivo evaluation of RSV-loaded NLCs.
Collapse
|
30
|
Silki, Sinha VR. Enhancement of In Vivo Efficacy and Oral Bioavailability of Aripiprazole with Solid Lipid Nanoparticles. AAPS PharmSciTech 2018; 19:1264-1273. [PMID: 29313261 DOI: 10.1208/s12249-017-0944-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/18/2017] [Indexed: 11/30/2022] Open
Abstract
Aripiprazole (ARP), a second-generation or atypical antipsychotic, is poorly soluble and undergoes extensive hepatic metabolism and P-glycoprotein efflux which lead to reduced in vivo efficacy and increased dose-related side effects. To enhance in vivo efficacy and oral bioavailability of aripiprazole, aripiprazole-loaded solid lipid nanoparticles (SLNs) were developed using tristearin as solid lipid. Tween 80 and sodium taurocholate were used as surfactants to prepare SLNs using microemulsification method. SLNs were characterized for particle size, zeta potential, entrapment efficiency, and crystallinity of lipid and drug. In vitro release studies were performed in water containing 0.5% sodium dodecyl sulfate. Pharmacodynamic evaluation was carried out in laca mice using dizocilpine-induced schizophrenic model where behavioral evaluation revealed better in vivo efficacy of SLNs. Pharmacokinetics of aripiprazole-loaded SLNs after oral administration to conscious male Wistar rats was studied. Bioavailability of aripiprazole was increased 1.6-fold after formulation of aripiprazole into SLNs as compared to plain drug suspension. The results indicated that solid lipid nanoparticles can improve the bioavailability of lipophilic drugs like aripiprazole by enhancement of absorption and minimizing first-pass metabolism.
Collapse
|
31
|
Gad HA, Kamel AO, Ezzat OM, El Dessouky HF, Sammour OA. Doxycycline hydrochloride-metronidazole solid lipid microparticles gels for treatment of periodontitis: development, in-vitro and in-vivo clinical evaluation. Expert Opin Drug Deliv 2017; 14:1241-1251. [PMID: 28485988 DOI: 10.1080/17425247.2017.1329297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/02/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To formulate solid lipid microparticles (SLMs) encapsulating doxycycline hydrochloride (DH) and metronidazole (MT) for the treatment of periodontal diseases. METHODS SLMs were prepared applying hot homogenization method, using different types of lipids and stabilized with various types and concentrations of surfactants. The optimized formula was subjected to freeze-drying followed by incorporation into poloxamer gel. Microbiological and clinical evaluation of the selected SLMs on patients suffering from periodontal diseases was performed. RESULTS SLMs could entrap high percentage of both drugs (81.14% and 68.75 % for doxycycline hydrochloride and metronidazole respectively). Transmission electron microscopy images of SLMs showed nearly spherical particles. Freeze-dried SLMs showed satisfactory stability for three months. Combined drugs were molecularly dispersed in SLMs. Incorporation of the freeze-dried SLMs powder in poloxamer gel could control the drugs release for 72 h. In-vivo study revealed effective and safe use of SLMs gel for periodontitis treatment. Significant improvement in both microbiological and clinical parameters was observed as compared to scaling and root planing alone. CONCLUSION The formulated SLMs gel offers an applicable dosage form that can be injected directly into the periodontal pocket as adjunctive to scaling and root planing.
Collapse
Affiliation(s)
- Heba A Gad
- a Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Amany O Kamel
- a Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Ola M Ezzat
- b Peridontology, Oral Medicine and Oral diagnosis Department, Faculty of Dentistry , Ain Shams University , Cairo , Egypt
| | - Hadir F El Dessouky
- b Peridontology, Oral Medicine and Oral diagnosis Department, Faculty of Dentistry , Ain Shams University , Cairo , Egypt
| | - Omaima A Sammour
- a Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| |
Collapse
|
32
|
Patel GM, Shelat PK, Lalwani AN. QbD based development of proliposome of lopinavir for improved oral bioavailability. Eur J Pharm Sci 2017; 108:50-61. [DOI: 10.1016/j.ejps.2016.08.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
|
33
|
Lembo D, Donalisio M, Civra A, Argenziano M, Cavalli R. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opin Drug Deliv 2017; 15:93-114. [DOI: 10.1080/17425247.2017.1360863] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- David Lembo
- Department of Clinical and Biological Sciences, University of Torino, S. Luigi Gonzaga Hospital, Torino, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Torino, S. Luigi Gonzaga Hospital, Torino, Italy
| | - Andrea Civra
- Department of Clinical and Biological Sciences, University of Torino, S. Luigi Gonzaga Hospital, Torino, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| |
Collapse
|
34
|
Lin CH, Chen CH, Lin ZC, Fang JY. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 2017; 25:219-234. [PMID: 28911663 PMCID: PMC9332520 DOI: 10.1016/j.jfda.2017.02.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/21/2017] [Indexed: 11/30/2022] Open
Abstract
Chemical and enzymatic barriers in the gastrointestinal (GI) tract hamper the oral delivery of many labile drugs. The GI epithelium also contributes to poor permeability for numerous drugs. Drugs with poor aqueous solubility have difficulty dissolving in the GI tract, resulting in low bioavailability. Nanomedicine provides an opportunity to improve the delivery efficiency of orally administered drugs. Solid lipid nanoparticles (SLNs) are categorized as a new generation of lipid nanoparticles consisting of a complete solid lipid matrix. SLNs used for oral administration offer several benefits over conventional formulations, including increased solubility, enhanced stability, improved epithelium permeability and bioavailability, prolonged half-life, tissue targeting, and minimal side effects. The nontoxic excipients and sophisticated material engineering of SLNs tailor the controllable physicochemical properties of the nanoparticles for GI penetration via mucosal or lymphatic transport. In this review, we highlight the recent progress in the development of SLNs for disease treatment. Recent application of oral SLNs includes therapies for cancers, central nervous system-related disorders, cardiovascular-related diseases, infection, diabetes, and osteoporosis. In addition to drugs that may be active cargos in SLNs, some natural compounds with pharmacological activity are also suitable for SLN encapsulation to enhance oral bioavailability. In this article, we systematically introduce the concepts and amelioration mechanisms of the nanomedical techniques for drug- and natural compound-loaded SLNs.
Collapse
|
35
|
Enhancing the in vitro anticancer activity of albendazole incorporated into chitosan-coated PLGA nanoparticles. Carbohydr Polym 2017; 159:39-47. [DOI: 10.1016/j.carbpol.2016.12.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/27/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022]
|
36
|
Application of aluminum chloride phthalocyanine-loaded solid lipid nanoparticles for photodynamic inactivation of melanoma cells. Int J Pharm 2017; 518:228-241. [PMID: 28063902 DOI: 10.1016/j.ijpharm.2017.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/16/2016] [Accepted: 01/02/2017] [Indexed: 12/12/2022]
Abstract
Cutaneous melanoma is the most aggressive skin cancer and is particularly resistant to current therapeutic approaches. Photodynamic therapy (PDT) is a well-established photoprocess that is employed to treat some cancers, including non-melanoma skin cancer. Aluminum chloride phthalocyanine (ClAlPc) is used as a photosensitizer in PDT; however, its high hydrophobicity hampers its photodynamic activity under physiological conditions. The aim of this study was to produce solid lipid nanoparticles (SLN) containing ClAlPc using the direct emulsification method. ClAlPc-loaded SLNs (ClAlPc/SLNs) were characterized according to their particle size and distribution, zeta potential, morphology, encapsulation efficiency, stability, and phototoxic action in vitro in B16-F10 melanoma cells. ClAlPc/SLN had a mean diameter between 100 and 200nm, homogeneous size distribution (polydispersity index <0.3), negative zeta potential, and spherical morphology. The encapsulation efficiency was approximately 100%. The lipid crystallinity was investigated using X-ray diffraction and differential scanning calorimetry and indicated that ClAlPc was integrated into the SLN matrix. The ClAlPc/SLN formulations maintained their physicochemical stability without expelling the drug over a 24-month period. Compared to free ClAlPc, ClAlPc/SLN exerted outstanding phototoxicity effects in vitro against melanoma cells. Therefore, our results demonstrated that the ClAlPc/SLN described in the current study has the potential for use in further preclinical and clinical trials in PDT for melanoma treatment.
Collapse
|
37
|
Brezaniova I, Hruby M, Kralova J, Kral V, Cernochova Z, Cernoch P, Slouf M, Kredatusova J, Stepanek P. Temoporfin-loaded 1-tetradecanol-based thermoresponsive solid lipid nanoparticles for photodynamic therapy. J Control Release 2016; 241:34-44. [DOI: 10.1016/j.jconrel.2016.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/15/2022]
|
38
|
Tissue distribution and enhanced in vivo anti-hyperlipidemic-antioxidant effects of perillaldehyde-loaded liposomal nanoformulation against Poloxamer 407-induced hyperlipidemia. Int J Pharm 2016; 513:68-77. [PMID: 27567929 DOI: 10.1016/j.ijpharm.2016.08.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/23/2016] [Accepted: 08/23/2016] [Indexed: 01/18/2023]
Abstract
An optimized perillaldehyde-loaded liposomal nanoformulation (PAH-LNF) was successfully applied to improve the pharmacological effect of perillaldehyde (PAH) in poloxamer 407-induced hyperlipidemia. Oral administration of PAH-LNF (240mg/kg per body weight) in rats significantly enhanced solubility and relative bioavailability (270.7%) compared to the free PAH with about 2.7-, 1.5-, 1.3-, 1.3- and 1.5-fold increase in AUC, T1/2, MRT, Cmax and Tmax, respectively. Tissue distribution study also revealed the accumulation of PAH in the liver, lungs, spleen, kidney, brain and heart in order of decreasing affinity. Moreover, a significant decrease in serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) with simultaneous increase in high-density lipoprotein cholesterol (HDL-C) level was observed in the chemically-induced hyperlipidemic mice which further confirmed PAH's anti-hyperlipidemic properties. Additionally, PAH-LNF also significantly increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) with a concurrent decrease in malondialdehyde (MDA) to affirm the antioxidant and hepatoprotective effects of PAH. Thus, liposomal nanoformulation promises to be a useful drug delivery system for the development of PAH.
Collapse
|
39
|
Nanoformulation strategies for the enhanced oral bioavailability of antiretroviral therapeutics. Ther Deliv 2016; 6:469-90. [PMID: 25996045 DOI: 10.4155/tde.15.4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The oral delivery of drugs with poor aqueous solubility is challenging and often results in poor bioavailability. Various nanoformulation platforms have demonstrated improved oral bioavailability of a range of drugs for different indications. The focus of this review is to provide an overview of the application of nanomedicine to oral antiretroviral therapy and outline how the current short-falls of this life-long therapy may be resolved using nanotechnology. As well as highlighting the rationale for a nanomedicine-based approach, the review focuses on the various strategies used to enhance oral bioavailability and describes the mechanisms of particle absorption across the GI tract. The recent advances in the development of long-acting formulations for both HIV treatment and pre-exposure prophylaxis are also discussed.
Collapse
|
40
|
Ochiuz L, Grigoras C, Popa M, Stoleriu I, Munteanu C, Timofte D, Profire L, Grigoras AG. Alendronate-Loaded Modified Drug Delivery Lipid Particles Intended for Improved Oral and Topical Administration. Molecules 2016; 21:E858. [PMID: 27367664 PMCID: PMC6272979 DOI: 10.3390/molecules21070858] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/24/2016] [Accepted: 06/25/2016] [Indexed: 11/12/2022] Open
Abstract
The present paper focuses on solid lipid particles (SLPs), described in the literature as the most effective lipid drug delivery systems that have been introduced in the last decades, as they actually combine the advantages of polymeric particles, hydrophilic/lipophilic emulsions and liposomes. In the current study, we present our most recent advances in the preparation of alendronate (AL)-loaded SLPs prepared by hot homogenization and ultrasonication using various ratios of a self-emulsifying lipidic mixture of Compritol 888, Gelucire 44/14, and Cremophor A 25. The prepared AL-loaded SLPs were investigated for their physicochemical, morphological and structural characteristics by dynamic light scattering, differential scanning calorimetry, thermogravimetric and powder X-ray diffraction analysis, infrared spectroscopy, optical and scanning electron microscopy. Entrapment efficacy and actual drug content were assessed by a validated HPLC method. In vitro dissolution tests performed in simulated gastro-intestinal fluids and phosphate buffer solution pH 7.4 revealed a prolonged release of AL of 70 h. Additionally, release kinetics analysis showed that both in simulated gastrointestinal fluids and in phosphate buffer solution, AL is released from SLPs based on equal ratios of lipid excipients following zero-order kinetics, which characterizes prolonged-release drug systems.
Collapse
Affiliation(s)
- Lacramioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Universitatii Street, 16, Iasi 700115, Romania.
| | - Cristian Grigoras
- Petru Poni Institute of Macromolecular Chemistry, Aleea, Grigore Ghica Voda, 41A, Iasi 700487, Romania.
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Gheorghe Asachi Technical University of Iasi, Romania, Prof. Dr. Docent Dimitrie Mangeron Avenue, 73, Iasi 700050, Romania.
| | - Iulian Stoleriu
- Faculty of Mathematics, Alexandru I. Cuza University, 11 Bvd. Carol I, Iasi 700506, Romania.
| | - Corneliu Munteanu
- Faculty of Mechanical Engineering, Gheorghe Asachi Technical University of Iasi, Romania, Prof. Dr. Docent Dimitrie Mangeron Avenue, 73, Iasi 700050, Romania.
| | - Daniel Timofte
- Faculty of Medicine, Grigore T.Popa University of Medicine and Pharmacy Iasi, 16 Universitatii Street, Iasi 700115, Romania.
- Surgery Department, Sf. Spiridon Hospital, 1 Piata Independentei, Iasi 700111, Romania.
| | - Lenuta Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Universitatii Street, 16, Iasi 700115, Romania.
| | - Anca Giorgiana Grigoras
- Petru Poni Institute of Macromolecular Chemistry, Aleea, Grigore Ghica Voda, 41A, Iasi 700487, Romania.
| |
Collapse
|
41
|
Design and Evaluation of Voriconazole Loaded Solid Lipid Nanoparticles for Ophthalmic Application. JOURNAL OF DRUG DELIVERY 2016; 2016:6590361. [PMID: 27293896 PMCID: PMC4880687 DOI: 10.1155/2016/6590361] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/14/2016] [Accepted: 04/04/2016] [Indexed: 11/18/2022]
Abstract
Voriconazole is a second-generation antifungal agent with excellent broad spectrum of antifungal activity commercially available for oral and intravenous administration. Systemic administration of voriconazole is associated with side effects including visual and hepatic abnormalities. This study assessed the feasibility of using solid lipid nanoparticles for ocular delivery of voriconazole adopting stearic acid as lipidic material, tween 80 as a stabilizer, and Carbopol 934 as controlled release agent and for increasing the precorneal residence time in eye. The systems were prepared using two different methods, that is, ultrasonication method and microemulsion technique. The results indicated that the larger particle size of SLNs was found with microemulsion technique (308 ± 3.52 nm to 343 ± 3.51) compared to SLN prepared with ultrasonication method (234 ± 3.52 nm to 288 ± 4.58 nm). The polydispersity index values were less than 0.3 for all formulations and zeta potential of the prepared formulations by these two methods varied from −22.71 ± 0.63 mV to −28.86 ± 0.58 mV. Powder X-ray diffraction and differential scanning calorimetry indicated decrease in crystallinity of drug. The in vitro release study and the SLN formulations prepared with ultrasonication method demonstrated sustained release up to 12 hours. This study demonstrated that SLN prepared by ultrasonication method is more suitable than microemulsion technique without causing any significant effect on corneal hydration level.
Collapse
|
42
|
Pham K, Li D, Guo S, Penzak S, Dong X. Development and in vivo evaluation of child-friendly lopinavir/ritonavir pediatric granules utilizing novel in situ self-assembly nanoparticles. J Control Release 2016; 226:88-97. [PMID: 26849919 DOI: 10.1016/j.jconrel.2016.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 11/18/2022]
Abstract
The aim of this study was to develop a nanotechnology to formulate a fixed-dose combination of poorly water-soluble drugs in a children-friendly, flexible solid dosage form. For diseases like HIV, pediatric patients are taking multiple drugs for effective treatments. Fixed-dose combinations could reduce pill burdens and costs as well as improving patient adherence. However, development of fixed-dose combinations of poorly water-soluble drugs for pediatric formulations is very challenging. We discovered a novel nanotechnology that produced in situ self-assembly nanoparticles (ISNPs) when the ISNP granules were introduced to water. In this study, antiretroviral drug granules, including lopinavir (LPV) ISNP granules and a fixed-dose combination of LPV/ritonavir (RTV) ISNP granules, were prepared using the ISNP nanotechnology, which spontaneously produced drug-loaded ISNPs in contact with water. Drug-loaded ISNPs had particle size less than 158nm with mono-dispersed distribution, over 95% entrapment efficiency for both LPV and RTV and stability over 8h in simulated physiological conditions. Drug-loaded ISNP granules with about 16% of LPV and 4% of RTV were palatable and stable at room temperature over 6months. Furthermore, LPV/RTV ISNP granules displayed a 2.56-fold increase in bioavailability and significantly increased LPV concentrations in tested tissues, especially in HIV sanctuary sites, as compared to the commercial LPV/RTV tablet (Kaletra®) in rats. Overall, the results demonstrated that the novel ISNP nanotechnology is a promising platform to manufacture palatable, "heat" stable, and flexible pediatric granules for fixed-dose combinations that can be used as sachets and sprinkles. To the best of our knowledge, this is the first report on this kind of novel nanotechnology for pediatric fixed-dose combinations of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Kevin Pham
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Diana Li
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Shujie Guo
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Scott Penzak
- Department of Pharmacotherapy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Xiaowei Dong
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
43
|
Jiang X, Hu X. Microbiome Data Mining for Microbial Interactions and Relationships. BIG DATA ANALYTICS 2016. [DOI: 10.1007/978-81-322-3628-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
44
|
Nelson AG, Zhang X, Ganapathi U, Szekely Z, Flexner CW, Owen A, Sinko PJ. Drug delivery strategies and systems for HIV/AIDS pre-exposure prophylaxis and treatment. J Control Release 2015; 219:669-680. [PMID: 26315816 PMCID: PMC4879940 DOI: 10.1016/j.jconrel.2015.08.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 01/08/2023]
Abstract
The year 2016 will mark an important milestone - the 35th anniversary of the first reported cases of HIV/AIDS. Antiretroviral Therapy (ART) including Highly Active Antiretroviral Therapy (HAART) drug regimens is widely considered to be one of the greatest achievements in therapeutic drug research having transformed HIV infection into a chronically managed disease. Unfortunately, the lack of widespread preventive measures and the inability to eradicate HIV from infected cells highlight the significant challenges remaining today. Moving forward there are at least three high priority goals for anti-HIV drug delivery (DD) research: (1) to prevent new HIV infections from occurring, (2) to facilitate a functional cure, i.e., when HIV is present but the body controls it without drugs and (3) to eradicate established infection. Pre-exposure Prophylaxis (PrEP) represents a significant step forward in preventing the establishment of chronic HIV infection. However, the ultimate success of PrEP will depend on achieving sustained antiretroviral (ARV) tissue concentrations and will require strict patient adherence to the regimen. While first generation long acting/extended release (LA/ER) DD Systems (DDS) currently in development show considerable promise, significant DD treatment and prevention challenges persist. First, there is a critical need to improve cell specificity through targeting in order to selectively achieve efficacious drug concentrations in HIV reservoir sites to control/eradicate HIV as well as mitigate systemic side effects. In addition, approaches for reducing cellular efflux and metabolism of ARV drugs to prolong effective concentrations in target cells need to be developed. Finally, given the current understanding of HIV pathogenesis, next generation anti-HIV DDS need to address selective DD to the gut mucosa and lymph nodes. The current review focuses on the DDS technologies, critical challenges, opportunities, strategies, and approaches by which novel delivery systems will help iterate towards prevention, functional cure and eventually the eradication of HIV infection.
Collapse
Affiliation(s)
- Antoinette G Nelson
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Xiaoping Zhang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Usha Ganapathi
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Zoltan Szekely
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Charles W Flexner
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Andrew Owen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Patrick J Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
45
|
Makwana V, Jain R, Patel K, Nivsarkar M, Joshi A. Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: Elucidation of mechanism of uptake using chylomicron flow blocking approach. Int J Pharm 2015; 495:439-446. [DOI: 10.1016/j.ijpharm.2015.09.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 01/01/2023]
|
46
|
Simvastatin nanolipid carriers decreased hypercholesterolemia induced cholesterol inclusion and phosphatidylserine exposure on human erythrocytes. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Arana L, Salado C, Vega S, Aizpurua-Olaizola O, Arada IDL, Suarez T, Usobiaga A, Arrondo JLR, Alonso A, Goñi FM, Alkorta I. Solid lipid nanoparticles for delivery of Calendula officinalis extract. Colloids Surf B Biointerfaces 2015; 135:18-26. [PMID: 26231862 DOI: 10.1016/j.colsurfb.2015.07.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/26/2015] [Accepted: 07/08/2015] [Indexed: 11/26/2022]
Abstract
Solid lipid nanoparticles (SLN) composed of long-chain fatty acids (palmitic acid, stearic acid or arachidic acid), Epikuron 200 (purified phosphatidylcholine), and bile salts (cholate, taurocholate or taurodeoxycholate) have been prepared by dilution of a microemulsion. A total of five different systems were prepared, and characterized by photon correlation spectroscopy, transmission electron microscopy, differential scanning calorimetry, and infrared spectroscopy. The SLN formulation showing optimal properties (lowest size and polydispersity index and highest zeta potential) was obtained with stearic acid and taurodeoxycholate as cosurfactant. This formulation was loaded with Calendula officinalis extract, a natural compound used on ophthalmic formulations given its anti-inflammatory, emollient, and wound repairing activity. Calendula-loaded SLN preparations were characterized in order to determine loading capacity and entrapment efficiency. In vitro cytotoxicity and wound healing efficacy of Calendula-loaded SLN compared to that of a free plant extract were evaluated on a conjunctival epithelium cell line WKD. Our results suggest that this SLN formulation is a safe and solvent-free Calendula extract delivery system which could provide a controlled therapeutic alternative for reducing disease-related symptoms and improving epithelium repair in ocular surface.
Collapse
Affiliation(s)
- Lide Arana
- Unidad de Biofísica (CSIC, UPV/EHU), and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Clarisa Salado
- Innoprot, Parque Tecnológico de Bizkaia, Edificio 502, Ibaizabal Bidea, 48160 Elexalde Derio, Spain
| | - Sandra Vega
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, 1st Floor, Astondobidea, Building n° 612, 48160 Derio, Spain
| | - Oier Aizpurua-Olaizola
- Analytical Chemistry Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Igor de la Arada
- Unidad de Biofísica (CSIC, UPV/EHU), and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Tatiana Suarez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, 1st Floor, Astondobidea, Building n° 612, 48160 Derio, Spain
| | - Aresatz Usobiaga
- Analytical Chemistry Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - José Luis R Arrondo
- Unidad de Biofísica (CSIC, UPV/EHU), and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Alicia Alonso
- Unidad de Biofísica (CSIC, UPV/EHU), and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Félix M Goñi
- Unidad de Biofísica (CSIC, UPV/EHU), and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Itziar Alkorta
- Unidad de Biofísica (CSIC, UPV/EHU), and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
48
|
Ezzati Nazhad Dolatabadi J, Valizadeh H, Hamishehkar H. Solid Lipid Nanoparticles as Efficient Drug and Gene Delivery Systems: Recent Breakthroughs. Adv Pharm Bull 2015; 5:151-9. [PMID: 26236652 DOI: 10.15171/apb.2015.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/01/2014] [Accepted: 11/02/2014] [Indexed: 12/12/2022] Open
Abstract
In recent years, nanomaterials have been widely applied as advanced drug and gene delivery nanosystems. Among them, solid lipid nanoparticles (SLNs) have attracted great attention as colloidal drug delivery systems for incorporating hydrophilic or lipophilic drugs and various macromolecules as well as proteins and nucleic acids. Therefore, SLNs offer great promise for controlled and site specific drug and gene delivery. This article includes general information about SLN structures and properties, production procedures, characterization. In addition, recent progress on development of drug and gene delivery systems using SLNs was reviewed.
Collapse
Affiliation(s)
- Jafar Ezzati Nazhad Dolatabadi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. ; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
|
50
|
Influence of vegetable oil on the synthesis of bioactive nanocarriers with broad spectrum photoprotection. OPEN CHEM 2014. [DOI: 10.2478/s11532-014-0503-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AbstractDue to their unique features, most nanostructured lipid carriers (NLCs) in association with vegetable oils that exhibit UV filtering properties and bioactivity could be used in many cosmetic formulations. Therefore, in this work, a new application of pomegranate seed oil (PSO) in the cosmetic sector was developed, based on the synthesis of bioactive lipid nanocarriers loaded with various UV filters by the hot high pressure homogenization technique. To get broad spectrum photoprotection, different UVA and UVB filters have been used (Avobenzone — AVO, Octocrylen-OCT, Bemotrizinol — BEMT). The influence of the solid lipids combined with PSO on the particle size, physical stability and entrapment efficiency was investigated using 8 nanocarrier systems. An improved physical stability and an appropriate size were obtained for NLCs prepared with Emulgade, carnauba wax and PSO (e.g. −30.9÷-36.9 mV and 160÷185 nm). NLCs showed an entrapment efficiency above 90% and assured slow release rates of UV filters, especially for BEMT (5%). The developed nanocarriers have been formulated into safe and effective sunscreens containing low amounts of synthetic UV filters coupled with a high percent of natural ingredients. The highest SPF of 34.3 was obtained for a cream comprising of 11% PSO and 3.7% BEMT
Collapse
|