1
|
Zhang R, Jo JI, Tsuda S, Li R, Nishiura A, Honda Y, Hashimoto Y, Matsumoto N. Sustained Fisetin Release Prevents Orthodontic Ti-6Al-4V Screw Failure by Suppressing Peri-Implantitis and Alveolar Bone Resorption. ACS Biomater Sci Eng 2025; 11:1472-1485. [PMID: 39928042 DOI: 10.1021/acsbiomaterials.4c01818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
In clinical practice, mini-screws of titanium-6-aluminum-4-vanadium alloy with an extra low interstitial (ELI) grade (Ti-6Al-4V ELI) are widely used as orthodontic anchorages. However, in orthodontic treatment, Ti-6Al-4V mini-screw failure because of peri-implantitis is a major challenge. To prevent damage caused by peri-implantitis, we developed a novel Ti-6Al-4V disc/screw coated with poly(lactide-co-glycolide) incorporating fisetin, a naturally occurring flavonoid with anti-inflammatory and antiosteoclastogenic/osteogenic properties. Sustained fisetin release from the Ti-6Al-4V disc and its anti-inflammatory and antiosteoclastogenic/osteogenic differentiation properties were demonstrated using in vitro cell culture experiment. In addition, in a rat model of peri-implantitis, sustained fisetin release from the Ti-6Al-4V screw suppressed inflammation progression, reduced alveolar bone resorption, and stabilized screw movement. These findings highlight sustained fisetin-release Ti-6Al-4V screws as a promising strategy for enhancing orthodontic mini-screw stability and success through peri-implantitis prevention.
Collapse
Affiliation(s)
- Ruonan Zhang
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| | - Jun-Ichiro Jo
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| | - Susumu Tsuda
- Department of Chemistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| | - Runbo Li
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| | - Aki Nishiura
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| | - Yoshitomo Honda
- Department of Oral Anatomy, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| | - Yoshiya Hashimoto
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| | - Naoyuki Matsumoto
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| |
Collapse
|
2
|
Uttreja P, Karnik I, Adel Ali Youssef A, Narala N, Elkanayati RM, Baisa S, Alshammari ND, Banda S, Vemula SK, Repka MA. Self-Emulsifying Drug Delivery Systems (SEDDS): Transition from Liquid to Solid-A Comprehensive Review of Formulation, Characterization, Applications, and Future Trends. Pharmaceutics 2025; 17:63. [PMID: 39861711 PMCID: PMC11768142 DOI: 10.3390/pharmaceutics17010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers. Characterization techniques such as droplet size analysis, dissolution studies, and solid-state evaluations are detailed. Additionally, emerging trends, including 3D printing, hybrid systems, and supersaturable SEDDS (Su-SEDDS), are explored. Liquid SEDDS (L-SEDDS) enhance drug solubility and absorption by forming emulsions upon contact with gastrointestinal fluids. However, they suffer from stability and leakage issues. Transitioning to solid SEDDS (S-SEDDS) has resolved these limitations, offering enhanced stability, scalability, and patient compliance. Innovations such as personalized 3D-printed SEDDS, biologics delivery, and targeted systems demonstrate their potential for diverse therapeutic applications. Computational modeling and in silico approaches further accelerate formulation optimization. SEDDS have revolutionized drug delivery by improving bioavailability and enabling precise, patient-centric therapies. While challenges such as scalability and excipient toxicity persist, emerging technologies and multidisciplinary collaborations are paving the way for next-generation SEDDS. Their adaptability and potential for personalized medicine solidify their role as a cornerstone in modern pharmaceutical development.
Collapse
Affiliation(s)
- Prateek Uttreja
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
| | - Indrajeet Karnik
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
| | - Rasha M. Elkanayati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
| | - Srikanth Baisa
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
| | - Nouf D. Alshammari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Arar 91431, Saudi Arabia
| | - Srikanth Banda
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Michael A. Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (P.U.); (R.M.E.)
- Pii Center for Pharmaceutical Technology, The University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
3
|
Meola TR, Kamath S, Elz AS, Prestidge CA, Wignall A, Joyce P. Contrasting the pharmacokinetic performance and gut microbiota effects of an amorphous solid dispersion and lipid nanoemulsion for a poorly water-soluble anti-psychotic. Eur J Pharm Biopharm 2024; 203:114453. [PMID: 39134099 DOI: 10.1016/j.ejpb.2024.114453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 09/14/2024]
Abstract
Increasing attention is being afforded to understanding the bidirectional relationship that exists between oral drugs and the gut microbiota. Often overlooked, however, is the impact that pharmaceutical excipients exert on the gut microbiota. Subsequently, in this study, we contrasted the pharmacokinetic performance and gut microbiota interactions between two commonly employed formulations for poorly soluble compounds, namely 1) an amorphous solid dispersion (ASD) stabilised by poly(vinyl pyrrolidone) K-30, and 2) a lipid nanoemulsion (LNE) comprised of medium chain glycerides and lecithin. The poorly soluble antipsychotic, lurasidone, was formulated with ASD and LNE due to its rate-limiting dissolution, poor oral bioavailability, and significant food effect. Both the ASD and LNE were shown to facilitate lurasidone supersaturation within in vitro dissolution studies simulating the gastrointestinal environment. This translated into profound improvements in oral pharmacokinetics in rats, with the ASD and LNE exerting comparable ∼ 2.5-fold improvements in lurasidone bioavailability, compared to the pure drug. The oral formulations imparted contrasting effects on the gut microbiota, with the LNE depleting the richness and abundance of the microbial ecosystem, as evidenced through reductions in alpha diversity (Chao1 index) and operational taxonomical units (OTUs). In contrast, the ASD exerted a 'gut neutral' effect, whereby a mild enrichment of alpha diversity and OTUs was observed. Importantly, this suggests that ASDs are effective solubility-enhancing formulations that can be used without comprising the integrity of the gut microbiota - an integral consideration in the treatment of mental health disorders, such as schizophrenia, due to the role of the gut microbiota in regulating mood and cognition.
Collapse
Affiliation(s)
- Tahlia R Meola
- UniSA Clinical & Health Sciences, University of South Australia, South Australia 5000, Australia
| | - Srinivas Kamath
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia 5000, Australia
| | - Aurelia S Elz
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia 5000, Australia; Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia 5000, Australia
| | - Anthony Wignall
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia 5000, Australia
| | - Paul Joyce
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia 5000, Australia.
| |
Collapse
|
4
|
Paulus F, Bauer-Brandl A, Stappaerts J, Holm R. Digestion is a critical element for absorption of cinnarizine from supersaturated lipid-based type I formulations. Eur J Pharm Sci 2024; 192:106634. [PMID: 37951315 DOI: 10.1016/j.ejps.2023.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Enabling formulations, such as lipid-based formulations (LBFs), are means to deliver challenging-to-formulate, poorly soluble drugs. LBFs may be composed of lipids, surfactants and/or cosolvents and can be classified depending on the proportions of the components and the hydrophilicity of the surfactant according to the Lipid Formulations Classification System, ranging from type I (very lipophilic) to type IV (hydrophilic). In cases where drug solubility in LBFs does not suffice, e.g. for preclinical toxicity studies, supersaturated LBFs can be used in order to increase the drug load. However, the effect of digestion on drug absorption from supersaturated type I formulations (consisting exclusively of lipids) still remains relatively unexplored and unclear. In the present study, the impact of lipid digestion on absorption of cinnarizine-loaded supersaturated lipid-based formulations of type I was investigated in rats by pre-dosing of the lipase inhibitor orlistat. The lipid chain length and the drug dose were varied by testing medium-chain triglycerides (MCT) and long-chain triglycerides (LCT), both supersaturated and non-supersaturated. Due to the physical instability of supersaturated formulations of cinnarizine, i.e. a potential of precipitation of cinnarizine, the impact of the addition of the amphiphilic polymer Soluplus®, as a potential precipitation inhibitor, was also investigated. The supersaturated systems resulted in a 2.3 - 3.3-fold higher Area Under the Curve (AUC0-24 h, not dose-normalized) and 1.4 - 2.2-fold higher maximum plasma concentration (Cmax, not dose-normalized) than non-supersaturated formulations (statistically significant with p = 0.05), whereas the addition of Soluplus® did not reveal any benefit. Results indicated that lipase inhibition affected the in vivo performance of LBFs: Co-administration of the lipase inhibitor significantly reduced Cmax and AUC0-24 h (both to 33-39 %, not dose-normalized) for the LCT formulations and, though not significant, a similar trend was observed for the AUC0-24 h of the MCT formulations (to 53-87 %), suggesting a higher dependency on lipolysis for LCT. Also, tmax tended to decrease to 20-60 % when compared to the animals not dosed with orlistat but lacking statistical significance. Without lipase inhibition, the LCT in general lead to better absorption of cinnarizine as compared to MCT, with 1.2-1.7-fold higher AUC0-24 h and 1.4-1.8-fold higher Cmax, but without showing statistical significance. Overall, the study revealed that lipolysis plays a major role in drug absorption from supersaturated lipid-based formulations type I.
Collapse
Affiliation(s)
- Felix Paulus
- Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Jef Stappaerts
- Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| |
Collapse
|
5
|
Sirvi A, Debaje S, Guleria K, Sangamwar AT. Critical aspects involved in lipid dispersion and digestion: Emphasis on in vitro models and factors influencing lipolysis of oral lipid based formulations. Adv Colloid Interface Sci 2023; 321:103028. [PMID: 39491077 DOI: 10.1016/j.cis.2023.103028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Understanding the mechanisms underlying the dispersion and digestion process is vital in the development of oral lipid-based formulations (LBFs). In vitro lipolysis models mimic the digestion process in the stomach and intestine to explore the fundamental mechanism of supersaturation, solubilization, and precipitation of drugs within the LBFs. The lipid digestion is controlled by the in vitro experimental conditions, and constitution of the lipid formulations. Hence, there is a continuous upgradation in the digestion models to best extrapolate the in vivo conditions. This review covers the recent developments in digestion models with media compositions and lipid formulation components. Key findings from recent studies that thoroughly examined the relation between the digestion, solubilization, and permeation of oral LBFs in the presence of bile-lipid aggregates are presented. These developments are foremost to build the in vitro-in vivo correlation of the drugs for regulatory considerations.
Collapse
Affiliation(s)
- Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Shubham Debaje
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Kajal Guleria
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India.
| |
Collapse
|
6
|
Wang H, Guo Y, Hu Y, Zhou Y, Chen Y, Huang X, Chen J, Deng Q, Cao S, Hu B, Jiang R, Pan J, Tan T, Wang Y, Chen Y, Dong Q, Chen P, Zhou Q. Ultrasound-controlled nano oxygen carriers enhancing cell viability in 3D GelMA hydrogel for the treatment of myocardial infarction. Int J Biol Macromol 2023:125139. [PMID: 37268076 DOI: 10.1016/j.ijbiomac.2023.125139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Heart failure is a critical and ultimate phase of cardiovascular ailment that leads to a considerable incidence of disability and mortality. Among various factors contributing to heart failure, myocardial infarction is one of the most frequent and significant causes, which is still difficult to manage effectively. An innovative therapeutic strategy, namely a 3D bio-printed cardiac patch, has recently emerged as a promising approach to substitute damaged cardiomyocytes in a localized infarct region. Nevertheless, the efficacy of this treatment primarily relies on the long-term viability of the transplanted cells. In this study, we aimed to construct acoustically sensitive nano oxygen carriers to improve cell survival inside the bio-3D printed patch. In this study, we initially created nanodroplets capable of phase transition triggered by ultrasound and integrated them into GelMA (Gelatin Methacryloyl) hydrogels, which were then employed for 3D bioprinting. After adding nanodroplets and ultrasonic irradiation, numerous pores appeared inside the hydrogel with improved permeability. We further encapsulated hemoglobin into nanodroplets (ND-Hb) to construct oxygen carriers. Results of in vitro experiments showed the highest cell survival within the patch of ND-Hb irradiated by the low-intensity pulsed ultrasound (LIPUS) group. The genomic analysis discovered that the increased survival of seeded cells within the patch might be related to the protection of mitochondrial function owing to the improved hypoxic state. Eventually, in vivo studies revealed that the LIPUS+ND-Hb group had improved cardiac function and increased revascularization after myocardial infarction. To summarize, our study successfully improved the permeability of the hydrogel in a non-invasive and efficient manner, facilitating the exchange of substances in the cardiac patch. Moreover, ultrasound-controlled oxygen release augmented the viability of the transplanted cells and expedited the repair of infarcted tissues.
Collapse
Affiliation(s)
- Hao Wang
- Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Yuxin Guo
- Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Yugang Hu
- Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Yanxiang Zhou
- Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Yueying Chen
- Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Xin Huang
- Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Jinling Chen
- Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Qing Deng
- Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Sheng Cao
- Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Bo Hu
- Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Riyue Jiang
- Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Juhong Pan
- Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Tuantuan Tan
- Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Yijia Wang
- Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Yun Chen
- Wuhan University School of Basic Medical Science, 430060 Wuhan, China
| | - Qi Dong
- Wuhan University School of Basic Medical Science, 430060 Wuhan, China
| | - Pu Chen
- Wuhan University School of Basic Medical Science, 430060 Wuhan, China
| | - Qing Zhou
- Renmin Hospital of Wuhan University, 430060 Wuhan, China.
| |
Collapse
|
7
|
Xu W, Kumar V, Cui CS, Li XX, Whittaker AK, Xu ZP, Smith MT, Woodruff TM, Han FY. Success in navigating hurdles to oral delivery of a bioactive peptide complement antagonist through use of nanoparticles to increase bioavailability and in vivo efficacy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weizhi Xu
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Queensland QLD Australia
| | - Vinod Kumar
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
| | - Cedric S. Cui
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
| | - Xaria X. Li
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Queensland QLD Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Queensland QLD Australia
| | - Maree T. Smith
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
| | - Felicity Y Han
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Queensland QLD Australia
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Queensland QLD Australia
| |
Collapse
|
8
|
Solid self emulsifying drug delivery system: Superior mode for oral delivery of hydrophobic cargos. J Control Release 2021; 337:646-660. [PMID: 34384795 DOI: 10.1016/j.jconrel.2021.08.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022]
Abstract
A significant proportion of recently approved drug molecules possess poor aqueous solubility which further restrains their desired bioavailability. Poor aqueous solubility of these drugs poses significant hurdles in development of novel drug delivery systems and achieving target response. Self-emulsifying drug delivery systems (SEDDS) emerged as an insightful approach for delivering highly hydrophobic entities to enhance their bioavailability. Conventional SEDDS were developed in a liquid form which owned numerous shortcomings like low stability and drug loading efficiency, fewer choices of dosage forms and irreversible precipitation of drug or excipients. To address these curbs solid-SEDDS (S-SEDDS) was introduced as an efficient strategy that combined advantages of solid dosage forms such as increased stability, portability and patient compliance along with substantial improvement in the bioavailability. S-SEDDS are isotropic mixtures of oil, surfactant, solvent and co-solvents generated by solidification of liquid or semisolid self-emulsifying ingredients onto powders. The present review highlights components of S-SEDDS, their peculiarities to be considered while designing solid dosage forms and various methods of fabrication. Lastly, key challenges faced during development, applications and future directions for the research in this area are thoroughly summarized.
Collapse
|
9
|
Shen Y, TanTai J. Co-Delivery Anticancer Drug Nanoparticles for Synergistic Therapy Against Lung Cancer Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4503-4510. [PMID: 33122893 PMCID: PMC7591005 DOI: 10.2147/dddt.s275123] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/02/2020] [Indexed: 01/24/2023]
Abstract
Introduction This study aims to develop a novel co-delivery gefitinib and quercetin system loaded with PLGA-PEG nanoparticles and evaluate their antitumor activity in vitro and in vivo. Methods Gef/Qur NPs were prepared and characterized. The release of drugs, stability, cellular uptake and cytotoxicity were evaluated in vitro. The antitumor effects and systemic toxicity of different formulations were also investigated. Results Gef/Qur NPs displayed a smaller particle size and a PDI and zeta potential of 0.11 and −23.5 mV, respectively. The hydrophobic Gef and Qur content in NPs reached up to 65.2% and 56.4%, respectively, and their high entrapment efficiencies recorded 83.7% and 82.3%, respectively. The in vitro release of Gef/Qur from the NPs was sustained for 12 h. Compared with control groups, Gef/Qur NPs showed higher cellular uptake and cell inhibition rates. In vivo studies identified the lungs as the target tissue and the region of maximum drug release. Through pharmacodynamics analysis, we found that two drugs (Gef and Qur) were incorporated into one nanoparticle carrier, which played a good role in generating synergistic effect. Discussion It is concluded that PLGA-PEG is an ideal drug carrier for the co-delivery of Gef/Qur to treat lung cancer.
Collapse
Affiliation(s)
- Yuzhou Shen
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Jicheng TanTai
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| |
Collapse
|
10
|
Maghrebi S, Jambhrunkar M, Joyce P, Prestidge CA. Engineering PLGA–Lipid Hybrid Microparticles for Enhanced Macrophage Uptake. ACS APPLIED BIO MATERIALS 2020; 3:4159-4167. [DOI: 10.1021/acsabm.0c00251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sajedeh Maghrebi
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Manasi Jambhrunkar
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Paul Joyce
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Clive A. Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
11
|
Maghrebi S, Joyce P, Jambhrunkar M, Thomas N, Prestidge CA. Poly(lactic- co-glycolic) Acid-Lipid Hybrid Microparticles Enhance the Intracellular Uptake and Antibacterial Activity of Rifampicin. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8030-8039. [PMID: 32013379 DOI: 10.1021/acsami.9b22991] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An urgent demand exists for the development of effective carrier systems that systematically enhance the cellular uptake and localization of antibiotic drugs for the treatment of intracellular pathogens. Commercially available antibiotics suffer from poor cellular penetration, restricting their efficacy against pathogens hosted and protected within phagocytic cells. In this study, the potency of the antibiotic rifampicin against intracellular small colony variants of Staphylococcus aureus was improved through encapsulation within a strategically engineered cell-penetrant delivery system, composed of lipid nanoparticles encapsulated within a poly(lactic-co-glycolic) acid (PLGA) nanoparticle matrix. PLGA-lipid hybrid (PLH) microparticles were synthesized through the process of spray drying, whereby rifampicin was loaded within both the polymer and lipid phases, to create a nanoparticle-in-microparticle system capable of efficient redispersion in aqueous biorelevant media and with programmable release kinetics. The ability of PLH particles to disintegrate into nanoscale agglomerates of the precursor nanoparticles was shown to be instrumental in optimizing rifampicin uptake in RAW264.7 macrophages, with a 7.2- and 1.6-fold increase in cellular uptake, when compared to the pure drug and PLGA microparticles (of an equivalent initial particle size), respectively. The enhanced phagocytosis and extended drug release mechanism (under the acidic macrophage environment) associated with PLH particles induced a 2.5-log reduction in colony forming units compared to initial colonies at 2.50 μg/mL rifampicin dose. Thus, the ability of PLH particles to reduce the intracellular viability of S. aureus, without demonstrating significant cellular toxicity, satisfies the requirements necessary for the safe and efficacious delivery of antibiotics to macrophages for the treatment of intracellular infections.
Collapse
Affiliation(s)
- Sajedeh Maghrebi
- School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5000 , Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia 5000 , Australia
| | - Paul Joyce
- School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5000 , Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia 5000 , Australia
| | - Manasi Jambhrunkar
- School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5000 , Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia 5000 , Australia
| | - Nicky Thomas
- School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5000 , Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia 5000 , Australia
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5000 , Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia 5000 , Australia
| |
Collapse
|
12
|
Yin J, Hou Y, Song X, Wang P, Li Y. Cholate-modified polymer-lipid hybrid nanoparticles for oral delivery of quercetin to potentiate the antileukemic effect. Int J Nanomedicine 2019; 14:4045-4057. [PMID: 31213814 PMCID: PMC6549487 DOI: 10.2147/ijn.s210057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Quercetin (QUE) shows a potential antileukemic activity, but possesses poor solubility and low bioavailability. Purpose: This article explored the bile salt transport pathway for oral deliver of QUE using cholate-modified polymer-lipid hybrid nanoparticles (cPLNs) aiming to enhance its antileukemic effect. Methods: QUE-loaded cPLNs (QUE-cPLNs) were developed through a nanoprecipitation technique and characterized by particle size, entrapment efficiency (EE), microscopic morphology and in vitro drug release. In vitro cellular uptake and cytotoxicity of QUE-cPLNs were examined on Caco-2 and P388 cells; in vivo pharmacokinetics and antileukemic effect were evaluated using Sprague Dawley rats and leukemic model mice, respectively. Results: The prepared QUE-cPLNs possessed a particle size of 110 nm around with an EE of 96.22%. QUE-cPLNs resulted in significantly enhanced bioavailability of QUE, up to 375.12% relative to the formulation of suspensions. In addition, QUE-cPLNs exhibited excellent cellular uptake and internalization capability compared to cholate-free QUE-PLNs. The in vitro cytotoxic and in vivo antileukemic effects of QUE-cPLNs were also signally superior to free QUE and QUE-PLNs. Conclusion: These findings indicate that cPLNs are a promising nanocarrier able to improve the oral bioavailability and therapeutic index of QUE.
Collapse
Affiliation(s)
- Juntao Yin
- Department of Pharmaceutics, Huaihe Hospital Affiliated to Henan University, Kaifeng, People's Republic of China
| | - Yantao Hou
- Henan Vocational College of Applied Technology, Kaifeng, People's Republic of China
| | - Xiaoyong Song
- School of Pharmacy, Henan University, Kaifeng, People's Republic of China
| | - Peiqing Wang
- Department of Pharmaceutics, Huaihe Hospital Affiliated to Henan University, Kaifeng, People's Republic of China
| | - Yang Li
- Department of Pharmaceutics, Huaihe Hospital Affiliated to Henan University, Kaifeng, People's Republic of China
| |
Collapse
|
13
|
Maghrebi S, Prestidge CA, Joyce P. An update on polymer-lipid hybrid systems for improving oral drug delivery. Expert Opin Drug Deliv 2019; 16:507-524. [PMID: 30957577 DOI: 10.1080/17425247.2019.1605353] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A promising approach that has recently emerged to overcome the complex biobarriers and interrelated challenges associated with oral drug absorption is to combine the benefits of polymeric and lipid-based nanocarriers within one hybrid system. This multifaceted formulation strategy has given rise to a plethora of polymer-lipid hybrid (PLH) systems with varying nanostructures and biological activities, all of which have demonstrated the ability to improve the biopharmaceutical performance of a wide range of challenging therapeutics. AREAS COVERED The multitude of polymers that can be combined with lipids to exert a synergistic effect for oral drug delivery have been identified, reviewed and critically evaluated. Specific focus is attributed to preclinical studies performed within the past 5 years that have elucidated the role and mechanism of the polymer phase in altering the oral absorption of encapsulated therapeutics. EXPERT OPINION The potential of PLH systems has been clearly identified; however, improved understanding of the structure-activity relationship between PLH systems and oral absorption is fundamental for translating this promising delivery approach into a clinically relevant formulation. Advancing research within this field to identify optimal polymer, lipid combinations and engineering conditions for specific therapeutics are therefore encouraged.
Collapse
Affiliation(s)
- Sajedehsadat Maghrebi
- a School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia , Australia.,b ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia , Australia
| | - Clive A Prestidge
- a School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia , Australia.,b ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia , Australia
| | - Paul Joyce
- c Department of Physics , Chalmers University of Technology , Gothenburg , Sweden
| |
Collapse
|
14
|
Joyce P, Dening TJ, Meola TR, Schultz HB, Holm R, Thomas N, Prestidge CA. Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Adv Drug Deliv Rev 2019; 142:102-117. [PMID: 30529138 DOI: 10.1016/j.addr.2018.11.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 01/28/2023]
Abstract
Self-emulsifying drug delivery systems (SEDDS) offer potential for overcoming the inherent slow dissolution and poor oral absorption of hydrophobic drugs by retaining them in a solubilised state during gastrointestinal transit. However, the promising biopharmaceutical benefits of liquid lipid formulations has not translated into widespread commercial success, due to their susceptibility to long term storage and in vivo precipitation issues. One strategy that has emerged to overcome such limitations, is to combine the solubilisation and dissolution enhancing properties of lipids with the stabilising effects of solid carrier materials. The development of intelligent hybrid drug formulations has presented new opportunities to harness the potential of emulsified lipids in optimising oral bioavailability for lipophilic therapeutics. Specific emphasis of this review is placed on the impact of solidification approaches and excipients on the biopharmaceutical performance of self-emulsifying lipids, with findings highlighting the key design considerations that should be implemented when developing hybrid lipid-based formulations.
Collapse
|
15
|
Joyce P, Gustafsson H, Prestidge CA. Engineering intelligent particle-lipid composites that control lipase-mediated digestion. Adv Colloid Interface Sci 2018; 260:1-23. [PMID: 30119842 DOI: 10.1016/j.cis.2018.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022]
Abstract
Nanostructured particle-lipid composites have emerged as state-of-the-art carrier systems for poorly water-soluble bioactive molecules due to their ability to control and enhance the lipase-mediated hydrolysis of encapsulated triglycerides, leading to a subsequent improvement in the solubilisation and absorption of encapsulated species. The first generation of particle-lipid composites (i.e. silica-lipid hybrid (SLH) microparticles) were designed and fabricated by spray drying a silica nanoparticle-stabilised Pickering emulsion, to create a novel three-dimensional architecture, whereby lipid droplets were encapsulated within a porous matrix support. The development of SLH microparticles has acted as a solid foundation for the synthesis of several next generation particle-lipid composites, including polymer-lipid hybrid (PLH) and clay-lipid hybrid systems (CLH), which present lipase with unique lipid microenvironments for optimised lipolysis. This review details the methods utilised to engineer lipid hybrid particles and the strategic investigations that have been performed to determine the influence of key material characteristics on digestion enzyme activity. In doing so, this provides insight into manipulating the mechanism of lipase action through the intelligent design of lipid-based biomaterials for their use in drug delivery formulations and novel functional foods.
Collapse
|