1
|
Hua Y, Vikrant K, Kim KH, Heynderickx PM, Boukhvalov DW. Low-temperature thermocatalytic removal of formaldehyde in air using copper manganite spinels. ENVIRONMENTAL RESEARCH 2024; 255:119186. [PMID: 38777297 DOI: 10.1016/j.envres.2024.119186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/30/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The removal of formaldehyde (FA) is vital for indoor air quality management in light of its carcinogenic propensity and adverse environmental impact. A series of copper manganite spinel structures (e.g., CuMn2O4) are prepared using the sol-gel combustion method and treated with reduction or oxidation pretreatment at 300 °C condition. Accordingly, CuMn2O4-O ("O" suffix for oxidation pre-treatment in air) is identified as the best performer to achieve 100% conversion (XFA) of FA (50 ppm) at 90 °C; its performance, if assessed in terms of reaction kinetic rate (r) at XFA = 10%, is 5.02E-03 mmol g-1 h-1. The FA removal performance increases systematically with decreases in flow rate, FA concentration, and relative humidity (RH) or with increases in bed mass. The reaction pathways and intermediates of FA catalytic oxidation on CuMn2O4-A are studied with density functional theory simulations, temperature-programmed characterization experiments, and in-situ diffuse reflectance infrared Fourier transform spectroscopy. The synergistic combination of large quantities of adsorbed oxygen (OA) species and oxidized metal species (e.g., Cu2+) contribute to the enhanced catalytic performance of CuMn2O4-O to oxidize FA into CO2 with the reaction intermediates of H2CO2 (DOM), HCOO-, and CO. The present study is expected to provide valuable insights into the thermocatalytic oxidation of FA over spinel CuMn2O4 materials and their catalytic performances in relation to the key process variables.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Philippe M Heynderickx
- Center for Green Chemistry and Environmental Biotechnology (GREAT), Engineering of Materials Via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdo Munhwa-ro, Yeonsu-gu, Incheon, 406-840, Republic of Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037, China; Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002, Yekaterinburg, Russia
| |
Collapse
|
2
|
Ren T, Yan L, Zhao Y. Acetate-assisted in situ electrodeposited β-MnO 2 for the fabrication of nano-architectonics for non-enzymatic glucose detection. RSC Adv 2024; 14:22359-22367. [PMID: 39010910 PMCID: PMC11247433 DOI: 10.1039/d4ra03930k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
Highly sensitive and low-cost electrocatalytic materials are of great importance for the commercial application of non-enzymatic glucose sensors. Herein, we fabricated a novel one-pot enzyme- and indicator-free method for the colorimetric sensing of blood glucose levels based on the direct redox reaction of β-MnO2/glucose. Owing to the introduction of ammonium acetate and the enhanced oxygen evolution reaction, the higher conductive β-MnO2 nanosheets with the larger surface area were directly grown in situ on the conductive substrate by a linear sweep voltammetry (LSV) electrodeposition method. Besides, owing to the unique tunnel-type pyrolusite MnO2, the electrolyte diffusion was facilitated and reduced the response time in the glucose detection process. Hence, the acetate-assisted MnO2 electrode exhibited a high sensitivity of 461.87 μA M-1 cm-2 toward glucose, a wide detection range from 1.0 μM to 1 mM, and a low detection limit of 0.47 μM while the electrode also maintained excellent selectivity and stability. These results clearly indicate that the new strategy we developed has great potential for practical applications.
Collapse
Affiliation(s)
- Tianbao Ren
- School of Business, Heze University Heze 274015
| | - Lijun Yan
- Department of Interior and Environmental Design, Pusan National University Pusan 46241 South Korea
| | - Yang Zhao
- Department of Urban and Regional Development, Hanyang University Seoul 04763 South Korea
| |
Collapse
|
3
|
Ali MY, Abdulrahman HB, Ting WT, Howlader MMR. Green synthesized gold nanoparticles and CuO-based nonenzymatic sensor for saliva glucose monitoring. RSC Adv 2024; 14:577-588. [PMID: 38173614 PMCID: PMC10758929 DOI: 10.1039/d3ra05644a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Glucose, essential for brain and muscle functions, requires careful monitoring in diabetes and other chronic disease management. While blood glucose monitoring provides precise information about these diseases, it remains an invasive method. Saliva glucose monitoring could offer an alternative approach, but the glucose concentration in saliva is very low. In this work, we report a simple, low-cost, highly sensitive nonenzymatic electrochemical glucose sensor. We developed this sensor using green synthesized gold nanoparticles (AuNPs) and wet chemical synthesized copper oxide (CuO) nanoparticles on a screen-printed carbon electrode (Au/CuO/SPCE). The sensor's high sensitivity results from dual amplification strategies using AuNPs and CuO nanomaterials, each demonstrating catalytic activity towards glucose. This shows promising potential for saliva glucose monitoring. The AuNPs were synthesized using an Au precursor and orange peel extract (OPE), yielding stable colloidal AuNPs with a mean diameter of about 37 nm, thus eliminating the need for additional capping agents. Under optimal conditions, amperometric tests revealed that the sensor responded linearly to glucose concentrations ranging from 2 μM to 397 μM with a sensitivity of 236.70 μA mM-1 cm-2. Furthermore, the sensor demonstrated excellent reproducibility, stability and high selectivity for glucose in the presence of different biomolecules. We validated the sensor's efficacy by measuring glucose in human saliva, showing its potential for noninvasive glucose monitoring. This research advances the development of point-of-care devices, positioning the sensor as a promising tool for noninvasive glucose monitoring and improved diabetes management.
Collapse
Affiliation(s)
- Md Younus Ali
- Department of Electrical and Computer Engineering, McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Heman B Abdulrahman
- Department of Electrical and Computer Engineering, McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Wei-Ting Ting
- Department of Electrical and Computer Engineering, McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Matiar M R Howlader
- Department of Electrical and Computer Engineering, McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
4
|
Kim SE, Yoon JC, Tae HJ, Muthurasu A. Electrospun Manganese-Based Metal-Organic Frameworks for MnO x Nanostructures Embedded in Carbon Nanofibers as a High-Performance Nonenzymatic Glucose Sensor. ACS OMEGA 2023; 8:42689-42698. [PMID: 38024713 PMCID: PMC10652823 DOI: 10.1021/acsomega.3c05459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Material-specific electrocatalytic activity and electrode design are essential factors in evaluating the performance of electrochemical sensors. Herein, the technique described involves electrospinning manganese-based metal-organic frameworks (Mn-MOFs) to develop MnOx nanostructures embedded in carbon nanofibers. The resulting structure features an electrocatalytic material for an enzyme-free glucose sensor. The elemental composition, morphology, and microstructure of the fabricated electrodes materials were characterized by using energy-dispersive X-ray spectroscopy (EDX), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and amperometric i-t (current-time) techniques are characteristically employed to assess the electrochemical performance of materials. The MOF MnOx-CNFs nanostructures significantly improve detection performance for nonenzymatic amperometric glucose sensors, including a broad linear range (0 mM to 9.1 mM), high sensitivity (4080.6 μA mM-1 cm-2), a low detection limit (0.3 μM, S/N = 3), acceptable selectivity, outstanding reproducibility, and stability. The strategy of metal and metal oxide-integrated CNF nanostructures based on MOFs opens interesting possibilities for the development of high-performance electrochemical sensors.
Collapse
Affiliation(s)
- So Eun Kim
- Department
of Emergency Medicine, Research Institute
of Clinical Medicine of Jeonbuk National University and Biomedical
Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Jae Chol Yoon
- Department
of Emergency Medicine, Research Institute
of Clinical Medicine of Jeonbuk National University and Biomedical
Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Hyun-Jin Tae
- College
of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Alagan Muthurasu
- Department
of Nano Convergence Technology, Jeonbuk
National University, Jeonju 54907, Republic
of Korea
| |
Collapse
|
5
|
Guati C, Gomez-Coma L, Fallanza M, Ortiz I. Progress on the influence of non-enzymatic electrodes characteristics on the response to glucose detection: a review (2016–2022). REV CHEM ENG 2023. [DOI: 10.1515/revce-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Abstract
Glucose sensing devices have experienced significant progress in the last years in response to the demand for cost-effective monitoring. Thus, research efforts have been focused on achieving reliable, selective, and sensitive sensors able to monitor the glucose level in different biofluids. The development of enzyme-based devices is challenged by poor stability, time-consuming, and complex purification procedures, facts that have given rise to the synthesis of enzyme-free sensors. Recent advances focus on the use of different components: metal-organic frameworks (MOFs), carbon nanomaterials, or metal oxides. Motivated by this topic, several reviews have been published addressing the sensor materials and synthesis methods, gathering relevant information for the development of new nanostructures. However, the abundant information has not concluded yet in commercial devices and is not useful from an engineering point of view. The dependence of the electrode response on its physico-chemical nature, which would determine the selection and optimization of the materials and synthesis method, remains an open question. Thus, this review aims to critically analyze from an engineering vision the existing information on non-enzymatic glucose electrodes; the analysis is performed linking the response in terms of sensitivity when interferences are present, stability, and response under physiological conditions to the electrode characteristics.
Collapse
Affiliation(s)
- Carlota Guati
- Chemical and Biomolecular Engineering Department , University of Cantabria , 39005 Santander , Spain
| | - Lucía Gomez-Coma
- Chemical and Biomolecular Engineering Department , University of Cantabria , 39005 Santander , Spain
| | - Marcos Fallanza
- Chemical and Biomolecular Engineering Department , University of Cantabria , 39005 Santander , Spain
| | - Inmaculada Ortiz
- Chemical and Biomolecular Engineering Department , University of Cantabria , 39005 Santander , Spain
| |
Collapse
|
6
|
Muqaddas S, Javed M, Nadeem S, Asghar MA, Haider A, Ahmad M, Ashraf AR, Nazir A, Iqbal M, Alwadai N, Ahmad A, Ali A. Carbon Nanotube Fiber-Based Flexible Microelectrode for Electrochemical Glucose Sensors. ACS OMEGA 2023; 8:2272-2280. [PMID: 36687067 PMCID: PMC9850492 DOI: 10.1021/acsomega.2c06594] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/19/2022] [Indexed: 05/09/2023]
Abstract
Electrochemical sensors are gaining significant demand for real-time monitoring of health-related parameters such as temperature, heart rate, and blood glucose level. A fiber-like microelectrode composed of copper oxide-modified carbon nanotubes (CuO@CNTFs) has been developed as a flexible and wearable glucose sensor with remarkable catalytic activity. The unidimensional structure of CNT fibers displayed efficient conductivity with enhanced mechanical strength, which makes these fibers far superior as compared to other fibrous-like materials. Copper oxide (CuO) nanoparticles were deposited over the surface of CNT fibers by a binder-free facile electrodeposition approach followed by thermal treatment that enhanced the performance of non-enzymatic glucose sensors. Scanning electron microscopy and energy-dispersive X-ray analysis confirmed the successful deposition of CuO nanoparticles over the fiber surface. Amperometric and voltammetric studies of fiber-based microelectrodes (CuO@CNTFs) toward glucose sensing showed an excellent sensitivity of ∼3000 μA/mM cm2, a low detection limit of 1.4 μM, and a wide linear range of up to 13 mM. The superior performance of the microelectrode is attributed to the synergistic effect of the electrocatalytic activity of CuO nanoparticles and the excellent conductivity of CNT fibers. A lower charge transfer resistance value obtained via electrochemical impedance spectroscopy (EIS) also demonstrated the superior electrode performance. This work demonstrates a facile approach for developing CNT fiber-based microelectrodes as a promising solution for flexible and disposable non-enzymatic glucose sensors.
Collapse
Affiliation(s)
- Sheza Muqaddas
- Department
of Chemistry, The University of Lahore, Lahore54590, Pakistan
| | - Mohsin Javed
- Department
of Chemistry, School of Science, University
of Management and Technology, Lahore54770, Pakistan
| | - Sohail Nadeem
- Department
of Chemistry, School of Science, University
of Management and Technology, Lahore54770, Pakistan
| | | | - Ali Haider
- Department
of Chemistry, Quaid-i-Azam University, Islamabad45320, Pakistan
| | - Muhammad Ahmad
- Department
of Chemistry, Division of Science and Technology, University of Education, Lahore54770, Pakistan
| | - Ahmad Raza Ashraf
- Department
of Chemistry, The University of Lahore, Lahore54590, Pakistan
| | - Arif Nazir
- Department
of Chemistry, The University of Lahore, Lahore54590, Pakistan
| | - Munawar Iqbal
- Department
of Chemistry, The University of Lahore, Lahore54590, Pakistan
- Department
of Chemistry, Division of Science and Technology, University of Education, Lahore54770, Pakistan
| | - Norah Alwadai
- Department
of Physics, College of Sciences, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh11671, Saudi Arabia
| | - Azhar Ahmad
- Department
of Chemistry, The University of Lahore, Lahore54590, Pakistan
| | - Abid Ali
- Department
of Chemistry, The University of Lahore, Lahore54590, Pakistan
- ,
| |
Collapse
|
7
|
Mohamad Nor N, Ridhuan NS, Abdul Razak K. Progress of Enzymatic and Non-Enzymatic Electrochemical Glucose Biosensor Based on Nanomaterial-Modified Electrode. BIOSENSORS 2022; 12:bios12121136. [PMID: 36551103 PMCID: PMC9775494 DOI: 10.3390/bios12121136] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 05/09/2023]
Abstract
This review covers the progress of nanomaterial-modified electrodes for enzymatic and non-enzymatic glucose biosensors. Fundamental insights into glucose biosensor components and the crucial factors controlling the electrochemical performance of glucose biosensors are discussed in detail. The metal, metal oxide, and hybrid/composite nanomaterial fabrication strategies for the modification of electrodes, mechanism of detection, and significance of the nanomaterials toward the electrochemical performance of enzymatic and non-enzymatic glucose biosensors are compared and comprehensively reviewed. This review aims to provide readers with an overview and underlying concept of producing a reliable, stable, cost-effective, and excellent electrochemical performance of a glucose biosensor.
Collapse
Affiliation(s)
- Noorhashimah Mohamad Nor
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia
| | - Nur Syafinaz Ridhuan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia
| | - Khairunisak Abdul Razak
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia
- NanoBiotechnology Research & Innovation (NanoBRI), Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia
- Correspondence:
| |
Collapse
|
8
|
Detection of glucose using a thin-walled honeycombed MnO2 grown on mesoporous CoFe2O4 nanosheets. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Zheng X, Fei J, Li M, Huang J, Wang N. Sodium citrate‐assisted synthesis of
nano‐manganese
oxide on carbon fiber for enhancing the mechanical and frictional performances of carbon fiber‐reinforced resin matrix composites. J Appl Polym Sci 2021. [DOI: 10.1002/app.50322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Xinhui Zheng
- Key Laboratory for Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering Shaanxi University of Science and Technology Xi'an PR China
| | - Jie Fei
- Key Laboratory for Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering Shaanxi University of Science and Technology Xi'an PR China
- State Key Laboratory of Solidification Processing Shaanxi Province Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University Xi'an PR China
| | - Meng Li
- Key Laboratory for Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering Shaanxi University of Science and Technology Xi'an PR China
| | - Jianfeng Huang
- Key Laboratory for Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering Shaanxi University of Science and Technology Xi'an PR China
| | - Na Wang
- Key Laboratory for Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering Shaanxi University of Science and Technology Xi'an PR China
| |
Collapse
|
10
|
Zheng X, Fei J, Gu Y, Li M, Huang J. Constructing interfacial path for enhancing mechanical and thermal performances of carbon fiber/cyanate ester resin composite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Huang M, Feng S, Yang C, Wen F, He D, Jiang P. Construction of an MnO 2 nanosheet array 3D integrated electrode for sensitive enzyme-free glucose sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1247-1254. [PMID: 33615320 DOI: 10.1039/d0ay02163f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MnO2 based electrochemical enzyme-free glucose sensors remain significantly limited by their low electronic conductivity and associated complex preparation. In this paper, an MnO2 nanosheet array supported on nickel foam (MnO2 NS/NF) was prepared using a simple hydrothermal synthesis and employed as a 3D integrated electrode for enzyme-free glucose detection. It was found that MnO2 NS/NF shows high performance with a wide linear range from 1 μM to 1.13 mM, a high sensitivity of 6.45 mA mM-1 cm-2, and a low detection limit of 0.5 μM (S/N = 3). Besides, MnO2 NS/NF shows high selectivity against common interferences and good reliability for glucose detection in human serum. This work demonstrates the promising role of MnO2 NS/NF as an efficient integrated electrode in enzyme-free glucose detection with high performance.
Collapse
Affiliation(s)
- M Huang
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | | | | | | | | | | |
Collapse
|
12
|
Liu S, Zeng W, Guo Q, Li Y. Facile synthesis of CuCo 2O 4@NiCo 2O 4 hybrid nanowire arrays on carbon cloth for a multicomponent non-enzymatic glucose sensor. NANOTECHNOLOGY 2020; 31:495708. [PMID: 32717727 DOI: 10.1088/1361-6528/aba97a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design of hierarchical heterogeneous structures with rational components is considered as a promising method to enhance the properties of electrocatalyst. Binary metal oxides, with high electrochemical activity, have attracted considerable interest in glucose determination. In this work, we synthesized the CuCo2O4@NiCo2O4 hybrid structure on conductive carbon cloth (CC) via a simple two-step hydrothermal process and investigated its catalytic ability toward glucose. The two individual components that make up this hybrid electrode have good electrical conductivity and excellent catalytic properties for glucose, so the smart combination of these two active materials can provide more catalytic sites and sufficient redox couples for the glucose oxidation. As a result, the CuCo2O4@NiCo2O4 modified CC presented superior glucose sensing properties, including ultrahigh sensitivity, fast response time, wide linear range and acceptable detection limit. Besides, the sample also exhibited good selectivity for substances in human blood that interfere with glucose detection, such as UA, AA, fructose, sucrose and KCl. The potential of the CuCo2O4@NiCo2O4/CC electrode for practical application was investigated by measuring the glucose concentration in real serum samples. These results prove that the construction of hierarchical ordered structure is conducive to the improvement of glucose sensor.
Collapse
Affiliation(s)
- Shilin Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Wen Zeng
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Qi Guo
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Yanqiong Li
- School of Electronic and Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing 400030, People's Republic of China
| |
Collapse
|
13
|
Chandrasekaran N, Matheswaran M. Unique Nonenzymatic Glucose Sensor Using a Hollow-Shelled Triple Oxide Mn-Cu-Al Nanocomposite. ACS OMEGA 2020; 5:23502-23509. [PMID: 32984668 PMCID: PMC7512457 DOI: 10.1021/acsomega.0c00417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Glucose monitoring devices for diabetes mellitus, which is a worldwide significant health issue, have attracted attention of many researchers. Herein, we report a hollow Mn-Cu-Al oxide nanocomposite (HMCA) by a microwave-assisted technique showing excellent sensing abilities toward glucose. Also, it possesses a superb supercapacitor activity described in our previous paper. The sensitivity value of the nanocomposite is 2.194 mA mM-1 cm-2 with a low detection limit of 0.43 μM (S/N = 3). The high sensitivity and low detection limit were the results of the large surface area of the nanocomposite and the redox nature of CuO and MnO2. It shows a selective detection of glucose levels in blood serum. The hollow nanocomposite has been useful for monitoring the glucose level in blood serum and holds great potential for diabetes mellitus and clinical diagnosis.
Collapse
Affiliation(s)
| | - Manickam Matheswaran
- Department
of Chemical Engineering, National Institute
of Technology Tiruchirappalli, Tiruchirappalli 620015, India
| |
Collapse
|
14
|
Selim MS, Hao Z, Mo P, Yi J, Ou H. Biobased alkyd/graphene oxide decorated with β–MnO2 nanorods as a robust ternary nanocomposite for surface coating. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Zhang J, Sun Y, Li X, Xu J. Fabrication of porous NiMn 2O 4 nanosheet arrays on nickel foam as an advanced sensor material for non-enzymatic glucose detection. Sci Rep 2019; 9:18121. [PMID: 31792429 PMCID: PMC6889510 DOI: 10.1038/s41598-019-54746-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/19/2019] [Indexed: 11/11/2022] Open
Abstract
In this work, porous NiMn2O4 nanosheet arrays on nickel foam (NiMn2O4 NSs@NF) was successfully fabricated by a simple hydrothermal step followed by a heat treatment. Porous NiMn2O4 NSs@NF is directly used as a sensor electrode for electrochemical detecting glucose. The NiMn2O4 nanosheet arrays are uniformly grown and packed on nickel foam to forming sensor electrode. The porous NiMn2O4 NSs@NF electrode not only provides the abundant accessible active sites and the effective ion-transport pathways, but also offers the efficient electron transport pathways for the electrochemical catalytic reaction by the high conductive nickel foam. This synergy effect endows porous NiMn2O4 NSs@NF with excellent electrochemical behaviors for glucose detection. The electrochemical measurements are used to investigate the performances of glucose detection. Porous NiMn2O4 NSs@NF for detecting glucose exhibits the high sensitivity of 12.2 mA mM−1 cm−2 at the window concentrations of 0.99–67.30 μM (correlation coefficient = 0.9982) and 12.3 mA mM−1 cm−2 at the window concentrations of 0.115–0.661 mM (correlation coefficient = 0.9908). In addition, porous NiMn2O4 NSs@NF also exhibits a fast response of 2 s and a low LOD of 0.24 µM. The combination of porous NiMn2O4 nanosheet arrays and nickel foam is a meaningful strategy to fabricate high performance non-enzymatic glucose sensor. These excellent properties reveal its potential application in the clinical detection of glucose.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, P.R. China
| | - Yudong Sun
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, 121013, P.R. China
| | - Xianchun Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, P.R. China.
| | - Jiasheng Xu
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, 121013, P.R. China.
| |
Collapse
|
16
|
The photoelectrocatalytic performance of ZnIn2S4 nanosheets and microspheres grown on flexible graphite felt. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Li F, Feng J, Gao Z, Shi L, Wu D, Du B, Wei Q. Facile Synthesis of Cu 2O@TiO 2-PtCu Nanocomposites as a Signal Amplification Strategy for the Insulin Detection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8945-8953. [PMID: 30758174 DOI: 10.1021/acsami.9b01779] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Novel ultrasensitive sandwich-type electrochemical immunosensor was proposed for the quantitative detection of insulin, a representative biomarker for diabetes. To this end, molybdenum disulfide nanosheet-loaded gold nanoparticles (MoS2/Au NPs) were used as substrates to modify bare glassy carbon electrodes. MoS2/Au NPs not only present superior biocompatible and large specific surface area to enhance the loading capacity of primary antibody (Ab1) but also present good electrical conductivity to accelerate electron transfer rate. Moreover, the amino-functionalized cuprous oxide decorated with titanium dioxide octahedral composites (Cu2O@TiO2-NH2) were prepared to load dendritic platinum-copper nanoparticles (PtCu NPs) to realize signal amplification strategy. The resultant nanocomposites (cuprous oxide decorated with titanium dioxide octahedral loaded dendritic platinum-copper nanoparticles) demonstrate uniform octahedral morphology and size, which effectively increases the catalytically active sites and specific surface area to load the secondary antibody (Ab2), even increases conductivity. Most importantly, the resultant nanocomposites possess superior electrocatalytic activity for hydrogen peroxide (H2O2) reduction, which present the signal amplification strategy. Under the optimal conditions, the proposed immunosensor exhibited a linear relationship between logarithm of insulin antigen concentration and amperometric response within a broad range from 0.1 pg/mL to 100 ng/mL and a limit detection of 0.024 pg/mL. Meanwhile, the immunosensor was employed to detect insulin in human serum with satisfactory results. Furthermore, it also presents good reproducibility, selectivity, and stability, which exhibits broad application prospects in biometric analysis.
Collapse
Affiliation(s)
- Faying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
- Centre for Energy, Materials and Telecommunications , Institut National de la Recherche Scientifique , 1650 Boulevard Lionel-Boulet , Varennes , Québec J3X 1S2 , Canada
| | - Jinhui Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| | - Zengqiang Gao
- School of Chemistry and Chemical Engineering , Shandong University of Technology , Zibo 255049 , P.R. China
| | - Li Shi
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
- Centre for Energy, Materials and Telecommunications , Institut National de la Recherche Scientifique , 1650 Boulevard Lionel-Boulet , Varennes , Québec J3X 1S2 , Canada
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| | - Bin Du
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| |
Collapse
|
18
|
Zong Q, Zhang Q, Mei X, Li Q, Zhou Z, Li D, Chen M, Shi F, Sun J, Yao Y, Zhang Z. Facile Synthesis of Na-Doped MnO 2 Nanosheets on Carbon Nanotube Fibers for Ultrahigh-Energy-Density All-Solid-State Wearable Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37233-37241. [PMID: 30299935 DOI: 10.1021/acsami.8b12486] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Flexible fiber-shaped supercapacitors hold promising potential in the area of portable and wearable electronics. Unfortunately, their general application is hindered by the restricted energy densities due to low operating voltage and small specific surface area. Herein, an all-solid-state fiber-shaped asymmetric supercapacitor (FASC) possessing ultrahigh energy density is reported, in which the positive electrode was designed as Na-doped MnO2 nanosheets on carbon nanotube fibers (CNTFs) and the negative electrode as MoS2 nanosheet-coated CNTFs. Owing to the excellent properties of the designed electrodes, our FASCs exhibit a large operating potential window (0-2.2 V), a remarkable specific capacitance (265.4 mF/cm2), as well as an ultrahigh energy density (178.4 μWh/cm2). Moreover, the devices are of outstanding mechanical flexibility.
Collapse
Affiliation(s)
- Qijun Zong
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Qichong Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering , Tongji University , Shanghai 200092 , China
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Xue Mei
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Qiulong Li
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Zhenyu Zhou
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Dong Li
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Mingyuan Chen
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Feiyang Shi
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Juan Sun
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Yagang Yao
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Zengxing Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering , Tongji University , Shanghai 200092 , China
- State Key Laboratory of ASIC and System, School of Microelectronics , Fudan University , Shanghai 200433 , China
| |
Collapse
|
19
|
Experton J, Wu X, Wang G, Martin CR. Microtube‐Membrane Methodology for Electrochemical Synthesis and Study of Electroactive and Ionically Conductive Materials, and the Conductivity of MnO
2. ChemElectroChem 2018. [DOI: 10.1002/celc.201801010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Juliette Experton
- Department of Chemistry University of Florida Gainesville Florida 32611 United States
| | - Xiaojian Wu
- Department of Chemistry University of Florida Gainesville Florida 32611 United States
| | - Gelan Wang
- Department of Chemistry University of Florida Gainesville Florida 32611 United States
| | - Charles R. Martin
- Department of Chemistry University of Florida Gainesville Florida 32611 United States
| |
Collapse
|
20
|
Xu W, Lu J, Huo W, Li J, Wang X, Zhang C, Gu X, Hu C. Direct growth of CuCo 2S 4 nanosheets on carbon fiber textile with enhanced electrochemical pseudocapacitive properties and electrocatalytic properties towards glucose oxidation. NANOSCALE 2018; 10:14304-14313. [PMID: 30015818 DOI: 10.1039/c8nr04519d] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Flexible and wearable electronic devices with excellent performance have been desired for making the next generation of electronic products. Herein, the synthesis of CuCo2S4 nanosheets on flexible carbon fiber textile (CFT) by a facile one-step and scalable hydrothermal procedure is reported, which is free from the sulphurization process used in the conventional synthesis of mixed metal sulphospinels. The as-prepared CuCo2S4 nanostructures on CFT can provide rich reaction sites and short ion diffusion paths. The CuCo2S4 nanosheets are employed as the free-standing electrodes for two different applications: high-performance supercapacitors and non-enzymatic glucose sensors. When employed as a flexible electrode material for supercapacitors, the electrode presents ultrahigh performance in energy storage with a specific capacitance of 3321.6 F g-1 at 5 A g-1, which is attributed to the suitable mass loading and special morphology of the as-prepared nanosheets. Remarkably, a specific capacitance of 2931.4 F g-1 is still retained at the high current density of 30 A g-1, suggesting its excellent rate capability. The specific capacitance retains 87.1% after 3000 cycles, reflecting excellent cycling performance. For real applications, a flexible symmetric supercapacitor is assembled based on CuCo2S4 nanosheets, which achieves a high energy density of 64.6 W h kg-1 at 499.7 W kg-1 and a maximum power density of 2081.5 W kg-1 at 45.1 W h kg-1. Besides serving as a free-standing electrode for non-enzymatic glucose sensors, CuCo2S4 nanosheets have remarkable electrocatalytic activity towards glucose oxidation with a high sensitivity of 3852.7 μA mM-1 cm-2 and an extraordinary linear range up to 3.67 mM. The experimental results suggest that CuCo2S4 nanosheets are more suitable for non-enzymatic glucose sensors than the related single/binary transition metal oxides/sulfides. Such a superior performance demonstrates that CuCo2S4 nanosheets hold great potential for use as flexible multifunctional electronic devices including supercapacitors and non-enzymatic glucose sensors.
Collapse
Affiliation(s)
- Weina Xu
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P.R. China.
| | - Junlin Lu
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P.R. China.
| | - Wangchen Huo
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P.R. China.
| | - Jien Li
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P.R. China.
| | - Xue Wang
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P.R. China.
| | - Cuiling Zhang
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P.R. China.
| | - Xiao Gu
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P.R. China.
| | - Chenguo Hu
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P.R. China.
| |
Collapse
|
21
|
Wang Z, Gui M, Asif M, Yu Y, Dong S, Wang H, Wang W, Wang F, Xiao F, Liu H. A facile modular approach to the 2D oriented assembly MOF electrode for non-enzymatic sweat biosensors. NANOSCALE 2018; 10:6629-6638. [PMID: 29578568 DOI: 10.1039/c8nr00798e] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The preparation of ordered metal organic frameworks (MOFs) will be a critical process for MOF-based nanoelectrodes in the future. In this work, we develop a novel approach to fabricating a type of MOF electrode based on flexible amino-functionalized graphene paper modified with 2D oriented assembly of Cu3(btc)2 nanocubes via facile interfacial synthesis and an effective dip-coating method. One interesting finding is that 2D arrays of Cu3(btc)2 nanocubes at oil-water interfaces can be transferred on amino-functionalized graphene paper, leading to a densely packed monolayer of Cu3(btc)2 nanocubes with a uniform size loaded on the paper electrode. The electrode demonstrates a variety of excellent sensing performances toward sweat lactate and glucose and has been applied in a non-enzymatic electrochemical biosensing platform for the first time. The modular nature of this approach to assembling MOF nanocrystals will provide new insight into the design of MOF-based electrodes for a wide range of applications in biosensing instruments, wearable electronics, and lab-on-a-chip devices.
Collapse
Affiliation(s)
- Zhengyun Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shinde NM, Xia QX, Yun JM, Mane RS, Kim KH. Polycrystalline and Mesoporous 3-D Bi 2O 3 Nanostructured Negatrodes for High-Energy and Power-Asymmetric Supercapacitors: Superfast Room-Temperature Direct Wet Chemical Growth. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11037-11047. [PMID: 29485262 DOI: 10.1021/acsami.8b00260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Superfast (≤10 min) room-temperature (300 K) chemical synthesis of three-dimensional (3-D) polycrystalline and mesoporous bismuth(III) oxide (Bi2O3) nanostructured negatrode (as an abbreviation of negative electrode) materials, viz., coconut shell, marigold, honey nest cross section and rose with different surface areas, charge transfer resistances, and electrochemical performances essential for energy storage, harvesting, and even catalysis devices, are directly grown onto Ni foam without and with poly(ethylene glycol), ethylene glycol, and ammonium fluoride surfactants, respectively. Smaller diffusion lengths, caused by the involvement of irregular crevices, allow electrolyte ions to infiltrate deeply, increasing the utility of inner active sites for the following electrochemical performance. A marigold 3-D Bi2O3 electrode of 58 m2·g-1 surface area has demonstrated a specific capacitance of 447 F·g-1 at 2 A·g-1 and chemical stability of 85% even after 5000 redox cycles at 10 A·g-1 in a 6 M KOH electrolyte solution, which were higher than those of other morphology negatrode materials. An asymmetric supercapacitor (AS) device assembled with marigold Bi2O3 negatrode and manganese(II) carbonate quantum dots/nickel hydrogen-manganese(II)-carbonate (MnCO3QDs/NiH-Mn-CO3) positrode corroborates as high as 51 Wh·kg-1 energy at 1500 W·kg-1 power and nearly 81% cycling stability even after 5000 cycles. The obtained results were comparable or superior to the values reported previously for other Bi2O3 morphologies. This AS assembly glowed a red-light-emitting diode for 20 min, demonstrating the scientific and industrial credentials of the developed superfast Bi2O3 nanostructured negatrodes in assembling various energy storage devices.
Collapse
Affiliation(s)
| | | | | | - Rajaram S Mane
- School of Physical Sciences , SRTM University , Nanded 431606 , India
| | | |
Collapse
|