1
|
Yuan K, Li H, Gu X, Zheng Y, Wu X, Zhao Y, Zhou J, Cui S. Electrocatalysts for the Formation of Hydrogen Peroxide by Oxygen Reduction Reaction. CHEMSUSCHEM 2025; 18:e202401952. [PMID: 39503346 DOI: 10.1002/cssc.202401952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Hydrogen peroxide (H2O2) is a widely used strong oxidant, and its traditional preparation methods, anthraquinone method, and direct synthesis method, have many drawbacks. The method of producing H2O2 by two-electron oxygen reduction reaction (2e- ORR) is considered an alternative strategy for the traditional anthraquinone method due to its high efficiency, energy saving, and environmental friendliness, but it remains a big challenge. In this review, we have described the mechanism of ORR and the principle of electrocatalytic performance testing, and have summarized the standard performance evaluation techniques for electrocatalysts to produce H2O2. Secondly, according to the theoretical calculation and experimental results, several kinds of efficient electrocatalysts are introduced. It is concluded that noble metal-based materials, carbon-based materials, non-noble metal composites, and single-atom catalysts are the preferred catalyst materials for the preparation of H2O2 by 2e- ORR. Finally, the advantages and novelty of 2e- ORR compared with traditional methods for H2O2 production, as well as the advantages and disadvantages of the above-mentioned high-efficiency catalysts, are summarized. The application prospect and development direction of high-efficiency catalysts for H2O2 production by 2e- ORR has been prospected, which is of great significance for promoting the electrochemical yield of H2O2 and developing green chemical production.
Collapse
Affiliation(s)
- Ke Yuan
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Hong Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Xindi Gu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Yalei Zheng
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaodong Wu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Yihe Zhao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Jiejie Zhou
- Aerospace Research Institute of Materials & Processing Technology, Beijing, 100076, China
| | - Sheng Cui
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
2
|
Wang L, Xiao J, Mao Q, Cai C, Zhong Q, Liu C, Liu M. Fe 3O 4 encapsulated in hierarchically porous nitrogen-doped graphitic carbon layers for efficient oxygen reduction reaction: Enhanced intrinsic activity via directional interfacial charge transfer. J Colloid Interface Sci 2025; 679:588-599. [PMID: 39471587 DOI: 10.1016/j.jcis.2024.10.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Constructing efficient electrocatalysts for the oxygen reduction reaction (ORR) is crucial for the commercialization of metal-air batteries. Iron oxide-based catalysts exhibit promising potential for ORR. However, addressing the issue of inferior catalytic performance is essential, and a comprehensive understanding of the catalytic mechanism of iron oxide-based catalysts is also lacking. In this study, we present Fe3O4 nanoparticles encapsulated in N-doped graphitic carbon layers (NGC) hosted by hierarchically porous carbon (Fe3O4@NGC), achieved through a facile dual melt-salt template strategy. The encapsulation of Fe3O4 nanoparticles protects them from corrosion and exfoliation, endowing the catalysts with superior stability. Density functional theory (DFT) calculations discover that the electronic interaction between Fe3O4 nanoparticles and N-doped graphitic carbon layers induces directional interfacial electron transfer, which effectively modulates the surface electronic structure to improve the binding ability to O2, weaken the OO bond, and optimize the adsorption of intermediates, thus boosting the intrinsic activity. DFT unveils that the C atoms nearest to graphitic-N in NGC are active sites. Finally, the synergistic effects of Fe3O4 nanoparticles and NGC result in outstanding ORR performance and superior stability and methanol tolerance of Fe3O4@NGC, with a half-wave potential of 0.89 V, surpassing that of Pt/C by 50 mV. Fe3O4@NGC also shows better performance than Pt/C when used as the air-electrode catalyst in zinc-air battery.
Collapse
Affiliation(s)
- Liping Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jin Xiao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Center of Low-Carbon Nonferrous Metallurgy, Central South University, Changsha 410083, China
| | - Qiuyun Mao
- Department of Educational Science, Hunan First Normal University, Changsha 410205, China
| | - Chao Cai
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha 410083, China
| | - Qifan Zhong
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Changxu Liu
- Centre for Metamaterial Research & Innovation, Department of Engineering, University of Exeter, Exeter, UK.
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha 410083, China.
| |
Collapse
|
3
|
Gao J, Meng L, Gui J, Wang H, Ma N, Yin Z, Tan X, Li Y. Polymerizable Ionic Liquid-Derived N, S co-Doped sp 3/sp 2 Carbon as Electrocatalyst for H 2O 2 Generation. Chem Asian J 2024; 19:e202400791. [PMID: 39136406 DOI: 10.1002/asia.202400791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/27/2024]
Abstract
The H2O2 generation via the green electrochemical process is of high interest. For the H2O2 electrochemical generation, the oxygen reduction reaction (ORR) is important. Unfortunately, the ORR is kinetically sluggish and catalysts are needed. However, noble metal ORR catalysts are pricy and scarcely applicable in applications. Therefore, non-precious metal catalysts are desired. Heteroatom-doped carbons show promise as metal-free ORR catalysts. The ORR catalytic activity will be enhanced by the carbon's sp2 and/or sp3 engineering. For N, S co-Cdoped and sp2/sp3 modulated carbon, a polymerizable ionic liquid of hydrolyzed vinyl imidazolium was studied. The carbon is studied as a metal-free catalyst for the ORR via the 2e- process. It is possible to get an onset potential of 0.88 V vs. RHE with approximately 50 % selectivity for the H2O2. The current study offers a simple technique for synthesizing heteroatom-doped sp2/sp3 designed carbon as catalysts for the electroreduction of O2 to produce H2O2, and a new way of tunning the sp3/sp2 carbon catalytic activity by modulating the ionic liquid.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, Department of Chemical Engineering, Tiangong University, 399 Binshui West Road, Tianjin, 300387, P. R. China
- Hai'an Nanjing University High Tech Research Institute, Hai'an, Nantong, People's Republic of China
| | - Lingxin Meng
- State Key Laboratory of Separation Membranes and Membrane Processes, Department of Chemical Engineering, Tiangong University, 399 Binshui West Road, Tianjin, 300387, P. R. China
| | - Jianzhou Gui
- State Key Laboratory of Separation Membranes and Membrane Processes, Department of Chemical Engineering, Tiangong University, 399 Binshui West Road, Tianjin, 300387, P. R. China
| | - Hong Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Department of Chemical Engineering, Tiangong University, 399 Binshui West Road, Tianjin, 300387, P. R. China
| | - Na Ma
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, TEDA, 29 13th Avenue, Tianjin, 300457, P. R. China
| | - Zhen Yin
- Hai'an Nanjing University High Tech Research Institute, Hai'an, Nantong, People's Republic of China
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, TEDA, 29 13th Avenue, Tianjin, 300457, P. R. China
| | - Xiaoyao Tan
- State Key Laboratory of Separation Membranes and Membrane Processes, Department of Chemical Engineering, Tiangong University, 399 Binshui West Road, Tianjin, 300387, P. R. China
| | - Yuan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Department of Chemical Engineering, Tiangong University, 399 Binshui West Road, Tianjin, 300387, P. R. China
| |
Collapse
|
4
|
Zhao Y, Zhang S, Yao W, Zhu Y, Qian J, Yang J, Yang N. Design and synthesis of hierarchical MnO-Fe 3O 4@C/expanded graphite composite for sensitive electrochemical detection of bisphenol A. Talanta 2024; 269:125453. [PMID: 38006729 DOI: 10.1016/j.talanta.2023.125453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/30/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Hierarchically nanostructured binary transition metal oxide-based materials with high conductivity and catalytic activity are quite attractive for the electrochemical quantitative detection of environmental pollutants due to their natural abundance, variable oxidation state, and excellent synergies between metal sites. Herein, a new hierarchical MnO-Fe3O4@C/expanded graphite (EG) composite is designed and synthesized through a simple and in situ annealing method with the utilization of bimetallic organic framework (FeMn-MOF)/EG precursor. The synthesized MnO-Fe3O4@C/EG composite possesses a unique hierarchical nanoarchitecture that small-sized bimetallic oxide nanoparticles of 10-40 nm completely encapsulated by amorphous carbon layers of 2-4 nm are uniformly distributed on the EG platform. This distinctive structure combines the advantages of high conductivity, excellent catalytic activity, and strong stability. Resultantly, when it is applied to monitor environmental endocrine disruptors, the sensor exhibits a significant catalytic effect on the electrochemical oxidation of bisphenol A (BPA), inducing an amplified response current. In addition, the sensor shows a wide linear range of 1-50 μM and 50-400 μM for the BPA monitor, giving a sensitivity of 5208.8 and 1641.9 μA mM-1 cm-2, respectively. This study offers a new approach to design hierarchical binary metal oxide-based sensing materials as well as to explore their electrochemical properties and applications for the determination of emerging contaminants.
Collapse
Affiliation(s)
- Yao Zhao
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Shu Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Wang Yao
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Yuxuan Zhu
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Jing Qian
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Juan Yang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China.
| | - Nianjun Yang
- Department of Chemistry, Hasselt University, 3590, Diepenbeek, Belgium; IMO-IMOMEC, Hasselt University, 3590, Diepenbeek, Belgium
| |
Collapse
|
5
|
Sun Y, Luo Y, Dai L, Zheng Y, Zhang H, Wang Y. Sn Bulk Phase Doping and Surface Modification on Ti 4 O 7 for Oxygen Reduction to Hydrogen Peroxide. Chemistry 2024; 30:e202303602. [PMID: 38093158 DOI: 10.1002/chem.202303602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Indexed: 01/05/2024]
Abstract
Developing stable and highly selective two-electron oxygen reduction reaction (2e- ORR) electrocatalysts for producing hydrogen peroxide (H2 O2 ) is considered a major challenge to replace the anthraquinone process and achieve a sustainable green economy. Here, we doped Sn into Ti4 O7 (D-Sn-Ti4 O7 ) by simple polymerization post-calcination method as a high-efficiency 2e- ORR electrocatalyst. In addition, we also applied plain calcination after the grinding method to load Sn on Ti4 O7 (L-Sn-Ti4 O7 ) as a comparison. However, the performance of L-Sn-Ti4 O7 is far inferior to that of the D-Sn-Ti4 O7 . D-Sn-Ti4 O7 exhibits a starting potential of 0.769 V (versus the reversible hydrogen electrode, RHE) and a high H2 O2 selectivity of 95.7 %. Excitingly, the catalyst can maintain a stable current density of 2.43 mA ⋅ cm-2 for 3600 s in our self-made H-type cell, and the cumulative H2 O2 production reaches 359.2 mg ⋅ L-1 within 50,000 s at 0.3 V. The performance of D-Sn-Ti4 O7 is better than that of the non-noble metal 2e- ORR catalysts reported so far. The doping of Sn not only improves the conductivity but also leads to the lattice distortion of Ti4 O7 , further forming more oxygen vacancies and Ti3+ , which greatly improves its 2e- ORR performance compared with the original Ti4 O7 . In contrast, since the Sn on the surface of L-Sn-Ti4 O7 displays a synergistic effect with Tin+ (3≤n≤4) of Ti4 O7 , the active center Tin+ dissociates the O=O bond, making it more inclined to 4e- ORR.
Collapse
Affiliation(s)
- Yue Sun
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P.R. China
| | - Yangjun Luo
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P.R. China
| | - Longhua Dai
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P.R. China
| | - Yanan Zheng
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P.R. China
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P.R. China
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhehaote, 010022, P. R. China
| | - Yu Wang
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P.R. China
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhehaote, 010022, P. R. China
| |
Collapse
|
6
|
Freese T, Meijer JT, Brands MB, Alachouzos G, Stuart MCA, Tarozo R, Gerlach D, Smits J, Rudolf P, Reek JNH, Feringa BL. Iron oxide-promoted photochemical oxygen reduction to hydrogen peroxide (H 2O 2). EES CATALYSIS 2024; 2:262-275. [PMID: 38222062 PMCID: PMC10782808 DOI: 10.1039/d3ey00256j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 01/16/2024]
Abstract
Hydrogen peroxide (H2O2) is a valuable green oxidant with a wide range of applications. Furthermore, it is recognized as a possible future energy carrier achieving safe operation, storage and transportation. The photochemical production of H2O2 serves as a promising alternative to the waste- and energy-intensive anthraquinone process. Following the 12 principles of Green Chemistry, we demonstrate a facile and general approach to sustainable catalyst development utilizing earth-abundant iron and biobased sources only. We developed several iron oxide (FeOx) nanoparticles (NPs) for successful photochemical oxygen reduction to H2O2 under visible light illumination (445 nm). Achieving a selectivity for H2O2 of >99%, the catalyst material could be recycled for up to four consecutive rounds. An apparent quantum yield (AQY) of 0.11% was achieved for the photochemical oxygen reduction to H2O2 with visible light (445 nm) at ambient temperatures and pressures (9.4-14.8 mmol g-1 L-1). Reaching productivities of H2O2 of at least 1.7 ± 0.3 mmol g-1 L-1 h-1, production of H2O2 was further possible via sunlight irradiation and in seawater. Finally, a detailed mechanism has been proposed on the basis of experimental investigation of the catalyst's properties and computational results.
Collapse
Affiliation(s)
- Thomas Freese
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jelmer T Meijer
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Maria B Brands
- van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Georgios Alachouzos
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Marc C A Stuart
- Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7 9747AG Groningen The Netherlands
| | - Rafael Tarozo
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Dominic Gerlach
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Joost Smits
- Shell Global Solutions International BV Grasweg 31 1031 HW Amsterdam The Netherlands
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Joost N H Reek
- van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
7
|
Yang Z, Liu S, Tang Y, Zhou Y, Xiao L. Enhancement of excess sludge dewatering by three-dimensional electro-Fenton process based on sludge biochar. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130438. [PMID: 36446313 DOI: 10.1016/j.jhazmat.2022.130438] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Deep dewatering of waste activated sludge (WAS) is still a challenge due to high content of bound water and non-Newton fluid properties of sludge flocs. Electro-Fenton (EF) can enhance sludge dewaterability, however, low pH needed in homogeneous EF and fine flocs after EF conditioning influenced deep dewatering of sludge and the subsequent resource recovery disposal. In this study, a three dimension electro-Fenton (3D-EF) using Fe modified sludge biochar (Fe@SBC) as particle electrode, heterogeneous Fenton catalyst and skeleton builder for deep dewatering of sludge under neutral pH was proposed. Fe@SBC obtained at 800 °C exhibited high capacity of H2O2 electrogeneration and activation due to high conductivity and content of 2e-ORR selectivity functional groups. With promoted generation of H2O2 and hydroxyl radical (•OH), 3D-EF with Fe@SBC showed higher decomposition of bound extracellular polymeric substances (EPS) and disintegration of cells in sludge flocs, resulting in releasing bound and intracellular water into free water. Compared with EF, 3D-EF with Fe@SBC800 had higher ability in breaking macromolecules of protein and polysaccharide, as well as removing -COOH and -NH2 groups in EPS, which could facilitate release of bound water trapped in EPS and self-coagulation of fine flocs. During subsequent filtering process, Fe@SBC could enhance sludge filterability as skeleton builder. A synergetic effect of strong oxidation and physical conditioning were proposed in 3D-EF sludge dewaterability with Fe@SBC, and the improved oxidation by Fe@SBC was supposed to play the major role.
Collapse
Affiliation(s)
- Zongcai Yang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Shulei Liu
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Yuqiong Tang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Yingping Zhou
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Lin Xiao
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China.
| |
Collapse
|
8
|
Santos MC, Antonin VS, Souza FM, Aveiro LR, Pinheiro VS, Gentil TC, Lima TS, Moura JPC, Silva CR, Lucchetti LEB, Codognoto L, Robles I, Lanza MRV. Decontamination of wastewater containing contaminants of emerging concern by electrooxidation and Fenton-based processes - A review on the relevance of materials and methods. CHEMOSPHERE 2022; 307:135763. [PMID: 35952792 DOI: 10.1016/j.chemosphere.2022.135763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In recent years, there has been an increasingly growing interest regarding the use of electrochemical advanced oxidation processes (EAOPs) which are considered highly promising alternative treatment techniques for addressing environmental issues related to pollutants of emerging concern. In EAOPs, electrogenerated oxidizing agents, such as hydroxyl radical (HO•), can react non-selectively with a wide range of organic compounds, degrading and mineralizing their structures to unharmful molecules like CO2, H2O, and inorganic ions. To this date, a broad spectrum of advanced electrocatalysts have been developed and applied for the treatment of compounds of interest in different matrices, specifically aiming at enhancing the degradation performance. New combined methods have also been employed as alternative treatment techniques targeted at circumventing the major obstacles encountered in Fenton-based processes, such as high costs and energy consumption, which still contribute significantly toward inhibiting the large-scale application of these processes. First, some fundamental aspects of EAOPs will be presented. Further, we will provide an overview of electrode materials which have been recently developed and reported in the literature, highlighting different anode and cathode structures employed in EAOPs, their main advantages and disadvantages, as well as their contribution to the performance of the treatment processes. The influence of operating parameters, such as initial concentrations, pH effect, temperature, supporting electrolyte, and radiation source, on the treatment processes were also studied. Finally, hybrid techniques which have been reported in the literature and critically assess the most recent techniques used for evaluating the degradation efficiency of the treatment processes.
Collapse
Affiliation(s)
- Mauro C Santos
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil.
| | - Vanessa S Antonin
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Felipe M Souza
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil; Departamento de Química, Instituto Federal de Educação, Ciência e Tecnologia Goiano, BR-153, Km 633, Zona Rural, CEP: 75650-000, Morrinhos, GO, Brazil
| | - Luci R Aveiro
- São Paulo Federal Institute of Education, Science and Technology, Rua Pedro Vicente, 625, Canindé São Paulo, CEP: 01109-010, SP, Brazil
| | - Victor S Pinheiro
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Tuani C Gentil
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Thays S Lima
- Department of Chemistry, Institute of Chemical and Pharmaceutical Environmental Sciences, Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, n 275 - Jd. Eldorado, CEP: 09972-270, Diadema, SP, Brazil
| | - João P C Moura
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Carolina R Silva
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Lanna E B Lucchetti
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Lucia Codognoto
- Department of Chemistry, Institute of Chemical and Pharmaceutical Environmental Sciences, Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, n 275 - Jd. Eldorado, CEP: 09972-270, Diadema, SP, Brazil
| | - Irma Robles
- Center for Research and Technological Development in Electrochemistry, S.C., Parque Tecnológico Querétaro, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Avenida Trabalhador São-carlense 400, São Carlos, SP, 13566-590, Brazil
| |
Collapse
|
9
|
Xing ZH, Wang WL, Li XZ, Zhang K, Gan L, Wu QY. Electrochemical Synthesis of Hydrogen Peroxide Catalyzed by Carbon Nanotubes with Surface Co-N X Sites and Encapsulated Co Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44282-44291. [PMID: 36153961 DOI: 10.1021/acsami.2c10148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The exploitation of M-NX sites, where M is a transition metal atom, is widely regarded as an effective catalytic strategy to promote the oxygen reduction reaction (ORR). In addition, some studies have shown that transition metal nanoparticles (M-NPs) coated with carbon layers can improve the reactivity of ORR and ameliorate the overpotential of the reaction. In this study, we synthesized carbon nanotubes with single-atom Co-NX active sites, Co-NPs outside the tube, and Co-NPs wrapped in the tube by the complexation-pyrolysis synthesis method and explored the role of the particles and Co-NX sites through different pickling steps. The catalyst synthesized with the new stratagem in this study shows outstanding selectivity and also ORR activity. Furthermore, a natural air diffusion electrode fabricated using this material can produce H2O2 at 323 mg L-1 h-1 under neutral conditions without oxygen aeration.
Collapse
Affiliation(s)
- Zhi-Hui Xing
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xin-Zheng Li
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Kai Zhang
- Institute of Materials Research and Shenzhen Geim Graphene Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lin Gan
- Institute of Materials Research and Shenzhen Geim Graphene Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
10
|
An J, Feng Y, Zhao Q, Wang X, Liu J, Li N. Electrosynthesis of H 2O 2 through a two-electron oxygen reduction reaction by carbon based catalysts: From mechanism, catalyst design to electrode fabrication. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 11:100170. [PMID: 36158761 PMCID: PMC9488048 DOI: 10.1016/j.ese.2022.100170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide (H2O2) is an efficient oxidant with multiple uses ranging from chemical synthesis to wastewater treatment. The in-situ H2O2 production via a two-electron oxygen reduction reaction (ORR) will bring H2O2 beyond its current applications. The development of carbon materials offers the hope for obtaining inexpensive and high-performance alternatives to substitute noble-metal catalysts in order to provide a full and comprehensive picture of the current state of the art treatments and inspire new research in this area. Herein, the most up-to-date findings in theoretical predictions, synthetic methodologies, and experimental investigations of carbon-based catalysts are systematically summarized. Various electrode fabrication and modification methods were also introduced and compared, along with our original research on the air-breathing cathode and three-phase interface theory inside a porous electrode. In addition, our current understanding of the challenges, future directions, and suggestions on the carbon-based catalyst designs and electrode fabrication are highlighted.
Collapse
Affiliation(s)
- Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|
11
|
Ma R, Zhang Z, Iyoda T, Wang F. Electrochemical grafting of a pyridinium‐conjugated assembly on graphite for H2O2 electrochemical production. ChemElectroChem 2022. [DOI: 10.1002/celc.202200395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rui Ma
- Beijing University of Chemical Technology State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials Chaoyang District North Third Ring Road 15 CHINA
| | - Zhengping Zhang
- Beijing University of Chemical Technology State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials CHINA
| | - Tomokazu Iyoda
- Doshisha university Harris Science Research Institute, Doshisha University 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 611-0394, Japan JAPAN
| | - Feng Wang
- Beijing University of Chemical Technology Chaoyang District North Third Ring Road 15 CHINA
| |
Collapse
|
12
|
Wu Z, Wang T, Zou JJ, Li Y, Zhang C. Amorphous Nickel Oxides Supported on Carbon Nanosheets as High-Performance Catalysts for Electrochemical Synthesis of Hydrogen Peroxide. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zekun Wu
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis, Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Tianzuo Wang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis, Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ji-Jun Zou
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis, Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yongdan Li
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis, Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Cuijuan Zhang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis, Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
13
|
Interfacial engineering of heterogeneous molecular electrocatalysts using ionic liquids towards efficient hydrogen peroxide production. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63946-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Zhang BW, Zheng T, Wang YX, Du Y, Chu SQ, Xia Z, Amal R, Dou SX, Dai L. Highly efficient and selective electrocatalytic hydrogen peroxide production on Co-O-C active centers on graphene oxide. Commun Chem 2022; 5:43. [PMID: 36697643 PMCID: PMC9814078 DOI: 10.1038/s42004-022-00645-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/07/2022] [Indexed: 01/28/2023] Open
Abstract
Electrochemical oxygen reduction provides an eco-friendly synthetic route to hydrogen peroxide (H2O2), a widely used green chemical. However, the kinetically sluggish and low-selectivity oxygen reduction reaction (ORR) is a key challenge to electrochemical production of H2O2 for practical applications. Herein, we demonstrate that single cobalt atoms anchored on oxygen functionalized graphene oxide form Co-O-C@GO active centres (abbreviated as Co1@GO for simplicity) that act as an efficient and durable electrocatalyst for H2O2 production. This Co1@GO electrocatalyst shows excellent electrochemical performance in O2-saturated 0.1 M KOH, exhibiting high reactivity with an onset potential of 0.91 V and H2O2 production of 1.0 mg cm-2 h-1 while affording high selectivity of 81.4% for H2O2. Our combined experimental observations and theoretical calculations indicate that the high reactivity and selectivity of Co1@GO for H2O2 electrogeneration arises from a synergistic effect between the O-bonded single Co atoms and adjacent oxygen functional groups (C-O bonds) of the GO present in the Co-O-C active centres.
Collapse
Affiliation(s)
- Bin-Wei Zhang
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, The University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Tao Zheng
- Department of Materials Science and Engineering, Department of Chemistry, University of North Texas, Denton, TX, 76203, USA
| | - Yun-Xiao Wang
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Yi Du
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Sheng-Qi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhenhai Xia
- Department of Materials Science and Engineering, Department of Chemistry, University of North Texas, Denton, TX, 76203, USA
| | - Rose Amal
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, The University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Shi-Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, The University of New South Wales Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
15
|
Recent advances and trends of heterogeneous electro-Fenton process for wastewater treatment-review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Komatsu JS, Souza FM, Pinheiro VS, Böhnstedt P, de Pape PW, Mandelli D, Santos MC, Carvalho WA. Cotton fabric derived αFe magnetic porous carbon as electrocatalyst for alkaline direct ethanol fuel cell. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Improving the Treatment Efficiency and Lowering the Operating Costs of Electrochemical Advanced Oxidation Processes. Processes (Basel) 2021. [DOI: 10.3390/pr9091482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Electrochemical advanced oxidation processes (EAOP®) are promising technologies for the decentralized treatment of water and will be important elements in achieving a circular economy. To overcome the drawback of the high operational expenses of EAOP® systems, two novel reactors based on a next-generation boron-doped diamond (BDD) anode and a stainless steel cathode or a hydrogen-peroxide-generating gas diffusion electrode (GDE) are presented. This reactor design ensures the long-term stability of BDD anodes. The application potential of the novel reactors is evaluated with artificial wastewater containing phenol (COD of 2000 mg L−1); the reactors are compared to each other and to ozone and peroxone systems. The investigations show that the BDD anode can be optimized for a service life of up to 18 years, reducing the costs for EAOP® significantly. The process comparison shows a degradation efficiency for the BDD–GDE system of up to 135% in comparison to the BDD–stainless steel electrode combination, showing only 75%, 14%, and 8% of the energy consumption of the BDD–stainless steel, ozonation, and peroxonation systems, respectively. Treatment efficiencies of nearly 100% are achieved with both novel electrolysis reactors. Due to the current density adaptation and the GDE integration, which result in energy savings as well as the improvements that significantly extend the lifetime of the BDD electrode, less resources and raw materials are consumed for the power generation and electrode manufacturing processes.
Collapse
|
18
|
Feng Q, Chen Z, Zhou K, Sun M, Ji X, Zheng H, Zhang Y. Hydrothermal Synthesis of γ‐Fe
2
O
3
/rGO Hybrid Nanocomposite as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202101844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qianqian Feng
- Department of Electronics Science and Technology Hangzhou Dianzi University Hangzhou Dianzi University No. 1, 2nd Street Jianggan District Hangzhou City Zhejiang Province China
| | - Zifeng Chen
- Department of Electronics Science and Technology Hangzhou Dianzi University Hangzhou Dianzi University No. 1, 2nd Street Jianggan District Hangzhou City Zhejiang Province China
| | - Ke Zhou
- Department of Electronics Science and Technology Hangzhou Dianzi University Hangzhou Dianzi University No. 1, 2nd Street Jianggan District Hangzhou City Zhejiang Province China
| | - Meiling Sun
- Department of Electronics Science and Technology Hangzhou Dianzi University Hangzhou Dianzi University No. 1, 2nd Street Jianggan District Hangzhou City Zhejiang Province China
| | - Xianran Ji
- Department of Electronics Science and Technology Hangzhou Dianzi University Hangzhou Dianzi University No. 1, 2nd Street Jianggan District Hangzhou City Zhejiang Province China
| | - Hui Zheng
- Department of Electronics Science and Technology Hangzhou Dianzi University Hangzhou Dianzi University No. 1, 2nd Street Jianggan District Hangzhou City Zhejiang Province China
| | - Yang Zhang
- Department of Electronics Science and Technology Hangzhou Dianzi University Hangzhou Dianzi University No. 1, 2nd Street Jianggan District Hangzhou City Zhejiang Province China
| |
Collapse
|
19
|
Wang N, Ma S, Zuo P, Duan J, Hou B. Recent Progress of Electrochemical Production of Hydrogen Peroxide by Two-Electron Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100076. [PMID: 34047062 PMCID: PMC8336511 DOI: 10.1002/advs.202100076] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/17/2021] [Indexed: 05/06/2023]
Abstract
Shifting electrochemical oxygen reduction reaction (ORR) via two-electron pathway becomes increasingly crucial as an alternative/green method for hydrogen peroxide (H2 O2 ) generation. Here, the development of 2e- ORR catalysts in recent years is reviewed, in aspects of reaction mechanism exploration, types of high-performance catalysts, factors to influence catalytic performance, and potential applications of 2e- ORR. Based on the previous theoretical and experimental studies, the underlying 2e- ORR catalytic mechanism is firstly unveiled, in aspect of reaction pathway, thermodynamic free energy diagram, limiting potential, and volcano plots. Then, various types of efficient catalysts for producing H2 O2 via 2e- ORR pathway are summarized. Additionally, the catalytic active sites and factors to influence catalysts' performance, such as electronic structure, carbon defect, functional groups (O, N, B, S, F etc.), synergistic effect, and others (pH, pore structure, steric hindrance effect, etc.) are discussed. The H2 O2 electrogeneration via 2e- ORR also has various potential applications in wastewater treatment, disinfection, organics degradation, and energy storage. Finally, potential future directions and prospects in 2e- ORR catalysts for electrochemically producing H2 O2 are examined. These insights may help develop highly active/selective 2e- ORR catalysts and shape the potential application of this electrochemical H2 O2 producing method.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| | - Shaobo Ma
- MITT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Pengjian Zuo
- MITT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| |
Collapse
|
20
|
|
21
|
Zhang W, Gao YJ, Fang QJ, Pan JK, Zhu XC, Deng SW, Yao ZH, Zhuang GL, Wang JG. High-performance single-atom Ni catalyst loaded graphyne for H 2O 2 green synthesis in aqueous media. J Colloid Interface Sci 2021; 599:58-67. [PMID: 33933797 DOI: 10.1016/j.jcis.2021.04.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
The electrochemical synthesis of hydrogen peroxide (H2O2) provides a greener and more efficient method compared with classic catalysts containing toxic metals. Herein, we used first-principles density functional theory (DFT) calculations to investigate 174 different single-atom catalysts with graphyne substrates, and conducted a three-step screening strategy to identify the optimal noble metal-free single atom catalyst. It is found that a single Ni atom loaded on γ-graphyne with carbon vacancies (Ni@V-γ-GY) displayed remarkable thermodynamic stability, excellent selectivity, and high activity with an ultralow overpotential of 0.03 V. Furthermore, based on ab-initio molecular dynamic and DFT calculations under the H2O solvent, it was revealed that the catalytic performance for H2O2 synthesis in aqueous phase was much better than that in gas phase condition, shedding light on the hydrogen bond network being beneficial to accelerate the transfer of protons for H2O2 synthesis.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yi-Jing Gao
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Qiao-Jun Fang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jin-Kong Pan
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Xin-Cheng Zhu
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Sheng-Wei Deng
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zi-Hao Yao
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Gui-Lin Zhuang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China.
| | - Jian-Guo Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| |
Collapse
|
22
|
Zhao H, Yuan ZY. Design Strategies of Non-Noble Metal-Based Electrocatalysts for Two-Electron Oxygen Reduction to Hydrogen Peroxide. CHEMSUSCHEM 2021; 14:1616-1633. [PMID: 33587818 DOI: 10.1002/cssc.202100055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Indexed: 05/25/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a highly value-added and environmentally friendly chemical with various applications. The production of H2 O2 by electrocatalytic 2e- oxygen reduction reaction (ORR) has drawn considerable research attention, with a view to replacing the currently established anthraquinone process. Electrocatalysts with low cost, high activity, high selectivity, and superior stability are in high demand to realize precise control over electrochemical H2 O2 synthesis by 2e- ORR and the feasible commercialization of this system. This Review introduces a comprehensive overview of non-noble metal-based catalysts for electrochemical oxygen reduction to afford H2 O2 , providing an insight into catalyst design and corresponding reaction mechanisms. It starts with an in-depth discussion on the origins of 2e- /4e- selectivity towards ORR for catalysts. Recent advances in design strategies for non-noble metal-based catalysts, including carbon nanomaterials and transition metal-based materials, for electrochemical oxygen reduction to H2 O2 are then discussed, with an emphasis on the effects of electronic structure, nanostructure, and surface properties on catalytic performance. Finally, future challenges and opportunities are proposed for the further development of H2 O2 electrogeneration through 2e- ORR, from the standpoints of mechanistic studies and practical application.
Collapse
Affiliation(s)
- Hui Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong, 252000, P. R. China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
23
|
Liu C, Li H, Chen J, Yu Z, Ru Q, Li S, Henkelman G, Wei L, Chen Y. 3d Transition-Metal-Mediated Columbite Nanocatalysts for Decentralized Electrosynthesis of Hydrogen Peroxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007249. [PMID: 33690976 DOI: 10.1002/smll.202007249] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Decentralized electrosynthesis of hydrogen peroxide (H2 O2 ) via oxygen reduction reaction (ORR) can enable applications in disinfection control, pulping and textile bleaching, wastewater treatment, and renewable energy storage. Transition metal oxides are usually not efficient catalysts because they are more selective to produce H2 O. Here, it is shown that divalent 3d transition metal cations (Mn, Fe, Co, Ni, and Cu) can control the catalytic activity and selectivity of columbite nanoparticles. They are synthesized using polyoxoniobate (K7 HNb6 O19 ·13H2 O) and divalent metal cations by a hydrothermal method. The optimal NiNb2 O6 holds an H2 O2 selectivity of 96% with the corresponding H2 O2 Faradaic efficiency of 92% in a wide potential window from 0.2 to 0.6 V in alkaline electrolyte, superior to other transition metal oxide catalysts. Ex situ X-ray photoelectron and operando Fourier-transformed infrared spectroscopic studies, together with density functional theory calculations, reveal that 3d transition metals shift the d-band center of catalytically active surface Nb atoms and change their interactions with ORR intermediates. In an application demonstration, NiNb2 O6 delivers H2 O2 productivity up to 1 molH2O2 gcat -1 h-1 in an H-shaped electrolyzer and can yield catholytes containing 300 × 10-3 m H2 O2 to efficiently decomposing several organic dyes. The low-cost 3d transition-metal-mediated columbite catalysts show excellent application potentials.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Hao Li
- Department of Chemistry and the Oden Institute for Computational and Engineering Sciences, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, TX, 78712, USA
| | - Junsheng Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Zixun Yu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Qiang Ru
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Graeme Henkelman
- Department of Chemistry and the Oden Institute for Computational and Engineering Sciences, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, TX, 78712, USA
| | - Li Wei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| |
Collapse
|
24
|
Thundiyil S, Kurungot S, Devi RN. Efficient Electrochemical Oxygen Reduction to Hydrogen Peroxide by Transition Metal-Doped Silicate Sr 0.7Na 0.3SiO 3-δ. ACS APPLIED MATERIALS & INTERFACES 2021; 13:382-390. [PMID: 33356141 DOI: 10.1021/acsami.0c16311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrochemical oxygen reduction in a selective two-electron pathway is an efficient method for onsite production of H2O2. State of the art noble metal-based catalysts will be prohibitive for widespread applications, and hence earth-abundant oxide-based systems are most desired. Here we report transition metal (Mn, Fe, Ni, Cu)-doped silicates, Sr0.7Na0.3SiO3-δ, as potential electrocatalysts for oxygen reduction to H2O2 in alkaline conditions. These novel compounds are isostructural with the parent Sr0.7Na0.3SiO3-δ and crystallize in monoclinic structure with corner-shared SiO4 groups forming cyclic trimers. The presence of Na stabilizes O vacancies created on doping, and the transition metal ions provide catalytically active sites. Electrochemical parameters estimated from Tafel and Koutechy-Levich plots suggest a two-electron transfer mechanism, indicating peroxide formation. This is confirmed by the rotating ring disc electrode method, and peroxide selectivity and Faradaic efficiency are calculated to be in the range of 65-82% and 50-68%, respectively, in a potential window 0.3 to 0.6 V (vs RHE). Of all the dopants, Ni imparts the maximum selectivity and efficiency as well as highest rate of formation of H2O2 at 1.65 μmol s-1.
Collapse
Affiliation(s)
- Shibin Thundiyil
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India
- Academy of Innovative and Scientific Research (AcSIR), Ghaziabad-201002, India
| | - Sreekumar Kurungot
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India
- Academy of Innovative and Scientific Research (AcSIR), Ghaziabad-201002, India
| | - R Nandini Devi
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India
- Academy of Innovative and Scientific Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
25
|
Wang D, Pan X, Yang P, Li R, Xu H, Li Y, Meng F, Zhang J, An M. Transition Metal and Nitrogen Co-Doped Carbon-based Electrocatalysts for the Oxygen Reduction Reaction: From Active Site Insights to the Rational Design of Precursors and Structures. CHEMSUSCHEM 2021; 14:33-55. [PMID: 33078564 DOI: 10.1002/cssc.202002137] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Considering the urgent requirement for clean and sustainable energy, fuel cells and metal-air batteries have emerged as promising energy storage and conversion devices to alleviate the worldwide energy challenges. The key step in accelerating the sluggish oxygen reduction reaction (ORR) kinetics at the cathode is to develop cost-effective and high-efficiency non-precious metal catalysts, which can be used to replace expensive Pt-based catalysts. Recently, the transition metal and nitrogen co-doped carbon (M-Nx /C) materials with tailored morphology, tunable composition, and confined structure show great potential in both acidic and alkaline media. Herein, the mechanism of ORR is provided, followed by recent efforts to clarify the actual structures of active sites. Furthermore, the progress of optimizing the catalytic performance of M-Nx /C catalysts by modulating nitrogen-rich precursors and porous structure engineering is highlighted. The remaining challenges and development prospects of M-Nx /C catalysts are also outlined and evaluated.
Collapse
Affiliation(s)
- Dan Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaona Pan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Peixia Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ruopeng Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Hao Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yun Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Fan Meng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jinqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Maozhong An
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
26
|
Deng Z, Ma C, Yan S, Liang J, Dong K, Li T, Wang Y, Yue L, Luo Y, Liu Q, Liu Y, Gao S, Du J, Sun X. Electrocatalytic H 2O 2 production via two-electron O 2 reduction by Mo-doped TiO 2 nanocrystallines. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01466h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mo acts as an effective dopant to boost the catalytic activity of TiO2 for the 2e− O2 reduction reaction. Such Mo–TiO2 electrocatalyst achieves a high Faradaic efficiency of 92% and a large H2O2 yield of 395.3 mmol gcat−1 h−1 in alkaline medium.
Collapse
Affiliation(s)
- Zhiqin Deng
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Chaoqun Ma
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Shihai Yan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Kai Dong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Luchao Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yonglan Luo
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Yang Liu
- School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Shuyan Gao
- School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Juan Du
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| |
Collapse
|
27
|
Using black carbon modified with NbMo and NbPd oxide nanoparticles for the improvement of H2O2 electrosynthesis. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Zoladek S, Blicharska-Sobolewska M, Krata AA, Rutkowska IA, Wadas A, Miecznikowski K, Negro E, Vezzù K, Di Noto V, Kulesza PJ. Heteropolytungstate-assisted fabrication and deposition of catalytic silver nanoparticles on different reduced graphene oxide supports: Electroreduction of oxygen in alkaline electrolyte. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Methane activation on PdMn/C-ITO electrocatalysts using a reactor-type PEMFC. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04210-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Hota I, Debnath AK, Muthe KP, Varadwaj KSK, Parhi P. Electrocatalytic Production of Hydrogen‐peroxide from Molecular Oxygen by Rare Earth (Pr, Nd, Sm or Gd) Oxide Nanorods. ELECTROANAL 2020. [DOI: 10.1002/elan.202060099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ipsha Hota
- Department of Chemistry Ravenshaw University, Cuttack Odisha 753003 India
| | - A. K Debnath
- Technical Physics Division Bhabha Atomic Research Centre Mumbai 400085 India
| | - K. P Muthe
- Technical Physics Division Bhabha Atomic Research Centre Mumbai 400085 India
| | - K. S. K Varadwaj
- Department of Chemistry Ravenshaw University, Cuttack Odisha 753003 India
| | - Purnendu Parhi
- Department of Chemistry Ravenshaw University, Cuttack Odisha 753003 India
| |
Collapse
|
31
|
Xiao Y, Hong J, Wang X, Chen T, Hyeon T, Xu W. Revealing Kinetics of Two-Electron Oxygen Reduction Reaction at Single-Molecule Level. J Am Chem Soc 2020; 142:13201-13209. [PMID: 32628842 DOI: 10.1021/jacs.0c06020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
By combining single-molecule fluorescence microscopy with traditional electrochemical methods, herein we report on the investigation of the electrocatalytic kinetics of two-electron (2e) pathway of oxygen reduction reaction (ORR) on a single Fe3O4 nanoparticle. The kinetic parameters for two-electron ORR process are successfully derived at the single-particle level, and a potential dependence of dynamic heterogeneity among individual nanoparticles is revealed. Furthermore, the performance stability of individual Fe3O4 nanoparticles for 2e ORR process is studied. This study deepens our understanding to the electrocatalytic ORR process, especially the 2e pathway at single-molecule and single-particle levels.
Collapse
Affiliation(s)
- Yi Xiao
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.,University of Science and Technology of China, Anhui 230026, China
| | - Jaeyoung Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiao Wang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Tao Chen
- Institute of Physics-Biophysics, Georg-August- Universität, 37077 Göttingen, Germany
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.,University of Science and Technology of China, Anhui 230026, China
| |
Collapse
|
32
|
Li N, Song X, Wang L, Geng X, Wang H, Tang H, Bian Z. Single-Atom Cobalt Catalysts for Electrocatalytic Hydrodechlorination and Oxygen Reduction Reaction for the Degradation of Chlorinated Organic Compounds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24019-24029. [PMID: 32356652 DOI: 10.1021/acsami.0c05159] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochemical reduction-oxidation processes with the aid of cathode catalysts are promising technologies for the decomposition of organic compounds. High-efficiency and low-cost catalysts for electrochemical reductive dechlorination and two-electron oxygen reduction reaction (ORR) are vital to the overall degradation of chlorinated organic compounds. This study reports electrochemical dechlorination using a single-atom Co-loaded sulfide graphene (Co-SG) catalyst via atomic hydrogen generated from the electrochemical reduction of H2O and electrolysis of hydrogen. The Co-SG electrocatalyst exhibited a remarkable performance for H2O2 synthesis with a half-wave potential of 0.70 V (vs RHE) and selectivity over 90%. The high electrochemical performance was achieved for bifunctional electrocatalysis with regard to the smaller overpotentials, faster kinetics, and higher cycling stability compared to the noble metal-based electrocatalysts. In this study, 2,4-dichlorobenzoic acid was well degraded and the TOC concentration was effectively reduced. This work introduces the preparation of a new active site for high-performance single-atom catalysts and also promotes its application in the electrochemical degradation of chlorinated organic pollutants.
Collapse
Affiliation(s)
- Ning Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Xiaozhe Song
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Li Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Xinle Geng
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Hanyu Tang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
33
|
Abstract
Abstract
Environmental concerns such as climate change due to rapid population growth are becoming increasingly serious and require amelioration. One solution is to create large capacity batteries that can be applied in electricity-based applications to lessen dependence on petroleum. Here, aluminum–air batteries are considered to be promising for next-generation energy storage applications due to a high theoretical energy density of 8.1 kWh kg−1 that is significantly larger than that of the current lithium-ion batteries. Based on this, this review will present the fundamentals and challenges involved in the fabrication of aluminum–air batteries in terms of individual components, including aluminum anodes, electrolytes and air cathodes. In addition, this review will discuss the possibility of creating rechargeable aluminum–air batteries.
Graphic Abstract
Collapse
|
34
|
Huang J, Chen J, Fu C, Cai P, Li Y, Cao L, Liu W, Yu P, Wei S, Wen Z, Li J. 2 D Hybrid of Ni-LDH Chips on Carbon Nanosheets as Cathode of Zinc-Air Battery for Electrocatalytic Conversion of O 2 into H 2 O 2. CHEMSUSCHEM 2020; 13:1496-1503. [PMID: 31609066 DOI: 10.1002/cssc.201902429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Indexed: 06/10/2023]
Abstract
It remains great challenge to develop precious-metal-free electrocatalysts to implement high-activity electrochemical conversion of O2 into value-added hydroperoxide species (HO2 - ), which are vulnerable when exposed to various transition-metal-based catalysts. A strategy based on steric hindrance and layered nickel-based layered double hydroxide (Ni-LDH) induction has been developed for one-pot inlaying high-density ultrathin 2 D Ni-LDH chips on in situ-grown carbon nanosheets (Ni-LDH C/CNSs). The resulting material exhibits high electrocatalytic selectivity with a faradaic efficiency up to 95 % for oxygen reduction into peroxide and attains a fairly high mass activity of approximately 22.2 A g-1 , outperforming most metal-based catalysts reported previously. Systematic studies demonstrate that the greatly increased defect concentration at Ni edge sites of Ni-LDH chips results in more active sites, which contributes a favorable thermodynamically neutral adsorption of OOH* and adsorbed H2 O2 molecules relatively weakly. Additionally, the modified CNSs effectively suppress H2 O2 decomposition and avoid O-O bond cleavage to produce H2 O by steric effects. The synergistic effect of CNSs and Ni-LDH chips therefore leads to high activity and high selectivity in a two-electron pathway. A proof-of-concept zinc-air fuel cell is proposed and set up to demonstrate the feasibility of green synthesis of peroxide, generating an impressive H2 O2 production rate of 5239.67 mmol h-1 gcat. -1 .
Collapse
Affiliation(s)
- Junheng Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Junxiang Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Changle Fu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Pingwei Cai
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Yan Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Linlin Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P.R. China
| | - Wei Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P.R. China
| | - Peng Yu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P.R. China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P.R. China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
35
|
Dong Y, Su J, Zhou S, Wang M, Huang S, Lu CH, Yang H, Fu F. Carbon-based dots for the electrochemical production of hydrogen peroxide. Chem Commun (Camb) 2020; 56:7609-7612. [DOI: 10.1039/c9cc09987e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene/carbon-based dot nanohybrids were prepared by the ultrasonic exfoliation of natural graphite in the presence of single-layer carbon based dots, and used for the electrochemical production of hydrogen peroxide.
Collapse
Affiliation(s)
- Yongqiang Dong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Juanxia Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Shuqing Zhou
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- China
| | - Min Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Shuping Huang
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Chun-Hua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Hongbin Yang
- Institute for Materials Science and Devices
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| | - Fengfu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| |
Collapse
|
36
|
Liao M, Wang Y, Li S, Li J, Chen P. Electrocatalyst Derived from Abundant Biomass and its Excellent Activity for In Situ H
2
O
2
Production. ChemElectroChem 2019. [DOI: 10.1002/celc.201901321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Min‐Ji Liao
- School of Chemistry and Chemical EngineeringAnhui University Hefei, Anhui 230601 P. R. China
| | - Yun‐Lu Wang
- School of Chemistry and Chemical EngineeringAnhui University Hefei, Anhui 230601 P. R. China
| | - Shi‐Song Li
- School of Chemistry and Chemical EngineeringAnhui University Hefei, Anhui 230601 P. R. China
| | - Jiang‐Feng Li
- Department of ChemistryLishui University Lishui 323000 P. R. China
| | - Ping Chen
- School of Chemistry and Chemical EngineeringAnhui University Hefei, Anhui 230601 P. R. China
- Anhui UniversityInstitute of Physical Science and Information Technology Hefei, Anhui 230601 P. R. China
- Anhui Province Key Laboratory of Chemistry for Inorganic/OrganicHybrid Functionalized Materials Anhui 230601 P. R. China
| |
Collapse
|
37
|
Core-Shell Fe3O4@NCS-Mn Derived from Chitosan-Schiff Based Mn Complex with Enhanced Catalytic Activity for Oxygen Reduction Reaction. Catalysts 2019. [DOI: 10.3390/catal9080692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A core-shell type of Fe3O4/NCS-Mn composite was prepared by pyrolyzing a precursor fabricated by coating a chitosan-Schiff base Mn complex on Fe3O4 cores. For comparison purposes, the Fe3O4@NCS sample in the absence of Mn and the Fe3O4@NC sample derived from just chitosan coating Fe3O4 were also prepared. Among the three catalysts, Fe3O4@NCS-Mn demonstrates the best electrocatalytic activity compared to commercial Pt/C (20%) for oxygen reduction reaction (ORR). The average of the transferred electron number (n) approached 3.6 in the range of −0.3 to −0.8 V (vs. Ag/AgCl). Moreover, the catalyst exhibited high stability and durability against methanol and may potentially be a promising ORR catalyst for fuel cells.
Collapse
|
38
|
Li BQ, Zhao CX, Liu JN, Zhang Q. Electrosynthesis of Hydrogen Peroxide Synergistically Catalyzed by Atomic Co-N x -C Sites and Oxygen Functional Groups in Noble-Metal-Free Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808173. [PMID: 30968470 DOI: 10.1002/adma.201808173] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a green oxidizer widely involved in a vast number of chemical reactions. Electrochemical reduction of oxygen to H2 O2 constitutes an environmentally friendly synthetic route. However, the oxygen reduction reaction (ORR) is kinetically sluggish and undesired water serves as the main product on most electrocatalysts. Therefore, electrocatalysts with high reactivity and selectivity are highly required for H2 O2 electrosynthesis. In this work, a synergistic strategy is proposed for the preparation of H2 O2 electrocatalysts with high ORR reactivity and high H2 O2 selectivity. A Co-Nx -C site and oxygen functional group comodified carbon-based electrocatalyst (named as Co-POC-O) is synthesized. The Co-POC-O electrocatalyst exhibits excellent catalytic performance for H2 O2 electrosynthesis in O2 -saturated 0.10 m KOH with a high selectivity over 80% as well as very high reactivity with an ORR potential at 1 mA cm-2 of 0.79 V versus the reversible hydrogen electrode (RHE). Further mechanism study identifies that the Co-Nx -C sites and oxygen functional groups contribute to the reactivity and selectivity for H2 O2 electrogeneration, respectively. This work affords not only an emerging strategy to design H2 O2 electrosynthesis catalysts with remarkable performance, but also the principles of rational combination of multiple active sites for green and sustainable synthesis of chemicals through electrochemical processes.
Collapse
Affiliation(s)
- Bo-Quan Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chang-Xin Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jia-Ning Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
39
|
Zhou W, Meng X, Gao J, Alshawabkeh AN. Hydrogen peroxide generation from O 2 electroreduction for environmental remediation: A state-of-the-art review. CHEMOSPHERE 2019; 225:588-607. [PMID: 30903840 PMCID: PMC6921702 DOI: 10.1016/j.chemosphere.2019.03.042] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 05/12/2023]
Abstract
The electrochemical production of hydrogen peroxide (H2O2) by 2-electron oxygen reduction reaction (ORR) is an attractive alternative to the present complex anthraquinone process. The objective of this paper is to provide a state-of-the-arts review of the most important aspects of this process. First, recent advances in H2O2 production are reviewed and the advantages of H2O2 electrogeneration via 2-electron ORR are highlighted. Second, the selectivity of the ORR pathway towards H2O2 formation as well as the development process of H2O2 production are presented. The cathode characteristics are the decisive factors of H2O2 production. Thus the focus is shifted to the introduction of commonly used carbon cathodes and their modification methods, including the introduction of other active carbon materials, hetero-atoms doping (i.e., O, N, F, B, and P) and decoration with metal oxides. Cathode stability is evaluated due to its significance for long-term application. Effects of various operational parameters, such as electrode potential/current density, supporting electrolyte, electrolyte pH, temperature, dissolved oxygen, and current mode on H2O2 production are then discussed. Additionally, the environmental application of electrogenerated H2O2 on aqueous and gaseous contaminants removal, including dyes, pesticides, herbicides, phenolic compounds, drugs, VOCs, SO2, NO, and Hg0, are described. Finally, a brief conclusion about the recent progress achieved in H2O2 electrogeneration via 2-electron ORR and an outlook on future research challenges are proposed.
Collapse
Affiliation(s)
- Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Xiaoxiao Meng
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China.
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
40
|
Nurlilasari P, Widiyastuti W, Setyawan H, Faizal F, Wada M, Wuled Lenggoro I. High-throughput production of magnetite nanoparticles prepared by the monopolar arrangement of iron electrodes in water. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.02.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Zhao J, Luo J, Li D, Zhou Z, Ji G, Shi Q, Xiang Y. Fe
3
O
4
Nanoparticles Supported on Arc‐synthesized Carbon Nanotubes as Advanced Electrocatalyst for Oxygen Reduction Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201901378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jiang Zhao
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu ProvinceCollege of Electronic and Optical Engineering & College of MicroelectronicsNanjing University of Posts and Telecommunications Nanjing 210023 People's Republic of China
| | - Jinsong Luo
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu ProvinceCollege of Electronic and Optical Engineering & College of MicroelectronicsNanjing University of Posts and Telecommunications Nanjing 210023 People's Republic of China
| | - Dan Li
- The Guangxi Zhuang Autonomous Region geological environment monitoring station Guilin 541004 People's Republic of China
| | - Ziwei Zhou
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu ProvinceCollege of Electronic and Optical Engineering & College of MicroelectronicsNanjing University of Posts and Telecommunications Nanjing 210023 People's Republic of China
| | - Guanghan Ji
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu ProvinceCollege of Electronic and Optical Engineering & College of MicroelectronicsNanjing University of Posts and Telecommunications Nanjing 210023 People's Republic of China
| | - Qingling Shi
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu ProvinceCollege of Electronic and Optical Engineering & College of MicroelectronicsNanjing University of Posts and Telecommunications Nanjing 210023 People's Republic of China
| | - Yangjun Xiang
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu ProvinceCollege of Electronic and Optical Engineering & College of MicroelectronicsNanjing University of Posts and Telecommunications Nanjing 210023 People's Republic of China
| |
Collapse
|
42
|
Xia Y, Shang H, Zhang Q, Zhou Y, Hu X. Electrogeneration of hydrogen peroxide using phosphorus-doped carbon nanotubes gas diffusion electrodes and its application in electro-Fenton. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Fu Y, Wei Q, Zhang G, Zhong Y, Moghimian N, Tong X, Sun S. LiFePO₄-Graphene Composites as High-Performance Cathodes for Lithium-Ion Batteries: The Impact of Size and Morphology of Graphene. MATERIALS 2019; 12:ma12060842. [PMID: 30871139 PMCID: PMC6471634 DOI: 10.3390/ma12060842] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022]
Abstract
In this work, we investigated three types of graphene (i.e., home-made G, G V4, and G V20) with different size and morphology, as additives to a lithium iron phosphate (LFP) cathode for the lithium-ion battery. Both the LFP and the two types of graphene (G V4 and G V20) were sourced from industrial, large-volume manufacturers, enabling cathode production at low cost. The use of wrinkled and/or large pieces of a graphene matrix shows promising electrochemical performance when used as an additive to the LFP, which indicates that the features of large and curved graphene pieces enable construction of a more effective conducting network to realize the full potential of the active materials. Specifically, compared to pristine LFP, the LFP/G, LFP/G V20, and LFP/G V4 show up to a 9.2%, 6.9%, and 4.6% increase, respectively, in a capacity at 1 C. Furthermore, the LFP combined with graphene exhibits a better rate performance than tested with two different charge/discharge modes. Moreover, from the economic and electrochemical performance view point, we also demonstrated that 1% of graphene content is optimized no matter the capacity calculated, based on the LFP/graphene composite or pure LFP.
Collapse
Affiliation(s)
- Yanqing Fu
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC J3X 1S2, Canada.
| | - Qiliang Wei
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC J3X 1S2, Canada.
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC J3X 1S2, Canada.
| | - Yu Zhong
- NanoXplore Inc., 25 Montpellier Blvd., Saint-Laurent, QC H4N 2G3, Canada.
| | - Nima Moghimian
- NanoXplore Inc., 25 Montpellier Blvd., Saint-Laurent, QC H4N 2G3, Canada.
| | - Xin Tong
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC J3X 1S2, Canada.
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC J3X 1S2, Canada.
| |
Collapse
|
44
|
Dang X, Sun M, Sinha A, Niu J, Zhao H. Coupling O
2
and K
2
S
2
O
8
Dual Co‐reactant with Fe‐N‐C Modified Electrode for Ultrasensitive Electrochemiluminescence Signal Amplification. ChemistrySelect 2019. [DOI: 10.1002/slct.201900070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xueming Dang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China)School of Environmental Science and TechnologyDalian University of Technology Dalian 116024 P. R. China
| | - Mei Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China)School of Environmental Science and TechnologyDalian University of Technology Dalian 116024 P. R. China
| | - Ankita Sinha
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China)School of Environmental Science and TechnologyDalian University of Technology Dalian 116024 P. R. China
| | - Junfeng Niu
- Research Center for Eco-Environmental EngineeringDongguan University of Technology, Dongguan 523808 P.R. China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China)School of Environmental Science and TechnologyDalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
45
|
Zhao H, Shen X, Chen Y, Zhang SN, Gao P, Zhen X, Li XH, Zhao G. A COOH-terminated nitrogen-doped carbon aerogel as a bulk electrode for completely selective two-electron oxygen reduction to H 2O 2. Chem Commun (Camb) 2019; 55:6173-6176. [PMID: 31045185 DOI: 10.1039/c9cc02580d] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A COOH-terminated nitrogen-doped carbon aerogel exhibited 100% selectivity to two-electron oxygen reduction, exceeding reported carbonaceous and noble metal catalysts. The optimal electrode with the synergistic effect of C-N/C-COOH resulted in a minimum ηO2/H2O2 and gave an evolution rate of 60 mg L-1 g-1 h-1 for H2O2 with satisfactory mechanical and electrochemical stability for practical applications.
Collapse
Affiliation(s)
- Hongying Zhao
- School of Chemical Science and Engineering, and Shanghai Key lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sun Y, Li S, Jovanov ZP, Bernsmeier D, Wang H, Paul B, Wang X, Kühl S, Strasser P. Structure, Activity, and Faradaic Efficiency of Nitrogen-Doped Porous Carbon Catalysts for Direct Electrochemical Hydrogen Peroxide Production. CHEMSUSCHEM 2018; 11:3388-3395. [PMID: 30102456 DOI: 10.1002/cssc.201801583] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Carbon materials doped with nitrogen are active catalysts for the electrochemical two-electron oxygen reduction reaction (ORR) to hydrogen peroxide. Insights into the individual role of the various chemical nitrogen functionalities in the H2 O2 production, however, have remained scarce. Here, we explore a catalytically very active family of nitrogen-doped porous carbon materials, prepared by direct pyrolysis of ordered mesoporous carbon (CMK-3) with polyethylenimine (PEI). Voltammetric rotating ring-disk analysis in combination with chronoamperometric bulk electrolysis measurements in electrolysis cells demonstrate a pronounced effect of the applied potentials, current densities, and electrolyte pH on the H2 O2 selectivity and absolute production rates. H2 O2 selectivity up to 95.3 % was achieved in acidic environment, whereas the largest H2 O2 production rate of 570.1 mmol g-1 catalyst h-1 was observed in neutral solution. X-ray photoemission spectroscopy (XPS) analysis suggests a key mechanistic role of pyridinic-N in the catalytic process in acid, whereas graphitic-N groups appear to be catalytically active moieties in neutral and alkaline conditions. Our results contribute to the understanding and aid the rational design of efficient carbon-based H2 O2 production catalysts.
Collapse
Affiliation(s)
- Yanyan Sun
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, 10623, Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, 10623, Berlin, Germany
| | - Zarko Petar Jovanov
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, 10623, Berlin, Germany
| | - Denis Bernsmeier
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, 10623, Berlin, Germany
| | - Huan Wang
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, 10623, Berlin, Germany
| | - Benjamin Paul
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, 10623, Berlin, Germany
| | - Xingli Wang
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, 10623, Berlin, Germany
| | - Stefanie Kühl
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, 10623, Berlin, Germany
| | - Peter Strasser
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, 10623, Berlin, Germany
| |
Collapse
|
47
|
Wang W, Lu Y, Luo H, Liu G, Zhang R, Jin S. A microbial electro-fenton cell for removing carbamazepine in wastewater with electricity output. WATER RESEARCH 2018; 139:58-65. [PMID: 29626730 DOI: 10.1016/j.watres.2018.03.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 05/20/2023]
Abstract
High electrical energy is required for the electro-Fenton process to remove pharmaceuticals and personal care products (PPCPs) in wastewater. The aim of this study was to develop a novel and more cost-effective process, specifically a microbial electro-Fenton cell (MeFC), for treating PPCPs in wastewater. Acetylene black was selected as the catalyst for H2O2 electrogeneration and Fe-Mn binary oxide for hydroxyl radical production. In addition to lowering energy needs, the MeFC produced a maximum power density of 112 ± 11 mW/m2 with 1 g/L acetate as a representative substrate and 10 mg/L carbamazepine (CBZ) as a typical PPCP. Comparing with electro-Fenton process, the CBZ removal in the MeFC was 38% higher within 24 h operation (90% vs. 62%). Furthermore, the CBZ removal rate in the MeFC was 10-100 times faster than that in other biological treatment processes. Such enhanced degradation of CBZ in the MeFC was attributed to the synergistic reactions between radical oxidation of CBZ and biodegradation of degradative intermediates. The MeFC provides a promising method to remove PPCPs from wastewater coupling with efficient removal of other biodegradable organics.
Collapse
Affiliation(s)
- Wei Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yaobin Lu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Renduo Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Song Jin
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
48
|
Das RK, Golder AK. Use of plant based analytes for the synthesis of NiO nanoparticles in catalyzing electrochemical H2O2 production. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Elumeeva K, Kazakova MA, Morales DM, Medina D, Selyutin A, Golubtsov G, Ivanov Y, Kuznetzov V, Chuvilin A, Antoni H, Muhler M, Schuhmann W, Masa J. Bifunctional Oxygen Reduction/Oxygen Evolution Activity of Mixed Fe/Co Oxide Nanoparticles with Variable Fe/Co Ratios Supported on Multiwalled Carbon Nanotubes. CHEMSUSCHEM 2018; 11:1204-1214. [PMID: 29359864 DOI: 10.1002/cssc.201702381] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/22/2018] [Indexed: 06/07/2023]
Abstract
A facile strategy is reported for the synthesis of Fe/Co mixed metal oxide nanoparticles supported on, and embedded inside, high purity oxidized multiwalled carbon nanotubes (MWCNTs) of narrow diameter distribution as effective bifunctional catalysts able to reversibly drive the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) in alkaline solutions. Variation of the Fe/Co ratio resulted in a pronounced trend in the bifunctional ORR/OER activity. Controlled synthesis and in-depth characterization enabled the identification of an optimal Fe/Co composition, which afforded a low OER/OER reversible overvoltage of only 0.831 V, taking the OER at 10 mA cm-2 and the ORR at -1 mA cm-2 . Importantly, the optimal catalyst with a Fe/Co ratio of 2:3 exhibited very promising long-term stability with no evident change in the potential for both the ORR and the OER after 400 charge/discharge (OER/ORR) cycles at 15 mA cm-2 in 6 m KOH. Moreover, detailed investigation of the structure, size, and phase composition of the mixed Fe/Co oxide nanoparticles, as well as their localization (inside of or on the surface of the MWCNTs) revealed insight of the possible contribution of the individual catalyst components and their synergistic interaction in the catalysis.
Collapse
Affiliation(s)
- Karina Elumeeva
- Analytical Chemistry, Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Mariya A Kazakova
- Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis, SB RAS, Lavrentieva 5, Novosibirsk, 630090, Russia
| | - Dulce Maria Morales
- Analytical Chemistry, Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Danea Medina
- Analytical Chemistry, Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Alexander Selyutin
- Boreskov Institute of Catalysis, SB RAS, Lavrentieva 5, Novosibirsk, 630090, Russia
| | - Georgiy Golubtsov
- Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis, SB RAS, Lavrentieva 5, Novosibirsk, 630090, Russia
| | - Yurii Ivanov
- Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, 8700, Leoben, Austria
- School of Natural Sciences, Far Eastern Federal University, 690950, Vladivostok, Russia
| | - Vladimir Kuznetzov
- Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis, SB RAS, Lavrentieva 5, Novosibirsk, 630090, Russia
| | - Andrey Chuvilin
- CIC nanoGUNE, Tolosa Hiribidea, 76, 20018, Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Hendrik Antoni
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry, Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Justus Masa
- Analytical Chemistry, Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| |
Collapse
|
50
|
Lu Z, Chen G, Siahrostami S, Chen Z, Liu K, Xie J, Liao L, Wu T, Lin D, Liu Y, Jaramillo TF, Nørskov JK, Cui Y. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat Catal 2018. [DOI: 10.1038/s41929-017-0017-x] [Citation(s) in RCA: 719] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|