1
|
Yu C, Chen Y, Luo H, Lin W, Lin X, Jiang Q, Liu H, Liu W, Yang J, Huang Y, Fang J, He D, Han Y, Zheng S, Ren H, Xia X, Yu J, Chen L, Zeng C. NAT10 promotes vascular remodelling via mRNA ac4C acetylation. Eur Heart J 2025; 46:288-304. [PMID: 39453784 DOI: 10.1093/eurheartj/ehae707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/19/2024] [Accepted: 10/01/2024] [Indexed: 10/27/2024] Open
Abstract
BACKGROUND AND AIMS Vascular smooth muscle cell (VSMC) phenotype switching is a pathological hallmark in various cardiovascular diseases. N4-acetylcytidine (ac4C) catalyzed by N-acetyltransferase 10 (NAT10) is well conserved in the enzymatic modification of ribonucleic acid (RNA). NAT10-mediated ac4C acetylation is involved in various physiological and pathological processes, including cardiac remodelling. However, the biological functions and underlying regulatory mechanisms of mRNA ac4C modifications in vascular diseases remain elusive. METHODS By combining in-vitro and in-vivo vascular injury models, NAT10 was identified as a crucial protein involved in the promotion of post-injury neointima formation, as well as VSMC phenotype switching. The potential mechanisms of NAT10 in the vascular neointima formation were clarified by RNA sequence (RNA-seq), acetylated mRNA immunoprecipitation sequence (acRIP-seq), and RNA binding protein immunoprecipitation sequence (RIP-seq). RESULTS NAT10 and ac4C modifications were upregulated in injured human and rodent arteries. Deletion of NAT10 in VSMCs effectively reduced post-injury neointima formation and VSMC phenotype switching. Further RNA-seq, RIP-seq, and acRIP-seq revealed that NAT10, by its ac4C modification, directly interacts with genes, including integrin-β1 (ITGB1) and collagen type I alpha 2 chain (Col1a2) mRNAs. Taking ITGB1 as one example, it showed that NAT10-mediated ac4C consequently increased ITGB1 mRNA stability and its downstream focal adhesion kinase (FAK) signaling, directly influencing the proliferation of VSMCs and vascular remodelling. The regulation of NAT10 on the VSMC phenotype is of translational significance because the administration of Remodelin, a NAT10 inhibitor, effectively prevents neointima formation by suppressing VSMC proliferation and downregulating ITGB1 expression and deactivating its FAK signaling. CONCLUSIONS This study reveals that NAT10 promotes vascular remodelling via mRNA ac4C acetylation, which may be a promising therapeutic target against vascular remodelling.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Yue Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Weihong Lin
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Xin Lin
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Qiong Jiang
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Hongjin Liu
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Key Laboratory of Cardio-Thoracic Surgery, Fujian Province University, Fuzhou, P.R. China
| | - Wenkun Liu
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Jing Yang
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Yu Huang
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Jun Fang
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Duofen He
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Yu Han
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Xuewei Xia
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Junyi Yu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Lianglong Chen
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Chunyu Zeng
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, P.R. China
| |
Collapse
|
2
|
Yang M, Zhou X, Pearce SW, Yang Z, Chen Q, Niu K, Liu C, Luo J, Li D, Shao Y, Zhang C, Chen D, Wu Q, Cutillas PR, Zhao L, Xiao Q, Zhang L. Causal Role for Neutrophil Elastase in Thoracic Aortic Dissection in Mice. Arterioscler Thromb Vasc Biol 2023; 43:1900-1920. [PMID: 37589142 PMCID: PMC10521802 DOI: 10.1161/atvbaha.123.319281] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Thoracic aortic dissection (TAD) is a life-threatening aortic disease without effective medical treatment. Increasing evidence has suggested a role for NE (neutrophil elastase) in vascular diseases. In this study, we aimed at investigating a causal role for NE in TAD and exploring the molecular mechanisms involved. METHODS β-aminopropionitrile monofumarate was administrated in mice to induce TAD. NE deficiency mice, pharmacological inhibitor GW311616A, and adeno-associated virus-2-mediated in vivo gene transfer were applied to explore a causal role for NE and associated target gene in TAD formation. Multiple functional assays and biochemical analyses were conducted to unravel the underlying cellular and molecular mechanisms of NE in TAD. RESULTS NE aortic gene expression and plasma activity was significantly increased during β-aminopropionitrile monofumarate-induced TAD and in patients with acute TAD. NE deficiency prevents β-aminopropionitrile monofumarate-induced TAD onset/development, and GW311616A administration ameliorated TAD formation/progression. Decreased levels of neutrophil extracellular traps, inflammatory cells, and MMP (matrix metalloproteinase)-2/9 were observed in NE-deficient mice. TBL1x (F-box-like/WD repeat-containing protein TBL1x) has been identified as a novel substrate and functional downstream target of NE in TAD. Loss-of-function studies revealed that NE mediated inflammatory cell transendothelial migration by modulating TBL1x-LTA4H (leukotriene A4 hydrolase) signaling and that NE regulated smooth muscle cell phenotype modulation under TAD pathological condition by regulating TBL1x-MECP2 (methyl CpG-binding protein 2) signal axis. Further mechanistic studies showed that TBL1x inhibition decreased the binding of TBL1x and HDAC3 (histone deacetylase 3) to MECP2 and LTA4H gene promoters, respectively. Finally, adeno-associated virus-2-mediated Tbl1x gene knockdown in aortic smooth muscle cells confirmed a regulatory role for TBL1x in NE-mediated TAD formation. CONCLUSIONS We unravel a critical role of NE and its target TBL1x in regulating inflammatory cell migration and smooth muscle cell phenotype modulation in the context of TAD. Our findings suggest that the NE-TBL1x signal axis represents a valuable therapeutic for treating high-risk TAD patients.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China (M.Y., Q.C., D.L., L. Zhang)
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Xinmiao Zhou
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
- Department of Respiratory and Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China (X.Z.)
| | - Stuart W.A. Pearce
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Zhisheng Yang
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Qishan Chen
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China (M.Y., Q.C., D.L., L. Zhang)
| | - Kaiyuan Niu
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Chenxin Liu
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Jun Luo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Dan Li
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China (M.Y., Q.C., D.L., L. Zhang)
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, China (D.L., L. Zhao)
| | - Yue Shao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Dan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Pedro R. Cutillas
- Faculty of Medicine and Dentistry, Centre for Haemato-Oncology, Barts Cancer Institute (P.R.C.), Queen Mary University of London, United Kingdom
| | - Lin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, China (D.L., L. Zhao)
| | - Qingzhong Xiao
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, China (Q.X.)
| | - Li Zhang
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China (M.Y., Q.C., D.L., L. Zhang)
| |
Collapse
|
3
|
Zhu L, An P, Zhao W, Xia Y, Qi J, Luo J, Luo Y. Low Zinc Alleviates the Progression of Thoracic Aortic Dissection by Inhibiting Inflammation. Nutrients 2023; 15:1640. [PMID: 37049478 PMCID: PMC10096567 DOI: 10.3390/nu15071640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Vascular inflammation triggers the development of thoracic aortic dissection (TAD). Zinc deficiency could dampen tissue inflammation. However, the role of zinc as a nutritional intervention in the progression of TAD remains elusive. In this study, we employed a classical β-aminopropionitrile monofumarate (BAPN)-induced TAD model in mice treated with low zinc and observed that the TAD progression was greatly ameliorated under low zinc conditions. Our results showed that low zinc could significantly improve aortic dissection and rupture (BAPN + low zinc vs. BAPN, 36% vs. 100%) and reduce mortality (BAPN + low zinc vs. BAPN, 22% vs. 57%). Mechanically, low zinc attenuated the infiltration of macrophages and inhibited the expression of inflammatory cytokines, suppressed the phenotype switch of vascular smooth muscle cells from contractile to synthetic types, and eventually alleviated the development of TAD. In conclusion, this study suggested that low zinc may serve as a potential nutritional intervention approach for TAD prevention.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wenting Zhao
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yi Xia
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jingyi Qi
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Deng J, Li D, Zhang X, Lu W, Rong D, Wang X, Sun G, Jia S, Zhang H, Jia X, Guo W. Murine model of elastase-induced proximal thoracic aortic aneurysm through a midline incision in the anterior neck. Front Cardiovasc Med 2023; 10:953514. [PMID: 36815017 PMCID: PMC9939838 DOI: 10.3389/fcvm.2023.953514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/03/2023] [Indexed: 02/09/2023] Open
Abstract
Objective This study was performed to develop a murine model of elastase-induced proximal thoracic aortic aneurysms (PTAAs). Methods The ascending thoracic aorta and aortic arch of adult C57BL/6J male mice were exposed through a midline incision in the anterior neck, followed by peri-adventitial elastase or saline application. The maximal ascending thoracic aorta diameter was measured with high-resolution micro-ultrasound. Twenty-eight days after the operation, the aortas were harvested and analyzed by histopathological examination and qualitative polymerase chain reaction to determine the basic characteristics of the aneurysmal lesions. Results Fourteen days after the operation, the dilation rate (mean ± standard error) in the 10-min elastase application group (n = 10, 71.44 ± 10.45%) or 5-min application group (n = 9, 42.67 ± 3.72%) were significantly higher than that in the saline application group (n = 9, 7.37 ± 0.94%, P < 0.001 for both). Histopathological examination revealed aortic wall thickening, degradation of elastin fibers, loss of smooth muscle cells, more vasa vasorum, enhanced extracellular matrix degradation, augmented collagen synthesis, upregulated apoptosis and proliferation capacity of smooth muscle cells, and increased macrophages and CD4+ T cells infiltration in the PTAA lesions. Qualitative analyses indicated higher expression of the proinflammatory markers, matrix metalloproteinase-2 and -9 as well as Collagen III, Collagen I in the PTAAs than in the controls. Conclusion We established a novel in vivo mouse model of PTAAs through a midline incision in the anterior neck by peri-adventitial application of elastase. This model may facilitate research into the pathogenesis of PTAA formation and the treatment strategy for this devastating disease.
Collapse
Affiliation(s)
- Jianqing Deng
- Department of Vascular and Endovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, China,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Department of Cardiovascular Surgery, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Dandan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuelin Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihang Lu
- Department of Vascular and Endovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Dan Rong
- Department of Vascular and Endovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Xinhao Wang
- Department of Vascular and Endovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Guoyi Sun
- Department of Vascular and Endovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Senhao Jia
- Department of Vascular and Endovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Hongpeng Zhang
- Department of Vascular and Endovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Xin Jia
- Department of Vascular and Endovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Wei Guo
- Department of Vascular and Endovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, China,*Correspondence: Wei Guo,
| |
Collapse
|
5
|
Yang YY, Jiao XL, Yu HH, Li LY, Li J, Zhang XP, Qin YW. Angiopoietin-like protein 8 deficiency attenuates thoracic aortic aneurysm/dissection development in β-aminopropionitrile monofumarate-induced model mice. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166619. [PMID: 36494038 DOI: 10.1016/j.bbadis.2022.166619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Thoracic aortic aneurysm/dissection (TAAD) is a life-threatening cardiovascular disorder. Endoplasmic reticulum stress (ERS) and vascular smooth muscle cell (VSMC) apoptosis are involved in TAAD progression. The Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) pathway is associated with VSMC apoptosis. Serum Angiopoietin-Like Protein 8 (ANGPTL8) levels are associated with aortic diameter and rupture rate of TAAD. However, a direct role of ANGPTL8 in TAAD has not been determined. β-Aminopropionitrile monofumarate (BAPN) was used to induce TAAD in C57BL/6 mice. ANGPTL8 knockout mice were used to detect the effects of ANGPTL8 on TAAD development. ANGPTL8knockdown in vitro was used to analyze the role of ANGPTL8 in VSMCs and ERS. In addition, over-expression of ANGPTL8 in VSMCs and a PERK inhibitor were used to assess the effect of ANGPTL8 on the PERK pathway. ANGPTL8 levels were increased in the aortic wall and VSMCs of BAPN-induced TAAD mice. Compared with BAPN-treated wild-type mice, ANGPTL8 knockout significantly reduced the rupture rate of TAAD to 0 %. In addition, the protein levels of proinflammatory cytokines and matrix metalloproteinase 9 (MMP9) and ERS proteins were decreased in the aorta wall. Angptl8 shRNA decreased MMP9 and ERS protein levels in VSMCs in vitro. Overexpression of ANGPTL8 significantly increased the levels of ERS proteins and MMPs, while a PERK inhibitor significantly decreased the effects of ANGPTL8 in VSMCs. ANGPTL8 contributed to TAAD development by inducing ERS activation and degradation of extracellular matrix in the aorta wall. Inhibition of ANGPTL8 may therefore represent a new strategy for TAAD therapy.
Collapse
Affiliation(s)
- Yun-Yun Yang
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiao-Lu Jiao
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Hua-Hui Yu
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Lin-Yi Li
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Juan Li
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Xiao-Ping Zhang
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yan-Wen Qin
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
6
|
Oltipraz, the activator of nuclear factor erythroid 2-related factor 2 (Nrf2), protects against the formation of BAPN-induced aneurysms and dissection of the thoracic aorta in mice by inhibiting activation of the ROS-mediated NLRP3 inflammasome. Eur J Pharmacol 2022; 936:175361. [DOI: 10.1016/j.ejphar.2022.175361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/16/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
7
|
Targeted Inhibition of Matrix Metalloproteinase-8 Prevents Aortic Dissection in a Murine Model. Cells 2022; 11:cells11203218. [PMID: 36291087 PMCID: PMC9600539 DOI: 10.3390/cells11203218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Aortic dissection (AD) is a lethal aortic pathology without effective medical treatments since the underlying pathological mechanisms responsible for AD remain elusive. Matrix metalloproteinase-8 (MMP8) has been previously identified as a key player in atherosclerosis and arterial remodeling. However, the functional role of MMP8 in AD remains largely unknown. Here, we report that an increased level of MMP8 was observed in 3-aminopropionitrile fumarate (BAPN)-induced murine AD. AD incidence and aortic elastin fragmentation were markedly reduced in MMP8-knockout mice. Importantly, pharmacologic inhibition of MMP8 significantly reduced the AD incidence and aortic elastin fragmentation. We observed less inflammatory cell accumulation, a lower level of aortic inflammation, and decreased smooth muscle cell (SMC) apoptosis in MMP8-knockout mice. In line with our previous observation that MMP8 cleaves Ang I to generate Ang II, BAPN-treated MMP8-knockout mice had increased levels of Ang I, but decreased levels of Ang II and lower blood pressure. Additionally, we observed a decreased expression level of vascular cell adhesion molecule-1 (VCAM1) and a reduced level of reactive oxygen species (ROS) in MMP8-knockout aortas. Mechanistically, our data show that the Ang II/VCAM1 signal axis is responsible for MMP8-mediated inflammatory cell invasion and transendothelial migration, while MMP8-mediated SMC inflammation and apoptosis are attributed to Ang II/ROS signaling. Finally, we observed higher levels of aortic and serum MMP8 in patients with AD. We therefore provide new insights into the molecular mechanisms underlying AD and identify MMP8 as a potential therapeutic target for this life-threatening aortic disease.
Collapse
|
8
|
ALDH 2 knockout protects against aortic dissection. BMC Cardiovasc Disord 2022; 22:443. [PMID: 36229771 PMCID: PMC9563512 DOI: 10.1186/s12872-022-02874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background The incidence and mortality of aortic dissection (AD) are increasing. In pathological studies, macrophages, T lymphocytes and dendritic cells were found in the tunica media of the aorta. Acetaldehyde dehydrogenase 2 (ALDH2) gene polymorphisms are associated with a high incidence of hypertension in Asian populations. However, there is no clear evidence of the relationship between ALDH2 and aortic dissection in Asians. The aim of this study was to investigate the incidence of aortic dissection in different ALDH2 genotypes and explore changes in the vasculature. Materials and methods Three-week-old male mice were administered freshly prepared β-aminopropionitrile solution dissolved in drinking water (1 g/kg/d) for 28 days to induce TAD. An animal ultrasound imaging system was used to observe the formation of arterial dissection and changes in cardiac function. Subsequently, mice were euthanized by cervical dislocation. The aortas were fixed for HE staining and EVG staining to observe aortic elastic fiber tears and pseudoluma formation under a microscope. Results Knockout of ALDH2 mitigated β-aminopropionitrile-induced TAD formation in animal studies. Ultrasound results showed that ALDH2 knockout reduced the degree of ascending aortic widening and the incidence of aortic dissection rupture. Pathological sections of multiple aortic segments showed that the protective effect of ALDH2 knockout was observed in not only the ascending aorta but also the aortic arch and descending aorta. The expression levels of genes related to NK CD56bright cells, Th17 cells, T cells and T helper cells were decreased in ALDH2 knockout mice treated with β-aminopropionitrile for 28 days. Conclusion ALDH2 knockout protects against aortic dissection by altering the inflammatory response and immune response and protecting elastic fibers.
Collapse
|
9
|
Zhai T, Liu B, Zhang J, Wu Y. Impact of obstructive sleep apnea on aortic disease occurrence: a meta-analysis. Heliyon 2022; 8:e10049. [PMID: 35992006 PMCID: PMC9389181 DOI: 10.1016/j.heliyon.2022.e10049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022] Open
Abstract
Objective Aortic diseases, mainly including aortic dilatation, aortic aneurysm (AA) and aortic dissection (AD), have high morbidity and mortality. Many studies have suggested that obstructive sleep apnea (OSA) acts as a candidate risk factor for aortic diseases. Thus, we performed a meta-analysis to explore comprehensively the effect of OSA on the risk of aortic disease occurrence. Methods We searched PubMed, Embase and Cochrane Library databases from inception to February 2022 to identify studies investigating the association between OSA and aortic diameter dilatation, the prevalence of OSA in individuals with or without AA/AD and the incidence of AA/AD in individuals with or without OSA. The Newcastle-Ottawa Scale (NOS) and the Agency for Healthcare Research and Quality (AHRQ) were respectively used to evaluate the quality of the included cohort and cross-sectional studies. A random or fixed effect model was used to generate pooled effects according to interstudy heterogeneity. Sensitivity analyses were performed to test the robustness of the results. Results We identified 10 observational publications with 214,127 participants in this meta-analysis. OSA was significantly associated with increased aortic diameter (WMD = 1.46, 95% CI, 1.10–1.83, p < 0.001). OSA prevalence was higher in patients with AA/AD compared to their counterparts without AA/AD (OR = 1.90, 95% CI, 1.30–2.76, p = 0.001). No significant difference in the incidence of AA/AD was observed in individuals with or without OSA (RR = 0.85, 95% CI, 0.62–1.16, p = 0.307). Sensitivity analyses did not modify these results. Conclusions This meta-analysis suggests that OSA is associated with aortic diameter dilatation but does not affect AA/AD occurrence.
Collapse
|
10
|
Que Y, Zhang Z, Zhang Y, Li X, Chen L, Chen P, Ou C, Yang C, Chang J. Silicate ions as soluble form of bioactive ceramics alleviate aortic aneurysm and dissection. Bioact Mater 2022; 25:716-731. [PMID: 37056259 PMCID: PMC10086764 DOI: 10.1016/j.bioactmat.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
Aortic aneurysm and dissection (AAD) are leading causes of death in the elderly. Recent studies have demonstrated that silicate ions can manipulate multiple cells, especially vascular-related cells. We demonstrated in this study that silicate ions as soluble form of bioactive ceramics effectively alleviated aortic aneurysm and dissection in both Ang II and β-BAPN induced AAD models. Different from the single targeting therapeutic drug approaches, the bioactive ceramic derived approach attributes to the effect of bioactive silicate ions on the inhibition of the AAD progression through regulating the local vascular microenvironment of aorta systematically in a multi-functional way. The in vitro experiments revealed that silicate ions did not only alleviate senescence and inflammation of the mouse aortic endothelial cells, enhance M2 polarization of mouse bone marrow-derived macrophages, and reduce apoptosis of mouse aortic smooth muscle cells, but also regulate their interactions. The in vivo studies further confirm that silicate ions could effectively alleviate senescence, inflammation, and cell apoptosis of aortas, accomplished with reduced aortic dilation, collagen deposition, and elastin laminae degradation. This bioactive ceramic derived therapy provides a potential new treatment strategy in attenuating AAD progression.
Collapse
|
11
|
Luo Y, Chen Q, Zou J, Fan J, Li Y, Luo Z. Chronic Intermittent Hypoxia Exposure Alternative to Exercise Alleviates High-Fat-Diet-Induced Obesity and Fatty Liver. Int J Mol Sci 2022; 23:ijms23095209. [PMID: 35563600 PMCID: PMC9104027 DOI: 10.3390/ijms23095209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity often concurs with nonalcoholic fatty liver disease (NAFLD), both of which are detrimental to human health. Thus far, exercise appears to be an effective treatment approach. However, its effects cannot last long and, moreover, it is difficult to achieve for many obese people. Thus, it is necessary to look into alternative remedies. The present study explored a noninvasive, easy, tolerable physical alternative. In our experiment, C57BL/6 mice were fed with a high-fat diet (HFD) to induce overweight/obesity and were exposed to 10% oxygen for one hour every day. We found that hypoxia exerted protective effects. First, it offset HFD-induced bodyweight gain and insulin resistance. Secondly, hypoxia reversed the HFD-induced enlargement of white and brown adipocytes and fatty liver, and protected liver function. Thirdly, HFD downregulated the expression of genes required for lipolysis and thermogenesis, such as UCP1, ADR3(beta3-adrenergic receptor), CPT1A, ATGL, PPARα, and PGC1α, M2 macrophage markers arginase and CD206 in the liver, and UCP1 and PPARγ in brown fat, while these molecules were upregulated by hypoxia. Furthermore, hypoxia induced the activation of AMPK, an energy sensing enzyme. Fourthly, our results showed that hypoxia increased serum levels of epinephrine. Indeed, the effects of hypoxia on bodyweight, fatty liver, and associated changes in gene expression ever tested were reproduced by injection of epinephrine and prevented by propranolol at varying degrees. Altogether, our data suggest that hypoxia triggers stress responses where epinephrine plays important roles. Therefore, our study sheds light on the hope to use hypoxia to treat the daunting disorders, obesity and NAFLD.
Collapse
Affiliation(s)
- Yunfei Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Qiongfeng Chen
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Junrong Zou
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Jingjing Fan
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Yuanjun Li
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
- Queen Mary School, Nanchang University, Nanchang 330031, China
- Correspondence: ; Tel.: +86-158-7917-7010
| |
Collapse
|
12
|
Wang XP, Li QL, Li W, Zhang T, Li XY, Jiao Y, Zhang XM, Jiang JJ, Zhang X, Zhang XM. Dexamethasone attenuated thoracic aortic aneurysm and dissection in vascular smooth muscle cell Tgfbr2 disrupted mice with CCL8 suppression. Exp Physiol 2022; 107:631-645. [PMID: 35344629 DOI: 10.1113/ep090190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/23/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The aim of this study was to investigate the relationship of CCL8 and the thoracic aortic aneurysm and dissection (TAAD) formation in postnatal mice with vascular smooth muscle cell (VSMC) Tgfbr2 disruption and whether dexamethasone could be a potential treatment. What is the main finding and its importance? CCL8 was associated with the formation of TAAD in VSMC Tgfbr2 disrupted mice. Dexamethasone reduced TAAD formation and inhibited MAPK (p-p38) and NF-κB (p-p65) signaling pathways. CCL8 might be an important promoter in aortic inflammation. DEX provided potential therapeutic effects in TAAD treatment. ABSTRACT Aortic inflammation plays a vital role in initiation and progression of thoracic aortic aneurysm and dissection (TAAD). The disturbance of transforming growth factor-β (TGF-β) signaling pathway is believed to be one of the pathogenic mechanisms of TAAD. Initially, Myh11-CreERT2 .Tgfbr2f/f male mice were used to build TAAD mice model. And bioinformatics analyses revealed the enriched inflammatory signal pathways and upregulated chemokine CCL8. So we hypothesized that vascular smooth muscle cell (VSMC) Tgfbr2 disruption in postnatal mice resulted in aortic inflammation associated with CCL8 secretion. Then real-time quantitative PCR and serum ELISA results confirmed that CCL8 expression began to increase after VSMC Tgfbr2 disruption. Next, we cultured mouse thoracic aortas ex vivo, and observed that the protein expressions of CCL8 in culture supernatants were increased by ELISA. Subsequently, the co-localization of CCL8 with α-smooth muscle actin (α-SMA) orCD68 was found significantly increased by immunofluorescence. Then, dexamethasone (DEX) was used to treat TAAD in VSMC Tgfbr2 disrupted mice The results of histochemical, immunofluorescence and immunohistochemical staining indicated that DEX therapy reduced CCL8 secretion, inflammatory cell recruitment, aortic medial thickening, elastic fiber fragmentating, extracellular matrix degradation, contractile apparatus impairment, thereby ameliorated TAAD formation. Western blot showed that MAPK and NF-κB signaling pathways in aorta were overactivated after VSMC Tgfbr2 disruption, but inhibited by DEX therapy. Altogether, CCL8 might be an important promoter in TAAD formation of VSMC Tgfbr2 disrupted mice. And DEX provided potential therapeutic effects in TAAD treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xi-Peng Wang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Qing-Le Li
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Wei Li
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Tao Zhang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xiao-Yan Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, People's Republic of China
| | - Yang Jiao
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xue-Min Zhang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Jing-Jun Jiang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xiaoping Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, People's Republic of China
| | - Xiao-Ming Zhang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| |
Collapse
|
13
|
Liang Z, Liang Q, Zhang W, Zheng L, Shen X, Zhang Y. Promotional effects of HIF1α and KDM3A interaction on vascular smooth muscle cells in thoracic aortic dissection. Epigenomics 2022; 14:227-241. [PMID: 35172598 DOI: 10.2217/epi-2021-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The current study was performed to define the role of KDM3A in thoracic aortic dissection (TAD). Methods: The binding of HIF1α and KDM3A in HES1 was detected by ChIP and dual-luciferase reporter gene assay. Loss and gain-of function assays of HIF1α, KDM3A and HES1 were further performed in Ang-II-induced mouse aortic smooth muscle cell line (MOVAS) cells. Lastly, in vivo TAD models were established. Results: HIF1α was highly expressed in TAD. KDM3A promoted the transcription activation of HES1. HIF1α enhanced the proliferation and migration of Ang-II-induced MOVAS cells, in addition to increasing thoracic aorta dilation to induce TAD formation in vivo. Silencing of HES1 reversed the effects of HIF1α in vivo and in vitro. Conclusion: The findings indicated that interaction between HIF1α and KDM3A enhances the proliferation and migration of MOVAS cells to induce TAD.
Collapse
Affiliation(s)
- Zheyong Liang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Qi Liang
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Wei Zhang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Road, Xi'an, 710004, Shaanxi, China
| | - Lei Zheng
- School of Pharmaceutical Sciences, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Xuji Shen
- School of Pharmaceutical Sciences, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Yongjian Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.,Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
14
|
Sawada H, Beckner ZA, Ito S, Daugherty A, Lu HS. β-Aminopropionitrile-induced aortic aneurysm and dissection in mice. JVS Vasc Sci 2022; 3:64-72. [PMID: 35141570 PMCID: PMC8814647 DOI: 10.1016/j.jvssci.2021.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
The mechanistic basis for the formation of aortic aneurysms and dissection needs to be elucidated to facilitate the development of effective medications. β-Aminopropionitrile administration in mice has been used frequently to study the pathologic features and mechanisms of aortic aneurysm and dissection. This mouse model mimics several facets of the pathology of human aortic aneurysms and dissection, although many variables exist in the experimental design and protocols that must be resolved to determine its application to the human disease. In the present brief review, we have introduced the development of this mouse model and provided insights into understanding its pathologic features.
Collapse
Affiliation(s)
- Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Ky
- Saha Aortic Center, University of Kentucky, Lexington, Ky
- Department of Physiology, University of Kentucky, Lexington, Ky
| | - Zachary A. Beckner
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Ky
- Saha Aortic Center, University of Kentucky, Lexington, Ky
| | - Sohei Ito
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Ky
- Saha Aortic Center, University of Kentucky, Lexington, Ky
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Ky
- Saha Aortic Center, University of Kentucky, Lexington, Ky
- Department of Physiology, University of Kentucky, Lexington, Ky
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Ky
- Saha Aortic Center, University of Kentucky, Lexington, Ky
- Department of Physiology, University of Kentucky, Lexington, Ky
| |
Collapse
|
15
|
Wang Q, Chen Z, Peng X, Zheng Z, Le A, Guo J, Ma L, Shi H, Yao K, Zhang S, Zheng Z, Zhu J. Neuraminidase 1 Exacerbating Aortic Dissection by Governing a Pro-Inflammatory Program in Macrophages. Front Cardiovasc Med 2021; 8:788645. [PMID: 34869700 PMCID: PMC8639188 DOI: 10.3389/fcvm.2021.788645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/20/2021] [Indexed: 01/11/2023] Open
Abstract
Inflammation plays an important role in aortic dissection (AD). Macrophages are critically involved in the inflammation after aortic injury. Neuraminidases (NEUs) are a family of enzymes that catalyze the cleavage of terminal sialic acids from glycoproteins or glycolipids, which is emerging as a regulator of macrophage-associated immune responses. However, the role of neuraminidase 1 (NEU1) in pathological vascular remodeling of AD remains largely unknown. This study sought to characterize the role and identify the potential mechanism of NEU1 in pathological aortic degeneration. After β-aminopropionitrile monofumarate (BAPN) administration, NEU1 elevated significantly in the lesion zone of the aorta. Global or macrophage-specific NEU1 knockout (NEU1 CKO) mice had no baseline aortic defects but manifested improved aorta function, and decreased mortality due to aortic rupture. Improved outcomes in NEU1 CKO mice subjected to BAPN treatment were associated with the ameliorated vascular inflammation, lowered apoptosis, decreased reactive oxygen species production, mitigated extracellular matrix degradation, and improved M2 macrophage polarization. Furthermore, macrophages sorted from the aorta of NEU1 CKO mice displayed a significant increase of M2 macrophage markers and a marked decrease of M1 macrophage markers compared with the controls. To summarize, the present study demonstrated that macrophage-derived NEU1 is critical for vascular homeostasis. NEU1 exacerbates BAPN-induced pathological vascular remodeling. NEU1 may therefore represent a potential therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Qian Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaoyang Chen
- Department of Cardiology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Cardiology, Jiangxi Hypertension Research Institute, Nanchang, China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Cardiology, Jiangxi Hypertension Research Institute, Nanchang, China
| | - Aiping Le
- Department of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junjie Guo
- Department of Cardiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Leilei Ma
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongtao Shi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kang Yao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuning Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenzhong Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Cardiology, Jiangxi Hypertension Research Institute, Nanchang, China
| | - Jianbing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Cardiology, Jiangxi Hypertension Research Institute, Nanchang, China
| |
Collapse
|
16
|
Zhou H, Ren Y, Xiao J, He J, Zhang Y, Qiu Z, Huang Q, Hu Y, Chen L. Changes in aortic collagen in β-aminopropionitrile-induced acute aortic dissection. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1574. [PMID: 34790780 PMCID: PMC8576682 DOI: 10.21037/atm-21-4933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/16/2021] [Indexed: 11/06/2022]
Abstract
Background The precise role collagen plays in acute aortic dissection (AAD) was investigated in an animal model of β-aminopropinitrile (BAPN)-induced AAD. Methods The 30 3-week-old male specific-pathogen free (SPF)-grade Sprague-Dawley (SD) rats were randomly divided into two groups: 10 in the Control group and 20 in the Model group. The Model group was treated with 0.1% BAPN for 4 weeks, while the Control group received untreated water. Histopathological staining and western blot were used to detect changes of the extracellular matrix (ECM) and collagen content in the aorta. Results At the end of the experiment, the incidence of AAD was 25%, the aortic ECM of surviving rats was severely damaged, and the arrangement was disordered. Fibroblast cells are unevenly distributed, with wide gaps, collagen fibers were also distributed unevenly in a disordered arrangement and their thickness was uneven. The elastic membrane disappeared over a large area. Compare to Control group, the Collagen types I, III and their subunits were upregulated (P<0.05), while matrix metalloproteinase (MMP) 2 and MMP9 were downregulated in the aorta of Model group (P<0.05). Conclusions In the animal model of BAPN-induced AAD, collagen types I, III and subunits were increased, while MMP2 and MMP9 were decreased in thoracic aorta, which may lead to stiffness of the aorta and be the cause of dissection.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fuzhou, China
| | - Yan Ren
- Department of Cardiac Surgery, Zunyi Medical University Affiliated Hospital, Zunyi, China
| | - Jun Xiao
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fuzhou, China
| | - Jian He
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fuzhou, China
| | - Yuling Zhang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fuzhou, China
| | - Zhihuang Qiu
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fuzhou, China
| | - Qiuyu Huang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fuzhou, China
| | - Yunnan Hu
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fuzhou, China
| | - Liangwan Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fuzhou, China
| |
Collapse
|
17
|
Li L, Yang Y, Zhang H, Du Y, Jiao X, Yu H, Wang Y, Lv Q, Li F, Sun Q, Qin Y. Salidroside Ameliorated Intermittent Hypoxia-Aggravated Endothelial Barrier Disruption and Atherosclerosis via the cAMP/PKA/RhoA Signaling Pathway. Front Pharmacol 2021; 12:723922. [PMID: 34504429 PMCID: PMC8421548 DOI: 10.3389/fphar.2021.723922] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Endothelial barrier dysfunction plays a key role in atherosclerosis progression. The primary pathology of obstructive sleep apnea-hypopnea syndrome is chronic intermittent hypoxia (IH), which induces reactive oxygen species (ROS) overproduction, endothelial barrier injury, and atherosclerosis. Salidroside, a typical pharmacological constituent of Rhodiola genus, has documented antioxidative, and cardiovascular protective effects. However, whether salidroside can improve IH-aggravated endothelial barrier dysfunction and atherosclerosis has not been elucidated. Methods and results: In normal chow diet-fed ApoE−/− mice, salidroside (100 mg/kg/d, p. o.) significantly ameliorated the formation of atherosclerotic lesions and barrier injury aggravated by 7-weeks IH (21%–5%–21%, 120 s/cycle). In human umbilical vein endothelial cells (HUVECs), exposure to IH (21%–5%–21%, 40 min/cycle, 72 cycles) decreased transendothelial electrical resistance and protein expression of vascular endothelial cadherin (VE-cadherin) and zonula occludens 1. In addition, IH promoted ROS production and activated ras homolog gene family member A (RhoA)/Rho-associated protein kinase (ROCK) pathway. All of these effects of IH were reversed by salidroside. Similar to salidroside, ROCK-selective inhibitors Y26732, and Fasudil protected HUVECs from IH-induced ROS overproduction and endothelial barrier disruption. Furthermore, salidroside increased intracellular cAMP levels, while the PKA-selective inhibitor H-89 attenuated the effects of salidroside on IH-induced RhoA/ROCK suppression, ROS scavenging, and barrier protection. Conclusion: Our findings demonstrate that salidroside effectively ameliorated IH-aggravated endothelial barrier injury and atherosclerosis, largely through the cAMP/PKA/RhoA signaling pathway.
Collapse
Affiliation(s)
- Linyi Li
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Yunyun Yang
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Huina Zhang
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Yunhui Du
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Xiaolu Jiao
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Huahui Yu
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Yu Wang
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Qianwen Lv
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Fan Li
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Qiuju Sun
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Yanwen Qin
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| |
Collapse
|
18
|
Wang X, Zhang X, Qiu T, Yang Y, Li Q, Zhang X. Dexamethasone reduces the formation of thoracic aortic aneurysm and dissection in a murine model. Exp Cell Res 2021; 405:112703. [PMID: 34118251 DOI: 10.1016/j.yexcr.2021.112703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/30/2021] [Accepted: 06/05/2021] [Indexed: 12/17/2022]
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening vascular disease with no effective pharmaceutical therapies currently available. Inflammation plays a key role in the progression of aneurysms. Dexamethasone (DEX), a synthetic glucocorticoid, has showed alleviating effects on cells in vitro from TAAD patients. Here we performed a study aiming at investigating the protective role of DEX in a β-aminopropionitrile monofumarate (BAPN)-induced TAAD mouse model. DEX (dose: 0.04 mg/kg/day) treatment significantly reduced the aortic diameter and inhibited TAAD formation. DEX reduced infiltration of macrophages and neutrophils, apoptosis of vascular smooth muscle cells (VSMCs), expression of metalloproteinase 2/9, and extracellular matrix degradation in BAPN-treated TAAD mice. Furthermore, DEX therapy downregulated the expression of p-p65 in macrophages and VSMCs, which suggested that DEX might ameliorate BAPN-induced TAAD by suppressing NF-κB signaling. Therefore, DEX therapy attenuates the progression of BAPN-induced TAAD murine model and could be used as an effective adjuvant therapy for treating TAAD.
Collapse
Affiliation(s)
- Xipeng Wang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, China.
| | - Xiaoping Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.
| | - Tao Qiu
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, China.
| | - Yang Yang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, China.
| | - Qingle Li
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, China.
| | - Xiaoming Zhang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
19
|
Chen T, Jiang N, Zhang S, Chen Q, Guo Z. BAPN-induced rodent model of aortic dissecting aneurysm and related complications. J Thorac Dis 2021; 13:3643-3651. [PMID: 34277056 PMCID: PMC8264692 DOI: 10.21037/jtd-21-605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Background The aim of this study was to investigate the effects of beta-aminopropionitrile (BAPN) on the arterial walls of rodents, and to analyze the gross or pathological changes of arterial and other tissues of rodents treated with BAPN at different concentrations or doses. Methods Eighteen SPF SD rats (4–5-week old) were divided into three groups: SD-0.2 (Group A), SD-0.4 (Group B), and SD-0.6 (Group C). The groups A, B and C were given 0.2%, 0.4%, and 0.6% BAPN solution, respectively, as drinking water for seven weeks. Forty SPF C57BL/6 mice (3-week old) were randomly divided into four groups: C57-0.2 (Group D), C57-0.4 (Group E), C57-0.6 (Group F) and the control group and given 0.2%, 0.4%, or 0.6% BAPN or distilled water as drinking water, respectively, for seven weeks. All experimental animals were free to drink water. The aortas were dissected and visually examined. At the same time, hematoxylin and eosin (HE) staining was performed in aorta tissue. The vascular diameter and area of the middle membrane were measured with IPP (Image-Pro Plus 6.0). Results BAPN treatment significantly affected the water intake and weight gain of rats and mice. BAPN also caused thickening of the membrane in the aortas of rats and mice, and irregularity in the arrangement of elastic fibers. These pathological changes are similar to the pathological changes observed in human aneurysms. The incidence of dissecting aneurysm in C57 mice was higher than that of Sprague Dawley (SD) rats. Conclusions BAPN at a concentration of 0.4% was feasible to produce an animal model of dissecting aneurysm. In SD rats, the rate of pathological changes and other complications, such as intestinal rupture and scoliosis, was higher than the rates of dissecting aneurysm.
Collapse
Affiliation(s)
- Tongyun Chen
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Nan Jiang
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Shaopeng Zhang
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Qingliang Chen
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Zhigang Guo
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
20
|
Qiu L, Yi S, Yu T, Hao Y. Sirt3 Protects Against Thoracic Aortic Dissection Formation by Reducing Reactive Oxygen Species, Vascular Inflammation, and Apoptosis of Smooth Muscle Cells. Front Cardiovasc Med 2021; 8:675647. [PMID: 34095262 PMCID: PMC8176563 DOI: 10.3389/fcvm.2021.675647] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
Sirtuin3 (Sirt3) is a histone deacetylase involved in the regulation of many cellular processes. Sirt3 deficiency is known to increase oxidative stress. Reactive oxygen species (ROS) promote degradation of the extracellular matrix and vascular smooth muscle cell (VSMC) apoptosis. Reducing oxidative stress by Sirt3 overexpression could have therapeutic potential for limiting thoracic aortic dissection (TAD) development. We hypothesized that Sirt3 deficiency could increase the risk for TAD by decreasing ROS elimination and that Sirt3 overexpression (Sirt3OE) could provide an alternative option for TAD treatment. Mice with TAD had significantly lower Sirt3 expression than normal subjects. Sirt3 KO mice exhibit significantly increased TAD incidence rate and increased aortic diameters. Moreover, Sirt3 overexpression reduced Ang II-induced ROS production, NF-kB activation, and apoptosis in human aortic smooth muscle cells (HASMCs). Sirt3 overexpression attenuated aneurysm formation and decreased aortic expansion. In conclusion, our data showed that Sirt3 deficiency increases susceptibility to TAD formation by attenuating anti-ROS effects and increasing VSMC apoptosis and vascular inflammation.
Collapse
Affiliation(s)
- Lin Qiu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Shaolei Yi
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tingting Yu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
21
|
Aicher BO, Zhang J, Muratoglu SC, Galisteo R, Arai AL, Gray VL, Lal BK, Strickland DK, Ucuzian AA. Moderate aerobic exercise prevents matrix degradation and death in a mouse model of aortic dissection and aneurysm. Am J Physiol Heart Circ Physiol 2021; 320:H1786-H1801. [PMID: 33635167 PMCID: PMC8163659 DOI: 10.1152/ajpheart.00229.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/22/2022]
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is a deadly disease characterized by intimal disruption induced by hemodynamic forces of the circulation. The effect of exercise in patients with TAAD is largely unknown. β-Aminopropionitrile (BAPN) is an irreversible inhibitor of lysyl oxidase that induces TAAD in mice. The objective of this study was to investigate the effect of aerobic exercise on BAPN-induced TAAD. Upon weaning, mice were given either BAPN-containing water or standard drinking water and subjected to either conventional cage activity (BAPN-CONV) or forced treadmill exercise (BAPN-EX) for up to 26 wk. Mortality was 23.5% (20/85) for BAPN-CONV mice versus 0% (0/22) for BAPN-EX mice (hazard ratio 3.8; P = 0.01). BAPN induced significant elastic lamina fragmentation and intimal-medial thickening compared with BAPN-untreated controls, and aneurysms were identified in 50% (5/10) of mice that underwent contrast-enhanced CT scanning. Exercise significantly decreased BAPN-induced wall thickening, calculated circumferential wall tension, and lumen diameter, with 0% (0/5) of BAPN-EX demonstrating chronic aortic aneurysm formation on CT scan. Expression of selected genes relevant to vascular diseases was analyzed by qRT-PCR. Notably, exercise normalized BAPN-induced increases in TGF-β pathway-related genes Cd109, Smad4, and Tgfβr1; inflammation-related genes Vcam1, Bcl2a1, Ccr2, Pparg, Il1r1, Il1r1, Itgb2, and Itgax; and vascular injury- and response-related genes Mmp3, Fn1, and Vwf. Additionally, exercise significantly increased elastin expression in BAPN-treated animals compared with controls. This study suggests that moderate aerobic exercise may be safe and effective in preventing the most devastating outcomes in TAAD.NEW & NOTEWORTHY Moderate aerobic exercise was shown to significantly reduce mortality, extracellular matrix degradation, and thoracic aortic aneurysm and dissection formation associated with lysyl oxidase inhibition in a mouse model. Gene expression suggested a reversal of TGF-β, inflammation, and extracellular matrix remodeling pathway dysregulation, along with augmented elastogenesis with exercise.
Collapse
MESH Headings
- Aminopropionitrile
- Aortic Dissection/chemically induced
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/therapy
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Aortic Aneurysm, Thoracic/chemically induced
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/therapy
- Aortic Rupture/chemically induced
- Aortic Rupture/metabolism
- Aortic Rupture/pathology
- Aortic Rupture/prevention & control
- Dilatation, Pathologic
- Disease Models, Animal
- Disease Progression
- Exercise Therapy
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Extracellular Matrix Proteins/metabolism
- Gene Expression Regulation
- Hemodynamics
- Male
- Mice, Inbred C57BL
- Proteolysis
- Signal Transduction
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Brittany O Aicher
- Center for Vascular & Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jackie Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Selen C Muratoglu
- Center for Vascular & Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rebeca Galisteo
- Center for Vascular & Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
| | - Allison L Arai
- Center for Vascular & Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
| | - Vicki L Gray
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland
| | - Brajesh K Lal
- Center for Vascular & Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore Veterans Affairs Medical Center, Vascular Service, Baltimore, Maryland
| | - Dudley K Strickland
- Center for Vascular & Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland
| | - Areck A Ucuzian
- Center for Vascular & Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore Veterans Affairs Medical Center, Vascular Service, Baltimore, Maryland
| |
Collapse
|
22
|
Yang YY, Yu HH, Jiao XL, Li LY, Du YH, Li J, Lv QW, Zhang HN, Zhang J, Hu CW, Zhang XP, Wei YX, Qin YW. Angiopoietin-like proteins 8 knockout reduces intermittent hypoxia-induced vascular remodeling in a murine model of obstructive sleep apnea. Biochem Pharmacol 2021; 186:114502. [PMID: 33684391 DOI: 10.1016/j.bcp.2021.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Obstructive sleep apnea (OSA) is a major risk factor for cardiovascular mortality. Apnea-induced chronic intermittent hypoxia (CIH) is a primary pathophysiological manifestation of OSA that promotes various cardiovascular alterations, such as aortic vascular remodeling. In this study, we investigated the association between angiopoietin-like proteins 8 (ANGPTL8) and CIH-induced aortic vascular remodeling in mice. METHODS C57BL/6J male mice were divided into four groups: Normoxia group, ANGPTL8-/- group, CIH group, CIH + ANGPTL8-/- group. Mice in the normoxia group and ANGPTL8-/- group received no treatment, while mice in the CIH and CIH + ANGPTL8-/- group were subjected to CIH (21%-5% O2, 180 s/cycle, 10 h/day) for 6 weeks. At the end of the experiments, intima-media thickness (IMT), elastin disorganization, and aortic wall collagen abundance were assessed in vivo. Immunohistochemistry and Western-blot were used to detect endoplasmic reticulum stress (ERS) and aortic vascular smooth muscle cell proliferation. ANGPTL8 shRNA and ANGPL8 overexpression were used in aortic vascular smooth muscle cells to investigate the mechanism of ANGPTL8 in CIH. RESULTS Compared to the control group, CIH exposure significantly increased intima-media thickness (IMT), elastic fibers disorganization, and aortic wall collagen abundance. CIH also significantly increased blood pressure, induced hyperlipidemia, as well as the expression of ERS protein activating transcription factor-6 (ATF6) and aortic vascular smooth muscle cell proliferation. Contrary, ANGPTL8-/- significantly mitigated the CIH-induced vascular remodeling; ANGPTL8-/- decreased CIH-induced hypertension and hyperlipidemia, inhibited the protein expression of ATF6, and aortic vascular smooth muscle cell proliferation. Moreover, our in vitro study suggested that CIH could induce ANGPTL8 expression via hypoxia-inducible factor (HIF-1α); ANGPTL8 induced proliferation of aortic vascular smooth muscle cells via the ERS pathway. CONCLUSION ANGPTL8-/- can prevent CIH-induced aortic vascular remodeling, probably through the inhibition of the ERS pathway. Therefore, ANGPTL8 might be a potential target in CIH-induced aortic vascular remodeling.
Collapse
Affiliation(s)
- Yun-Yun Yang
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Hua-Hui Yu
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Xiao-Lu Jiao
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Lin-Yi Li
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yun-Hui Du
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Juan Li
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Qian-Wen Lv
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Hui-Na Zhang
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jing Zhang
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Chao-Wei Hu
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Xiao-Ping Zhang
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yong-Xiang Wei
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yan-Wen Qin
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
23
|
Cai X, Zhang P, Wang S, Hong L, Yu S, Li B, Zeng H, Yang X, Shao L. lncRNA FGD5 antisense RNA 1 upregulates RORA to suppress hypoxic injury of human cardiomyocyte cells by inhibiting oxidative stress and apoptosis via miR‑195. Mol Med Rep 2020; 22:4579-4588. [PMID: 33174051 PMCID: PMC7646841 DOI: 10.3892/mmr.2020.11558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
FGD5 antisense RNA 1 (FGD5-AS1) is a long non-coding RNA in acute myocardial infarction (AMI), which is primarily caused by myocardial ischemia-hypoxia. Retinoid acid receptor-related orphan receptor α (RORA) is a key protector in maintaining heart function. However, the roles of FGD5-AS1 and RORA in AMI have not previously been elucidated. The present study investigated the effect and mechanism of FGD5-AS1 and RORA in human cardiomyocyte AC16 cells under hypoxia. Reverse transcription-quantitative PCR and western blotting demonstrated that FGD5-AS1 and RORA were downregulated in the serum of patients with AMI and hypoxia-challenged AC16 cells. Functional experiments were performed via assays, flow cytometry and western blotting. In response to hypoxia, superoxide dismutase (SOD) activity was inhibited, but apoptosis rate and levels of reactive oxygen species and malondialdehyde were promoted in AC16 cells, accompanied by increased Bax and cleaved caspase-3 expression levels, and decreased SOD2 and glutathione peroxidase 1 expression levels. However, hypoxia-induced oxidative stress and apoptosis in AC16 cells were attenuated by ectopic expression of FGD5-AS1 or RORA. Moreover, silencing RORA counteracted the suppressive role of FGD5-AS1 overexpression in hypoxic injury. FGD5-AS1 controlled RORA expression levels via microRNA-195-5p (miR-195), as confirmed by dual-luciferase reporter and RNA pull-down assays. Consistently, miR-195 knockdown suppressed hypoxia-induced oxidative stress and apoptosis in AC16 cells, which was abrogated by downregulating FGD5-AS1 or RORA. In conclusion, FGD5-AS1 modulated hypoxic injury in human cardiomyocytes partially via the miR-195/RORA axis, suggesting FGD5-AS1 as a potential target in interfering with the progression of AMI.
Collapse
Affiliation(s)
- Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shu Wang
- Department of Gerontology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lang Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Songping Yu
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Li
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hong Zeng
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xu Yang
- Shenzhen Realomics (Biotech), Co., Ltd., Shenzhen, Guangdong 518000, P.R. China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|