1
|
Pourbakhsh M, Jabraili M, Akbari M, Jaymand M, Jahanban Esfahlan R. Poloxamer-based drug delivery systems: Frontiers for treatment of solid tumors. Mater Today Bio 2025; 32:101727. [PMID: 40275957 PMCID: PMC12018049 DOI: 10.1016/j.mtbio.2025.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Pluronics or poloxamers are a type of triblock copolymer. These non-ionic molecules consist of a hydrophobic block embedded in two hydrophilic parts. Pluronics have become favorite materials for use in the field of biomedical research due to having favorable physicochemical and biological properties such as amphiphilicity, solubility in ionic and non-ionic solutions, biocompatibility, biodegradability, self-assembly and low toxicity. The scope of these applications can vary from tissue engineering to drug delivery. One of the important uses of pluronics is to deliver drugs to various cancer cells. Herein we first provide an overview on variety of ploronic biomaterials. And then intensively evaluate their potential as drug delivery systems (DDSs) for treatment of solid tumors with special focus on breast cancers. After explaining the pros and cons of pluronics, the current status in clinical settings and future prospects are highlighted.
Collapse
Affiliation(s)
- Mehdi Pourbakhsh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Jabraili
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rana Jahanban Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Sipos B, Rajab F, Katona G, Csóka I. Current insights into polymeric micelles for nasal drug delivery. Expert Opin Drug Deliv 2025:1-18. [PMID: 40420578 DOI: 10.1080/17425247.2025.2511962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/09/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
INTRODUCTION The nasal administration route has gained peak interest in recent literature and as a noninvasive alternative for efficient drug delivery and increasing bioavailability of active substances. Technological challenges arise from the drug's physicochemical properties and the nasal mucosal barrier for which innovative particle engineering techniques must be implemented, such as using polymeric nanocarriers. AREAS COVERED This review deals with the importance of the nasal administration route and its connection to polymeric micelles as innovative nanocarriers. The period between 2015-2025 up to date was chosen to search for original research articles where polymeric micelles were applied nasally. The first part demonstrates the utilization of polymeric micelles, followed by a summary of how drug release and permeability can be achieved in the nasal cavity and through the nasal epithelium. The second part reviews the studies conducted on this matter. EXPERT OPINION The nasal route could be superior to perform as a suitable alternative to conventional routes. Multiple studies have already demonstrated that the main advantages lie in the nose-to-brain drug delivery pathway, which can be conquered via adequately formulated polymeric micelles. As an innovative solution, vaccine delivery is also of great potential by combining the advantages of the delivery route and the polymeric nanocarriers.
Collapse
Affiliation(s)
- Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Fatima Rajab
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Sahane P, Puri N, Khairnar P, Phatale V, Shukla S, Priyadarshinee A, Srivastava S. Harnessing Folate Receptors: A Comprehensive Review on the Applications of Folate-Adorned Nanocarriers for the Management of Melanoma. ACS APPLIED BIO MATERIALS 2025; 8:3623-3656. [PMID: 40275606 DOI: 10.1021/acsabm.5c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The advancement in exclusively tailored therapeutic delivery systems has escalated a great deal of interest in targeted delivery to augment therapeutic efficacy and to lessen adverse effects. The targeted delivery approach promisingly helps to surmount the unmet clinical needs of conventional therapies, including chemoresistance, limited penetration, and side effects. In the case of melanoma, various receptors were overexpressed on the tumor site, among which folate receptor (FR) targeting is considered to be a progressive approach for managing melanoma. FRs are the macromolecules of the glycosyl phosphatidylinositol-attached protein that possess globular assembly with a greater affinity toward specific ligands. So, the functional ligands can be utilized to design targeted nanocarriers (NCs) that can effectively bind to overexpressed FRs. Hence, folate-adorned NCs (FNCs) offer various benefits such as site-specific targeting, cargo protection, and minimizing toxicity. This review focuses on the insights and implications of FRs, targeting FRs, and mechanisms, challenges, and advantages of FNCs. Further, the applications of various FNCs, such as liposomes, polymeric NCs, albumin nanoparticles, inorganic NCs, liquid crystalline nanoparticles, and nanogels, have been elaborated for melanoma therapy. Likewise, the potential of FNCs in immunotherapy, photodynamic therapy, chemotherapy, gene therapy, photothermal therapy, and tumor imaging has been exhaustively discussed. Furthermore, translational hurdles and potential solutions are discussed in detail. The present review is expected to give thoughtful ideas to researchers, industry stakeholders, and formulation scientists for the efficacious development of FNCs.
Collapse
Affiliation(s)
- Prajakta Sahane
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Niharika Puri
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Shalini Shukla
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Abhipsa Priyadarshinee
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| |
Collapse
|
4
|
Rizwan A, Rehman U, Gupta G, Alsayari A, Wahab S, Kesharwani P. Polyglutamic acid in cancer nanomedicine: Advances in multifunctional delivery platforms. Int J Pharm 2025; 676:125623. [PMID: 40254191 DOI: 10.1016/j.ijpharm.2025.125623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Polyglutamic acid (PGA)-coated nanoparticles have emerged as a significant advancement in cancer nanomedicine due to their biocompatibility, biodegradability, and versatility. PGA enhances the stability and bioavailability of therapeutic agents, enabling controlled and sustained drug release with reduced systemic toxicity. Stimuli-responsive modifications to PGA allow for precise drug delivery tailored to the tumor microenvironment, improving specificity and therapeutic outcomes. PGA's potential extends to gene delivery, where it facilitates safe and efficient transfection, addressing critical challenges such as multidrug resistance. Additionally, PGA-coated nanoparticles play a pivotal role in theranostic, integrating diagnostic and therapeutic capabilities within a single platform for real-time monitoring and treatment optimization. These nanoparticles have demonstrated enhanced efficacy in chemotherapy, immunotherapy, and combination regimens, tackling persistent issues like poor tumor penetration and non-specific drug distribution. Advancements in stimuli-responsive designs, ligand functionalization, and payload customization highlight the adaptability of PGA-based platforms for precision oncology. However, challenges such as scalability, stability under physiological conditions, and regulatory compliance remain key obstacles to clinical translation. This review explores the design, development, and applications of PGA-coated nanoparticles, emphasizing their potential to transform cancer treatment through safer, more effective, and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Asfi Rizwan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Urushi Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; Health and Medical Research Centre, King Khalid University, Abha 61421, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
5
|
Fard NT, Khademi M, Salahi‐Niri A, Esmaeili S. Nanotechnology in Hematology: Enhancing Therapeutic Efficacy With Nanoparticles. Health Sci Rep 2025; 8:e70647. [PMID: 40391271 PMCID: PMC12086657 DOI: 10.1002/hsr2.70647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/19/2025] [Accepted: 03/24/2025] [Indexed: 05/21/2025] Open
Abstract
Background and Aims Hematological malignancies, such as leukemia, lymphoma, and multiple myeloma, contribute significantly to global cancer diagnoses. Despite progress in conventional therapies, such as chemotherapy and immunotherapy, these treatments face limitations, including nonspecific targeting, side effects, and drug resistance. The aim of this review is to explore the potential of nanotechnology, particularly nanoparticles (NPs), to improve therapeutic outcomes for these cancers by enhancing drug delivery and reducing toxicity. Methods This review examines recent advancements in NP-based therapies, focusing on their application in hematological malignancies. We discuss different types of NPs, including liposomes, polymeric, and inorganic NPs, for their potential in targeted drug delivery. The review also evaluates the current state of clinical trials and highlights challenges in the translation of nanomedicines from preclinical research to clinical practice. Results Nanoparticles, with their unique properties, offer significant advantages in drug delivery systems, such as enhanced stability, extended circulation time, and targeted tumor delivery. Various NP formulations have shown promise in clinical trials, including liposomal formulations like Vyxeos for acute myeloid leukemia and Marqibo for Ph-negative acute lymphoblastic leukemia. However, challenges in toxicity, regulatory hurdles, and large-scale production still remain. Conclusion Nanomedicine holds transformative potential in the treatment of hematological malignancies, offering more effective and specific therapies compared to conventional treatments. Continued research is necessary to overcome the clinical challenges and maximize the benefits of NP-based therapies for patients with blood cancers.
Collapse
Affiliation(s)
- Nima Torabi Fard
- Department of Hematology and Blood Banking, School of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Melika Khademi
- Department of Hematology and Blood Banking, School of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Aryan Salahi‐Niri
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Shadi Esmaeili
- Department of Hematology and Blood Banking, School of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
6
|
Ganguly S, Margel S. Magnetic Ionogel and Its Applications. Gels 2025; 11:219. [PMID: 40277655 PMCID: PMC12026471 DOI: 10.3390/gels11040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/16/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
Magnetic ionogels, a category of hybrid materials consisting of magnetic nanoparticles and ionic liquids, have garnered significant interest owing to their remarkable attributes, including tunability, flexibility, and reactivity to external magnetic fields. These materials provide a distinctive amalgamation of the benefits of both magnetic nanoparticles and ionogels, resulting in improved efficacy across many applications. Magnetic ionogels may be readily controlled using magnetic fields, rendering them suitable for drug administration, biosensing, soft robotics, and actuators. The capacity to incorporate these materials into dynamic systems presents novel opportunities for the development of responsive, intelligent materials capable of real-time environmental adaptation. Nonetheless, despite the promising potential of magnetic ionogels, problems persist, including the optimization of the magnetic particle dispersion, the enhancement of the ionogel mechanical strength, and the improvement of the long-term stability. This review presents a comprehensive examination of the syntheses, characteristics, and uses of magnetic ionogels, emphasizing significant breakthroughs and persistent problems within the domain. We examine recent advancements and prospective research trajectories aimed at enhancing the design and efficacy of magnetic ionogels for practical applications across diverse fields, including biomedical uses, sensors, and next-generation actuators. This review seeks to elucidate the present status of magnetic ionogels and their prospective influence on materials science and engineering.
Collapse
Affiliation(s)
- Sayan Ganguly
- Department of Chemistry, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada;
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shlomo Margel
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
7
|
Liu J, Zhang M, Wu C, Pan X, Huang Z. TPGS/soluplus® blended micelles: an effective strategy for improving loading capacity of ferroptosis inducer erastin. J DISPER SCI TECHNOL 2025; 46:523-535. [DOI: 10.1080/01932691.2023.2295024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/09/2023] [Indexed: 06/25/2024]
Affiliation(s)
| | | | | | - Xin Pan
- College of Pharmacy, Sun Yat-Sen University
| | | |
Collapse
|
8
|
Song X, Ji M, Shu X, Zou L. Drug delivery systems loaded with plant-derived natural products for dental caries prevention and treatment. J Mater Chem B 2025; 13:1920-1934. [PMID: 39791142 DOI: 10.1039/d4tb01924e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Dental caries, driven by dysbiosis in oral flora and acid accumulation, pose a significant threat to oral health. Traditional methods of managing dental biofilms using broad-spectrum antimicrobials and fluoride face limitations such as microbial resistance. Natural products, with their antimicrobial properties, present a promising solution for managing dental caries, yet their clinical application faces significant challenges, including low bioavailability, variable efficacy, and patient resistance due to sensory properties. Advanced drug delivery systems (DDSs) are emerging to address these limitations by enhancing the delivery and effectiveness of natural products. These systems, such as nanoparticles and micelles, aim to enhance drug solubility, stability, and targeted release, leading to increased therapeutic efficacy and decreased side effects. Furthermore, innovative approaches like pH-responsive nanoparticles offer controlled release triggered by the acidic environment of carious lesions. Despite these technological advancements, further validation is necessary for the clinical application of these DDSs.
Collapse
Affiliation(s)
- Xiaowen Song
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mengzhen Ji
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xingyue Shu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
9
|
Sergeeva OV, Luo L, Guiseppi-Elie A. Cancer theragnostics: closing the loop for advanced personalized cancer treatment through the platform integration of therapeutics and diagnostics. Front Bioeng Biotechnol 2025; 12:1499474. [PMID: 39898278 PMCID: PMC11782185 DOI: 10.3389/fbioe.2024.1499474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Cancer continues to be one of the leading causes of death worldwide, and conventional cancer therapies such as chemotherapy, radiation therapy, and surgery have limitations. RNA therapy and cancer vaccines hold considerable promise as an alternative to conventional therapies for their ability to enable personalized therapy with improved efficacy and reduced side effects. The principal approach of cancer vaccines is to induce a specific immune response against cancer cells. However, a major challenge in cancer immunotherapy is to predict which patients will respond to treatment and to monitor the efficacy of the vaccine during treatment. Theragnostics, an integration of diagnostic and therapeutic capabilities into a single hybrid platform system, has the potential to address these challenges by enabling real-time monitoring of treatment response while allowing endogenously controlled personalized treatment adjustments. In this article, we review the current state-of-the-art in theragnostics for cancer vaccines and RNA therapy, including imaging agents, biomarkers, and other diagnostic tools relevant to cancer, and their application in cancer therapy development and personalization. We also discuss the opportunities and challenges for further development and clinical translation of theragnostics in cancer vaccines.
Collapse
Affiliation(s)
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Anthony Guiseppi-Elie
- Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Full Affiliate Member, Houston Methodist Research Institute, Houston, TX, United States
- ABTECH Scientific, Inc., Biotechnology Research Park, Richmond, VA, United States
| |
Collapse
|
10
|
Chauhan P, Pandey P, Ramniwas S, Khan F. Review Deciphering the Potential of Nanotherapeutics in Lung Cancer Management. Curr Cancer Drug Targets 2025; 25:539-554. [PMID: 38561624 DOI: 10.2174/0115680096302203240308104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
Lung cancer remains a formidable challenge in oncology, necessitating the development of more effective prognostic and diagnostic techniques due to inefficient conventional therapeutic approaches and inadequate methods for early lung cancer diagnosis. Despite immense progress in the development of innovative strategies to alleviate the impact of this devastating disease, the outcomes, unfortunately, remain unsatisfactory, particularly in targeted drug delivery methods. Consequently, nanotechnology has emerged as a revolutionary force in cancer research to develop more effective targeted drug delivery tools due to its extraordinary capacity at the atomic and molecular levels. It has appeared as a beacon of hope in this area of unmet need, providing innovative ways for the prognosis and diagnosis of lung carcinoma. Therefore, this comprehensive review delves into the evolving field of nano-based therapeutics, shedding light on their potential to transform lung cancer treatment. This study meticulously explores the most promising nano-based strategies that have been extensively linked with the treatment of lung carcinoma and mainly emphasizes targeted drug delivery methods and therapies. Additionally, this review encapsulates the favorable results of clinical trials, which support the potential pathways for further development of nanotherapeutics in lung cancer management.
Collapse
Affiliation(s)
- Prashant Chauhan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Seema Ramniwas
- University Centre of Research and Development, University Institute of Biotechnology, Chandigarh University Gharuan, Mohali, Punjab, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
11
|
Nehra B, Kumar M, Singh S, Chawla V, Chawla PA. Delivering cancer chemotherapeutics to the brain through novel drug delivery system. NOVEL DRUG DELIVERY SYSTEMS IN THE MANAGEMENT OF CNS DISORDERS 2025:247-260. [DOI: 10.1016/b978-0-443-13474-6.00008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Wang K, Shang J, Tao C, Huang M, Wei D, Yang L, Yang J, Fan Q, Ding Q, Zhou M. Advancements in Betulinic Acid-Loaded Nanoformulations for Enhanced Anti-Tumor Therapy. Int J Nanomedicine 2024; 19:14075-14103. [PMID: 39748899 PMCID: PMC11694648 DOI: 10.2147/ijn.s493489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Betulinic acid (BA) is a natural compound obtained from plant extracts and is known for its diverse pharmacological effects, including anti-tumor, antibacterial, anti-inflammatory, antiviral, and anti-atherosclerotic properties. Its potential in anti-tumor therapy has garnered considerable attention, particularly for the treatment of breast, lung, and liver cancers. However, the clinical utility of BA is greatly hindered by its poor water solubility, low bioavailability, and off-target toxicity. To address these issues, researchers have developed various BA-loaded nanoformulations, such as nanoparticles, liposomes, micelles, and nanofibers, aiming to improve its solubility and bioavailability, prolong plasma half-life, and enhance targeting ability, thereby augmenting its anti-cancer efficacy. In preparing this review, we conducted extensive searches in well-known databases, including PubMed, Web of Science, and ScienceDirect, using keywords like "betulinic acid", "nanoparticles", "drug delivery", "tumor", and "cancer", covering the literature from 2014 to 2024. The review provides a comprehensive overview of recent advancements in the application of BA-loaded nano-delivery systems for anti-tumor therapy and offers insights into their future development prospects.
Collapse
Affiliation(s)
- Ke Wang
- Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jinlu Shang
- Department of Pharmacy, West China Hospital Sichuan University Jintang Hospital, Chengdu, People’s Republic of China
| | - Chao Tao
- Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Mingquan Huang
- Sichuan Treatment Center for Gynaecologic and Breast Diseases (Breast Surgery), the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Daiqing Wei
- Department of Orthopaedics, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Liuxuan Yang
- Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jing Yang
- Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Qingze Fan
- Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Qian Ding
- Department of Clinical Pharmacy, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, People’s Republic of China
| | - Meiling Zhou
- Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
13
|
Guo Y, He X, Williams GR, Zhou Y, Liao X, Xiao Z, Yu C, Liu Y. Tumor microenvironment-responsive hyperbranched polymers for controlled drug delivery. J Pharm Anal 2024; 14:101003. [PMID: 39831051 PMCID: PMC11742316 DOI: 10.1016/j.jpha.2024.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 01/22/2025] Open
Abstract
Hyperbranched polymers (HBPs) have drawn great interest in the biomedical field on account of their special morphology, low viscosity, self-regulation, and facile preparation methods. Moreover, their large intramolecular cavities, high biocompatibility, biodegradability, and targeting properties render them very suitable for anti-tumor drug delivery. Recently, exploiting the specific characteristics of the tumor microenvironment, a range of multifunctional HBPs responsive to the tumor microenvironment have emerged. By further introducing various types of drugs through physical embedding or chemical coupling, the resulting HBPs based delivery systems have played a crucial part in improving drug stability, increasing effective drug concentration, decreasing drug toxicity and side effects, and enhancing anti-tumor effect. Here, based on different types of tumor microenvironment stimulation signals such as pH, redox, temperature, etc., we systematically review the preparation and response mechanism of HBPs, summarize the latest advances in drug delivery applications, and analyze the challenges and future research directions for such nanomaterials in biomedical clinical applications.
Collapse
Affiliation(s)
- Yuqiong Guo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xinni He
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | | | - Yue Zhou
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xinying Liao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ziyi Xiao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cuiyun Yu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yang Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- UCL School of Pharmacy, University College London, London, WC1N1AX, UK
| |
Collapse
|
14
|
Verma VS, Pandey A, Jha AK, Badwaik HKR, Alexander A, Ajazuddin. Polyethylene Glycol-Based Polymer-Drug Conjugates: Novel Design and Synthesis Strategies for Enhanced Therapeutic Efficacy and Targeted Drug Delivery. Appl Biochem Biotechnol 2024; 196:7325-7361. [PMID: 38519751 DOI: 10.1007/s12010-024-04895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
Due to their potential to enhance therapeutic results and enable targeted drug administration, polymer-drug conjugates that use polyethylene glycol (PEG) as both the polymer and the linker for drug conjugation have attracted much research. This study seeks to investigate recent developments in the design and synthesis of PEG-based polymer-drug conjugates, emphasizing fresh ideas that fill in existing knowledge gaps and satisfy the increasing need for more potent drug delivery methods. Through an extensive review of the existing literature, this study identifies key challenges and proposes innovative strategies for future investigations. The paper presents a comprehensive framework for designing and synthesizing PEG-based polymer-drug conjugates, including rational molecular design, linker selection, conjugation methods, and characterization techniques. To further emphasize the importance and adaptability of PEG-based polymer-drug conjugates, prospective applications are highlighted, including cancer treatment, infectious disorders, and chronic ailments.
Collapse
Affiliation(s)
- Vinay Sagar Verma
- Faculty of Pharmaceutical Sciences, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai, Durg, Chhattisgarh, 490023, India
| | - Aakansha Pandey
- Faculty of Pharmaceutical Sciences, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India
| | - Arvind Kumar Jha
- Shri Shankaracharya Professional University, Junwani, Bhilai, 490020, Chhattisgarh, India
| | - Hemant Kumar Ramchandra Badwaik
- Shri Shankaracharya College of Pharmaceutical Sciences, Junwani, Bhilai, 490020, Chhattisgarh, India.
- Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India.
| | - Amit Alexander
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research, Ministry of Chemical and Fertilizers, Guwahati, 781101, Assam, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai, Durg, Chhattisgarh, 490023, India.
| |
Collapse
|
15
|
Baghel M, Baghel I, Kumari P, Bharkatiya M, Joshi G, Sakure K, Badwaik H. Nano-delivery Systems and Therapeutic Applications of Phytodrug Mangiferin. Appl Biochem Biotechnol 2024; 196:7429-7463. [PMID: 38526662 DOI: 10.1007/s12010-024-04906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
In order to cure a range of ailments, scientists have investigated a number of bioactive antioxidant compounds produced from natural sources. Mangiferin, a C-glycosyl xanthone-structured yellow polyphenol, is abundant in mangoes and other dietary sources. In-depth examinations found that it is effective in the treatment of a variety of disorders due to its antiviral, anti-inflammatory, antiproliferative, antigenotoxic, antiatherogenic, radioprotective, nephroprotective, antihyperlipidemic, and antidiabetic properties. However, it is recognised that mangiferin's poor bioavailability, volatility, and limited solubility restrict its therapeutic usefulness. Over time, effective solutions to these problems have arisen in the shape of effective delivery methods. The current articles present a summary of the several researches that have updated Mangiferin's biopharmaceutical characteristics. Additionally, strategies for enhancing the bioavailability, stability, and solubility of this phytodrug have been discussed. This review provides detailed information on the development of innovative Mangiferin delivery methods such as nanoparticles, liposomes, micelles, niosomes, microspheres, metal nanoparticles, and complexation, as well as its therapeutic applications in a variety of sectors. This article provides effective guidance for researchers who desire to work on the formulation and development of an effective delivery method for improved magniferin therapeutic effectiveness.
Collapse
Affiliation(s)
- Madhuri Baghel
- Apollo College of Pharmacy, Anjora, Durg, 491001, Chhattisgarh, India
| | - Ishita Baghel
- Foothill High School, 4375, Foothill Road, Pleasanton, CA, 94588, USA
| | | | - Meenakshi Bharkatiya
- Bhupal Nobles' Institute of Pharmaceutical Sciences, Bhupal Nobles' University, Udaipur, 313001, India
| | - Garvita Joshi
- Mahakal Institute of Pharmaceutical Studies, Ujjain, India
| | - Kalyani Sakure
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, 490023, CG, India
| | - Hemant Badwaik
- Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Junwani, Bhilai, 490020, Chhattisgarh, India.
| |
Collapse
|
16
|
Szupryczyński K, Czeleń P, Jeliński T, Szefler B. What is the Reason That the Pharmacological Future of Chemotherapeutics in the Treatment of Lung Cancer Could Be Most Closely Related to Nanostructures? Platinum Drugs in Therapy of Non-Small and Small Cell Lung Cancer and Their Unexpected, Possible Interactions. The Review. Int J Nanomedicine 2024; 19:9503-9547. [PMID: 39296940 PMCID: PMC11410046 DOI: 10.2147/ijn.s469217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/19/2024] [Indexed: 09/21/2024] Open
Abstract
Over the course of several decades, anticancer treatment with chemotherapy drugs for lung cancer has not changed significantly. Unfortunately, this treatment prolongs the patient's life only by a few months, causing many side effects in the human body. It has also been proven that drugs such as Cisplatin, Carboplatin, Oxaliplatin and others can react with other substances containing an aromatic ring in which the nitrogen atom has a free electron group in its structure. Thus, such structures may have a competitive effect on the nucleobases of DNA. Therefore, scientists are looking not only for new drugs, but also for new alternative ways of delivering the drug to the cancer site. Nanotechnology seems to be a great hope in this matter. Creating a new nanomedicine would reduce the dose of the drug to an absolute minimum, and thus limit the toxic effect of the drug; it would allow for the exclusion of interactions with competitive compounds with a structure similar to nucleobases; it would also permit using the so-called targeted treatment and bypassing healthy cells; it would allow for the introduction of other treatment options, such as radiotherapy directly to the cancer site; and it would provide diagnostic possibilities. This article is a review that aims to systematize the knowledge regarding the anticancer treatment of lung cancer, but not only. It shows the clear possibility of interactions of chemotherapeutics with compounds competitive to the nitrogenous bases of DNA. It also shows the possibilities of using nanostructures as potential Platinum drug carriers, and proves that nanomedicine can easily become a new medicinal product in personalized medicine.
Collapse
Affiliation(s)
- Kamil Szupryczyński
- Doctoral School of Medical and Health Sciences, Faculty of Pharmacy, Collegium Medicum, Nicolaus, Copernicus University, Bydgoszcz, Poland
| | - Przemysław Czeleń
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Jeliński
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Beata Szefler
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
17
|
Zhang Y, Tian J. Strategies, Challenges, and Prospects of Nanoparticles in Gynecological Malignancies. ACS OMEGA 2024; 9:37459-37504. [PMID: 39281920 PMCID: PMC11391544 DOI: 10.1021/acsomega.4c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Gynecologic cancers are a significant health issue for women globally. Early detection and successful treatment of these tumors are crucial for the survival of female patients. Conventional therapies are often ineffective and harsh, particularly in advanced stages, necessitating the exploration of new therapy options. Nanotechnology offers a novel approach to biomedicine. A novel biosensor utilizing bionanotechnology can be employed for early tumor identification and therapy due to the distinctive physical and chemical characteristics of nanoparticles. Nanoparticles have been rapidly applied in the field of gynecologic malignancies, leading to significant advancements in recent years. This study highlights the significance of nanoparticles in treating gynecological cancers. It focuses on using nanoparticles for precise diagnosis and continuous monitoring of the disease, innovative imaging, and analytic methods, as well as multifunctional drug delivery systems and targeted therapies. This review examines several nanocarrier systems, such as dendrimers, liposomes, nanocapsules, and nanomicelles, for gynecological malignancies. The review also examines the enhanced therapeutic potential and targeted delivery of ligand-functionalized nanoformulations for gynecological cancers compared to nonfunctionalized anoformulations. In conclusion, the text also discusses the constraints and future exploration prospects of nanoparticles in chemotherapeutics. Nanotechnology will offer precise methods for diagnosing and treating gynecological cancers.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jing Tian
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| |
Collapse
|
18
|
Song Y, Zhang J, Zhu L, Zhang H, Wu G, Liu T. Recent advances in nanodelivery systems of resveratrol and their biomedical and food applications: a review. Food Funct 2024; 15:8629-8643. [PMID: 39140384 DOI: 10.1039/d3fo03892k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Resveratrol is a non-flavonoid polyphenolic compound with numerous functional properties, such as anticancer, anti-inflammation, anti-oxidation, anti-obesity and more. However, resveratrol's poor solubility within aqueous media and low stability usually lead to compromised bioavailability, ultimately limiting its uptake and applications. Nanodelivery technologies have been studied intensively due to their potential in effectively improving resveratrol properties, thereby providing promising solutions for enhancing the bioavailability of resveratrol. Thus, this article aimed to review the recent advances of resveratrol nanodelivery systems, specifically on the types of nanodelivery systems, the corresponding preparation principles, advantages, as well as potential limitations associated. Meanwhile, studies have also found that coupled with nanodelivery systems, the functional properties of resveratrol could trigger apoptosis in cancer cells and inflammatory cells through various signaling pathways. Therefore, this article will also lead into discussions on the application aspects of resveratrol nanodelivery systems, emphasizing toward the fields of biomedical and food sciences. Potential pitfalls of resveratrol nanodelivery systems, such as issues with toxicity and target release, as well as outlooks regarding resveratrol nanodelivery systems are included in the Conclusion section, in the hope to provide insights for relevant future research.
Collapse
Affiliation(s)
- Yanan Song
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Junjia Zhang
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Tongtong Liu
- Binzhou Zhongyu Food Company Limited, Key Laboratory of Wheat Processing, Ministry of Agriculture and Rural Affairs, National Industry Technical Innovation Center for Wheat Processing, Bohai Advanced Technology Institute, Binzhou 256600, China
| |
Collapse
|
19
|
Wang J, Ruan X, Guan H, Fu H, Ai S, Wang Y. Drug Efficacy Comparison of pH-Sensitive and Non-pH-Sensitive Taxol Delivery Nanoparticles in Cancer Therapy. Macromol Biosci 2024; 24:e2400009. [PMID: 38490190 DOI: 10.1002/mabi.202400009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Taxol is one of the most widely used chemotherapeutic agents but is restricted by its poor solubility and severe side effects in clinical practice. To overcome these limitations, pH-sensitive nanoparticles, Acetalated Dextran6k-PEG5k-PLA2k-Taxol (ADPP-PTX), non-pH-sensitive nanoparticles, and Propionic Anhydride modified Dextran6k-PEG5k-PLA2k-Taxol (PDPP-PTX) are developed for the delivery of Taxol. Compared with PDPP-PTX, ADPP-PTX shows higher sensitivity to acid response and greater anti-proliferative effect on cancer cells. In the in vivo study, ADPP-PTX treatment effectively suppresses the growth of tumors, while only half the dose of Taxol is used, which significantly reduces systemic toxicity compared with Taxol and PDPP-PTX.
Collapse
Affiliation(s)
- Jianquan Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, 211169, China
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu Province, 210093, China
| | - Xinyan Ruan
- Tianyuan Honors School, Nanjing Medical University, Nanjing, 211163, China
| | - Hangmin Guan
- School of Material Engineering, Jinling Institute of Technology, Nanjing, 211169, China
| | - Hailuo Fu
- School of Material Engineering, Jinling Institute of Technology, Nanjing, 211169, China
| | - Shichao Ai
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu Province, 210093, China
| |
Collapse
|
20
|
Jia Y, Yao D, Bi H, Duan J, Liang W, Jing Z, Liu M. Salvia miltiorrhiza Bunge (Danshen) based nano-delivery systems for anticancer therapeutics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155521. [PMID: 38489891 DOI: 10.1016/j.phymed.2024.155521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND The ancient Chinese herb Salvia miltiorrhiza Bunge (Danshen), plays the important role in cardiovascular and cerebrovascular disease. Furthermore, Danshen could also be used for curing carcinogenesis. Up to now, the anti-tumor effects of the main active constituents of Danshen have made great progress. However, the bioavailability of the active constituents of Danshen were restricted by their unique physical characteristics, like low oral bioavailability, rapid degradation in vivo and so on. PURPOSE With the leap development of nano-delivery systems, the shortcomings of the active constituents of Danshen have been greatly ameliorated. This review tried to summarize the recent progress of the active constituents of Danshen based delivery systems used for anti-tumor therapeutics. METHODS A systematic literature search was conducted using 5 databases (Embase, Google scholar, PubMed, Scopus and Web of Science databases) for the identification of relevant data published before September 2023. The words "Danshen", "Salvia miltiorrhiza", "Tanshinone", "Salvianolic acid", "Rosmarinic acid", "tumor", "delivery", "nanomedicine" and other active ingredients contained in Danshen were searched in the above databases to gather information about pharmaceutical decoration for the active constituents of Danshen used for anti-tumor therapeutics. RESULTS The main extracts of Danshen could inhibit the proliferation of tumor cells effectively and a great deal of studies were conducted to design drug delivery systems to ameliorate the anti-tumor effect of the active contents of Danshen through different ways, like improving bioavailability, increasing tumor targeting ability, enhancing biological barrier permeability and co-delivering with other active agents. CONCLUSION This review systematically represented recent progress of pharmaceutical decorations for the active constituents of Danshen used for anti-tumor therapeutics, revealing the diversity of nano-decoration skills and trying to inspire more designs of Danshen based nanodelivery systems, with the hope that bringing the nanomedicine of the active constituents of Danshen for anti-tumor therapeutics from bench to bedside in the near future.
Collapse
Affiliation(s)
- Yiyang Jia
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Dandan Yao
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Hui Bi
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Jing Duan
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Wei Liang
- Department of Traditional Chinese Medicine, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Ziwei Jing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Mei Liu
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China.
| |
Collapse
|
21
|
Jan N, Shah H, Khan S, Nasar F, Madni A, Badshah SF, Ali A, Bostanudin MF. Old drug, new tricks: polymer-based nanoscale systems for effective cytarabine delivery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3565-3584. [PMID: 38015258 DOI: 10.1007/s00210-023-02865-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Cytarabine, an antimetabolite antineoplastic agent, has been utilized to treat various cancers. However, because of its short half-life, low stability, and limited bioavailability, achieving an optimal plasma concentration requires continuous intravenous administration, which can lead to toxicity in normal cells and tissues. Addressing these limitations is crucial to optimize the therapeutic efficacy of cytarabine while minimizing its adverse effects. The use of novel drug delivery systems, such as polymer-based nanocarriers have emerged as promising vehicles for targeted drug delivery due to their unique properties, including high stability, biocompatibility, and tunable release kinetics. In this review, we examine the application of various polymer-based nanocarriers, including polymeric nanoparticles, polymeric micelles, dendrimers, polymer-drug conjugates, and nano-hydrogels, for the delivery of cytarabine. The article highlights the limitations of conventional cytarabine administration which often lead to suboptimal therapeutic outcomes and systemic toxicity. The rationale for using polymer-based nanocarriers is discussed, highlighting their ability to overcome challenges by providing controlled drug release, improved stability, and enhanced targeting capabilities. In summary, this review offers a valuable resource for drug delivery scientists by providing insights into the design principles, formulation strategies, and potential applications of polymer-based nanocarriers that can enhance the therapeutic efficacy of cytarabine.
Collapse
Affiliation(s)
- Nasrullah Jan
- Akson College of Pharmacy, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Azad Kashmir, Pakistan.
- Department of Pharmacy, The University of Chenab, Gujrat, 50700, Punjab, Pakistan.
| | - Hassan Shah
- Department of Pharmacy, The University of Chenab, Gujrat, 50700, Punjab, Pakistan
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
- Cadson College of Pharmacy, Kharian, 50090, Punjab, Pakistan
| | - Faiza Nasar
- Akson College of Pharmacy, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Azad Kashmir, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Syed Faisal Badshah
- Department of Pharmacy, Faculty of Medical and Health Sciences, University of Poonch, Rawalakot, 12350, Azad Kashmir, Pakistan
| | - Ahsan Ali
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Mohammad F Bostanudin
- College of Pharmacy, Al Ain University, 112612, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, 112612, Abu Dhabi, United Arab Emirates
| |
Collapse
|
22
|
Cen H, Sun M, Zheng B, Peng W, Wen Q, Lin Z, Zhang X, Zhou N, Zhu G, Yu X, Zhang L, Liang L. Hyaluronic acid modified nanocarriers for aerosolized delivery of verteporfin in the treatment of acute lung injury. Int J Biol Macromol 2024; 267:131386. [PMID: 38582458 DOI: 10.1016/j.ijbiomac.2024.131386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Verteporfin (VER), a photosensitizer used in macular degeneration therapy, has shown promise in controlling macrophage polarization and alleviating inflammation in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). However, its hydrophobicity, limited bioavailability, and side effects hinder its therapeutic potential. In this study, we aimed to enhance the therapeutic potential of VER through pulmonary nebulized drug delivery for ALI/ARDS treatment. We combined hydrophilic hyaluronic acid (HA) with an oil-in-water system containing a poly(lactic acid-co-glycolic acid) (PLGA) copolymer of VER to synthesize HA@PLGA-VER (PHV) nanoparticles with favorable surface characteristics to improve the bioavailability and targeting ability of VER. PHV possesses suitable electrical properties, a narrow size distribution (approximately 200 nm), and favorable stability. In vitro and in vivo studies demonstrated the excellent biocompatibility, safety, and anti-inflammatory responses of the PHV by suppressing M1 macrophage polarization while inducing M2 polarization. The in vivo experiments indicated that the treatment with aerosolized nano-VER (PHV) allowed more drugs to accumulate and penetrate into the lungs, improved the pulmonary function and attenuated lung injury, and mortality of ALI mice, achieving improved therapeutic outcomes. These findings highlight the potential of PHV as a promising delivery system via nebulization for enhancing the therapeutic effects of VER in ALI/ARDS.
Collapse
Affiliation(s)
- Huiyu Cen
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Mingna Sun
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Bingyu Zheng
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Weijie Peng
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qiqi Wen
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Zhongxiao Lin
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Xin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Na Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Guanxiong Zhu
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China; Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, PR China
| | - Xiyong Yu
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Lingmin Zhang
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Lu Liang
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
23
|
Kannaujiya VK, Qiao Y, Sheikh RH, Xue J, Dargaville TR, Liang K, Wich PR. pH-Responsive Micellar Nanoparticles for the Delivery of a Self-Amplifying ROS-Activatable Prodrug. Biomacromolecules 2024; 25:1775-1789. [PMID: 38377594 DOI: 10.1021/acs.biomac.3c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The objective of this study is to enhance the therapeutic efficacy of the anticancer drug, camptothecin (CPT) via a nanoparticle (NP) formulation using a novel amphiphilic biopolymer. We have designed a dimeric prodrug of CPT with the ability to self-amplify and respond to reactive oxygen species (ROS). For this, we incorporated the intracellular ROS generator cinnamaldehyde into a ROS-cleavable thioacetal (TA) linker to obtain the dimeric prodrug of CPT (DCPT(TA)). For its efficient NP delivery, a pH-responsive block copolymer of acetalated dextran and poly(2-ethyl-2-oxazoline) (AcDex-b-PEOz) was synthesized. The amphiphilic feature of the block copolymer enables its self-assembly into micellar NPs and results in high prodrug loading capacity and a rapid release of the prodrug under acidic conditions. Upon cellular uptake by HeLa cells, DCPT(TA)-loaded micellar NPs induce intracellular ROS generation, resulting in accelerated prodrug activation and enhanced cytotoxicity. These results indicate that this system holds significant potential as an effective prodrug delivery strategy in anticancer treatment.
Collapse
Affiliation(s)
- Vinod K Kannaujiya
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Yijie Qiao
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Rakib H Sheikh
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Jueyi Xue
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Tim R Dargaville
- ARC Centre for Cell & Tissue Engineering Technologies, QUT Centre for Materials Science, School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane 4000, Australia
| | - Kang Liang
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| |
Collapse
|
24
|
Fahmy SA, Elghanam R, Rashid G, Youness RA, Sedky NK. Emerging tendencies for the nano-delivery of gambogic acid: a promising approach in oncotherapy. RSC Adv 2024; 14:4666-4691. [PMID: 38318629 PMCID: PMC10840092 DOI: 10.1039/d3ra08042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
Despite the advancements in cancer therapies during the past few years, chemo/photo resistance, severe toxic effects, recurrence of metastatic tumors, and non-selective targeting remain incomprehensible. Thus, much effort has been spent exploring natural anticancer compounds endowed with biosafety and high effectiveness in cancer prevention and therapy. Gambogic acid (GA) is a promising natural compound in cancer therapy. It is the major xanthone component of the dry resin extracted from the Garcinia hanburyi Hook. f. tree. GA has significant antiproliferative effects on different types of cancer, and it exerts its anticancer activities through various pathways. Nonetheless, the clinical translation of GA has been hampered, partly due to its water insolubility, low bioavailability, poor pharmacokinetics, rapid plasma clearance, early degradation in blood circulation, and detrimental vascular irritation. Lately, procedures have been invented demonstrating the ability of nanoparticles to overcome the challenges associated with the clinical use of natural compounds both in vitro and in vivo. This review sheds light on the recent emerging trends for the nanodelivery of GA to cancer cells. To the best of our knowledge, no similar recent review described the different nanoformulations designed to improve the anticancer therapeutic activity and targeting ability of GA.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt +20 1222613344
| | - Rawan Elghanam
- Nanotechnology Department, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University Gurugram Haryana 122413 India
| | - Rana A Youness
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU) Cairo 11835 Egypt
| | - Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo Egypt
| |
Collapse
|
25
|
Deshmukh R, Prajapati M, Harwansh RK. Management of Colorectal Cancer Using Nanocarriers-based Drug Delivery for Herbal Bioactives: Current and Emerging Approaches. Curr Pharm Biotechnol 2024; 25:599-622. [PMID: 38807329 DOI: 10.2174/0113892010242028231002075512] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 05/30/2024]
Abstract
Colorectal cancer (CRC) is a complex and multifactorial disorder in middle-aged people. Several modern medicines are available for treating and preventing it. However, their therapeutic uses are limited due to drawbacks, such as gastric perforation, diarrhea, intestinal bleeding, abdominal cramps, hair loss, nausea, vomiting, weight loss, and adverse reactions. Hence, there is a continuous quest for safe and effective medicines to manage human health problems, like CRC. In this context, herbal medicines are considered an alternative disease control system. It has become popular in countries, like American, European, and Asian, due to its safety and effectiveness, which has been practiced for 1000 years. During the last few decades, herbal medicines have been widely explored through multidisciplinary fields for getting active compounds against human diseases. Several herbal bioactives, like curcumin, glycyrrhizin, paclitaxel, chlorogenic acid, gallic acid, catechin, berberine, ursolic acid, betulinic acid, chrysin, resveratrol, quercetin, etc., have been found to be effective against CRC. However, their pharmacological applications are limited due to low bioavailability and therapeutic efficacy apart from their several health benefits. An effective delivery system is required to increase their bioavailability and efficacy. Therefore, targeted novel drug delivery approaches are promising for improving these substances' solubility, bioavailability, and therapeutic effects. Novel carrier systems, such as liposomes, nanoparticles, micelles, microspheres, dendrimers, microbeads, and hydrogels, are promising for delivering poorly soluble drugs to the target site, i.e., the colon. Thus, the present review is focused on the pathophysiology, molecular pathways, and diagnostic and treatment approaches for CRC. Moreover, an emphasis has been laid especially on herbal bioactive-based novel delivery systems and their clinical updates.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Mahendra Prajapati
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| |
Collapse
|
26
|
Kaur G, Khanna B, Yusuf M, Sharma A, Khajuria A, Alajangi HK, Jaiswal PK, Sachdeva M, Barnwal RP, Singh G. A Path of Novelty from Nanoparticles to Nanobots: Theragnostic Approach for Targeting Cancer Therapy. Crit Rev Ther Drug Carrier Syst 2024; 41:1-38. [PMID: 38305340 DOI: 10.1615/critrevtherdrugcarriersyst.2023046674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Pharmaceutical development of cancer therapeutics is a dynamic area of research. Even after decades of intensive work, cancer continues to be a dreadful disease with an ever-increasing global incidence. The progress of nanotechnology in cancer research has overcome inherent limitations in conventional cancer chemotherapy and fulfilled the need for target-specific drug carriers. Nanotechnology uses the altered patho-physiological microenvironment of malignant cells and offers various advantages like improved solubility, reduced toxicity, prolonged drug circulation with controlled release, circumventing multidrug resistance, and enhanced biodistribution. Early cancer detection has a crucial role in selecting the best drug regime, thus, diagnosis and therapeutics go hand in hand. Furthermore, nanobots are an amazing possibility and promising innovation with numerous significant applications, particularly in fighting cancer and cleaning out blood vessels. Nanobots are tiny robots, ranging in size from 1 to 100 nm. Moreover, the nanobots would work similarly to white blood cells, watching the bloodstream and searching for indications of distress. This review articulates the evolution of various organic and inorganic nanoparticles and nanobots used as therapeutics, along with their pros and cons. It also highlights the shift in diagnostics from conventional methods to more advanced techniques. This rapidly growing domain is providing more space for engineering desired nanoparticles that can show miraculous results in therapeutic and diagnostic trials.
Collapse
Affiliation(s)
- Gursharanpreet Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Bhawna Khanna
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Mohammed Yusuf
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India; Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Akhil Khajuria
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Hema K Alajangi
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India; Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pradeep K Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, TX 77843, USA
| | - Mandip Sachdeva
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, FL, USA
| | | | | |
Collapse
|
27
|
Pourjavadi A, Kashani FB, Doroudian M, Amin SS. Synthesis and characterization of stimuli responsive micelles from chitosan, starch, and alginate based on graft copolymers with polylactide-poly(methacrylic acid) and polylactide- poly[2(dimethyl amino)ethyl methacrylate] side chains. Int J Biol Macromol 2023; 253:127170. [PMID: 37783250 DOI: 10.1016/j.ijbiomac.2023.127170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The primary objective of this paper is to serve as a comprehensive study on the synthesis of stimulus-sensitive micelles based on polysaccharides. In pursuit of this goal, functionalization with polylactide (PLA) was used as the water-resistance part and poly[2(Dimethyl amino)ethyl methacrylate] (PDMAEMA) or poly(methacrylic acid) (PMA) were employed as the stimulus-sensitive part to create micelles with a simple structure. FTIR and 1HNMR measurements were utilized to characterize the functionalized polysaccharides. Fluorescence spectroscopy was used to determine the critical micelle concentration. The average micelles' diameter, as observed in SEM and TEM pictures, ranges from 50 to 200 nm. To gain a better understanding of the potential of theses micelles for delivering drugs in a stimulus-sensitive manner, drug release tests were conducted. The cytotoxicity of these nano-vehicles was examined using the MTT assay. Utilizing MCF7 cells stained with DAPI and Mito Tracker, cellular uptake studies were also investigated. The results indicate that the behavior of the micelles is nearly same even though they used polysaccharides with various charge densities or different stimulus sensitive polymers. This approach, therefore, demonstrates that a broad range of micelle production is possible by employing diverse polysaccharides functionalized with PLA and polymethacrylates.
Collapse
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran, Iran.
| | - Fatemeh Bolori Kashani
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran, Iran
| | - Mohadeseh Doroudian
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran, Iran
| | - Shiva Sadat Amin
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran, Iran
| |
Collapse
|
28
|
Gorain B, Karmakar V, Sarkar B, Dwivedi M, Leong JTL, Toh JH, Seah E, Ling KY, Chen KY, Choudhury H, Pandey M. Biomacromolecule-based nanocarrier strategies to deliver plant-derived bioactive components for cancer treatment: A recent review. Int J Biol Macromol 2023; 253:126623. [PMID: 37657573 DOI: 10.1016/j.ijbiomac.2023.126623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The quest for safe chemotherapy has attracted researchers to explore anticancer potential of herbal medicines. Owing to upsurging evidence of herbal drug's beneficial effects, hopes are restored for augmenting survival rates in cancer patients. However, phytoconstituents confronted severe limitations in terms of poor absorption, low-stability, and low bioavailability. Along with toxicity issues associated with phytoconstituents, quality control and limited regulatory guidance also hinder the prevalence of herbal medicines for cancer therapy. Attempts are underway to exploit nanocarriers to circumvent the limitations of existing and new herbal drugs, where biological macromolecules (e.g., chitosan, hyaluronic acid, etc.) are established highly effective in fabricating nanocarriers and cancer targeting. Among the discussed nanocarriers, liposomes and micelles possess properties to cargo hydro- and lipophilic herbal constituents with surface modification for targeted delivery. Majorly, PEG, transferrin and folate are utilized for surface modification to improve bioavailability, circulation time and targetability. The dendrimer and carbon nanotubes responded in high-loading efficiency of phytoconstituent; whereas, SLN and nanoemulsions are suited carriers for lipophilic extracts. This review emphasized unveiling the latent potential of herbal drugs along with discussing on extended benefits of nanocarriers-based delivery of phytoconstituents for safe cancer therapy owing to enhanced clinical and preclinical outcomes without compromising safety.
Collapse
Affiliation(s)
- Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Monika Dwivedi
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Janelle Tsui Lyn Leong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Jing Hen Toh
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Even Seah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kang Yi Ling
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kah Yee Chen
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, SSH 17, Jant, Haryana 123031, India.
| |
Collapse
|
29
|
Joshi H, Gupta DS, Kaur G, Singh T, Ramniwas S, Sak K, Aggarwal D, Chhabra RS, Gupta M, Saini AK, Tuli HS. Nanoformulations of quercetin for controlled delivery: a review of preclinical anticancer studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3443-3458. [PMID: 37490121 DOI: 10.1007/s00210-023-02625-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
One of the well-studied older molecules, quercetin, is found in large quantities in many fruits and vegetables. Natural anti-oxidant quercetin has demonstrated numerous pharmacological properties in preclinical and clinical research, including anti-inflammatory and anti-cancer effects. Due to its ability to control cell signaling pathways, including NF-κB, p53, activated protein-1 (AP-1), STAT3, and epidermal growth response-1 (Egr-1), which is essential in the initiation and proliferation of cancer, it has gained a lot of fame as an anticancer molecule. Recent research suggests that using nanoformulations can help quercetin to overcome its hydrophobicity while also enhancing its stability and cellular bioavailability both in vitro and in vivo. The main aim of this review is to focus on the comprehensive insights of several nanoformulations, including liposomes, nano gels, micelles, solid lipid nanoparticles (SLN), polymer nanoparticles, gold nanoparticles, and cyclodextrin complexes, to transport quercetin for application in cancer.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 400056, India
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | | | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | | | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Adesh K Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
- Faculty of Agriculture, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
30
|
Huang C, Shao N, Huang Y, Chen J, Wang D, Hu G, Zhang H, Luo L, Xiao Z. Overcoming challenges in the delivery of STING agonists for cancer immunotherapy: A comprehensive review of strategies and future perspectives. Mater Today Bio 2023; 23:100839. [PMID: 38024837 PMCID: PMC10630661 DOI: 10.1016/j.mtbio.2023.100839] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
STING (Stimulator of Interferon Genes) agonists have emerged as promising agents in the field of cancer immunotherapy, owing to their excellent capacity to activate the innate immune response and combat tumor-induced immunosuppression. This review provides a comprehensive exploration of the strategies employed to develop effective formulations for STING agonists, with particular emphasis on versatile nano-delivery systems. The recent advancements in delivery systems based on lipids, natural/synthetic polymers, and proteins for STING agonists are summarized. The preparation methodologies of nanoprecipitation, self-assembly, and hydrogel, along with their advantages and disadvantages, are also discussed. Furthermore, the challenges and opportunities in developing next-generation STING agonist delivery systems are elaborated. This review aims to serve as a reference for researchers in designing novel and effective STING agonist delivery systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Cuiqing Huang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Duo Wang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Genwen Hu
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Radiology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Hong Zhang
- Department of Interventional Vascular Surgery, The Sixth Affiliated Hospital of Jinan University, Dongguan, 523560, China
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| |
Collapse
|
31
|
Alsaikhan F. Hyaluronic acid-empowered nanotheranostics in breast and lung cancers therapy. ENVIRONMENTAL RESEARCH 2023; 237:116951. [PMID: 37633628 DOI: 10.1016/j.envres.2023.116951] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Nanomedicine application in cancer therapy is an urgency because of inability of current biological therapies for complete removal of tumor cells. The development of smart and novel nanoplatforms for treatment of cancer can provide new insight in tumor suppression. Hyaluronic acid is a biopolymer that can be employed for synthesis of smart nanostructures capable of selective targeting CD44-overexpressing tumor cells. The breast and lung cancers are among the most malignant and common tumors in both females and males that environmental factors, lifestyle and genomic alterations are among the risk factors for their pathogenesis and development. Since etiology of breast and lung tumors is not certain and multiple factors participate in their development, preventative measures have not been completely successful and studies have focused on developing new treatment strategies for them. The aim of current review is to provide a comprehensive discussion about application of hyaluronic acid-based nanostructures for treatment of breast and lung cancers. The main reason of using hyaluronic acid-based nanoparticles is their ability in targeting breast and lung cancers in a selective way due to upregulation of CD44 receptor on their surface. Moreover, nanocarriers developed from hyaluronic acid or functionalized with hyaluronic acid have high biocompatibility and their safety is appreciated. The drugs and genes used for treatment of breast and lung cancers lack specific accumulation at cancer site and their cytotoxicity is low, but hyaluronic acid-based nanostructures provide their targeted delivery to tumor site and by increasing internalization of drugs and genes in breast and lung tumor cells, they improve their therapeutic index. Furthermore, hyaluronic acid-based nanostructures can be used for phototherapy-mediated breast and lung cancers ablation. The stimuli-responsive and smart kinds of hyaluronic acid-based nanostructures such as pH- and light-responsive can increase selective targeting of breast and lung cancers.
Collapse
Affiliation(s)
- Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| |
Collapse
|
32
|
Jalili A, Bagherifar R, Nokhodchi A, Conway B, Javadzadeh Y. Current Advances in Nanotechnology-Mediated Delivery of Herbal and Plant-Derived Medicines. Adv Pharm Bull 2023; 13:712-722. [PMID: 38022806 PMCID: PMC10676547 DOI: 10.34172/apb.2023.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 07/14/2023] [Indexed: 12/01/2023] Open
Abstract
Phytomedicine has been used by humans since ancient times to treat a variety of diseases. However, herbal medicines face significant challenges, including poor water and lipid solubility and instability, which lead to low bioavailability and insufficient therapeutic efficacy. Recently, it has been shown that nanotechnology-based drug delivery systems are appropriate to overcome the above-mentioned limitations. The present review study first discusses herbal medicines and the challenges involved in the formulation of these drugs. The different types of nano-based drug delivery systems used in herbal delivery and their potential to improve therapeutic efficacy are summarized, and common techniques for preparing nanocarriers used in herbal drug delivery are also discussed. Finally, a list of nanophyto medicines that have entered clinical trials since 2010, as well as those that the FDA has approved, is presented.
Collapse
Affiliation(s)
- Amir Jalili
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Arundel Building, Brighton BNI 9QJ, UK
- Lupin Research Center, Coral Springs, Florida, USA
| | - Barbara Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, UK
| | - Yousef Javadzadeh
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
33
|
Ajith S, Almomani F, Elhissi A, Husseini GA. Nanoparticle-based materials in anticancer drug delivery: Current and future prospects. Heliyon 2023; 9:e21227. [PMID: 37954330 PMCID: PMC10637937 DOI: 10.1016/j.heliyon.2023.e21227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
The past decade has witnessed a breakthrough in novel strategies to treat cancer. One of the most common cancer treatment modalities is chemotherapy which involves administering anti-cancer drugs to the body. However, these drugs can lead to undesirable side effects on healthy cells. To overcome this challenge and improve cancer cell targeting, many novel nanocarriers have been developed to deliver drugs directly to the cancerous cells and minimize effects on the healthy tissues. The majority of the research studies conclude that using drugs encapsulated in nanocarriers is a much safer and more effective alternative than delivering the drug alone in its free form. This review provides a summary of the types of nanocarriers mainly studied for cancer drug delivery, namely: liposomes, polymeric micelles, dendrimers, magnetic nanoparticles, mesoporous nanoparticles, gold nanoparticles, carbon nanotubes and quantum dots. In this review, the synthesis, applications, advantages, disadvantages, and previous studies of these nanomaterials are discussed in detail. Furthermore, the future opportunities and possible challenges of translating these materials into clinical applications are also reported.
Collapse
Affiliation(s)
- Saniha Ajith
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar
| | | | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
34
|
Feng Y, Wang J, Zhang S, Li Y, Wang B, Zhang J, Qiu Y, Zhang Y, Zhang Y. Preparation of amentoflavone-loaded DSPE-PEG 2000 micelles with improved bioavailability and in vitro antitumor efficacy. Biomed Chromatogr 2023; 37:e5690. [PMID: 37337343 DOI: 10.1002/bmc.5690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/27/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023]
Abstract
To overcome the poor aqueous solubility and enhance the anticancer effects of amentoflavone (AF), a nontoxic and biodegradable amphiphilic copolymer, poly(ethyleneglycol)-distearoylphosphatidylethanolamine (DSPE-PEG2000 ), was introduced to prepare AF micelles using the thin-film hydration method. Amentoflavone was successfully encapsulated into the core, achieving an encapsulation efficiency of 98.80 ± 0.24% and a drug loading efficiency of 2.96 ± 0.12%. The resulting micelles exhibited a spherical shape with a particle size of approximately 25.99 nm. The solubility of AF was significant improved by 412-fold, and cumulative drug release studies showed that AF release was much faster from the micelles compared with the free drug. The release of AF was sustained over time and followed a degradation-based kinetic model, similar to polymeric systems. After oral administration, the AF-loaded micelles demonstrated an enhanced oral bioavailability, which was 3.79 times higher than that of free AF. In vitro evaluations of the micelles' antitumor effects revealed a significantly greater efficacy compared with free AF. These findings highlight the tremendous potential of DSPE-PEG2000 micelles as a drug delivery carrier for improving the solubility and therapeutic efficacy of AF.
Collapse
Affiliation(s)
- Yuan Feng
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, China
| | - Jin Wang
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, China
| | | | - Yanan Li
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, China
| | - Boxin Wang
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, China
| | - Jiayuan Zhang
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, China
| | - Yingzhe Qiu
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, China
| | - Yi Zhang
- Shenyang Pharmaceutical University, Shenyang, China
| | - Yuanyuan Zhang
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, China
| |
Collapse
|
35
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Application of Nanoparticles in the Diagnosis of Gastrointestinal Diseases: A Complete Future Perspective. Int J Nanomedicine 2023; 18:4143-4170. [PMID: 37525691 PMCID: PMC10387254 DOI: 10.2147/ijn.s413141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023] Open
Abstract
The diagnosis of gastrointestinal (GI) diseases currently relies primarily on invasive procedures like digestive endoscopy. However, these procedures can cause discomfort, respiratory issues, and bacterial infections in patients, both during and after the examination. In recent years, nanomedicine has emerged as a promising field, providing significant advancements in diagnostic techniques. Nanoprobes, in particular, offer distinct advantages, such as high specificity and sensitivity in detecting GI diseases. Integration of nanoprobes with advanced imaging techniques, such as nuclear magnetic resonance, optical fluorescence imaging, tomography, and optical correlation tomography, has significantly enhanced the detection capabilities for GI tumors and inflammatory bowel disease (IBD). This synergy enables early diagnosis and precise staging of GI disorders. Among the nanoparticles investigated for clinical applications, superparamagnetic iron oxide, quantum dots, single carbon nanotubes, and nanocages have emerged as extensively studied and utilized agents. This review aimed to provide insights into the potential applications of nanoparticles in modern imaging techniques, with a specific focus on their role in facilitating early and specific diagnosis of a range of GI disorders, including IBD and colorectal cancer (CRC). Additionally, we discussed the challenges associated with the implementation of nanotechnology-based GI diagnostics and explored future prospects for translation in this promising field.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
36
|
Qiu E, Liu F. PLGA-based drug delivery systems in treating bone tumors. Front Bioeng Biotechnol 2023; 11:1199343. [PMID: 37324432 PMCID: PMC10267463 DOI: 10.3389/fbioe.2023.1199343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Bone tumor has become a common disease that endangers human health. Surgical resection of bone tumors not only causes biomechanical defects of bone but also destroys the continuity and integrity of bone and cannot completely remove the local tumor cells. The remaining tumor cells in the lesion bring a hidden danger of local recurrence. To improve the chemotherapeutic effect and effectively clear tumor cells, traditional systemic chemotherapy often requires higher doses, and high doses of chemotherapeutic drugs inevitably cause a series of systemic toxic side effects, often intolerable to patients. PLGA-based drug delivery systems, such as nano delivery systems and scaffold-based local delivery systems, can help eliminate tumors and promote bone regeneration and therefore have more significant potential for application in bone tumor treatment. In this review, we summarize the research progress of PLGA nano drug delivery systems and PLGA scaffold-based local delivery systems in bone tumor treatment applications, expecting to provide a theoretical basis for developing novel bone tumor treatment strategies.
Collapse
Affiliation(s)
- Enduo Qiu
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | | |
Collapse
|
37
|
Mohammadi F, Moradi A, Tavakoli F, Rahmati S, Giti R, Ramezani V. Development and characterization of a copolymeric micelle containing soluble and insoluble model drugs. PLoS One 2023; 18:e0286251. [PMID: 37228096 PMCID: PMC10212155 DOI: 10.1371/journal.pone.0286251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVES Micelles are nano-sized particles with a core-shell structure that are made by natural or synthetic polymers or copolymers. The aim of this study was to develop and characterize a copolymeric micelle using two polymers loaded with hydrophilic and lipophilic drugs. METHODS Poly(ethylene glycol) and poly(ε-caprolactone) (PEG-PCL) were used to form a copolymeric micelle which was further loaded with either moxifloxacin or clarithromycin as hydrophilic and lipophilic drug samples, respectively. Characterization tests were done including fourier transform-infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy, encapsulation efficiency, particle size, zeta potential, polydispersity index, transmission electron microscopy, and in-vitro release test. RESULTS The construction of the copolymer was confirmed by the results of FT-IR and 1H NMR spectroscopy tests. The encapsulation efficiency test exhibited that loading was about 50% for twelve formulations. Particle size, zeta potential, polydispersity index, and transmission electron microscopy confirmed the formation of monodispersed, uniform, and nano-sized micelles with a few negative charges. The kinetic model of release was fitted to the Higuchi model. CONCLUSIONS Polymeric micelles consisting of PEG-PCL copolymer were loaded with adequate concentrations of hydrophilic (moxifloxacin) and lipophilic (clarithromycin) model drugs, with a mean particle size under 300 nm. Therefore, copolymeric micelles can be used as a suitable drug delivery system for mucous membranes and skin.
Collapse
Affiliation(s)
- Farhad Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Yazd, Iran
| | - Alireza Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Yazd, Iran
| | - Fatemeh Tavakoli
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Yazd, Iran
| | - Samaneh Rahmati
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Yazd, Iran
| | - Rashin Giti
- Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Vahid Ramezani
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Yazd, Iran
| |
Collapse
|
38
|
Yang D, Li Z, Zhang Y, Chen X, Liu M, Yang C. Design of Dual-Targeted pH-Sensitive Hybrid Polymer Micelles for Breast Cancer Treatment: Three Birds with One Stone. Pharmaceutics 2023; 15:1580. [PMID: 37376029 DOI: 10.3390/pharmaceutics15061580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer has a high prevalence in the world and creates a substantial socio-economic impact. Polymer micelles used as nano-sized polymer therapeutics have shown great advantages in treating breast cancer. Here, we aim to develop a dual-targeted pH-sensitive hybrid polymer (HPPF) micelles for improving the stability, controlled-release ability and targeting ability of the breast cancer treatment options. The HPPF micelles were constructed using the hyaluronic acid modified polyhistidine (HA-PHis) and folic acid modified Plannick (PF127-FA), which were characterized via 1H NMR. The optimized mixing ratio (HA-PHis:PF127-FA) was 8:2 according to the change of particle size and zeta potential. The stability of HPPF micelles were enhanced with the higher zeta potential and lower critical micelle concentration compared with HA-PHis and PF127-FA. The drug release percents significantly increased from 45% to 90% with the decrease in pH, which illustrated that HPPF micelles were pH-sensitive owing to the protonation of PHis. The cytotoxicity, in vitro cellular uptake and in vivo fluorescence imaging experiments showed that HPPF micelles had the highest targeting ability utilizing FA and HA, compared with HA-PHis and PF127-FA. Thus, this study constructs an innovative nano-scaled drug delivery system, which provides a new strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Degong Yang
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Ziqing Li
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Yinghui Zhang
- Department of Pharmaceutical Sciences, Jiamusi University, 258 Xuefu Road, Jiamusi 154007, China
| | - Xuejun Chen
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Mingyuan Liu
- Department of Pharmaceutical Sciences, Jiamusi University, 258 Xuefu Road, Jiamusi 154007, China
| | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| |
Collapse
|
39
|
Negut I, Bita B. Polymeric Micellar Systems-A Special Emphasis on "Smart" Drug Delivery. Pharmaceutics 2023; 15:976. [PMID: 36986837 PMCID: PMC10056703 DOI: 10.3390/pharmaceutics15030976] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Concurrent developments in anticancer nanotechnological treatments have been observed as the burden of cancer increases every year. The 21st century has seen a transformation in the study of medicine thanks to the advancement in the field of material science and nanomedicine. Improved drug delivery systems with proven efficacy and fewer side effects have been made possible. Nanoformulations with varied functions are being created using lipids, polymers, and inorganic and peptide-based nanomedicines. Therefore, thorough knowledge of these intelligent nanomedicines is crucial for developing very promising drug delivery systems. Polymeric micelles are often simple to make and have high solubilization characteristics; as a result, they seem to be a promising alternative to other nanosystems. Even though recent studies have provided an overview of polymeric micelles, here we included a discussion on the "intelligent" drug delivery from these systems. We also summarized the state-of-the-art and the most recent developments of polymeric micellar systems with respect to cancer treatments. Additionally, we gave significant attention to the clinical translation potential of polymeric micellar systems in the treatment of various cancers.
Collapse
Affiliation(s)
- Irina Negut
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Bucharest, Romania
| | - Bogdan Bita
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Bucharest, Romania
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| |
Collapse
|
40
|
Bakr EA, Gaber M, Saad DR, Salahuddin N. Comparative study between two different morphological structures based on polylactic acid, nanocellulose and magnetite for co-delivery of flurouracil and curcumin. Int J Biol Macromol 2023; 230:123315. [PMID: 36708892 DOI: 10.1016/j.ijbiomac.2023.123315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
Cellulose was extracted from mango fibers and subjected to acid hydrolysis to obtain a nanofiber. Two morphological structures based on the polylactic acid (PLA)/nanocellulose (NC) combination have been synthesized and Fe3O4 NPs (M) are incorporated into both combinations. The first formulation is obtained by blending technique (PLA/M-NC) and the second formulation is obtained by self-assembly of grafted copolymer (M-PLA-co-NC). The magnetic nanocomposites are used as carriers for 5-fluorouracil (5-FU), an anti-cancer drug, and curcumin (CUR) to get PLA/M-NC/5-FU/CUR and M-PLA-co-NC/5-FU/CUR. The structural, morphological, and magnetic properties of the obtained nanocomposites were characterized by various techniques. The loading, release of 5-FU/CUR and the inhibition efficacy of nanocarriers loaded drugs against bacteria, HePG-2, MCF-7, and HCT-116 cell lines were studied. The two morphological forms of nanocarriers are considered close in loading % of 5-FU; however, the M-PLA-co-NC nanocarrier loaded double the loading % of CUR into PLA/M-NC nanocarrier, revealing superiority of copolymeric micelle than the blended formulation. The dual drugs loaded magnetic copolymeric micelles M-PLA-co-NC/5-FU/CUR revealed slower release, higher antibacterial and antitumor efficacy than the PLA/M-NC/5-FU/CUR. In this respect, the M-PLA-co-NC/5-FU/CUR could be considered a good nanomedicine against Streptococcus, Bacillus subtilis, Klebsiella pneumonia and Escherichia coli bacteria, besides the investigated cell lines.
Collapse
Affiliation(s)
- Eman A Bakr
- Department of Chemistry, Faculty of Science, Tanta University, 31527, Tanta, Egypt.
| | - M Gaber
- Department of Chemistry, Faculty of Science, Tanta University, 31527, Tanta, Egypt
| | - Dina R Saad
- Department of Chemistry, Faculty of Science, Tanta University, 31527, Tanta, Egypt
| | - Nehal Salahuddin
- Department of Chemistry, Faculty of Science, Tanta University, 31527, Tanta, Egypt
| |
Collapse
|
41
|
Remmers RCPA, Neumann K. Reaching new lights: a review on photo-controlled nanomedicines and their in vivo evaluation. Biomater Sci 2023; 11:1607-1624. [PMID: 36727448 DOI: 10.1039/d2bm01621d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The selective and efficient delivery of bioactive molecules to sites of interest remains a formidable challenge in medicine. In recent years, it has been shown that stimuli-responsive drug delivery systems display several advantages over traditional drug administration such as an improved pharmacokinetic profile and the desirable ability to gain control over release. Light emerged as one of the most powerful stimuli due to its high biocompatibility, spatio-temporal control, and non-invasiveness. On the road to clinical translation, various chemical systems of high complexity have been reported with the aim to improve efficacy, safety, and versatility of drug delivery under complex biological conditions. For future research on the chemical design of such photo-controlled nanomedicines, it is essential to gain an understanding of their in vivo translation and efficiency. Here, we discuss photo-controlled nanomedicines that have been evaluated in vivo and provide an overview of the state-of-the-art that should guide future research design.
Collapse
Affiliation(s)
- Rik C P A Remmers
- Institute for Molecules and Materials, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | - Kevin Neumann
- Institute for Molecules and Materials, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
42
|
Sharma A, Shambhwani D, Pandey S, Singh J, Lalhlenmawia H, Kumarasamy M, Singh SK, Chellappan DK, Gupta G, Prasher P, Dua K, Kumar D. Advances in Lung Cancer Treatment Using Nanomedicines. ACS OMEGA 2023; 8:10-41. [PMID: 36643475 PMCID: PMC9835549 DOI: 10.1021/acsomega.2c04078] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/13/2022] [Indexed: 06/01/2023]
Abstract
Carcinoma of the lungs is among the most menacing forms of malignancy and has a poor prognosis, with a low overall survival rate due to delayed detection and ineffectiveness of conventional therapy. Therefore, drug delivery strategies that may overcome undesired damage to healthy cells, boost therapeutic efficacy, and act as imaging tools are currently gaining much attention. Advances in material science have resulted in unique nanoscale-based theranostic agents, which provide renewed hope for patients suffering from lung cancer. Nanotechnology has vastly modified and upgraded the existing techniques, focusing primarily on increasing bioavailability and stability of anti-cancer drugs. Nanocarrier-based imaging systems as theranostic tools in the treatment of lung carcinoma have proven to possess considerable benefits, such as early detection and targeted therapeutic delivery for effectively treating lung cancer. Several variants of nano-drug delivery agents have been successfully studied for therapeutic applications, such as liposomes, dendrimers, polymeric nanoparticles, nanoemulsions, carbon nanotubes, gold nanoparticles, magnetic nanoparticles, solid lipid nanoparticles, hydrogels, and micelles. In this Review, we present a comprehensive outline on the various types of overexpressed receptors in lung cancer, as well as the various targeting approaches of nanoparticles.
Collapse
Affiliation(s)
- Akshansh Sharma
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | | | - Sadanand Pandey
- Department
of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jay Singh
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Hauzel Lalhlenmawia
- Department
of Pharmacy, Regional Institute of Paramedical
and Nursing Sciences, Zemabawk, Aizawl, Mizoram 796017, India
| | - Murali Kumarasamy
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research, Hajipur 844102, India
| | - Sachin Kumar Singh
- School
of Pharmaceutical Sciences, Lovely Professional
University, Phagwara 144411, India
- Faculty
of Health, Australian Research Centre in Complementary and Integrative
Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department
of Life Sciences, School of Pharmacy, International
Medical University, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- Department
of Pharmacology, School of Pharmacy, Suresh
Gyan Vihar University, Jaipur 302017, India
- Department
of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical
and Technical Sciences, Saveetha University, Chennai 602117, India
- Uttaranchal
Institute of Pharmaceutical Sciences, Uttaranchal
University, Dehradun 248007, India
| | - Parteek Prasher
- Department
of Chemistry, University of Petroleum &
Energy Studies, Dehradun 248007, India
| | - Kamal Dua
- Faculty
of Health, Australian Research Centre in Complementary and Integrative
Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Discipline
of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Deepak Kumar
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| |
Collapse
|
43
|
Hari SK, Gauba A, Shrivastava N, Tripathi RM, Jain SK, Pandey AK. Polymeric micelles and cancer therapy: an ingenious multimodal tumor-targeted drug delivery system. Drug Deliv Transl Res 2023; 13:135-163. [PMID: 35727533 DOI: 10.1007/s13346-022-01197-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/13/2022]
Abstract
Since the beginning of pharmaceutical research, drug delivery methods have been an integral part of it. Polymeric micelles (PMs) have emerged as multifunctional nanoparticles in the current technological era of nanocarriers, and they have shown promise in a range of scientific fields. They can alter the release profile of integrated pharmacological substances and concentrate them in the target zone due to their improved permeability and retention, making them more suitable for poorly soluble medicines. With their ability to deliver poorly soluble chemotherapeutic drugs, PMs have garnered considerable interest in cancer. As a result of their remarkable biocompatibility, improved permeability, and minimal toxicity to healthy cells, while also their capacity to solubilize a wide range of drugs in their micellar core, PMs are expected to be a successful treatment option for cancer therapy in the future. Their nano-size enables them to accumulate in the tumor microenvironment (TME) via the enhanced permeability and retention (EPR) effect. In this review, our major aim is to focus primarily on the stellar applications of PMs in the field of cancer therapeutics along with its mechanism of action and its latest advancements in drug and gene delivery (DNA/siRNA) for cancer, using various therapeutic strategies such as crossing blood-brain barrier, gene therapy, photothermal therapy (PTT), and immunotherapy. Furthermore, PMs can be employed as "smart drug carriers," allowing them to target specific cancer sites using a variety of stimuli (endogenous and exogenous), which improve the specificity and efficacy of micelle-based targeted drug delivery. All the many types of stimulants, as well as how the complex of PM and various anticancer drugs react to it, and their pharmacodynamics are also reviewed here. In conclusion, commercializing engineered micelle nanoparticles (MNPs) for application in therapy and imaging can be considered as a potential approach to improve the therapeutic index of anticancer drugs. Furthermore, PM has stimulated intense interest in research and clinical practice, and in light of this, we have also highlighted a few PMs that have previously been approved for therapeutic use, while the majority are still being studied in clinical trials for various cancer therapies.
Collapse
Affiliation(s)
- Sharath Kumar Hari
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Ankita Gauba
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Neeraj Shrivastava
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India.
| | - Sudhir Kumar Jain
- School of Studies in Microbiology, Vikram University, Ujjain, Madhya Pradesh, 456010, India
| | - Akhilesh Kumar Pandey
- Department of Biological Sciences, Rani Durgavati University, Jabalpur, M.P, 482001, India.,Vikram University, Ujjain, Madhya Pradesh, 456010, India
| |
Collapse
|
44
|
Iervolino A, Spadafora L, Spadaccio C, Iervolino V, Biondi Zoccai G, Andreotti F. Myocardial Cell Preservation from Potential Cardiotoxic Drugs: The Role of Nanotechnologies. Pharmaceutics 2022; 15:87. [PMID: 36678717 PMCID: PMC9865222 DOI: 10.3390/pharmaceutics15010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiotoxic therapies, whether chemotherapeutic or antibiotic, represent a burden for patients who may need to interrupt life-saving treatment because of serious complications. Cardiotoxicity is a broad term, spanning from forms of heart failure induction, particularly left ventricular systolic dysfunction, to induction of arrhythmias. Nanotechnologies emerged decades ago. They offer the possibility to modify the profiles of potentially toxic drugs and to abolish off-target side effects thanks to more favorable pharmacokinetics and dynamics. This relatively modern science encompasses nanocarriers (e.g., liposomes, niosomes, and dendrimers) and other delivery systems applicable to real-life clinical settings. We here review selected applications of nanotechnology to the fields of pharmacology and cardio-oncology. Heart tissue-sparing co-administration of nanocarriers bound to chemotherapeutics (such as anthracyclines and platinum agents) are discussed based on recent studies. Nanotechnology applications supporting the administration of potentially cardiotoxic oncological target therapies, antibiotics (especially macrolides and fluoroquinolones), or neuroactive agents are also summarized. The future of nanotechnologies includes studies to improve therapeutic safety and to encompass a broader range of pharmacological agents. The field merits investments and research, as testified by its exponential growth.
Collapse
Affiliation(s)
- Adelaide Iervolino
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy
| | - Luigi Spadafora
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00189 Rome, Italy
| | | | - Valentina Iervolino
- Centre Hospitalier Universitaire Henri-Mondor, Faculté de Médecine, Université Paris Est Créteil, 94000 Créteil, France
| | - Giuseppe Biondi Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00189 Rome, Italy
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| | - Felicita Andreotti
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
45
|
Afzal O, Altamimi ASA, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I. Nanoparticles in Drug Delivery: From History to Therapeutic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4494. [PMID: 36558344 PMCID: PMC9781272 DOI: 10.3390/nano12244494] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 05/25/2023]
Abstract
Current research into the role of engineered nanoparticles in drug delivery systems (DDSs) for medical purposes has developed numerous fascinating nanocarriers. This paper reviews the various conventionally used and current used carriage system to deliver drugs. Due to numerous drawbacks of conventional DDSs, nanocarriers have gained immense interest. Nanocarriers like polymeric nanoparticles, mesoporous nanoparticles, nanomaterials, carbon nanotubes, dendrimers, liposomes, metallic nanoparticles, nanomedicine, and engineered nanomaterials are used as carriage systems for targeted delivery at specific sites of affected areas in the body. Nanomedicine has rapidly grown to treat certain diseases like brain cancer, lung cancer, breast cancer, cardiovascular diseases, and many others. These nanomedicines can improve drug bioavailability and drug absorption time, reduce release time, eliminate drug aggregation, and enhance drug solubility in the blood. Nanomedicine has introduced a new era for drug carriage by refining the therapeutic directories of the energetic pharmaceutical elements engineered within nanoparticles. In this context, the vital information on engineered nanoparticles was reviewed and conferred towards the role in drug carriage systems to treat many ailments. All these nanocarriers were tested in vitro and in vivo. In the coming years, nanomedicines can improve human health more effectively by adding more advanced techniques into the drug delivery system.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Aqsa Tariq
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of Punjab, Lahore 54000, Pakistan
| | - Naeem Riaz
- Department of Pharmacy, COMSATS University, Abbottabad 22020, Pakistan
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
46
|
Advances in Polymeric Colloids for Cancer Treatment. Polymers (Basel) 2022; 14:polym14245445. [PMID: 36559812 PMCID: PMC9788371 DOI: 10.3390/polym14245445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Polymer colloids have remarkable features and are gaining importance in many areas of research including medicinal science. Presently, the innovation of cancer drugs is at the top in the world. Polymer colloids have been used as drug delivery and diagnosis agents in cancer treatment. The polymer colloids may be of different types such as micelles, liposomes, emulsions, cationic carriers, and hydrogels. The current article describes the state-of-the-art polymer colloids for the treatment of cancer. The contents of this article are about the role of polymeric nanomaterials with special emphasis on the different types of colloidal materials and their applications in targeted cancer therapy including cancer diagnoses. In addition, attempts are made to discuss future perspectives. This article will be useful for academics, researchers, and regulatory authorities.
Collapse
|
47
|
El-Far M, Essam A, El-Senduny FF, Abd El-Azim AO, Yahia S, El-Sherbiny IM. Potential use of nanoformulated ascorbyl palmitate as a promising anticancer agent: First comparative assessment between nano and free forms. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Wu Y, Zhang Z, Wei Y, Qian Z, Wei X. Nanovaccines for cancer immunotherapy: Current knowledge and future perspectives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Endogenous stimuli-responsive nanoparticles for cancer therapy: From bench to bedside. Pharmacol Res 2022; 186:106522. [DOI: 10.1016/j.phrs.2022.106522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
50
|
Irinotecan-Loaded Polymeric Micelles as a Promising Alternative to Enhance Antitumor Efficacy in Colorectal Cancer Therapy. Polymers (Basel) 2022; 14:polym14224905. [PMID: 36433032 PMCID: PMC9694340 DOI: 10.3390/polym14224905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer has been considered a worldwide public health problem since current treatments are often ineffective. Irinotecan is a frontline chemotherapeutic agent that has dose-limiting side effects that compromise its therapeutic potential. Therefore, it is necessary to develop a novel, targeted drug delivery system with high therapeutic efficacy and an improved safety profile. Here, micellar formulations composed of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-mPEG2k) containing irinotecan were proposed as a strategy for colorectal cancer therapy. Firstly, the irinotecan-loaded micelles were prepared using the solvent evaporation method. Then, micelles were characterized in terms of size, polydispersity, zeta potential, entrapment efficiency, and release kinetics. Cytotoxicity and in vivo antitumor activity were evaluated. The micelles showed size around 13 nm, zeta potential near neutral (-0.5 mV), and encapsulation efficiency around 68.5% (irinotecan 3 mg/mL) with a sustained drug release within the first 8 h. The micelles were evaluated in a CT26 tumor animal model showing inhibition of tumor growth (89%) higher than free drug (68.7%). Body weight variation, hemolytic activity, hematological, and biochemical data showed that, at the dose of 7.5 mg/kg, the irinotecan-loaded micelles have low toxicity. In summary, our findings provide evidence that DSPE-mPEG2k micelles could be considered potential carriers for future irinotecan delivery and their possible therapeutic application against colorectal cancer.
Collapse
|