1
|
Verschuur AS, King R, Tax CMW, Boomsma MF, van Wezel-Meijler G, Leemans A, Leijser LM. Methodological considerations on diffusion MRI tractography in infants aged 0-2 years: a scoping review. Pediatr Res 2025; 97:880-897. [PMID: 39143201 DOI: 10.1038/s41390-024-03463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Diffusion MRI (dMRI) enables studying the complex architectural organization of the brain's white matter (WM) through virtual reconstruction of WM fiber tracts (tractography). Despite the anticipated clinical importance of applying tractography to study structural connectivity and tract development during the critical period of rapid infant brain maturation, detailed descriptions on how to approach tractography in young infants are limited. Over the past two decades, tractography from infant dMRI has mainly been applied in research settings and focused on diffusion tensor imaging (DTI). Only few studies used techniques superior to DTI in terms of disentangling information on the brain's organizational complexity, including crossing fibers. While more advanced techniques may enhance our understanding of the intricate processes of normal and abnormal brain development and extensive knowledge has been gained from application on adult scans, their applicability in infants has remained underexplored. This may partially be due to the higher technical requirements versus the need to limit scan time in young infants. We review various previously described methodological practices for tractography in the infant brain (0-2 years-of-age) and provide recommendations to optimize advanced tractography approaches to enable more accurate reconstructions of the brain WM's complexity. IMPACT: Diffusion tensor imaging is the technique most frequently used for fiber tracking in the developing infant brain but is limited in capability to disentangle the complex white matter organization. Advanced tractography techniques allow for reconstruction of crossing fiber bundles to better reflect the brain's complex organization. Yet, they pose practical and technical challenges in the fast developing young infant's brain. Methods on how to approach advanced tractography in the young infant's brain have hardly been described. Based on a literature review, recommendations are provided to optimize tractography for the developing infant brain, aiming to advance early diagnosis and neuroprotective strategies.
Collapse
Affiliation(s)
- Anouk S Verschuur
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands.
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada.
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Regan King
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| | - Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Martijn F Boomsma
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerda van Wezel-Meijler
- Department of Neonatology, Isala Women and Children's Hospital Zwolle, Zwolle, The Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lara M Leijser
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Sun Y, Hu W, Hu Y, Qiu Y, Chen Y, Xu Q, Wei H, Dai Y, Zhou Y. Exploring cognitive related microstructural alterations in normal appearing white matter and deep grey matter for small vessel disease: A quantitative susceptibility mapping study. Neuroimage 2024; 298:120790. [PMID: 39147292 DOI: 10.1016/j.neuroimage.2024.120790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
Brain microstructural alterations possibly occur in the normal-appearing white matter (NAWM) and grey matter of small vessel disease (SVD) patients, and may contribute to cognitive impairment. The aim of this study was to explore cognitive related microstructural alterations in white matter and deep grey matter nuclei in SVD patients using magnetic resonance (MR) quantitative susceptibility mapping (QSM). 170 SVD patients, including 103 vascular mild cognitive impairment (VaMCI) and 67 no cognitive impairment (NCI), and 21 healthy control (HC) subjects were included, all underwent a whole-brain QSM scanning. Using a white matter and a deep grey matter atlas, subregion-based QSM analysis was conducted to identify and characterize microstructural alterations occurring within white matter and subcortical nuclei. Significantly different susceptibility values were revealed in NAWM and in several specific white matter tracts including anterior limb of internal capsule, corticospinal tract, medial lemniscus, middle frontal blade, superior corona radiata and tapetum among VaMCI, NCI and HC groups. However, no difference was found in white matter hyperintensities between VaMCI and NCI. A trend toward higher susceptibility in the caudate nucleus and globus pallidus of VaMCI patients compared to HC, indicating elevated iron deposition in these areas. Interestingly, some of these QSM parameters were closely correlated with both global and specific cognitive function scores, controlling age, gender and education level. Our study suggested that QSM may serve as a useful imaging tool for monitoring cognitive related microstructural alterations in brain. This is especially meaningful for white matter which previously lacks of attention.
Collapse
Affiliation(s)
- Yawen Sun
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wentao Hu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Hu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yage Qiu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuewei Chen
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Renji-UNSW CHeBA Neurocognitive Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qun Xu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Renji-UNSW CHeBA Neurocognitive Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Health Manage Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongming Dai
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Jacobs NPT, Pouwels PJW, van der Krogt MM, Meyns P, Zhu K, Nelissen L, Schoonmade LJ, Buizer AI, van de Pol LA. Brain structural and functional connectivity and network organization in cerebral palsy: A scoping review. Dev Med Child Neurol 2023; 65:1157-1173. [PMID: 36750309 DOI: 10.1111/dmcn.15516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 02/09/2023]
Abstract
AIM To explore altered structural and functional connectivity and network organization in cerebral palsy (CP), by clinical CP subtype (unilateral spastic, bilateral spastic, dyskinetic, and ataxic CP). METHOD PubMed and Embase databases were systematically searched. Extracted data included clinical characteristics, analyses, outcome measures, and results. RESULTS Sixty-five studies were included, of which 50 investigated structural connectivity, and 20 investigated functional connectivity using functional magnetic resonance imaging (14 studies) or electroencephalography (six studies). Five of the 50 studies of structural connectivity and one of 14 of functional connectivity investigated whole-brain network organization. Most studies included patients with unilateral spastic CP; none included ataxic CP. INTERPRETATION Differences in structural and functional connectivity were observed between investigated clinical CP subtypes and typically developing individuals on a wide variety of measures, including efferent, afferent, interhemispheric, and intrahemispheric connections. Directions for future research include extending knowledge in underrepresented CP subtypes and methodologies, evaluating the prognostic potential of specific connectivity and network measures in neonates, and understanding therapeutic effects on brain connectivity.
Collapse
Affiliation(s)
- Nina P T Jacobs
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
| | - Petra J W Pouwels
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marjolein M van der Krogt
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
| | - Pieter Meyns
- REVAL Rehabilitation Research, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Kangdi Zhu
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Loïs Nelissen
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, location Vrije Universiteit, Amsterdam, the Netherlands
| | - Linda J Schoonmade
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Annemieke I Buizer
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
- Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Laura A van de Pol
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, location Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Lu J, Drobyshevsky A, Lu L, Yu Y, Caplan MS, Claud EC. Microbiota from Preterm Infants Who Develop Necrotizing Enterocolitis Drives the Neurodevelopment Impairment in a Humanized Mouse Model. Microorganisms 2023; 11:1131. [PMID: 37317106 PMCID: PMC10224461 DOI: 10.3390/microorganisms11051131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is the leading basis for gastrointestinal morbidity and poses a significant risk for neurodevelopmental impairment (NDI) in preterm infants. Aberrant bacterial colonization preceding NEC contributes to the pathogenesis of NEC, and we have demonstrated that immature microbiota in preterm infants negatively impacts neurodevelopment and neurological outcomes. In this study, we tested the hypothesis that microbial communities before the onset of NEC drive NDI. Using our humanized gnotobiotic model in which human infant microbial samples were gavaged to pregnant germ-free C57BL/6J dams, we compared the effects of the microbiota from preterm infants who went on to develop NEC (MNEC) to the microbiota from healthy term infants (MTERM) on brain development and neurological outcomes in offspring mice. Immunohistochemical studies demonstrated that MNEC mice had significantly decreased occludin and ZO-1 expression compared to MTERM mice and increased ileal inflammation marked by the increased nuclear phospho-p65 of NFκB expression, revealing that microbial communities from patients who developed NEC had a negative effect on ileal barrier development and homeostasis. In open field and elevated plus maze tests, MNEC mice had worse mobility and were more anxious than MTERM mice. In cued fear conditioning tests, MNEC mice had worse contextual memory than MTERM mice. MRI revealed that MNEC mice had decreased myelination in major white and grey matter structures and lower fractional anisotropy values in white matter areas, demonstrating delayed brain maturation and organization. MNEC also altered the metabolic profiles, especially carnitine, phosphocholine, and bile acid analogs in the brain. Our data demonstrated numerous significant differences in gut maturity, brain metabolic profiles, brain maturation and organization, and behaviors between MTERM and MNEC mice. Our study suggests that the microbiome before the onset of NEC has negative impacts on brain development and neurological outcomes and can be a prospective target to improve long-term developmental outcomes.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | - Lei Lu
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Yueyue Yu
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Michael S. Caplan
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL 60202, USA
| | - Erika C. Claud
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Nossa R, Gagliardi C, Panzeri D, Diella E, Maghini C, Genova C, Turconi AC, Biffi E. Could an Immersive Virtual Reality Training Improve Navigation Skills in Children with Cerebral Palsy? A Pilot Controlled Study. J Clin Med 2022; 11:6146. [PMID: 36294467 PMCID: PMC9604863 DOI: 10.3390/jcm11206146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Children with cerebral palsy (CP) suffer deficits in their motor, sensory, and cognitive abilities, as well as in their visuospatial competences. In the last years, several authors have tried to correlate the visuospatial abilities with the navigational ones. Given their importance in everyday functions, navigation skills have been deeply studied using increasingly cutting-edge techniques such as virtual reality (VR). However, to our knowledge, there are no studies focused on training using immersive VR (IVR) in children with movement disorders. For this reason, we proposed an IVR training to 35 young participants with CP and conceived to improve their navigation skills in a "simil-real" environment while playing on a dynamic platform. A subgroup performed a part of the training which was specifically dedicated to the use of the allocentric strategy (i.e., looking for landmarks) to navigate the virtual environment. We then compared the children's navigation and spatial skills pre- and post-intervention. All the children improved their visual-spatial abilities; particularly, if the IVR activities specifically trained their ability to look for landmarks and use them to navigate. The results of this work highlight the potential of an IVR training program to increase the navigation abilities of patients with CPs.
Collapse
Affiliation(s)
- Roberta Nossa
- Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, LC, Italy
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Cystic Periventricular Leukomalacia Worsens Developmental Outcomes of Very-Low-Birth Weight Infants with Intraventricular Hemorrhage-A Nationwide Cohort Study. J Clin Med 2022; 11:jcm11195886. [PMID: 36233751 PMCID: PMC9572154 DOI: 10.3390/jcm11195886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic periventricular leukomalacia (cPVL) is a major brain injury involving periventricular white matter that leads to neurodevelopmental impairment in very-low-birth weight (VLBW) infants. We investigated the neurodevelopmental outcomes (motor, cognition, visual, and hearing) of 5734 VLBW infants born between 2013 and 2019 and enrolled in the Korean Neonatal Network. Cranial ultrasound results were stratified by the presence of cPVL and severity of intraventricular hemorrhage (IVH) (no, low-grade [I/II], high-grade [III]). Neurodevelopmental impairment was evaluated using cerebral palsy for motor and Bayley Scales of Infant Development for cognition. cPVL was associated with motor, cognitive, and visual impairments in those without IVH and with low-grade IVH in pairwise comparisons (Cochran−Mantel−Haenszel p < 0.001). Conversely, cPVL was non-significantly correlated with cognitive impairment in high-grade IVH. In regression models adjusted for neonatal variables, isolated cPVL was strongly associated with motor (22.04; 11.39−42.63) and cognitive (3.10; 1.54−6.22) impairments. This study underlines the overall considerable significance of cPVL on NDI with divergent impacts depending on the severity of IVH and developmental indices.
Collapse
|
7
|
Experimental Imaging Study of Encephalomalacia Fluid-Attenuated Inversion Recovery (FLAIR) Hyperintense Lesions in Posttraumatic Epilepsy. Neural Plast 2021; 2021:2678379. [PMID: 34754305 PMCID: PMC8572636 DOI: 10.1155/2021/2678379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 01/20/2023] Open
Abstract
This study introduced new MRI techniques such as neurite orientation dispersion and density imaging (NODDI); NODDI applies a three-compartment tissue model to multishell DWI data that allows the examination of both the intra- and extracellular properties of white matter tissue. This, in turn, enables us to distinguish the two key aspects of axonal pathology-the packing density of axons in the white matter and the spatial organization of axons (orientation dispersion (OD)). NODDI is used to detect possible abnormalities of posttraumatic encephalomalacia fluid-attenuated inversion recovery (FLAIR) hyperintense lesions in neurite density and dispersion. Methods. 26 epilepsy patients associated with FLAIR hyperintensity around the trauma encephalomalacia region were in the epilepsy group. 18 posttraumatic patients with a FLAIR hyperintense encephalomalacia region were in the nonepilepsy group. Neurite density and dispersion affection in FLAIR hyperintense lesions around encephalomalacia were measured by NODDI using intracellular volume fraction (ICVF), and we compare these findings with conventional diffusion MRI parameters, namely, fractional anisotropy (FA) and apparent diffusion coefficient (ADC). Differences were compared between the epilepsy and nonepilepsy groups, as well as in the FLAIR hyperintense part and in the FLAIR hypointense part to try to find neurite density and dispersion differences in these parts. Results. ICVF of FLAIR hyperintense lesions in the epilepsy group was significantly higher than that in the nonepilepsy group (P < 0.001). ICVF reveals more information of FLAIR(+) and FLAIR(-) parts of encephalomalacia than OD and FA and ADC. Conclusion. The FLAIR hyperintense part around encephalomalacia in the epilepsy group showed higher ICVF, indicating that this part may have more neurite density and dispersion and may be contributing to epilepsy. NODDI indicated high neurite density with the intensity of myelin in the FLAIR hyperintense lesion. Therefore, NODDI likely shows that neurite density may be a more sensitive marker of pathology than FA.
Collapse
|
8
|
Lean RE, Han RH, Smyser TA, Kenley JK, Shimony JS, Rogers CE, Limbrick DD, Smyser CD. Altered neonatal white and gray matter microstructure is associated with neurodevelopmental impairments in very preterm infants with high-grade brain injury. Pediatr Res 2019; 86:365-374. [PMID: 31212303 PMCID: PMC6702093 DOI: 10.1038/s41390-019-0461-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND This study examines relationships between neonatal white and gray matter microstructure and neurodevelopment in very preterm (VPT) infants (≤30 weeks gestation) with high-grade brain injury (BI). METHODS Term-equivalent diffusion tensor magnetic resonance imaging data were obtained in 32 VPT infants with high-grade BI spanning grade III/IV intraventricular hemorrhage, post-hemorrhagic hydrocephalus (PHH), and cystic periventricular leukomalacia (BI group); 69 VPT infants without high-grade injury (VPT group); and 55 term-born infants. The Bayley-III assessed neurodevelopmental outcomes at age 2 years. RESULTS BI infants had lower fractional anisotropy (FA) in the posterior limb of the internal capsule (PLIC), cingulum, and corpus callosum, and higher mean diffusivity (MD) in the optic radiations and cingulum than VPT infants. PHH was associated with higher MD in the optic radiations and left PLIC, and higher FA in the right caudate. For BI infants, higher MD in the right optic radiation and lower FA in the right cingulum, PLIC, and corpus callosum were related to motor impairments. CONCLUSIONS BI infants demonstrated altered white and gray matter microstructure in regions affected by injury in a manner dependent upon injury type. PHH infants demonstrated the greatest impairments. Aberrant white matter microstructure was related to motor impairment in BI infants.
Collapse
Affiliation(s)
- Rachel E Lean
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Rowland H Han
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Tara A Smyser
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeanette K Kenley
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - David D Limbrick
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher D Smyser
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Lu J, Synowiec S, Lu L, Yu Y, Bretherick T, Takada S, Yarnykh V, Caplan J, Caplan M, Claud EC, Drobyshevsky A. Microbiota influence the development of the brain and behaviors in C57BL/6J mice. PLoS One 2018; 13:e0201829. [PMID: 30075011 PMCID: PMC6075787 DOI: 10.1371/journal.pone.0201829] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022] Open
Abstract
We investigated the contributions of commensal bacteria to brain structural maturation by magnetic resonance imaging and behavioral tests in four and 12 weeks old C57BL/6J specific pathogen free (SPF) and germ free (GF) mice. SPF mice had increased volumes and fractional anisotropy in major gray and white matter areas and higher levels of myelination in total brain, major white and grey matter structures at either four or 12 weeks of age, demonstrating better brain maturation and organization. In open field test, SPF mice had better mobility and were less anxious than GF at four weeks. In Morris water maze, SPF mice demonstrated better spatial and learning memory than GF mice at 12 weeks. In fear conditioning, SPF mice had better contextual memory than GF mice at 12 weeks. In three chamber social test, SPF mice demonstrated better social novelty than GF mice at 12 weeks. Our data demonstrate numerous significant differences in morphological brain organization and behaviors between SPF and GF mice. This suggests that commensal bacteria are necessary for normal morphological development and maturation in the grey and white matter of the brain regions with implications for behavioral outcomes such as locomotion and cognitive functions.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pediatrics, Neonatology, Pritzker School of Medicine, the University of Chicago, Chicago, Illinois, United States of America
| | - Sylvia Synowiec
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, Illinois, United States of America
| | - Lei Lu
- Department of Pediatrics, Neonatology, Pritzker School of Medicine, the University of Chicago, Chicago, Illinois, United States of America
| | - Yueyue Yu
- Department of Pediatrics, Neonatology, Pritzker School of Medicine, the University of Chicago, Chicago, Illinois, United States of America
| | - Talitha Bretherick
- Laboratório de Neurogenética, Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Takada
- Laboratório de Neurogenética, Federal University of São Paulo, São Paulo, Brazil
| | - Vasily Yarnykh
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
- Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
| | - Jack Caplan
- Department of Chemical Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, United States of America
| | - Michael Caplan
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, Illinois, United States of America
| | - Erika C. Claud
- Department of Pediatrics, Neonatology, Pritzker School of Medicine, the University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AD); (ECC)
| | - Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, Illinois, United States of America
- * E-mail: (AD); (ECC)
| |
Collapse
|
10
|
Di Lieto MC, Brovedani P, Pecini C, Chilosi AM, Belmonti V, Fabbro F, Urgesi C, Fiori S, Guzzetta A, Perazza S, Sicola E, Cioni G. Spastic diplegia in preterm-born children: Executive function impairment and neuroanatomical correlates. RESEARCH IN DEVELOPMENTAL DISABILITIES 2017; 61:116-126. [PMID: 28073076 DOI: 10.1016/j.ridd.2016.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/12/2016] [Accepted: 12/18/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The neuropsychological literature on preterm-born children with spastic diplegia due to periventricular leukomalacia is convergent in reporting deficits in non-verbal intelligence and in visuo-spatial abilities. Nevertheless, other cognitive functions have found to be impaired, but data are scant and not correlated with neuroimaging findings. AIMS This study analyzes the neuropsychological strengths and weaknesses in preterm-born children with spastic diplegia (pSD) and their relationships with neuroanatomical findings, investigated by a novel scale for MRI classification. METHODS AND PROCEDURES Nineteen children with pSD, mild to moderate upper limb impairment and Verbal IQ>80, and 38 normal controls were evaluated with a comprehensive neuropsychological battery (NEPSY-II), assessing Attention/Executive Functioning, Language, Memory, Sensorimotor, Social Perception and Visuospatial Processing domains. The MRIs were quantitatively scored for lesion severity. OUTCOMES AND RESULTS The results showed that, beyond core visuo-spatial and sensory-motor deficits, impairments in attention and executive functions were present in more than half of the sample, particularly in children with damage to the anterior corpus callosum. CONCLUSIONS AND IMPLICATIONS The findings are discussed in terms of clinical and rehabilitative implications tailored for pSD subgroups diversified for neuropsychological and neuroanatomical characteristics.
Collapse
Affiliation(s)
- Maria Chiara Di Lieto
- Department of Developmental Neuroscience, IRCCS Stella Maris, Viale del Tirreno 331, 56128, Calambrone, Pisa, Italy.
| | - Paola Brovedani
- Department of Developmental Neuroscience, IRCCS Stella Maris, Viale del Tirreno 331, 56128, Calambrone, Pisa, Italy.
| | - Chiara Pecini
- Department of Developmental Neuroscience, IRCCS Stella Maris, Viale del Tirreno 331, 56128, Calambrone, Pisa, Italy.
| | - Anna Maria Chilosi
- Department of Developmental Neuroscience, IRCCS Stella Maris, Viale del Tirreno 331, 56128, Calambrone, Pisa, Italy.
| | - Vittorio Belmonti
- Department of Developmental Neuroscience, IRCCS Stella Maris, Viale del Tirreno 331, 56128, Calambrone, Pisa, Italy.
| | - Franco Fabbro
- Department of Human Sciences, University of Udine, Via Margreth 3, 33100, Udine, Italy.
| | - Cosimo Urgesi
- Department of Human Sciences, University of Udine, Via Margreth 3, 33100, Udine, Italy.
| | - Simona Fiori
- Department of Developmental Neuroscience, IRCCS Stella Maris, Viale del Tirreno 331, 56128, Calambrone, Pisa, Italy.
| | - Andrea Guzzetta
- Department of Developmental Neuroscience, IRCCS Stella Maris, Viale del Tirreno 331, 56128, Calambrone, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy.
| | - Silvia Perazza
- Department of Developmental Neuroscience, IRCCS Stella Maris, Viale del Tirreno 331, 56128, Calambrone, Pisa, Italy.
| | - Elisa Sicola
- Department of Developmental Neuroscience, IRCCS Stella Maris, Viale del Tirreno 331, 56128, Calambrone, Pisa, Italy.
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Stella Maris, Viale del Tirreno 331, 56128, Calambrone, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy.
| |
Collapse
|
11
|
Leitner Y, Travis KE, Ben-Shachar M, Yeom KW, Feldman HM. Tract Profiles of the Cerebellar White Matter Pathways in Children and Adolescents. THE CEREBELLUM 2016; 14:613-623. [PMID: 25648754 DOI: 10.1007/s12311-015-0652-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intact development of cerebellar connectivity is essential for healthy neuromotor and neurocognitive development. To date, limited knowledge about the microstructural properties of the cerebellar peduncles, the major white matter tracts of the cerebellum, is available for children and adolescents. Such information would be useful as a comparison for studies of normal development, clinical conditions, or associations of cerebellar structures with cognitive and motor functions. The goal of the present study was to evaluate the variability in diffusion measures of the cerebellar peduncles within individuals and within a normative sample of healthy children. Participants were 19 healthy children and adolescents, aged 9-17 years, mean age 13.0 ± 2.3. We analyzed diffusion magnetic resonance imaging (dMRI) data with deterministic tractography. We generated tract profiles for each of the cerebellar peduncles by extracting four diffusion properties (fractional anisotropy (FA) and mean, radial, and axial diffusivity) at 30 equidistant points along each tract. We were able to identify the middle cerebellar peduncle and the bilateral inferior and superior cerebellar peduncles in all participants. The results showed that within each of the peduncles, the diffusion properties varied along the trajectory of the tracts. However, the tracts showed consistent patterns of variation across individuals; the coefficient of variation for FA across individual profiles was low (≤20%) for each tract. We observed no systematic variation of the diffusion properties with age. These cerebellar tract profiles of the cerebellar peduncles can serve as a reference for future studies of children across the age range and for children and adolescents with clinical conditions that affect the cerebellum.
Collapse
Affiliation(s)
- Yael Leitner
- Child Development Center, Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Katherine E Travis
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto CA USA
| | - Michal Ben-Shachar
- The Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel.,The English Department, Linguistics Division, Bar Ilan University, Ramat Gan, Israel
| | - Kristen W Yeom
- Department of Radiology, Stanford University School of Medicine, Palo Alto CA USA
| | - Heidi M Feldman
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto CA USA
| |
Collapse
|
12
|
Arrigoni F, Peruzzo D, Gagliardi C, Maghini C, Colombo P, Iammarrone FS, Pierpaoli C, Triulzi F, Turconi AC. Whole-Brain DTI Assessment of White Matter Damage in Children with Bilateral Cerebral Palsy: Evidence of Involvement beyond the Primary Target of the Anoxic Insult. AJNR Am J Neuroradiol 2016; 37:1347-53. [PMID: 26988814 DOI: 10.3174/ajnr.a4717] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/05/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral palsy is frequently associated with both motor and nonmotor symptoms. DTI can characterize the damage at the level of motor tracts but provides less consistent results in nonmotor areas. We used a standardized pipeline of analysis to describe and quantify the pattern of DTI white matter abnormalities of the whole brain in a group of children with chronic bilateral cerebral palsy and periventricular leukomalacia. We also explored potential correlations between DTI and clinical scale metrics. MATERIALS AND METHODS Twenty-five patients (mean age, 11.8 years) and 25 healthy children (mean age, 11.8 years) were studied at 3T with a 2-mm isotropic DTI sequence. Differences between patients and controls were assessed both voxelwise and in ROIs obtained from an existing DTI atlas. Clinical metrics included the Gross Motor Function Classification System, the Manual Ability Classification System, and intelligence quotient. RESULTS The voxel-level and ROI-level analyses demonstrated highly significant (P < .001) modifications of DTI measurements in patients at several levels: cerebellar peduncles, corticospinal tracts and posterior thalamic radiations, posterior corpus callosum, external capsule, anterior thalamic radiation, superior longitudinal fasciculi and corona radiata, optic nerves, and chiasm. The reduction of fractional anisotropy values in significant tracts was between 8% and 30%. Statistically significant correlations were found between motor impairment and fractional anisotropy in corticospinal tracts and commissural and associative tracts of the supratentorial brain. CONCLUSIONS We demonstrated the involvement of several motor and nonmotor areas in the chronic damage associated with periventricular leukomalacia and showed new correlations between motor skills and DTI metrics.
Collapse
Affiliation(s)
| | - D Peruzzo
- From the Neuroimaging Lab (F.A., D.P.)
| | - C Gagliardi
- Functional Neurorehabilitation Unit (C.G., C.M., F.S.I., A.C.T.)
| | - C Maghini
- Functional Neurorehabilitation Unit (C.G., C.M., F.S.I., A.C.T.)
| | - P Colombo
- Child Psychopathology Unit (P.C.), Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | | | - C Pierpaoli
- National Institutes of Health (C.P.), Bethesda, Maryland
| | - F Triulzi
- Department of Neuroradiology (F.T.), Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - A C Turconi
- Functional Neurorehabilitation Unit (C.G., C.M., F.S.I., A.C.T.)
| |
Collapse
|
13
|
Diffusion-Tensor Imaging of Thigh Muscles in Duchenne Muscular Dystrophy: Correlation of Apparent Diffusion Coefficient and Fractional Anisotropy Values With Fatty Infiltration. AJR Am J Roentgenol 2016; 206:867-70. [PMID: 26866848 DOI: 10.2214/ajr.15.15028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology 2015; 59:140-154. [PMID: 26721665 DOI: 10.1016/j.neuro.2015.12.014] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 12/25/2022]
Abstract
Accumulating evidence from both human and animal studies show that brain is a target of air pollution. Multiple epidemiological studies have now linked components of air pollution to diagnosis of autism spectrum disorder (ASD), a linkage with plausibility based on the shared mechanisms of inflammation. Additional plausibility appears to be provided by findings from our studies in mice of exposures from postnatal day (PND) 4-7 and 10-13 (human 3rd trimester equivalent), to concentrated ambient ultrafine (UFP) particles, considered the most reactive component of air pollution, at levels consistent with high traffic areas of major U.S. cities and thus highly relevant to human exposures. These exposures, occurring during a period of marked neuro- and gliogenesis, unexpectedly produced a pattern of developmental neurotoxicity notably similar to multiple hypothesized mechanistic underpinnings of ASD, including its greater impact in males. UFP exposures induced inflammation/microglial activation, reductions in size of the corpus callosum (CC) and associated hypomyelination, aberrant white matter development and/or structural integrity with ventriculomegaly (VM), elevated glutamate and excitatory/inhibitory imbalance, increased amygdala astrocytic activation, and repetitive and impulsive behaviors. Collectively, these findings suggest the human 3rd trimester equivalent as a period of potential vulnerability to neurodevelopmental toxicity to UFP, particularly in males, and point to the possibility that UFP air pollution exposure during periods of rapid neuro- and gliogenesis may be a risk factor not only for ASD, but also for other neurodevelopmental disorders that share features with ASD, such as schizophrenia, attention deficit disorder, and periventricular leukomalacia.
Collapse
|
15
|
Abstract
The human brain rapidly develops during the final weeks of gestation and in the first two years following birth. Diffusion tensor imaging (DTI) is a unique in vivo imaging technique that allows three-dimensional visualization of the white matter anatomy in the brain. It has been considered to be a valuable tool for studying brain development in early life. In this review, we first introduce the DTI technique. We then review DTI findings on white matter development at the fetal stage and in infancy as well as DTI applications for understanding neurocognitive development and brain abnormalities in preterm infants. Finally, we discuss limitations of DTI and potential valuable imaging techniques for studying white matter myelination.
Collapse
Affiliation(s)
- Anqi Qiu
- Department of Biomedical Engineering and Clinical Imaging Research Center, National University of Singapore, 117576 Singapore;
| | | | | |
Collapse
|
16
|
Li K, Sun Z, Han Y, Gao L, Yuan L, Zeng D. Fractional anisotropy alterations in individuals born preterm: a diffusion tensor imaging meta-analysis. Dev Med Child Neurol 2015; 57:328-38. [PMID: 25358534 DOI: 10.1111/dmcn.12618] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2014] [Indexed: 12/17/2022]
Abstract
AIM This meta-analysis explored cerebral microstructural changes in individuals born preterm using fractional anisotropy from diffusion tensor imaging. METHOD We used the activation likelihood estimate (ALE) method for the meta-analysis to locate anatomical regions with white matter abnormalities in a group of individuals born preterm and in term-born comparison participants. A statistical analysis of fractional anisotropy was conducted to quantitatively explore the extent of fractional anisotropy changes in the three subregions of the corpus callosum in the preterm group. RESULTS ALE analysis identified 11 regions of decreased fractional anisotropy and four regions of increased fractional anisotropy. Analysis of the corpus callosum revealed the largest decrease in fractional anisotropy in the splenium (standardized mean difference [SMD]=-0.75, 95% confidence interval [CI] -0.93 to -0.57), followed by the body (SMD=-0.73, 95% CI -1.13 to -0.32) and the genu (SMD=-0.65, 95% CI -0.97 to -0.33). INTERPRETATION Significant changes in fractional anisotropy in individuals born preterm reflect white matter abnormalities from childhood to young adulthood, and the mechanism of fractional anisotropy alterations in preterm infants may vary during different stages of white matter development. Furthermore, the variability of fractional anisotropy between studies can primarily be attributed to the age of the individuals at scanning and to the field strength of magnetic resonance scanners.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory for NeuroInformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | | | | | | | | | | |
Collapse
|
17
|
Gao F, Mei X, Chen ACN. Delayed finger tapping and cognitive responses in preterm-born male teenagers with mild spastic diplegia. Pediatr Neurol 2015; 52:206-13. [PMID: 25693583 DOI: 10.1016/j.pediatrneurol.2014.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/05/2014] [Accepted: 04/12/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Information on fine motor and basic cognitive functions in spastic diplegia is sparse in the literature. The aim of this study was to investigate index finger's tapping speed and cognitive functions in categorization and old/new recognition of pictures in patients with mild spastic diplegia. METHODS Fifteen preterm-born male teenagers with mild spastic diplegia and 15 healthy male teenagers participated in this study. Finger-tapping tests and cognitive tests were performed on all participants. Outcomes were compared between the two groups. RESULTS In the finger-tapping tests, the tapping speed was significantly slower in patients than in controls. In the tests of tapping one key persistently and tapping two keys alternately, the reaction time gaps between the left and right digits were larger in patients than in controls. In the categorization tests, the accuracies and reaction times for animal/plant and girl face pictures, but not for boy face pictures, were significantly worse in patients than in controls. In the recognition tests, the accuracies for old/new, animal/plant, and boy/girl face pictures were significantly lower in patients than in controls. The reaction times for old/new, animal/plant, and new face pictures, but not for old face pictures, were significantly longer in patients compared with controls. CONCLUSIONS Our results demonstrate delayed finger tapping and cognitive responses in preterm-born male teenagers with mild spastic diplegia. Our experimental paradigm is sensitive for the study of fine motor and cognitive functions between patients and healthy controls.
Collapse
Affiliation(s)
- Fei Gao
- Center for Higher Brain Functions, Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China; Department of Orthopedics, Daxing Hospital, Capital Medical University, Beijing, China
| | - Xi Mei
- Department of Neurology, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Andrew C N Chen
- Center for Higher Brain Functions, Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Abdelsalam EM, Gomaa M, Elsorougy L. Diffusion tensor imaging of periventricular leukomalacia – Initial experience. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2014. [DOI: 10.1016/j.ejrnm.2014.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
Tusor N, Arichi T, Counsell SJ, Edwards AD. Brain development in preterm infants assessed using advanced MRI techniques. Clin Perinatol 2014; 41:25-45. [PMID: 24524445 DOI: 10.1016/j.clp.2013.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Infants who are born preterm have a high incidence of neurocognitive and neurobehavioral abnormalities, which may be associated with impaired brain development. Advanced magnetic resonance imaging (MRI) approaches, such as diffusion MRI (d-MRI) and functional MRI (fMRI), provide objective and reproducible measures of brain development. Indices derived from d-MRI can be used to provide quantitative measures of preterm brain injury. Although fMRI of the neonatal brain is currently a research tool, future studies combining d-MRI and fMRI have the potential to assess the structural and functional properties of the developing brain and its response to injury.
Collapse
Affiliation(s)
- Nora Tusor
- Centre for the Developing Brain, Department of Perinatal Imaging, St Thomas' Hospital, King's College London, Westminster Bridge Road, London SE1 7EH, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, Department of Perinatal Imaging, St Thomas' Hospital, King's College London, Westminster Bridge Road, London SE1 7EH, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Department of Perinatal Imaging, St Thomas' Hospital, King's College London, Westminster Bridge Road, London SE1 7EH, UK
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging, St Thomas' Hospital, King's College London, Westminster Bridge Road, London SE1 7EH, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
20
|
Li G, Zhou X, Xu P, Pan X, Chen Y. Microstructure assessment of the thalamus in Wilson's disease using diffusion tensor imaging. Clin Radiol 2014; 69:294-8. [DOI: 10.1016/j.crad.2013.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/17/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022]
|
21
|
Pandit AS, Ball G, Edwards AD, Counsell SJ. Diffusion magnetic resonance imaging in preterm brain injury. Neuroradiology 2013; 55 Suppl 2:65-95. [PMID: 23942765 DOI: 10.1007/s00234-013-1242-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/09/2013] [Indexed: 01/01/2023]
Abstract
INTRODUCTION White matter injury and abnormal maturation are thought to be major contributors to the neurodevelopmental disabilities observed in children and adolescents who were born preterm. Early detection of abnormal white matter maturation is important in the design of preventive, protective, and rehabilitative strategies for the management of the preterm infant. Diffusion-weighted magnetic resonance imaging (d-MRI) has become a valuable tool in assessing white matter maturation and injury in survivors of preterm birth. In this review, we aim to (1) describe the basic concepts of d-MRI; (2) evaluate the methods that are currently used to analyse d-MRI; (3) discuss neuroimaging correlates of preterm brain injury observed at term corrected age; during infancy, adolescence and in early adulthood; and (4) explore the relationship between d-MRI measures and subsequent neurodevelopmental performance. METHODS References for this review were identified through searches of PubMed and Google Scholar before March 2013. RESULTS The impact of premature birth on cerebral white matter can be observed from term-equivalent age through to adulthood. Disruptions to white matter development, identified by d-MRI, are related to diminished performance in functional domains including motor performance, cognition and behaviour in early childhood and in later life. CONCLUSION d-MRI is an effective tool for investigating preterm white matter injury. With advances in image acquisition and analysis approaches, d-MRI has the potential to be a biomarker of subsequent outcome and to evaluate efficacy of clinical interventions in this population.
Collapse
Affiliation(s)
- Anand S Pandit
- Centre for the Developing Brain, Department of Perinatal Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College London, First Floor, South Wing, St Thomas' Hospital, London, UK
| | | | | | | |
Collapse
|
22
|
Duerden EG, Taylor MJ, Miller SP. Brain development in infants born preterm: looking beyond injury. Semin Pediatr Neurol 2013; 20:65-74. [PMID: 23948681 DOI: 10.1016/j.spen.2013.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Infants born very preterm are high risk for acquired brain injury and disturbances in brain maturation. Although survival rates for preterm infants have increased in the last decades owing to improved neonatal intensive care, motor disabilities including cerebral palsy persist, and impairments in cognitive, language, social, and executive functions have not decreased. Evidence from neuroimaging studies exploring brain structure, function, and metabolism has indicated abnormalities in the brain development trajectory of very preterm-born infants that persist through to adulthood. In this chapter, we review neuroimaging approaches for the identification of brain injury in the preterm neonate. Advances in medical imaging and availability of specialized equipment necessary to scan infants have facilitated the feasibility of conducting longitudinal studies to provide greater understanding of early brain injury and atypical brain development and their effects on neurodevelopmental outcome. Improved understanding of the risk factors for acquired brain injury and associated factors that affect brain development in this population is setting the stage for improving the brain health of children born preterm.
Collapse
Affiliation(s)
- Emma G Duerden
- Neurosciences & Mental Health, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | |
Collapse
|