1
|
Zarneshan SN, Arkan E, Kiani A, Hosseini SZ, Abbaszadeh F, Fakhri S. Protective effects of polydatin amphiphilic chitosan nanocarriers against an aluminum chloride-induced model of Alzheimer's disease in rats: relevance to its anti-inflammatory and antioxidant effects. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:7605-7624. [PMID: 39786589 DOI: 10.1007/s00210-024-03696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) is the most frequent cause of dementia. Since there are complex pathophysiological mechanisms behind AD, and there is no effective treatment strategy, it is necessary to introduce novel multi-targeting agents with fewer side effects and higher efficacy. Polydatin (PD) is a naturally occurring resveratrol glucoside employing multiple mechanisms toward neuroprotection. In the current study, the anti-AD mechanisms of a novel amphiphilic chitosan nanocarrier formulation (ACN) of PD (NPD) were studied. After preparing the amphiphilic chitosan nanoformulation (i.e., NPD), physicochemical properties were assessed, including particle size, zeta potential, drug loading, drug release, MTT, Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). For in vivo analysis, aluminum chloride (AlCl3) was injected intraperitoneally for 14 days to induce AD in male Albino Wistar rats. To examine the anti-AD mechanisms of NPD, a total of 36 rats were divided into six groups of six. Behavioral tests, including open field, Y-maze, elevated plus maze, and shuttle box were done on days 7, 8, 14, and 15. Additionally, zymography, biochemical analysis, and histological studies were done. NPD, as a newly synthesized formulation for PD, potentially improved memory and cognitive behavioral parameters and reduced the activity of inflammatory matrix metalloproteinase 9 (MMP9) and serum nitrite levels, while increasing anti-inflammatory MMP2, antioxidant catalase, and glutathione. NPD also prevented morphological changes and increased neuronal survival in the CA2, CA4, and DG regions of the rat hippocampus. In conclusion, NPD is a novel formulation against AD through anti-inflammatory, antioxidant, and neuroprotective mechanisms.
Collapse
Affiliation(s)
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyede Zahra Hosseini
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Hoseinifar MJ, Aghaz F, Asadi Z, Asadi P, Nedaei SE, Arkan E, Pourmotabbed A, Bahrami G, Pourmotabbed T. Facilitating DNAzyme transport across the blood-brain barrier with nanoliposome technology. Sci Rep 2025; 15:18914. [PMID: 40442260 PMCID: PMC12122844 DOI: 10.1038/s41598-025-04433-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 05/27/2025] [Indexed: 06/02/2025] Open
Abstract
Recently, oligonucleotide post-transcriptional gene silencing, antisense oligonucleotides, small interfering RNA, ribozymes, and Deoxyribozymes (DNAzymes) have been used to tackle neurodegenerative diseases such as Alzheimer's and polyglutamine diseases like Huntington's disease. However, the primary obstacle to the therapeutic effectiveness of these oligonucleotides is the blood-brain barrier (BBB), a crucial protective mechanism limiting drug penetration into brain cells. In this study, we generated a DNAzyme-loaded nanoliposome (DNZ-NLP) as a drug delivery system to effectively deliver and release the DNAzymes to the brain. The investigation of physicochemical characteristics of fabricated nanoliposomes, particularly size, morphology, and surface charge, revealed that the size of DNZ-NLPs was ~ 68 nm, an optimum size for brain delivery. Cellular uptake and cytocompatibility studies using SH-SY5Y human neuroblastoma cells demonstrated that both blank nanoliposomes (B-NLPs) and DNZ-NLPs were cytocompatible, and DNZ-NLPs had a stable biphasic release profile in 48 h. Most importantly, about 60% of intravenously administered DNZ-NLPs to the healthy mouse were found in the brains of the animals. These findings confirmed that DNZ-NLPs passed the BBB. The controlled release of DNAzymes, the maximal cytocompatibility, and significantly improved BBB permeability suggest that our DNZ-NLPs offer a promising formulation for delivering all types of oligonucleotides to the brain for neurodegenerative disease treatments.
Collapse
Affiliation(s)
- Mohammad Javad Hoseinifar
- Nano Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faranak Aghaz
- Nano Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Nano Drug Delivery Research Center, Faculty of Pharmacy, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Zahra Asadi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Peyman Asadi
- Nano Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Arkan
- Nano Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Pourmotabbed
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tayebeh Pourmotabbed
- Department of Microbiology, Immunology, and Biochemistry, Health Science Center, University of Tennessee, Memphis, TN, USA.
| |
Collapse
|
3
|
Tahir D, Ardiansyah A, Heryanto H, Noor EEM, Mohamed MA. Chitosan-based hydrogels: A comprehensive review of transdermal drug delivery. Int J Biol Macromol 2025; 298:140010. [PMID: 39828168 DOI: 10.1016/j.ijbiomac.2025.140010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
This article provides a comprehensive review of chitosan-based hydrogels for transdermal drug delivery. It covers various aspects including the chemical structure of chitosan and its derivatives, crosslinking agents, hydrogel morphology, and drug loading and release behaviors. The review draws on 16 studies sourced from Scopus, focusing on how the composition and structure of hydrogels influence drug release. The chemical structure of chitosan and its derivatives, such as chitosan hydrochloride and quaternary ammonium chitosan, plays a crucial role in determining the mechanical properties and stability of hydrogels. Crosslinking agents, both chemical and physical, affect the hydrogel's strength and transparency as well as its drug release profile. Hydrogel morphology, including its porosity, significantly impacts drug loading capacity and release behavior. Hydrogel-based microneedles show potential in overcoming the limitations of traditional drug administration methods by enhancing skin penetration and drug loading efficiency. Additionally, factors such as swelling ratio, drug loading efficiency, and release behavior are influenced by crosslinking methods, material composition, and environmental conditions. This article concludes that the design and modification of chitosan-based hydrogels can optimize transdermal drug delivery by improving drug release profiles and stability.
Collapse
Affiliation(s)
- Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia.
| | | | - Heryanto Heryanto
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia
| | - Ervina Efzan Mhd Noor
- Center for Manufacturing and Environment Sustainability (CMES) and Faculty of Engineering and Technology (FET), Multimedia University (MMU), Ayer Keroh 5450, Malaysia
| | - Mohd Ambri Mohamed
- Institute of Microengineering and Nanoelectronics (IMEN), The National University of Malaysia, Bangi, Selangor 43600, Malaysia
| |
Collapse
|
4
|
Jabri T, Daalah M, Alawfi BS, Gul J, Ahmed U, Shah MR, Khan NA, Siddiqui R, Ying TY, Tong YJ, Anwar A. Drug modifications: graphene oxide-chitosan loading enhanced anti-amoebic effects of pentamidine and doxycycline. Parasitol Res 2024; 123:387. [PMID: 39565414 DOI: 10.1007/s00436-024-08389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024]
Abstract
Acanthamoeba castellanii is the causative pathogen of a severe eye infection, known as Acanthamoeba keratitis and a life-threatening brain infection, named granulomatous amoebic encephalitis. Current treatments are problematic and costly and exhibit limited efficacy against Acanthamoeba parasite, especially the cyst stage. In parallel to drug discovery and drug repurposing efforts, drug modification is also an important approach to tackle infections, especially against neglected parasites such as free-living amoebae: Acanthamoeba. In this study, we determined whether modifying pentamidine and doxycycline through chitosan-functionalized graphene oxide loading enhances their anti-amoebic effects. Various concentrations of doxycycline, pentamidine, graphene oxide, chitosan-functionalized graphene oxide, and chitosan-functionalized graphene oxide loaded with doxycycline and pentamidine were investigated for amoebicidal effects against pathogenic A. castellanii belonging to the T4 genotype. Lactate dehydrogenase assays were performed to determine toxic effects of these various drugs and nanoconjugates against human cells. The findings revealed that chitosan-functionalized graphene oxide loaded with doxycycline demonstrated potent amoebicidal effects. Nanomaterials significantly (p < 0.05) inhibited excystation and encystation of A. castellanii without exhibiting toxic effects against human cells in a concentration-dependent manner, as compared with other formulations. These results indicate that drug modifications coupled with nanotechnology may be a viable avenue in the rationale development of effective therapies against Acanthamoeba infections.
Collapse
Affiliation(s)
- Tooba Jabri
- International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Meshal Daalah
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| | - Bader S Alawfi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, 42353, Madinah, Saudi Arabia
| | - Jasra Gul
- International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Naveed Ahmed Khan
- School of Science, College of Science and Engineering, University of Derby, Derby, DE22 1GB, UK.
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey.
| | - Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey.
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Tan Yee Ying
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Yeo Jia Tong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia.
| |
Collapse
|
5
|
Darwish AB, Mohsen AM, ElShebiney S, Elgohary R, Younis MM. Development of chitosan lipid nanoparticles to alleviate the pharmacological activity of piperine in the management of cognitive deficit in diabetic rats. Sci Rep 2024; 14:8247. [PMID: 38589438 PMCID: PMC11002014 DOI: 10.1038/s41598-024-58601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
The aim of the present study was to prepare and evaluate Piperine (PP) loaded chitosan lipid nanoparticles (PP-CLNPs) to evaluate its biological activity alone or in combination with the antidiabetic drug Metformin (MET) in the management of cognitive deficit in diabetic rats. Piperine was successfully loaded on CLNPs prepared using chitosan, stearic acid, Tween 80 and Tripolyphosphate (TPP) at different concentrations. The developed CLNPs exhibited high entrapment efficiency that ranged from 85.12 to 97.41%, a particle size in the range of 59.56-414 nm and a negatively charged zeta potential values (- 20.1 to - 43.9 mV). In vitro release study revealed enhanced PP release from CLNPs compared to that from free PP suspensions for up to 24 h. In vivo studies revealed that treatment with the optimized PP-CLNPs formulation (F2) exerted a cognitive enhancing effect and ameliorated the oxidative stress associated with diabetes. PP-CLNPs acted as an effective bio-enhancer which increased the potency of metformin in protecting brain tissue from diabetes-induced neuroinflammation and memory deterioration. These results suggested that CLNPs could be a promising drug delivery system for encapsulating PP and thus can be used as an adjuvant therapy in the management of high-risk diabetic cognitive impairment conditions.
Collapse
Affiliation(s)
- Asmaa Badawy Darwish
- Pharmaceutical Technology Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Amira Mohamed Mohsen
- Pharmaceutical Technology Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Shaimaa ElShebiney
- Narcotics, Ergogenics, and Poisons Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics, and Poisons Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mostafa Mohamed Younis
- Pharmaceutical Technology Department, National Research Centre (Affiliation ID: 60014618), El-Buhouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
6
|
Bahremand K, Aghaz F, Bahrami K. Enhancing Cisplatin Efficacy with Low Toxicity in Solid Breast Cancer Cells Using pH-Charge-Reversal Sericin-Based Nanocarriers: Development, Characterization, and In Vitro Biological Assessment. ACS OMEGA 2024; 9:14017-14032. [PMID: 38560009 PMCID: PMC10976391 DOI: 10.1021/acsomega.3c09361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Platinum-based chemotherapeutic agents are widely employed in cancer treatment because of their effectiveness in targeting DNA. However, this indiscriminate action often affects both cancerous and normal cells, leading to severe side effects and highlighting the need for innovative approaches in achieving precise drug delivery. Nanotechnology presents a promising avenue for addressing these challenges. Protein-based nanocarriers exhibit promising capabilities in the realm of cancer drug delivery with silk sericin nanoparticles standing out as a leading contender. This investigation focuses on creating a sericin-based nanocarrier (SNC) featuring surface charge reversal designed to effectively transport cisplatin (Cispt-SNC) into MCF-7 breast cancer cells. Utilizing AutoDock4.2, our molecular docking analyses identified key amino acids and revealed distinctive conformational clusters, providing insights into the drug-protein interaction landscape and highlighting the potential of sericin as a carrier for controlled drug release. The careful optimization and fabrication of sericin as the carrier material were achieved through flash nanoprecipitation, a straightforward and reproducible method that is devoid of intricate equipment. The physicochemical properties of SNCs and Cispt-SNCs, particularly concerning size, surface charge, and morphology, were evaluated using dynamic light scattering (DLS) and scanning electron microscopy (SEM). Chemical and conformational analyses of the nanocarriers were conducted using Fourier-transform infrared spectroscopy (FTIR) and circular dichroism (CD), and elemental composition analysis was performed through energy-dispersive X-ray spectroscopy (EDX). This approach aimed to achieve the smallest nanoparticle size for Cispt-SNCs (180 nm) and high drug encapsulation efficiency (84%) at an optimal sericin concentration of 0.1% (w/v), maintaining a negative net charge at a physiological pH (7.4). Cellular uptake and cytotoxicity were investigated in MCF-7 breast cancer cells. SNCs demonstrated stability and exhibited a pH-dependent drug release behavior, aligning with the mildly acidic tumor microenvironment (pH 6.0-7.0). Efficient cellular uptake of Cispt-SNC, along with DNA fragmentation and chromatin condensation, was found at pH 6, leading to cell apoptosis. These results collectively indicate the potential of SNCs for achieving controlled drug release in a tumor-specific context. Our in vitro studies reveal the cytotoxicity of both cisplatin and Cispt-SNCs on MCF-7 cells. Cisplatin significantly reduced cell viability at 10 μM concentration (IC50), and the unique combination of sericin and cisplatin showcased enhanced cell viability compared to cisplatin alone, suggesting that controlled drug release is indicated by a gradient decrease in cell viability and highlighting SNCs as promising carriers. The study underscores the promise of protein-based nanocarriers in advancing targeted drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Kiana Bahremand
- Nano Drug Delivery
Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Faranak Aghaz
- Nano Drug Delivery
Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Kiumars Bahrami
- Nanoscience and Nanotechnology
Research Center (NNRC), Razi University, Kermanshah 67144-14971, Iran
| |
Collapse
|
7
|
Cheng X, Zou Q, Zhang H, Zhu J, Hasan M, Dong F, Liu X, Li J, Wu Y, Lv X, Wang K, Deng X, Liu Z, Jiang X. Effects of a chitosan nanoparticles encapsulation on the properties of litchi polyphenols. Food Sci Biotechnol 2023; 32:1861-1871. [PMID: 37781058 PMCID: PMC10541391 DOI: 10.1007/s10068-023-01303-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 10/03/2023] Open
Abstract
Litchi polyphenols have very specific biological activities. Nevertheless, the low and inconsistent oral bioavailability and instability hinder the further application of litchi polyphenols in food systems. This work prepared litchi polyphenols loaded chitosan nanoparticles (LP-CSNPs) by ionic gelation method to enhance the encapsulation on the properties of litchi polyphenols. The optimum conditions of formation via single factors and the Box-Behnken design were chitosan (CS) concentration 1.065 mg/mL, sodium tripolyphosphate (TPP) concentration 0.975 mg/mL, and the mass ratios of polyphenols and CS 1:1 with encapsulation efficiency (EE%) of 45.53%. LP-CSNPs presented the nanosized range of particle size (mean 170 nm), excellent polydispersity index (PDI) (0.156 ± 0.025), and zeta potential values (+ 35.44 ± 0.59). The in vitro release in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8) during 100 h was 58.34% and 81.68%, respectively. LP-CSNPs could effectively improve the storage stability and had great antibacterial activity compared with unencapsulated litchi polyphenols.
Collapse
Affiliation(s)
- Xingan Cheng
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Qiwen Zou
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Hanhui Zhang
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Jianwei Zhu
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Murtaza Hasan
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Fangyun Dong
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Xin Liu
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Junjie Li
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Yuehua Wu
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Xiaojing Lv
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Keqiang Wang
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Xiangling Deng
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Zhanmei Liu
- Department of Teaching and Research, Guangzhou Nanyang Polytechnic College, Guangzhou, 510900 Guangdong China
| | - Xuhong Jiang
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| |
Collapse
|
8
|
Asfour MH, Salama AAA. Coating with tripolyphosphate-crosslinked chitosan as a novel approach for enhanced stability of emulsomes following oral administration: Rutin as a model drug with improved anti-hyperlipidemic effect in rats. Int J Pharm 2023; 644:123314. [PMID: 37579826 DOI: 10.1016/j.ijpharm.2023.123314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/21/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The aim of the current study is to preserve the emulsomal vesicles against the harsh condition of gastrointestinal tract (GIT), after oral administration, employing tripolyphosphate (TPP)-crosslinked chitosan as a protective coating layer. Rutin was used as a model drug with evaluation of anti-hyperlipidemic activity in rats. The rutin loaded unmodified emulsomes were prepared using tripalmitin and soybean phosphatidylcholine (SPC), by thin film method. Drug loading for the prepared formulations ranged between 6.80 and 15.50 %. The selected formulation (RT-Emuls-6) comprised tripalmitin and SPC, molar ratio 1:1, and exhibited particle size (PS) and zeta potential (ZP) of 150.40 nm and -35.35 mV, respectively. RT-Emuls-6 was then modified by coating with either solely chitosan (RT-Emuls-6-Ch) or TPP-crosslinked chitosan (RT-Emuls-6-Ch-TPP-1). The latter exhibited PS and ZP values of 269.60 nm and 37.17 mV, respectively. Transmission electron microscopy of RT-Emuls-6-Ch-TPP-1 showed a dense pale greyish layer of a coating layer of chitosan crosslinked with TPP surrounding SPC bilayers. Fourier transform infrared spectroscopy analysis along with X-ray powder diffraction confirmed cross-linking between chitosan and TPP. Stability study in the simulated GIT fluids revealed that the order of rutin retained percentage was RT-Emuls-6-Ch-TPP-1 > RT-Emuls-6-Ch > RT-Emuls-6 (80.02, 50.66 and 44.41 %, respectively for simulated gastric fluid and 63.50, 55.66 and 24.00 %, respectively for simulated intestinal fluid, after 2 h incubation). Anti-hyperlipidemic activity of rutin loaded emulsomes was evaluated, after oral administration, in a high fat diet-induced hyperlipidemia in rats. The order of activity was as follows: RT-Emuls-6-Ch-TPP-1 > RT-Emuls-6-Ch > RT-Emuls-6 > free rutin. These findings revealed the potential of TPP-crosslinked chitosan as a protective coating layer for enhancing the stability of emulsomes against the harsh condition of GIT. RT-Emuls-6-Ch-TPP-1 had a potent anti-hyperlipidemic activity via regulation of lipids, oxidative stress, irisin and uncoupling protein 1.
Collapse
Affiliation(s)
- Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth Street, Dokki, Cairo 12622, Egypt.
| | - Abeer A A Salama
- Pharmacology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| |
Collapse
|
9
|
Aghaz F, Asadi Z, Sajadimajd S, Kashfi K, Arkan E, Rahimi Z. Codelivery of resveratrol melatonin utilizing pH responsive sericin based nanocarriers inhibits the proliferation of breast cancer cell line at the different pH. Sci Rep 2023; 13:11090. [PMID: 37422485 PMCID: PMC10329705 DOI: 10.1038/s41598-023-37668-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023] Open
Abstract
Protein-based nanocarriers have demonstrated good potential for cancer drug delivery. Silk sericin nano-particle is arguably one of the best in this field. In this study, we developed a surface charge reversal sericin-based nanocarrier to co-deliver resveratrol and melatonin (MR-SNC) to MCF-7 breast cancer cells as combination therapy. MR-SNC was fabricated with various sericin concentrations via flash-nanoprecipitation as a simple and reproducible method without complicated equipment. The nanoparticles were subsequently characterized for their size, charge, morphology and shape by dynamic light scattering (DLS) and scanning electron microscope (SEM). Nanocarriers chemical and conformational analysis were done by fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD) respectively. In vitro drug release was determined at different pH values (7.45, 6.5 and 6). The cellular uptake and cytotoxicity were studies using breast cancer MCF-7 cells. MR-SNC fabricated with the lowest sericin concentration (0.1%), showed a desirable 127 nm size, with a net negative charge at physiological pH. Sericin structure was preserved entirely in the form of nano-particles. Among the three pH values we applied, the maximum in vitro drug release was at pH 6, 6.5, and 7.4, respectively. This pH dependency showed the charge reversal property of our smart nanocarrier via changing the surface charge from negative to positive in mildly acidic pH, destructing the electrostatic interactions between sericin surface amino acids. Cell viability studies demonstrated the significant toxicity of MR-SNC in MCF-7 cells at all pH values after 48 h, suggesting a synergistic effect of combination therapy with the two antioxidants. The efficient cellular uptake of MR-SNC, DNA fragmentation and chromatin condensation was found at pH 6. Nutshell, our result indicated proficient release of the entrapped drug combination from MR-SNC in an acidic environment leading to cell apoptosis. This work introduces a smart pH-responsive nano-platform for anti-breast cancer drug delivery.
Collapse
Affiliation(s)
- Faranak Aghaz
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Asadi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soraya Sajadimajd
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
10
|
Zhang D, He J, Cui J, Wang R, Tang Z, Yu H, Zhou M. Oral Microalgae-Nano Integrated System against Radiation-Induced Injury. ACS NANO 2023; 17:10560-10576. [PMID: 37253200 DOI: 10.1021/acsnano.3c01502] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The increasing applications of ionizing radiation in society raise the risk of radiation-induced intestinal and whole-body injury. Astaxanthin is a powerful antioxidant to reduce the reactive oxygen generated from radiation and the subsequent damage. However, the oral administration of astaxanthin remains challenging owing to its low solubility and poor bioavailability. Herein, we facilely construct an orally used microalgae-nano integrated system (SP@ASXnano) against radiation-induced intestinal and whole-body injury, combining natural microalgae Spirulina platensis (SP) with astaxanthin nanoparticles (ASXnano). SP and ASXnano show complementation in drug delivery to improve distribution in the intestine and blood. SP displays limited gastric drug loss, prolonged intestinal retention, constant ASXnano release, and progressive degradation. ASXnano improves drug solubility, gastric stability, cell uptake, and intestinal absorption. SP and ASXnano have synergy in many aspects such as anti-inflammation, microbiota protection, and fecal short-chain fatty acid up-regulation. In addition, the system is ensured with biosafety for long-term administration. The system organically combines the properties of microalgae and nanoparticles, which was expected to expand the medical application of SP as a versatile drug delivery platform.
Collapse
Affiliation(s)
- Dongxiao Zhang
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jian He
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jiarong Cui
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Ruoxi Wang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Hongyu Yu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Min Zhou
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
11
|
Liu R, Gan J, Du M, Kong X, Xu C, Lü Y, Cao S, Meng T, Wang B, Yu T. Preparation and Characterization of Multilayer pH-Responsive Hydrogel Loaded Ganoderma lucidum Peptides. Foods 2023; 12:foods12071481. [PMID: 37048304 PMCID: PMC10094239 DOI: 10.3390/foods12071481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
To develop a safe, targeted, and efficient assembly of a stable polypeptide delivery system, in this work, chitosan, sodium alginate, and sodium tripolyphosphate were used as materials for the preparation of hydrogels. M-SCT hydrogels were prepared by ionic gelation and the layer-by-layer (LBL) method. The composite hydrogels exhibited excellent pH sensitivity and Ganoderma lucidum peptides (GLP) loading capacity. The prepared hydrogels were characterized and evaluated. The internal three-dimensional network structure of the hydrogel was observed by scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy confirmed the electrostatic interactions among the components. X-ray diffraction (XRD) was used to observe the crystal structure of the hydrogel. The maximum peptide encapsulation efficiency was determined to be 81.73%. The digestion stability and thermal stability of M-SCT hydrogels loaded GLP were demonstrated to be improved. The amount of peptides released from the GLP/M-SCT-0.75 hydrogels in simulated gastric fluid was lower than 30%. In addition, the ABTS assays showed that the free radical scavenging ability of the GLP/M-SCT-0.75 hydrogels confirmed the efficacy of the hydrogels in retaining the antioxidant activity of GLP. The study suggested the M-SCT-0.75 hydrogels had a great deal of potential as a peptide carrier for oral delivery.
Collapse
Affiliation(s)
- Ruobing Liu
- College of Life Science, Yantai University, Yantai 264000, China
| | - Jing Gan
- College of Life Science, Yantai University, Yantai 264000, China
| | - Mengdi Du
- College of Life Science, Yantai University, Yantai 264000, China
| | - Xiao Kong
- College of Life Science, Yantai University, Yantai 264000, China
| | - Chunxia Xu
- College of Life Science, Yantai University, Yantai 264000, China
| | - Yue Lü
- College of Life Science, Yantai University, Yantai 264000, China
| | - Shengliang Cao
- College of Life Science, Yantai University, Yantai 264000, China
| | - Ting Meng
- College of Life Science, Yantai University, Yantai 264000, China
| | - Bo Wang
- College of Life Science, Yantai University, Yantai 264000, China
| | - Tianying Yu
- College of Life Science, Yantai University, Yantai 264000, China
| |
Collapse
|
12
|
Motiei M, Mišík O, Truong TH, Lizal F, Humpolíček P, Sedlařík V, Sáha P. Engineering of inhalable nano-in-microparticles for co-delivery of small molecules and miRNAs. DISCOVER NANO 2023; 18:38. [PMID: 37382704 DOI: 10.1186/s11671-023-03781-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/27/2023] [Indexed: 06/30/2023]
Abstract
In this study, novel Trojan particles were engineered for direct delivery of doxorubicin (DOX) and miR-34a as model drugs to the lungs to raise local drug concentration, decrease pulmonary clearance, increase lung drug deposition, reduce systemic side effects, and overcome multi-drug resistance. For this purpose, targeted polyelectrolyte nanoparticles (tPENs) developed with layer-by-layer polymers (i.e., chitosan, dextran sulfate, and mannose-g-polyethyleneimine) were spray dried into a multiple-excipient (i.e., chitosan, leucine, and mannitol). The resulting nanoparticles were first characterized in terms of size, morphology, in vitro DOX release, cellular internalization, and in vitro cytotoxicity. tPENs showed comparable cellular uptake levels to PENs in A549 cells and no significant cytotoxicity on their metabolic activity. Co-loaded DOX/miR-34a showed a greater cytotoxicity effect than DOX-loaded tPENs and free drugs, which was confirmed by Actin staining. Thereafter, nano-in-microparticles were studied through size, morphology, aerosolization efficiency, residual moisture content, and in vitro DOX release. It was demonstrated that tPENs were successfully incorporated into microspheres with adequate emitted dose and fine particle fraction but low mass median aerodynamic diameter for deposition into the deep lung. The dry powder formulations also demonstrated a sustained DOX release at both pH values of 6.8 and 7.4.
Collapse
Affiliation(s)
- Marjan Motiei
- Centre of Polymer Systems, University Institute, TBU, Tr. Tomase Bati, 5678, Zlin, Czech Republic.
| | - Ondrej Mišík
- Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 61669, Brno, Czech Republic
| | - Thanh Huong Truong
- Centre of Polymer Systems, University Institute, TBU, Tr. Tomase Bati, 5678, Zlin, Czech Republic
| | - Frantisek Lizal
- Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 61669, Brno, Czech Republic
| | - Petr Humpolíček
- Centre of Polymer Systems, University Institute, TBU, Tr. Tomase Bati, 5678, Zlin, Czech Republic
| | - Vladimír Sedlařík
- Centre of Polymer Systems, University Institute, TBU, Tr. Tomase Bati, 5678, Zlin, Czech Republic
| | - Petr Sáha
- Centre of Polymer Systems, University Institute, TBU, Tr. Tomase Bati, 5678, Zlin, Czech Republic
| |
Collapse
|
13
|
Whey Protein Isolate-Chitosan PolyElectrolyte Nanoparticles as a Drug Delivery System. Molecules 2023; 28:molecules28041724. [PMID: 36838712 PMCID: PMC9960267 DOI: 10.3390/molecules28041724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Whey protein isolate (WPI), employed as a carrier for a wide range of bioactive substances, suffers from a lack of colloidal stability in physiological conditions. Herein, we developed innovative stabilized PolyElectrolyte Nanoparticles (PENs) obtained by two techniques: polyelectrolyte complexation of negatively charged WPI and positively charged chitosan (CS), and ionic gelation in the presence of polyanion tripolyphosphate (TPP). Therefore, the WPI-based core was coated with a CS-based shell and then stabilized by TPP at pH 8. The nanostructures were characterized by physiochemical methods, and their encapsulation efficiency and in vitro release were evaluated. The spherical NPs with an average size of 248.57 ± 5.00 nm and surface charge of +10.80 ± 0.43 mV demonstrated high encapsulation efficiency (92.79 ± 0.69) and sustained release of a positively charged chemotherapeutic agent such as doxorubicin (DOX). Z-average size and size distribution also presented negligible increases in size and aggregates during the three weeks. The results obtained confirm the effectiveness of the simultaneous application of these methods to improve the colloidal stability of PEN.
Collapse
|
14
|
Rostami E. Recent achievements in sodium alginate-based nanoparticles for targeted drug delivery. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Zhang F, Zhang C, Fu S, Liu H, Han M, Fan X, Zhang H, Li W. Amphiphilic Cationic Peptide-Coated PHA Nanosphere as an Efficient Vector for Multiple-Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3024. [PMID: 36080060 PMCID: PMC9457696 DOI: 10.3390/nano12173024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Amphiphilic core-shell (ACS) nanoparticles are gaining increasing research interest for multi-drug delivery in cancer therapy. In this work, a new cationic peptide-coated PHA nanosphere was prepared by self-assembly of a hydrophobic core of biodegradable poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and a hydrophilic shell of fusion proteins of PHA granule-associated protein (PhaP) and cationic peptide RALA through a strong hydrophobic effect. The hydrophobic drug curcumin (Cur) was encapsulated in PHBHHx nanoparticles. The chemotherapy drug 5-fluorouracil (5-FU) was administered in the form of its metabolite oligomeric 5-fluorodeoxyuridine (FUdR). Fifteen consecutive FUdR (FUdR15S) were adsorbed on the surface of PHBHHx nanoparticles by electrostatic interaction with RALA to form Cur@PHBX-PR/FUdR15S. Such amphiphilic cationic nanospheres had 88.3% EE of Cur and the drug loading of Cur and FUdR were 7.8% and 12.1%. The dual-drug-loaded nanospheres showed a time-differential release of Cur and FUdR. In addition, Cur@PHBX-PR/FUdR15S exhibited excellent anticancer activity and played a vital role in promoting the synergistic effect of FUdR and Cur in gastric cancer cells. The exploration of antitumor mechanisms demonstrated that Cur improved the activity of apoptosis-related proteins and cancer cells sensitized to FUdR. This amphiphilic core-shell system can serve as a general platform for sequential delivery of multiple drugs to treat several cancer cells.
Collapse
Affiliation(s)
- Fanghua Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Chao Zhang
- Department of Life Science, Hengshui University, Hengshui 053000, China
| | - Shuangqing Fu
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Huandi Liu
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Mengnan Han
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Xueyu Fan
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Honglei Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wei Li
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
16
|
Alhodieb FS, Barkat MA, Barkat HA, Hadi HA, Khan MI, Ashfaq F, Rahman MA, Hassan MZ, Alanezi AA. Chitosan-modified nanocarriers as carriers for anticancer drug delivery: Promises and hurdles. Int J Biol Macromol 2022; 217:457-469. [PMID: 35798082 DOI: 10.1016/j.ijbiomac.2022.06.201] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
With the advent of drug delivery, various polymeric materials are being explored to fabricate numerous nanocarriers. Each polymer is associated with a few characteristics attributes which further facilitate its usage in drug delivery. One such polymer is chitosan (CS), which is extensively employed to deliver a variety of drugs to various targets, especially to cancer cells. The desired properties like biological origin, bio-adhesive, biocompatibility, the scope of chemical modification, biodegradability and controlled drug release make it a highly rough after polymer in pharmaceutical nanotechnology. The present review attempts to compile various chemical modifications on CS and showcase the outcomes of the derived nanocarriers, especially in cancer chemotherapy and drug delivery.
Collapse
Affiliation(s)
- Fahad Saad Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Arrass, Qassim University, P.O. BOX:6666, Buraidah, 51452, Saudi Arabia.
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia.
| | - Harshita Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia; Dermatopharmaceutics Research Group, Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang 25200, Malaysia.
| | - Hazrina Ab Hadi
- Dermatopharmaceutics Research Group, Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang 25200, Malaysia.
| | - Muhammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arrass, Qassim University, P.O. BOX:6666, Buraidah, 51452, Saudi Arabia.
| | - Fauzia Ashfaq
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| | | | - Mohd Zaheen Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Abdulkareem A Alanezi
- Department of Pharmaceuics, College of pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al-Batin 39524, Saudi Arabia.
| |
Collapse
|
17
|
Kaur P, Ghosh S, Bhowmick A, Gadhave K, Datta S, Ghosh A, Garg N, Mahajan RL, Basu B, Choudhury D. Bacterioboat-A novel tool to increase the half-life period of the orally administered drug. SCIENCE ADVANCES 2022; 8:eabh1419. [PMID: 35275724 PMCID: PMC8916724 DOI: 10.1126/sciadv.abh1419] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
The short half-life in the GI tract necessitates an excess of drugs causing side effects of oral formulations. Here, we report the development and deployment of Bacterioboat, which consists of surface-encapsulated mesoporous nanoparticles on metabolically active Lactobacillus reuteri as a drug carrier suitable for oral administration. Bacterioboat showed up to 16% drug loading of its dry weight, intestinal anchorage around alveoli regions, sustained release, and stability in physiological conditions up to 24 hours. In vivo studies showed that oral delivery of 5-fluorouracil leads to increased potency, resulting in improved shrinkage of solid tumors, enhanced life expectancy, and reduced side effects. This novel design and development make this system ideal for orally administrable drugs with low solubility or permeability or both and even making them effective at a lower dose.
Collapse
Affiliation(s)
- Parmandeep Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Sandip Ghosh
- Department of Neuroendocrinology and Experimental Hematology, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Arghya Bhowmick
- Department of Biochemistry, Bose Institute, EN Block, Sector V, Bidhannagar, Kolkata, West Bengal 700091, India
| | - Kundlik Gadhave
- Indian Institute of Technology (IIT) Mandi, Mandi, Himachal Pradesh, India
| | - Satabdi Datta
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, EN Block, Sector V, Bidhannagar, Kolkata, West Bengal 700091, India
| | - Neha Garg
- Indian Institute of Technology (IIT) Mandi, Mandi, Himachal Pradesh, India
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Roop L. Mahajan
- Thapar Institute of Engineering and Technology–Virginia Tech (USA) Centre for Excellence in Material Sciences; Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Biswarup Basu
- Department of Neuroendocrinology and Experimental Hematology, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
- Thapar Institute of Engineering and Technology–Virginia Tech (USA) Centre for Excellence in Material Sciences; Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
18
|
One-Pot Synthesis of Amphiphilic Biopolymers from Oxidized Alginate and Self-Assembly as a Carrier for Sustained Release of Hydrophobic Drugs. Polymers (Basel) 2022; 14:polym14040694. [PMID: 35215606 PMCID: PMC8879484 DOI: 10.3390/polym14040694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
In this paper, we developed an organic solvent-free, eco-friendly, simple and efficient one-pot approach for the preparation of amphiphilic conjugates (Ugi-OSAOcT) by grafting octylamine (OCA) to oxidized sodium alginate (OSA). The optimum reaction parameters that were obtained based on the degree of substitution (DS) of Ugi-OSAOcT were a reaction time of 12 h, a reaction temperature of 25 °C and a molar ratio of 1:2.4:3:3.3 (OSA:OCA:HAc:TOSMIC), respectively. The chemical structure and composition were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR), X-ray diffraction (XRD), thermogravimetry analyser (TGA), gel permeation chromatography (GPC) and elemental analysis (EA). It was found that the Ugi-OSAOcT conjugates with a CMC value in the range of 0.30–0.085 mg/mL could self-assemble into stable and spherical micelles with a particle size of 135.7 ± 2.4–196.5 ± 3.8 nm and negative surface potentials of −32.8 ± 0.4–−38.2 ± 0.8 mV. Furthermore, ibuprofen (IBU), which served as a model poorly water-soluble drug, was successfully incorporated into the Ugi-OSAOcT micelles by dialysis method. The drug loading capacity (%DL) and encapsulation efficiency (%EE) of the IBU-loaded Ugi-OSAOcT micelles (IBU/Ugi-OSAOcT = 3:10) reached as much as 10.9 ± 0.4–14.6 ± 0.3% and 40.8 ± 1.6–57.2 ± 1.3%, respectively. The in vitro release study demonstrated that the IBU-loaded micelles had a sustained and pH-responsive drug release behavior. In addition, the DS of the hydrophobic segment on an OSA backbone was demonstrated to have an important effect on IBU loading and drug release behavior. Finally, the in vitro cytotoxicity assay demonstrated that the Ugi-OSAOcT conjugates exhibited no significant cytotoxicity against RAW 264.7 cells up to 1000 µg/mL. Therefore, the amphiphilic Ugi-OSAOcT conjugates synthesized by the green method exhibited great potential to load hydrophobic drugs, acting as a promising nanocarrier capable of responding to pH for sustained release of hydrophobic drugs.
Collapse
|
19
|
Alvi Z, Akhtar M, Mahmood A, Ur-Rahman N, Nazir I, Sadaquat H, Ijaz M, Syed SK, Waqas MK, Wang Y. Enhanced Oral Bioavailability of Epalrestat SBE 7-β-CD Complex Loaded Chitosan Nanoparticles: Preparation, Characterization and in-vivo Pharmacokinetic Evaluation. Int J Nanomedicine 2022; 16:8353-8373. [PMID: 35002232 PMCID: PMC8721161 DOI: 10.2147/ijn.s339857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Background Epalrestat (EPL) is a carboxylic acid derivative with poor aqueous solubility and its pharmacokinetic features are not fully defined. Purpose Current research aimed to fabricate inclusion complexation of EPL with SBE7 β-CD (IC) and EPL/SBE7 β-CD CS NPs (NP). Methods EPL was complexed with SBE7 β-CD using the co-precipitation method, and the prepared complex was fabricated into nanoparticles using the ionic gelation method. The prepared formulations were characterized for particle size analysis, surface morphology, and in vitro dissolution study. The % inhibition of EPL against α-glucosidase enzyme was also conducted to check the drug’s antidiabetic activity. Finally, an in vivo pharmacokinetic investigation was carried out to determine the concentration of EPL in rabbit plasma of the prepared formulation. In vivo pharmacokinetic studies were conducted by giving a single dose of pure EPL, IC, and NP. Results The size of NP was found to be 241.5 nm with PDI 0.363 and zeta potential of +31.8 mV. The surface of the prepared NP was non-porous, smooth and spherical when compared with pure EPL, SBE7 β-CD and IC. The cumulative drug release (%) from IC and NP was 73% and 88%, respectively, as compared to pure drug (25%). The % inhibition results for in vitro α-glucosidase was reported to be 74.1% and the predicted binding energy for in silico molecular docking was calculated to be −6.6 kcal/mol. The calculated Cmax values for EPL, IC and NP were 4.75±3.64, 66.91±7.58 and 84.27±6.91 μg/mL, respectively. The elimination half-life of EPL was 4 h and reduced to 2 h for IC and NP. The AUC0-α for EPL, IC and NP were 191.5±164.63, 1054.23±161.77 and 1072.5±159.54 μg/mL*h, respectively. Conclusion Taking these parameters into consideration it can be concluded that IC and NP have prospective applications for greatly improved delivery and regulatedt release of poorly water soluble drugs, potentially leading to increase therapeutic efficacy and fewer side effects.
Collapse
Affiliation(s)
- Zunaira Alvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan.,Department of Medical Laboratory Technology, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi, United Arab Emirates
| | - Nisar Ur-Rahman
- Department of Pharmacy, Royal College of Medical Sciences (RIMS), Multan, Punjab, 60000, Pakistan
| | - Imran Nazir
- Bahawal Victoria Hospital, Bahawalpur, Punjab, 63100, Pakistan
| | - Hadia Sadaquat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Shahzada Khurram Syed
- Department of Basic Medical Sciences, School of Health Sciences, University of Management and Technology, Lahore, Pakistan
| | - Muhammad Khurram Waqas
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yi Wang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201600, People's Republic of China
| |
Collapse
|
20
|
Wani TU, Pandith AH, Sheikh FA. Polyelectrolytic nature of chitosan: Influence on physicochemical properties and synthesis of nanoparticles. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102730] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Ulvan loaded graphene oxide nanoparticle fabricated with chitosan and d-mannose for targeted anticancer drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102760] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Motiei M, Aboutalebi F, Forouzanfar M, Dormiani K, Nasr-Esfahani MH, Mirahmadi-Zare SZ. Smart co-delivery of miR-34a and cytotoxic peptides (LTX-315 and melittin) by chitosan based polyelectrolyte nanocarriers for specific cancer cell death induction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112258. [PMID: 34474818 DOI: 10.1016/j.msec.2021.112258] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 12/01/2022]
Abstract
A novel polyelectrolyte nanocarrier was synthesized via layer-by-layer self-assembly of polycationic and polyanionic chains. The nanocarrier is composed of polyglutamate grafted chitosan core, dextran sulfate as a complexing agent, and polyethyleneimine shell decorated with folic acid. This polyelectrolyte complex has unique physicochemical properties so that the core is considered as an efficient carrier for LTX-315 and melittin peptides, and the shell is suitable for delivery of miR-34a. The spherical nanocarriers with an average size of 123 ± 5 nm and a zeta potential of -36 ± 1 mV demonstrated controlled-release of gene and peptides ensured a synergistic effect in establishing multiple cell death pathways on chemoresistance human breast adenocarcinoma cell line, MDA-MB-231. In vitro cell viability assays also revealed no cytotoxicity for the nanocarriers, and an IC50 of 15 μg/mL and 150 μg/mL for melittin and LTX-315, respectively, after 48 h, whereas co-delivery of melittin with miR-34a increased smart death induction by 54%.
Collapse
Affiliation(s)
- Marjan Motiei
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran; Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| | - Fatemeh Aboutalebi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran
| | - Mahboobeh Forouzanfar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran.
| | - Seyede Zohreh Mirahmadi-Zare
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran.
| |
Collapse
|
23
|
Aghaz F, Vaisi-Raygani A, Khazaei M, Arkan E, Kashanian S. Enhanced Synergistic-Antioxidant Activity of Melatonin and Tretinoin by Co-encapsulation into Amphiphilic Chitosan Nanocarriers: During Mice In Vitro Matured Oocyte/Morula-Compact Stage Embryo Culture Model. Reprod Sci 2021; 28:3361-3379. [PMID: 34231166 DOI: 10.1007/s43032-021-00670-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/13/2021] [Indexed: 10/20/2022]
Abstract
The use of exogenous antioxidants or the combination of them during in vitro oocyte/embryo culture media is reasonable. Co-delivery by nanocarrier has been designed to overcome the limitations of combining them traditionally. In this work, amphiphilic chitosan nanocarrier (ACN) was applied to co-encapsulate melatonin (Mel) and tretinoin (TTN) by the self-assembled method and evaluate their synergistic antioxidant efficacy in mice oocytes/embryos. The formation of single/dual-ACN was confirmed by Fourier-transformed infrared spectroscopy (FT-IR). The average particle diameter, size distribution, polydispersity index (PDI), and zeta potential of them were measured by dynamic light scattering (DLS), and the morphology was evaluated by TEM and SEM technologies. Also, the encapsulation efficiency (EE%) and drug loading content (DL%) of the nanocapsules were determined by UV-vis spectrophotometry. Studies of the in vitro release showed a continued drug release without any bursting effect of Mel+TTN-ACNs compared with single Mel/TTN-ACNs. Then, in both experiments, nuclear staining (Aceto-orcein and Hoechst 33342), fluorescent staining of H2DCFDA, chemiluminescence test, and qRT-PCR technique were performed as in vitro toxicity studies. The results of all these evaluations demonstrated that the dual delivery of Mel and TTN could accumulate a safety (without high-dose toxicity) synergistic anti-oxidative effect in oocyte/embryo by passive controlled, and inhibit intra/extracellular ROS levels by an enhanced intracellular penetration.
Collapse
Affiliation(s)
- Faranak Aghaz
- Fertility and Infertility Melearch Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Nano Drug Delivery Melearch Center, Faculty of Pharmacy, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asad Vaisi-Raygani
- Fertility and Infertility Melearch Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran. .,Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mozafar Khazaei
- Fertility and Infertility Melearch Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Elham Arkan
- Nano Drug Delivery Melearch Center, Faculty of Pharmacy, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Kashanian
- Nano Drug Delivery Melearch Center, Faculty of Pharmacy, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) and Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Iran
| |
Collapse
|
24
|
Tian B, Liu Y, Liu J. Chitosan-based nanoscale and non-nanoscale delivery systems for anticancer drugs: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Rezaei S, Kashanian S, Bahrami Y, Zhaleh H, Cruz LJ. Enhanced Intracellular Delivery of Curcumin by Chitosan-Lipoic Acid as Reduction-Responsive Nanoparticles. Curr Pharm Biotechnol 2021; 22:622-635. [PMID: 32720599 DOI: 10.2174/1389201021999200727153513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 11/22/2022]
Abstract
AIMS Enhancement of anti-tumor activity of the chemotherapeutic agent CUR by redoxsensitive nanoparticle to get a deeper insight into cancer therapy. BACKGROUND Tumor targetability and stimulus are widely used to study the delivery of drugs for cancer diagnosis and treatment because poor cellular uptake and inadequate intracellular drug release lead to inefficient delivery of anticancer agents to tumor tissue. OBJECTIVE Studies distinguishing between tumor and normal tissues or redox-sensitive systems using glutathione (GSH) as a significant signal. METHODS In this study, we designed Chitosan-Lipoic acid Nanoparticles (CS-LANPs) to improve drug delivery for breast cancer treatment by efficient delivery of Curcumin (CUR). The properties of blank CS-LANPs were studied in detail. The size and the Polydispersity Index (PDI) of the CS-LANPs were optimized. RESULTS The results indicate the mean size and PDI of the blank CS-LANPs were around 249 nm and 0.125, respectively. However, the Drug Loading (DL) and Encapsulation Efficiency (EE) of the CSLANPs were estimated to be about 18.22% and 99.80%, respectively. Compared to non-reductive conditions, the size of reduction-sensitive CS-LANPs increased significantly under reductive conditions. Therefore, the drug release of CS-LANPs in the presence of glutathione was much faster than that of non-GSH conditions .Moreover, the antitumor effect of CS-LANPs on MCF-7 cells was determined in vitro by MTT assay, cell cytotoxicity, Caspase-3 Assay, detection of mitochondrial membrane potential and quantification of apoptosis incidence. CONCLUSION CS-LANPs showed a remarkably increased accumulation in tumor cells and had a better tumor inhibitory activity in vitro. CS-LANPs could successfully deliver drugs to cancer cells and revealed better efficiency than free CUR.
Collapse
Affiliation(s)
- Somayeh Rezaei
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Soheila Kashanian
- Department of Medical Biotechnology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Yadollah Bahrami
- Department of Medical Biotechnology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Hossein Zhaleh
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Centre (LUMC), Leiden, Netherlands
| |
Collapse
|
26
|
Asfour MH, Salama AAA, Mohsen AM. Fabrication of All-Trans Retinoic Acid loaded Chitosan/Tripolyphosphate Lipid Hybrid Nanoparticles as a Novel Oral Delivery Approach for Management of Diabetic Nephropathy in Rats. J Pharm Sci 2021; 110:3208-3220. [PMID: 34015278 DOI: 10.1016/j.xphs.2021.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022]
Abstract
The present study aims to formulate all-trans retinoic acid (ATRA) loaded chitosan/tripolyphosphate lipid hybrid nanoparticles (CTLHNs) for enhancing its solubility and oral delivery. This is to improve ATRA therapeutic effect on diabetic nephropathy (DN). CTLHNs were prepared by o/w homogenization, employing stearic acid, to form lipid nanoparticles coated with chitosan that is stabilized against acidic pH via sodium tripolyphosphate crosslinking. Chitosan coated (F7) and naked lipid nanoparticles (F6) were also prepared for comparison with CTLHNs. In vitro characterization for the prepared formulations was performed comprising entrapment efficiency, particle size, zeta potential, transmission electron microscopy, FT-IR spectroscopy and x-ray diffraction. Stability of chitosan coat in GI fluid revealed that CTLHNs were more stable than F7. In vitro release indicated an enhanced release of ATRA from the developed formulations. In vitro mucoadhesion study proved a notable mucoadhesive property for CTLHNs. In DN rat model, serum levels of creatinine and urea were elevated, over expression of tumor necrosis factor alpha (TNF-α), granulocyte macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 (ICAM-1) were observed. In addition, adenosine monophosphate activated protein kinase (AMPK) and liver kinase B1 (LKB1) expressions were decreased in DN rats. Treatment with free ATRA and the selected formulations led to a significant amelioration of DN by reducing of creatinine, urea, TNF-α, ICAM-1, GM-CSF, VEGF levels as well as elevating AMPK and LKB1 levels. The order of activity was: CTLHNs > F7 > F6 > free ATRA, as proved by histopathological examination.
Collapse
Affiliation(s)
- Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth Street, Dokki, Cairo 12622, Egypt.
| | - Abeer A A Salama
- Pharmacology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Amira Mohamed Mohsen
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth Street, Dokki, Cairo 12622, Egypt
| |
Collapse
|
27
|
Aghaz F, Vaisi-Raygani A, Khazaei M, Arkan E, Sajadimajd S, Mozafari H, Rahimi Z, Pourmotabbed T. Co-encapsulation of tertinoin and resveratrol by solid lipid nanocarrier (SLN) improves mice in vitro matured oocyte/ morula-compact stage embryo development. Theriogenology 2021; 171:1-13. [PMID: 33993057 DOI: 10.1016/j.theriogenology.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/19/2021] [Accepted: 05/06/2021] [Indexed: 12/29/2022]
Abstract
As a promising strategy in overcoming drug resistance, the nano drug co-delivery system (NDCDS) can transport two or more drugs into the cell. In this study, we sought to compare the dual and single drug-delivery system, to deliver the optimal dose of Resveratrol (RES) and Tretinoin (TTN) into the in vitro matured oocyte and morula-compact stage embryonic cells. The formation of single (RES/TTN) and dual-drug (RES + TTN)-SLN were confirmed by Uv-vis spectrophotometery, dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) technologies. In two experiments, the oocytes/presumptive zygotes were cultured under various concentrations of the single (RES/TTN) and dual-drug (RES + TTN)-SLN. In vitro toxicity studies, including nuclear staining (Aceto-orcein and Hoechst 33342), H2DCFDA fluorescent staining, chemiluminescence assay, and quantitative reverse transcription-PCR (qRT-PCR) techniques, indicated an excellent oocyte/embryo internalization of RES and TTN. Moreover, when oocytes/embryos were treated with the lowest concentration of RES + TTN-SLN, antioxidants-related genes were upregulated, apoptotic-related genes were downregulated, and intra/extracellular ROS production was reduced. In vitro cytotoxicity studies also demonstrated that single/dual-encapsulation of RES or TTN were safe even at the highest concentration (10 and 5 μM) compared to the control group. To sum it up, both delivery systems of RES and TTN by SLN (dual or single encapsulation) can deliver the optimal dose of RES and TTN into the oocyte/embryo. Where the dual-delivery of RES and TTN even at the lowest concentration (0.25 μM + 0.1 μm) showed a synergistic anti-oxidative effect in oocyte/embryo with a better inhibition of intra/extra-cellular ROS production by an enhanced/controlled intracellular penetration.
Collapse
Affiliation(s)
- Faranak Aghaz
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Nano Drug Delivery Research Center, Faculty of Pharmacy, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asad Vaisi-Raygani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Elham Arkan
- Nano Drug Delivery Research Center, Faculty of Pharmacy, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soraya Sajadimajd
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hadi Mozafari
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tayebeh Pourmotabbed
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
28
|
Mishra K, Verma SK, Ratre P, Banjare L, Jain A, Thareja S, Jain AK. In Silico Molecular Interaction Studies of Chitosan Polymer with Aromatase Inhibitor: Leads to Letrozole Nanoparticles for the Treatment of Breast Cancer. Anticancer Agents Med Chem 2021; 21:1191-1199. [PMID: 32842946 DOI: 10.2174/1871520620666200825192652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND It takes a lot more studies to evaluate the molecular interaction of nanoparticles with the drug, their drug delivery potential and release kinetics. Thus, we have taken in silico and in vitro approaches into account for the evaluation of the drug delivery ability of the chitosan nanoparticles. OBJECTIVE The present work was aimed to study the interaction of chitosan nanoparticles with appropriate aromatase inhibitors using in silico tools. Further, synthesis and characterization of chitosan nanoparticles having optimal binding energy and affinity between drug and polymer in terms of size, encapsulation efficiency were carried out. METHODS In the current study, molecular docking was used to map the molecular interactions and estimation of binding energy involved between the nanoparticles and the drug molecules in silico. Letrozole is used as a model cytotoxic agent currently being used clinically; hence Letrozole loaded chitosan nanoparticles were formulated and characterized using photomicroscope, particle size analyzer, scanning electron microscope and fourier transform infra-red spectroscopy. RESULTS Letrozole had the second-highest binding affinity within the core of chitosan with MolDock (-102.470) and Re-rank (-81.084) scores. Further, it was investigated that formulated nanoparticles were having superior drug loading capacity and high encapsulation efficiency. In vitro drug release study exhibited prolonged release of the drug from chitosan nanoparticles. CONCLUSION Results obtained from the in silico and in vitro studies suggest that Letrozole loaded nanoparticles are ideal for breast cancer treatment.
Collapse
Affiliation(s)
- Keerti Mishra
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Sant K Verma
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Pooja Ratre
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Laxmi Banjare
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Abhishek Jain
- Department of IT, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda-151 001 (Punjab), India
| | - Akhlesh K Jain
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| |
Collapse
|
29
|
Aghaz F, Vaisi-Raygani A, Khazaei M, Bakhtiari M. Cryoprotective Effect of Tretinoin-Loaded Solid Lipid-Core Nanocapsules During Fresh and Freeze/Thaw Media on NMRI Mouse Sperm Parameters, DNA Damage, and Reactive Oxygen Species Production. Biopreserv Biobank 2021; 19:287-297. [PMID: 33909480 DOI: 10.1089/bio.2020.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Due to the induced oxidative stress that exists in sperm freezing/thawing procedures and handling media, the use of exogenous antioxidant agents seems necessary. Drug delivery by nanocarriers has been designed to overcome the limitations of antioxidants, such as high-dose toxicity and short biological half-life. In this study, we tried to investigate the effects of tretinoin-loaded solid lipid core nanocapsules (TTN-SLN) added to freezing/thawing and handling media (in three experimental groups) on sperm motility (total/progressive), viability, DNA fragmentation, and extracellular reactive oxygen species (ROS) levels. Sperm samples from at least 30 adult male NMRI mice were evaluated in this study. The results of experiments 1 and 2 showed that the addition of 0.5 μM TTN-SLN in freezing and thawing medium significantly increased sperm viability and total/progressive motility and decreased DNA fragmentation and extracellular ROS levels (p < 0.05). Adding 0.25 and 0.5 μM of TTN-SLN to the handling medium (experiment 3), increased sperm parameters and decreased DNA fragmentation and extracellular ROS levels significantly (p < 0.05) compared with the control group. Briefly, our results indicate that SLN can deliver the lowest concentrations of tretinoin in a controlled release mechanism into the intracellular space of sperm. Also, high-dose TTN-SLN is safe during freezing/thawing and handling processes of mouse sperm.
Collapse
Affiliation(s)
- Faranak Aghaz
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asad Vaisi-Raygani
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Clinical Biochemistry and Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Bakhtiari
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Anatomical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
30
|
Mishra K, Ratre P, Thareja S, Jain AK. Polymeric Nanoparticles of Aromatase Inhibitors: A Comprehensive Review. Curr Pharm Des 2021; 27:855-865. [PMID: 32990532 DOI: 10.2174/1381612826666200929123715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Being the second most frequent cancer, breast cancer is emerging worldwide with an alarming rate, specifically in post-menopausal women. Targeted drug delivery has been in the focus for the successful treatment of breast cancer by enhancing the drug delivery efficiency and reducing the systemic toxicity of drugs. Also, it eliminates the drawbacks associated with conventional chemotherapy, including neuropathy, memory loss, cardiotoxicity and low RBCs count. This review elaborates the polymeric nanoparticles based formulation approaches for selective and sustained delivery for effective cure of breast cancer. However, breast cancer, a life-threatening disease, is mostly caused because of estrogen, thus aromatase inhibitors and estrogen synthesis inhibitors could prevent chances of breast cancer. The disease is associated with drug resistance and some side effects, which could be easily eliminated by using novel therapeutic approaches. Aromatase inhibitors, when entrapped in nanoparticles, have shown sustained drug release, advocating themselves to be beneficial for the treatment of breast cancer.
Collapse
Affiliation(s)
- Keerti Mishra
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur-495 009 (C.G.), India
| | - Pooja Ratre
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur-495 009 (C.G.), India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda-151 001 (Punjab), India
| | - Akhlesh K Jain
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur-495 009 (C.G.), India
| |
Collapse
|
31
|
Motiei M, Pleno de Gouveia L, Šopík T, Vícha R, Škoda D, Císař J, Khalili R, Domincová Bergerová E, Münster L, Fei H, Sedlařík V, Sáha P. Nanoparticle-Based Rifampicin Delivery System Development. Molecules 2021; 26:molecules26072067. [PMID: 33916814 PMCID: PMC8038351 DOI: 10.3390/molecules26072067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
The alkaline milieu of chronic wounds severely impairs the therapeutic effect of antibiotics, such as rifampicin; as such, the development of new drugs, or the smart delivery of existing drugs, is required. Herein, two innovative polyelectrolyte nanoparticles (PENs), composed of an amphiphilic chitosan core and a polycationic shell, were synthesized at alkaline pH, and in vitro performances were assessed by 1H NMR, elemental analysis, FT-IR, XRD, DSC, DLS, SEM, TEM, UV/Vis spectrophotometry, and HPLC. According to the results, the nanostructures exhibited different morphologies but similar physicochemical properties and release profiles. It was also hypothesized that the simultaneous use of the nanosystem and an antioxidant could be therapeutically beneficial. Therefore, the simultaneous effects of ascorbic acid and PENs were evaluated on the release profile and degradation of rifampicin, in which the results confirmed their synergistic protective effect at pH 8.5, as opposed to pH 7.4. Overall, this study highlighted the benefits of nanoparticulate development in the presence of antioxidants, at alkaline pH, as an efficient approach for decreasing rifampicin degradation.
Collapse
Affiliation(s)
- Marjan Motiei
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
- Correspondence:
| | - Luis Pleno de Gouveia
- iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 169-003 Lisbon, Portugal;
| | - Tomáš Šopík
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Robert Vícha
- Department of Chemistry, Faculty of Technology, TBU, Vavrečkova 275, 76001 Zlín, Czech Republic;
| | - David Škoda
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Jaroslav Císař
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Reza Khalili
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 12808 Prague 2, Czech Republic;
| | - Eva Domincová Bergerová
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Lukáš Münster
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Haojie Fei
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Vladimír Sedlařík
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Petr Sáha
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| |
Collapse
|
32
|
Upadhya R, Punia A, Kanagala MJ, Liu L, Lamm M, Rhodes TA, Gormley AJ. Automated PET-RAFT Polymerization Towards Pharmaceutical Amorphous Solid Dispersion Development. ACS APPLIED POLYMER MATERIALS 2021; 3:1525-1536. [PMID: 34368765 PMCID: PMC8336633 DOI: 10.1021/acsapm.0c01376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In pharmaceutical oral drug delivery development, about 90% of drugs in the pipeline have poor aqueous solubility leading to severe challenges with oral bioavailability and translation to effective and safe drug products. Amorphous solid dispersions (ASDs) have been utilized to enhance the oral bioavailability of poorly soluble active pharmaceutical ingredients (APIs). However, a limited selection of regulatory-approved polymer excipients exists for the development and further understanding of tailor-made ASDs. Thus, a significant need exists to better understand how polymers can be designed to interact with specific API moieties. Here, we demonstrate how an automated combinatorial library approach can be applied to the synthesis and screening of polymer excipients for the model drug probucol. We synthesized a library of 25 random heteropolymers containing one hydrophilic monomer (2-hydroxypropyl acrylate (HPA)) and four hydrophobic monomers at varied incorporation. The performance of ASDs made by a rapid film casting method was evaluated by dissolution using ultra-performance liquid chromatography (UPLC) sampling at various time points. This combinatorial library and rapid screening strategy enabled us to identify a relationship between polymer hydrophobicity, monomer hydrophobic side group geometry, and API dissolution performance. Remarkably, the most effective synthesized polymers displayed slower drug release kinetics compared to industry standard polymer excipients, showing the ability to modulate the drug release profile. Future coupling of high throughput polymer synthesis, high throughput screening (HTS), and quantitative modeling would enable specification of designer polymer excipients for specific API functionalities.
Collapse
Affiliation(s)
- Rahul Upadhya
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ashish Punia
- Preformulation Sciences, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Mythili J. Kanagala
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Lina Liu
- Preformulation Sciences, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Matthew Lamm
- Preformulation Sciences, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Timothy A. Rhodes
- Preformulation Sciences, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Adam J. Gormley
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
33
|
Aghaz F, Vaisi-Raygani A, Khazaei M, Arkan E. Enhanced Cryoprotective Effect of Melatonin and Resveratrol by Coencapsulation: Improved In Vitro Development of Vitrified-Warmed Mouse Germinal Vesicle Oocytes. Biopreserv Biobank 2020; 19:184-193. [PMID: 33351680 DOI: 10.1089/bio.2020.0102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oocyte vitrification, as a vital step in reproductive medicine, is strongly associated with lower development caused by cryodamaging factors, such as oxidative stress. In this study, we evaluated the antioxidative synergistic effects of Melatonin (Mel) and Resveratrol (RES) coencapsulated by solid lipid nanocarriers (SLNs) against the pure antioxidant combination (Mel+RES). In this research, the formation of Mel+RES-SLN was confirmed by Fourier-transformed infrared spectroscopy. The average mean diameter, size distribution, polydispersity index, and zeta potential of particles were measured by Zetasizer, and the morphology was evaluated by scanning electron microscopy. In addition, the encapsulation efficiency (EE%) or drug loading capacity (DL%) of the nanocapsule was determined by spectrophotometric methods. Germinal vesicle (GV)-stage oocytes harvested from 6- to 12-week-old female NMRI mice were randomly divided into seven groups for in vitro studies. In these groups, (0, 10-12 M + 0.5 μM, 10-9 M + 2 μM, or 10-6 M + 10 μM) of Mel+RES/Mel+RES-SLN were added into vitrification media. After thawing, oocytes were matured, fertilized, and cultured for 3 days. Extra/intracellular reactive oxygen species (ROS) levels were measured in in vitro maturation medium after 24 hours. Our results revealed a significant improvement in the normal morphology of warmed GV-stage oocytes, GV breakdown (GVBD) rate, Metaphase II (MII)-stage oocyte formation, fertilization rate, early embryo development, and a significant reduction in intra/extracellular ROS level when vitrification media was supplemented with the lowest Mel+RES-SLN concentration. In vitro studies also demonstrated that the highest concentration of Mel+RES-SLN was safe, without a detrimental effect on embryonic development upon treatment. In conclusion, the lowest concentration of Mel+RES-SLN supplementation in GV-stage oocyte vitrification media improved maturation, fertilization, and embryo development rate and decreased extra/intracellular ROS level through an enhanced/controlled intracellular penetration compared to the pure Mel+RES.
Collapse
Affiliation(s)
- Faranak Aghaz
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Nano Drug Delivery Research Center, Faculty of Pharmacy, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asad Vaisi-Raygani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Arkan
- Nano Drug Delivery Research Center, Faculty of Pharmacy, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
34
|
Pramanik S, Sali V. Connecting the dots in drug delivery: A tour d'horizon of chitosan-based nanocarriers system. Int J Biol Macromol 2020; 169:103-121. [PMID: 33338522 DOI: 10.1016/j.ijbiomac.2020.12.083] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 01/09/2023]
Abstract
One of the most promising pharmaceutical research areas is developing advanced delivery systems for controlled and sustained drug release. The drug delivery system (DDS) can be designed to strengthen the pharmacological and therapeutic characteristics of different medicines. Natural polymers have resolved numerous commencing hurdles, which hindered the clinical implementation of traditional DDS. The naturally derived polymers furnish various advantages such as biodegradability, biocompatibility, inexpensiveness, easy availability, and biologically identifiable moieties, which endorse cellular activity in contrast to synthetic polymers. Among them, chitosan has recently been in the spotlight for devising safe and efficient DDSs due to its superior properties such as minimal toxicity, bio-adhesion, stability, biodegradability, and biocompatibility. The primary amino group in chitosan shows exceptional qualities such as the rate of drug release, anti-microbial properties, the ability to cross-link with various polymers, and macrophage activation. This review intends to provide a glimpse into different practical utilization of chitosan as a drug carrier. The first segment of the review will give cognizance into the source of extraction and chitosan's remarkable properties. Further, we have endeavored to provide recent literature pertaining to chitosan applications in various drug delivery systems via different administration routes along with current patented chitosan formulations.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India; Department of Polymeric Medical Devices, Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala 695011, India.
| | - Vaishnavi Sali
- C.U. Shah College of Pharmacy, SNDT Women's University, Sir Vithaldas Thakersay, Santacruz West, Juhu, Mumbai, Maharashtra 400049, India
| |
Collapse
|
35
|
Musa N, Wong TW. Design of polysaccharidic nano-in-micro soft agglomerates as primary oral drug delivery vehicle for colon-specific targeting. Carbohydr Polym 2020; 247:116673. [DOI: 10.1016/j.carbpol.2020.116673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/22/2023]
|
36
|
Preparation and characterization of a controlled-release formulation based on carbofuran loaded in ionically cross-linked chitosan microparticles. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02274-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Aghaz F, Vaisi-Raygani A, Khazaei M, Arkan E. The Anti-oxidative Effects of Encapsulated Cysteamine During Mice In Vitro Matured Oocyte/Morula-Compact Stage Embryo Culture Model: a Comparison of High-Efficiency Nanocarriers for Hydrophilic Drug Delivery-a Pilot Study. Reprod Sci 2020; 28:1290-1306. [PMID: 33030694 DOI: 10.1007/s43032-020-00333-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 11/25/2022]
Abstract
Although it is well-recognized that antioxidant nano-encapsulation has many benefits such as minimizing side effects (e.g., high-dose toxicity), the most attention was paid to the hydrophobic antioxidant not hydrophilic. In this regard, we sought to compare two hydrophilic model nanocarriers to deliver the optimal dose of cystamine (Cys) into the in vitro matured oocyte and the first cleavage stages until morula-compact stage embryonic cells. The formation of Cys-loaded solid self-emulsifying lipid (Cys + SLN) and Cys-loaded chitosan shell (Cys-CS-NC) were confirmed by FT-IR and UV-Vis spectrophotometry, dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) technologies. In two experiments, the oocytes/presumptive zygotes were cultured under various concentrations of Cys-SLN and Cys-CS-NC. The results of nuclear staining (aceto-orcein and Hoechst 33342), H2DCFDA fluorescent staining, chemiluminescence test, and quantitative reverse transcription-PCR (qRT-PCR) technique as in vitro toxicity studies demonstrated that adding the lowest dose of Cys-encapsulated in both nanocarriers [Cys-SLN (5 μM) and Cys-CS-NC (10 μM)] to maturation or culture medium could accumulate a strong anti-oxidative effect in oocyte/embryo by controlled release and enhanced intracellular penetration of Cys. In comparison, Cys-SLN (5 μM) is more effective than Cys-CS-NC (10 μM) groups to improve the expression of antioxidant genes (SOD, CAT, GPx) or anti-apoptotic (BCL-2) gene and decreased apoptosis (BAX and caspase-3) or intra-/extracellular ROS levels. In a nutshell, both nanocarriers (CS-NC or SLN) can deliver the lowest dose of Cys into the oocyte/embryo, thus encouraging a better expansion of antioxidant genes and enhancing the development of in vitro oocyte/embryo.
Collapse
Affiliation(s)
- Faranak Aghaz
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asad Vaisi-Raygani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Elham Arkan
- Nano Drug Delivery Research Center, Faculty of Pharmacy, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
38
|
Calcium-binding casein phosphopeptides-loaded chitosan oligosaccharides core-shell microparticles for controlled calcium delivery: Fabrication, characterization, and in vivo release studies. Int J Biol Macromol 2020; 154:1347-1355. [DOI: 10.1016/j.ijbiomac.2019.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
|
39
|
Design of Experiments-Assisted Development of Clotrimazole-Loaded Ionic Polymeric Micelles Based on Hyaluronic Acid. NANOMATERIALS 2020; 10:nano10040635. [PMID: 32235344 PMCID: PMC7221810 DOI: 10.3390/nano10040635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/28/2022]
Abstract
Polymeric micelles based on amphiphilic polysaccharides have some advantages as a carrier of poorly soluble lipophilic drugs thanks to their characteristic "core–shell" structure. Previously, ionic polymeric micelles based on chitosan and fatty acids have been developed. The aim of the present study was the preparation and characterization of hyaluronic acid (HA) derivatives by direct ionic interaction between the HA carboxylic groups and the amine groups of dodecyl amine (DDA) and hexadecyl amine (HDA). The HA–HDA polymeric micelles were loaded with a poorly soluble hydrophobic antifungal drug, clotrimazole (CLO). A 23 full factorial experimental design was used to evaluate the effect of the following factors: HA/HDA ratio from 1:0.25 to 1:0.75, cholesterol (CHOL%) as percentage of HA from 10% to 30%, and preparation temperature from 20 to 40 °C. As dependent variables (responses), nanoparticle dimensions and clotrimazole concentration in the final colloidal dispersion were considered. To optimize the drug final concentration, the design was therefore expanded into a rotatable central composite design (CCD). The effects of the formulation variables and the composition of the optimized formulation were confirmed by a mixture design. Physicochemical characterization of the optimized formulation was performed, confirming the ionic interaction between the polysaccharide and the HDA.
Collapse
|
40
|
Liu Q, Li Y, Yang X, Xing S, Qiao C, Wang S, Xu C, Li T. O-Carboxymethyl chitosan-based pH-responsive amphiphilic chitosan derivatives: Characterization, aggregation behavior, and application. Carbohydr Polym 2020; 237:116112. [PMID: 32241407 DOI: 10.1016/j.carbpol.2020.116112] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/26/2022]
Abstract
Chitosan has attracted much attention in drug delivery, however, carboxymethyl chitosan (CMC)-based self-aggregated nanocarriers are seldom reported. In this paper, two kinds of CMC-based pH-responsive amphiphilic chitosan derivatives, N-2-hydroxylpropyl-3-butyl ether-O-carboxymethyl chitosan (HBCC) and N-2-hydroxylpropyl-3-(2-ethylhexyl glycidyl ether)-O-carboxymethyl chitosan (H2ECC), have been synthesized by the homogeneous reaction. The molecular structures were characterized by FTIR, 1H NMR and 13C NMR. The optimum reaction condition was obtained based on the data of 1H NMR spectrum: reaction time of 4 h, reaction temperature of 80 °C and nepoxyn-NH2 of 3/1, respectively. The XRD patterns showed the crystallinity of HBCC and H2ECC decreased due to the introduction of hydrophobic segments. The thermostability of HBCC and H2ECC was improved for the formation of heat-resistant stereo-complexed structures. The intermolecular hydrophobic interaction hindered the intermolecular mobility by increasing glass transition temperature of ca. 10 °C. Both HBCC and H2ECC have very low critical aggregation concentrations (HBCC: 0.66-1.56 g/L, H2ECC: 0.57-1.07 g/L) and moderate aggregate particle size, which is advantageous for utilization as a drug carrier. The curcumin loaded HBCC and H2ECC aggregates showed nontoxicity, meanwhile, HBCC and H2ECC showed good antibacterial activity against Staphylococcus aureus and Escherichia coli. As a result of these two favorable properties, HBCC and H2ECC could be used as curcumin nanocarriers as well as antibacterial agents.
Collapse
Affiliation(s)
- Qun Liu
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Yan Li
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Xiaodeng Yang
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Shu Xing
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Congde Qiao
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Shoujuan Wang
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Chunlin Xu
- Laboratory of Natural Materials and Technology, Johan Gadolin Process Chemistry Centre, Abo Akademi University, Porthansgatan 3, 20500 Turku, Finland
| | - Tianduo Li
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| |
Collapse
|
41
|
Yassemi A, Kashanian S, Zhaleh H. Folic acid receptor-targeted solid lipid nanoparticles to enhance cytotoxicity of letrozole through induction of caspase-3 dependent-apoptosis for breast cancer treatment. Pharm Dev Technol 2020; 25:397-407. [DOI: 10.1080/10837450.2019.1703739] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Soheila Kashanian
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Zhaleh
- Substance Abuse Prevention Research Center, Institute of Health, Kermanshah University of medical science, Kermanshah, Iran
| |
Collapse
|
42
|
Stabilization of chitosan-based polyelectrolyte nanoparticle cargo delivery biomaterials by a multiple ionic cross-linking strategy. Carbohydr Polym 2019; 231:115709. [PMID: 31888842 DOI: 10.1016/j.carbpol.2019.115709] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 11/21/2022]
Abstract
PolyElectrolyte Nanoparticles (PENs) obtained by layer-by-layer self-assembly of polycations/polyanions suffer from a lack of colloidal stability in physiological conditions. We report a simple innovative approach for increasing their stability by multiple ionic cross-linkers. Herein, a chitosan-based core was stabilized by polyanions such as tripolyphosphate and dextran sulfate at pHs of 3 (aPENs) and 8 (bPENs) to improve the quality of electrostatic interactions in the core and manage self-assembly of polyethyleneimine shell onto the core. The physicochemical properties of the particles were characterized by DLS, SEM, TEM, FT-IR, and TGA. TEM micrographs showed visible core/shell structures of bPENs. From particle size and polydispersity indices, the bPENs stability was salt concentration-dependent. The release profiles of PENs using nicotinic acid demonstrated sustained release in a pH-independent manner with a good fit of Korsmeyer-Peppas model. These results suggest that multiple ionic cross-linkers can be an efficient approach to increase the colloidal stability of PENs.
Collapse
|
43
|
Miele D, Catenacci L, Sorrenti M, Rossi S, Sandri G, Malavasi L, Dacarro G, Ferrari F, Bonferoni MC. Chitosan Oleate Coated Poly Lactic-Glycolic Acid (PLGA) Nanoparticles versus Chitosan Oleate Self-Assembled Polymeric Micelles, Loaded with Resveratrol. Mar Drugs 2019; 17:E515. [PMID: 31480614 PMCID: PMC6780743 DOI: 10.3390/md17090515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 01/12/2023] Open
Abstract
Chitosan oleate (CS-OA), a chitosan salt with amphiphilic properties, has demonstrated the ability to self-assemble in aqueous environment to give polymeric micelles useful to load poorly soluble drugs. More recently, CS-OA was proposed to stabilize nanoemulsions during the preparation by emulsification and solvent evaporation of poly lactic-glycolic acid (PLGA) nanoparticles (NPs) loaded with curcumin. Positive mucoadhesive behavior and internalization properties were demonstrated for these NPs attributable to the presence of positive charge at the NP surface. In the present paper, two CS-OA-based nanosystems, micelles and PLGA NPs, were compared with the aim of elucidating their physico-chemical characteristics, and especially their interaction with cell substrates. The two systems were loaded with resveratrol (RSV), a hydrophobic polyphenol endowed with anti-cancerogenic, anti-inflammatory, and heart/brain protective effects, but with low bioavailability mainly due to poor aqueous solubility. Calorimetric analysis and X-ray spectra demonstrated amorphization of RSV, confirming its affinity for hydrophobic domains of polymeric micelles and PLGA core of NPs. TGA decomposition patterns suggest higher stability of PLGA-NPs compared with polymeric micelles, that anyway resulted more stable than expected, considering the RSV release profiles, and the cell line interaction results.
Collapse
Affiliation(s)
- Dalila Miele
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Lorenzo Malavasi
- Department of Chemistry, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Giacomo Dacarro
- Department of Chemistry, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | | |
Collapse
|
44
|
pH-responsive ultrasonic self-assembly spinosad-loaded nanomicelles and their antifungal activity to Fusarium oxysporum. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Maniyar M, Chakraborty A, Kokare C. Formulation and evaluation of letrozole-loaded spray dried liposomes with PEs for topical application. J Liposome Res 2019; 30:274-284. [PMID: 31223043 DOI: 10.1080/08982104.2019.1634723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Letrozole (LET), an aromatase inhibitor widely used as a first-line drug for the estrogen-dependent breast cancer treatment in postmenopausal women. In this study, an attempt has been made to develop LET topical drug delivery which would be a more efficient system to treat elevated blood levels of estrogen found in breast cancer patients. The technique involves, encapsulation of the LET in phospholipids using spray dryer. The LET spray-dried powder (LT-SDP) powder was tested by Fourier transform infrared, X-RD, and differential scanning calorimetry. These studies confirm the entrapment efficiency (EE) of the system. The LT-SDP in the form dispersion was further evaluated. The confocal laser scanning microscopy (CLSM) showed spherical vesicles, the particle size, polydispersity index, and the EE was found to be 284.0 nm, 0.247, and 59.08%, respectively. LT-SDP dispersion was added into a cream base with peppermint and olive oil as natural penetration enhancers. Optimized formulation showed superior skin targeting in in vitro and in vivo studies. Cell proliferation assay and flow cytometry was carried out using human cancer cell line of breast MDA-MB-231 which showed superior anti-proliferative action and enhanced apoptosis activity of LT-SDP cream (43.9%) in comparison. The CLSM micrograph, skin irritation, and histopathology studies showed the penetration ability and inertness of the LT-SDP cream, respectively. In vivo bioavailability studies showed an almost four-fold increase in the plasma concentration (11.3 versus 4.2) while the mean residence time (81.11 versus 64.42 h) and half-life (51.01 versus 39.36 h) were reasonably higher than plain LET cream.
Collapse
Affiliation(s)
- Mithun Maniyar
- STES's Smt Kashibai Navale College of Pharmacy, Kondhwa (Bk), (Affiliated to Savitribai Phule Pune University), Pune, India.,SVERI's College of Pharmacy, Pandharpur, India
| | - Avik Chakraborty
- Radiation Medicine Centre (RMC), Bhabha Atomic Research Centre (BARC), Mumbai, India
| | - Chandrakant Kokare
- STES's Smt Kashibai Navale College of Pharmacy, Kondhwa (Bk), (Affiliated to Savitribai Phule Pune University), Pune, India.,STES's Sinhgad Institute of Pharmacy, Narhe (Affiliated to Savitribai Phule Pune University), Pune, India
| |
Collapse
|
46
|
Wang H, Yang Z, He Z, Zhou C, Wang C, Chen Y, Liu X, Li S, Li P. Self-assembled amphiphilic chitosan nanomicelles to enhance the solubility of quercetin for efficient delivery. Colloids Surf B Biointerfaces 2019; 179:519-526. [DOI: 10.1016/j.colsurfb.2019.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/13/2019] [Accepted: 04/03/2019] [Indexed: 01/07/2023]
|
47
|
He S, Fu W, Zou M, Xing W, Liu Z, Xu D. Construction and evaluation of SAK-HV protein oral dosage form based on chitosan quaternary ammonium salt-PLGA microsphere. J Drug Target 2019; 27:1108-1117. [DOI: 10.1080/1061186x.2019.1605520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shiming He
- Institute of Military Cognition and Brain Sciences, Beijing, China
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Wenliang Fu
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Minji Zou
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Weiwei Xing
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Donggang Xu
- Institute of Military Cognition and Brain Sciences, Beijing, China
| |
Collapse
|
48
|
A Comprehensive Physicochemical, In Vitro and Molecular Characterization of Letrozole Incorporated Chitosan-Lipid Nanocomplex. Pharm Res 2019; 36:62. [DOI: 10.1007/s11095-019-2597-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/26/2019] [Indexed: 02/01/2023]
|
49
|
Amphiphilic core-shell nanoparticles: Synthesis, biophysical properties, and applications. Colloids Surf B Biointerfaces 2018; 172:68-81. [DOI: 10.1016/j.colsurfb.2018.08.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/04/2018] [Accepted: 08/12/2018] [Indexed: 11/18/2022]
|
50
|
Wang X, Guo Y, Qiu L, Wang X, Li T, Han L, Ouyang H, Xu W, Chu K. Preparation and evaluation of carboxymethyl chitosan-rhein polymeric micelles with synergistic antitumor effect for oral delivery of paclitaxel. Carbohydr Polym 2018; 206:121-131. [PMID: 30553305 DOI: 10.1016/j.carbpol.2018.10.096] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/10/2018] [Accepted: 10/27/2018] [Indexed: 01/07/2023]
Abstract
An amphiphilic carboxymethyl chitosan-rhein (CR) conjugate was prepared, characterized, and evaluated as a potential carrier material for oral delivery of paclitaxel (PTX). CR conjugate self-assembled in aqueous environment into CR polymeric micelles (CR PMs). The drug loading capacity and entrapment efficiency of PTX-loaded CR PMs were 35.24 ± 1.58% and 86.99 ± 12.26%, respectively. Pharmacokinetic results indicate that PTX-loaded CR PMs could significantly enhance the oral bioavailability of PTX. Confocal imaging of intestinal sections verified many of CR PMs were absorbed as whole through the intestinal membrane. The cytotoxicity assays in Caco-2 cells and in vivo antitumor efficacy showed that PTX-loaded CR PMs had a stronger antitumor efficacy. A synergistic antitumor effect between CR conjugate and PTX was proven in MCF-7 cells and antitumor efficacy studies. The investigation of CR conjugate developed in this study showed that CR PMs are promising for oral delivery of water-insoluble antitumor drugs.
Collapse
Affiliation(s)
- Xiaoying Wang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yangli Guo
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Liangzhen Qiu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xiaying Wang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Lifeng Han
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Huizhi Ouyang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wei Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Kedan Chu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|