1
|
Shinde NM, Pumera M. MXene-Based Nanocomposites for Supercapacitors: Fundamentals and Applications. SMALL METHODS 2025:e2401751. [PMID: 40302306 DOI: 10.1002/smtd.202401751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/25/2025] [Indexed: 05/02/2025]
Abstract
MXene-based nanocomposite materials with other 2D materials have made a large impact in the field of energy storage, particularly in the area of supercapacitors. Combining conductive 2D MXene with other 2D materials, such as transition metal oxide, transition metal dichalcogenides, and layered double hydroxide, improves the electrochemical energy storage properties of resulting MXene-based nanocomposites. The interface of MXene and 2D nanocomposite materials allows an improved electrochemical performance for energy storage applications. In this review, state-of-the-art research progress in 2D/2D MXene-based nanocomposite synthesis, structural and morphological properties, and electrochemical performance for supercapacitors is explored. 2D MXene nanocomposites electrochemical properties in terms of specific capacitance, energy, power densities, and stability are discussed. This study shows that this rapidly developing field has an important impact on the next-generation supercapacitor.
Collapse
Affiliation(s)
- Nanasaheb M Shinde
- Advanced Nanorobots & Multiscale Robotics, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu, 2172/15, Ostrava, 70800, Czech Republic
| | - Martin Pumera
- Advanced Nanorobots & Multiscale Robotics, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu, 2172/15, Ostrava, 70800, Czech Republic
| |
Collapse
|
2
|
Yan Z, Sun T, Zeng J, He T, He Y, Xu D, Liu R, Tan W, Zang X, Yan J, Deng Y. Enhanced Immune Modulation and Bone Tissue Regeneration through an Intelligent Magnetic Scaffold Targeting Macrophage Mitochondria. Adv Healthc Mater 2025; 14:e2500163. [PMID: 40095440 DOI: 10.1002/adhm.202500163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/28/2025] [Indexed: 03/19/2025]
Abstract
During the bone tissue repair process, the highly dynamic interactions between the host and materials hinder precise, stable, and sustained immune modulation. Regulating the immune response based on potential mechanisms of macrophage phenotypic changes may represent an effective strategy for promoting bone healing. This study successfully constructs a co-dispersed pFe₃O₄-MXene nanosystem by loading positively charged magnetite (pFe₃O₄) nanoparticles onto MXene nanosheets using electrostatic self-assembly. Subsequently, this work fabricates a biomimetic porous bone scaffold (PFM) via selective laser sintering, which exhibit superior magnetic properties, mechanical performance, hydrophilicity, and biocompatibility. Further investigations demonstrate that the PFM scaffold could precisely and remotely modulate macrophage polarization toward the M2 phenotype under a static magnetic field, significantly enhancing osteogenesis and angiogenesis. Proteomic analysis reveal that the scaffold upregulates Arg2 expression, enhancing mitochondrial function and accelerating oxidative phosphorylation, thereby inducing the M2 transition. In vivo experiments validated the scaffold's immune regulatory capacity in subcutaneous and cranial defect repairs in rats, effectively promoting new bone formation. Overall, this strategy of immune modulation targeting macrophage metabolism and mitochondrial function offers novel insights for material design in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Zuyun Yan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Tianshi Sun
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Jin Zeng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Tao He
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yiwen He
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Dongcheng Xu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Renfeng Liu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Xiaofang Zang
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410017, P. R. China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
3
|
Gokul Eswaran S, Rashad M, Santhana Krishna Kumar A, El-Mahdy AFM. A Comprehensive Review of Mxene-Based Emerging Materials for Energy Storage Applications and Future Perspectives. Chem Asian J 2024:e202401181. [PMID: 39644135 DOI: 10.1002/asia.202401181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
MXenes is a rapidly emerging class of two-dimensional (2D) materials. It exhibits unique properties that make it suitable for a wide range of applications. This review provides a comprehensive overview of the synthesis and processing techniques for MXenes including both bottom-up and top-down approaches. The synthesis of MXene-based composites is explored in detail focusing on Mxene-carbon composites, Mxene-metal oxides, Mxene-metal sulfides, Mxene-polymer composites and MXene-ceramic composites. Key properties of MXenes are examined including structural, electrical, morphological, optical, mechanical, chemical stability, electrical and thermal properties, conductivity, magnetic properties, dielectric charge and catalytic properties. Characterization techniques used to study these properties is also reviewed. Their 2D structure provides a high surface area and unique interlayer spacing, making MXenes ideal for applications in energy storage devices (like supercapacitors and batteries) where surface area and ion transport are critical for performance. The diverse applications of MXenes are presented emphasizing their use in batteries, catalysis, sensors, environmental remediation and supercapacitors. Special attention is given to the supercapacitor applications of MXenes of their potential in energy storage devices. Due to their high capacitance, fast charge/discharge rates, and excellent stability, MXenes are used in supercapacitors, lithium-ion batteries, and sodium-ion batteries. They can store energy more efficiently than many other materials, making them valuable in the quest for efficient, sustainable energy solutions. The progress in MXene supercapacitor devices is providing insights into the latest advancements and future prospects. MXenes are highlighted as versatile materials with significant potential in various technological fields particularly in energy storage. Future research directions and challenges are also outlined for ongoing and future studies in this dynamic area of materials science.
Collapse
Affiliation(s)
- Surulivel Gokul Eswaran
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Mohamed Rashad
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Alagarsamy Santhana Krishna Kumar
- Department of Chemistry, National Sun Yat-Sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| | - Ahmed F M El-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
4
|
Nagaraju M, Ramulu B, Arbaz SJ, Shankar EG, Kiran AS, Yu JS. Rational Construction of Bi 2CuO 12Se 4 and VGCFs@Fe 2O 3 Composite Electrodes for High-Performance Semi-Solid-State Asymmetric Supercapacitors. SMALL METHODS 2024; 8:e2400149. [PMID: 38881177 PMCID: PMC11672177 DOI: 10.1002/smtd.202400149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/25/2024] [Indexed: 06/18/2024]
Abstract
Recently, supercapacitors (SCs) are extensively explored as effective energy storage devices. Specifically, asymmetric SCs are being developed to enhance energy density using suitable materials with favorable nanostructures. This study describes the construction of a bismuth copper selenite (BCS-200) working electrode with an ultrathin nanosheet (UTNS) architecture. This morphology is achieved using a low-cost electrodeposition (ED) method, followed by annealing. The impact of ED time on the development of morphology is studied by synthesizing comparative electrodes simultaneously. The optimized BCS-200 electrode prepared with a deposition time of 200 s shows higher specific capacity/capacitance (Cs/Csc) values of 330.9 mAh g-1/2206.6 F g-1 than the other synthesized electrodes (BCS-100, BCS-150, BCS-250, and BCS-300). Besides, a vapor-grown carbon fiber (VGCF)-added Fe2O3 composite coated on nickel foam (NF) is developed as a negative electrode. The VGCFs@Fe2O3/NF electrode exhibits the (Cs/Csc) values of 183.5 mAh g-1/734.4 F g-1, which is associated with ultra-high cycling stability. In addition, the fabricated BCS-200 and VGCFs@Fe2O3/NF electrodes are combined to construct a wearable semi-solid-state asymmetric SC (SSASC) with an energy density (Ed) of 20.5 Wh kg-1 and a cycling stability of 91.7% over 40000 charge/discharge cycles. Furthermore, the real-time applicability of the SSASC is verified by powering it in practical applications.
Collapse
Affiliation(s)
- Manchi Nagaraju
- Department of Electronics and Information Convergence EngineeringInstitute for Wearable Convergence ElectronicsKyung Hee University1732 Deogyeong‐daero, Giheung‐guYongin‐siGyeonggi‐do17104Republic of Korea
| | - Bhimanaboina Ramulu
- Department of Electronics and Information Convergence EngineeringInstitute for Wearable Convergence ElectronicsKyung Hee University1732 Deogyeong‐daero, Giheung‐guYongin‐siGyeonggi‐do17104Republic of Korea
| | - Shaik Junied Arbaz
- Department of Electronics and Information Convergence EngineeringInstitute for Wearable Convergence ElectronicsKyung Hee University1732 Deogyeong‐daero, Giheung‐guYongin‐siGyeonggi‐do17104Republic of Korea
| | - Edugulla Girija Shankar
- Department of Electronics and Information Convergence EngineeringInstitute for Wearable Convergence ElectronicsKyung Hee University1732 Deogyeong‐daero, Giheung‐guYongin‐siGyeonggi‐do17104Republic of Korea
| | - Ampasala Surya Kiran
- Department of Electronics and Information Convergence EngineeringInstitute for Wearable Convergence ElectronicsKyung Hee University1732 Deogyeong‐daero, Giheung‐guYongin‐siGyeonggi‐do17104Republic of Korea
| | - Jae Su Yu
- Department of Electronics and Information Convergence EngineeringInstitute for Wearable Convergence ElectronicsKyung Hee University1732 Deogyeong‐daero, Giheung‐guYongin‐siGyeonggi‐do17104Republic of Korea
| |
Collapse
|
5
|
Shinde N, Pumera M. High Performance MXene/MnCo 2O 4 Supercapacitor Device for Powering Small Robotics. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:7339-7345. [PMID: 39464193 PMCID: PMC11500404 DOI: 10.1021/acsaelm.4c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024]
Abstract
The development of advanced energy storage devices is critical for various applications including robotics and portable electronics. The energy storage field faces significant challenges in designing devices that can operate effectively for extended periods while maintaining exceptional electrochemical performance. Supercapacitors, which bridge the gap between batteries and conventional capacitors, offer a promising solution due to their high power density and rapid charge-discharge capabilities. This study focuses on the fabrication and evaluation of a MXene/MnCo2O4 nanocomposite supercapacitor electrode using a simple and cost-effective electrodeposition method on a copper substrate. The MXene/MnCo2O4 nanocomposite exhibits superior electrochemical properties, including a specific capacitance of 668 F g-1, high energy density (35 Wh kg-1), and excellent cycling stability (94.6% retention over 5000 cycles). The combination of MXene and MnCo2O4 enhances the redox activity, electronic conductivity, and structural integrity of the electrode. An asymmetric supercapacitor device, incorporating MXene/MnCo2O4 as the positive electrode and Bi2O3 as the negative electrode, demonstrates remarkable performance in powering small robotics and small electronics. This work underscores the potential of MXene-based nanocomposites for high-performance supercapacitor applications, paving the way for future advancements in energy storage technologies.
Collapse
Affiliation(s)
- Nanasaheb
M. Shinde
- Advanced Nanorobots &
Multiscale Robotics Laboratory, Faculty of Electrical Engineering
and Computer Science, VSB - Technical University
of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic
| | - Martin Pumera
- Advanced Nanorobots &
Multiscale Robotics Laboratory, Faculty of Electrical Engineering
and Computer Science, VSB - Technical University
of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic
| |
Collapse
|
6
|
Li S, Ye Y, Liu X, Yang X, Fang S, Zhou N. Preparation of carbon-coated Fe 2 O 3 @Ti 3 C 2 T x composites by mussel-like modifications as high-performance anodes for lithium-ion batteries. Chemistry 2024; 30:e202302768. [PMID: 38171767 DOI: 10.1002/chem.202302768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Indexed: 01/05/2024]
Abstract
Fe2 O3 with high theoretical capacity (1007 mA h g-1 ) and low cost is a potential anode material for lithium-ion batteries (LIBs), but its practical application is restricted by its low electrical conductivity and large volume changes during lithiation/delithiation. To solve these problems, Fe2 O3 @Ti3 C2 Tx composites were synthesized by a mussel-like modification method, which relies on the self-polymerization of dopamine under mild conditions. During polymerization, the electronegative group (-OH) on dopamine can easily coordinate with Fe3+ ions as well as form hydrogen bonds with the -OH terminal group on the surface of Ti3 C2 Tx , which induces a uniform distribution of Fe2 O3 on the Ti3 C2 Tx surface and mitigates self-accumulation of MXene nanosheets. In addition, the polydopamine-derived carbon layer protects Ti3 C2 Tx from oxidation during the hydrothermal process, which can further improve the electrical conductivity of the composites and buffer the volume expansion and particle agglomeration of Fe2 O3 . As a result, Fe2 O3 @Ti3 C2 Tx anodes exhibit ~100 % capacity retention with almost no capacity loss at 0.5 A g-1 after 250 cycles, and a stable capacity of 430 mA h g-1 at 2 A g-1 after 500 cycles. The unique structural design of this work provides new ideas for the development of MXene-based composites in energy storage applications.
Collapse
Affiliation(s)
- Shaoqing Li
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, P. R. China
| | - Yong Ye
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiang Liu
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, P. R. China
- Ganfeng Lithium Group Co., Ltd., Xinyu, 338015, P. R. China
| | - Xuerui Yang
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, P. R. China
| | - Shan Fang
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, P. R. China
| | - Naigen Zhou
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
7
|
Prabhakar Vattikuti SV, Shim J, Rosaiah P, Mauger A, Julien CM. Recent Advances and Strategies in MXene-Based Electrodes for Supercapacitors: Applications, Challenges and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:62. [PMID: 38202517 PMCID: PMC10780966 DOI: 10.3390/nano14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
With the growing demand for technologies to sustain high energy consumption, supercapacitors are gaining prominence as efficient energy storage solutions beyond conventional batteries. MXene-based electrodes have gained recognition as a promising material for supercapacitor applications because of their superior electrical conductivity, extensive surface area, and chemical stability. This review provides a comprehensive analysis of the recent progress and strategies in the development of MXene-based electrodes for supercapacitors. It covers various synthesis methods, characterization techniques, and performance parameters of these electrodes. The review also highlights the current challenges and limitations, including scalability and stability issues, and suggests potential solutions. The future outlooks and directions for further research in this field are also discussed, including the creation of new synthesis methods and the exploration of novel applications. The aim of the review is to offer a current and up-to-date understanding of the state-of-the-art in MXene-based electrodes for supercapacitors and to stimulate further research in the field.
Collapse
Affiliation(s)
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.V.P.V.); (J.S.)
| | - Pitcheri Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India;
| | - Alain Mauger
- Institut de Minéralogie, de Physique des Matériaux et de Cosmologie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 Place Jussieu, 75005 Paris, France;
| | - Christian M. Julien
- Institut de Minéralogie, de Physique des Matériaux et de Cosmologie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 Place Jussieu, 75005 Paris, France;
| |
Collapse
|
8
|
Aravind AM, Tomy M, Kuttapan A, Kakkassery Aippunny AM, Suryabai XT. Progress of 2D MXene as an Electrode Architecture for Advanced Supercapacitors: A Comprehensive Review. ACS OMEGA 2023; 8:44375-44394. [PMID: 38046319 PMCID: PMC10688139 DOI: 10.1021/acsomega.3c02002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Supercapacitors, designed to store more energy and be proficient in accumulating more energy than conventional batteries with numerous charge-discharge cycles, have been developed in response to the growing demand for energy. Transition metal carbides/nitrides called MXenes have been the focus of researchers' cutting-edge research in energy storage. The 2D-layered MXenes are a hopeful contender for the electrode material due to their unique properties, such as high conductivity, hydrophilicity, tunable surface functional groups, better mechanical properties, and outstanding electrochemical performance. This newly developed pseudocapacitive substance benefits electrochemical energy storage because it is rich in interlayer ion diffusion pathways and ion storage sites. Making MXene involves etching the MAX phase precursor with suitable etchants, but different etching methods have distinct effects on the morphology and electrochemical properties. It is an overview of the recent progress of MXene and its structure, synthesis, and unique properties. There is a strong emphasis on the effects of shape, size, electrode design, electrolyte behavior, and other variables on the charge storage mechanism and electrochemical performance of MXene-based supercapacitors. The electrochemical application of MXene and the remarkable research achievements in MXene-based composites are an intense focus. Finally, in light of further research and potential applications, the challenges and future perspectives that MXenes face and the prospects that MXenes present have been highlighted.
Collapse
Affiliation(s)
- Anu Mini Aravind
- Centre
for Advanced Materials Research, Department of Physics, Government
College for Women, University of Kerala, Thiruvananthapuram, Kerala 695014, India
| | - Merin Tomy
- Centre
for Advanced Materials Research, Department of Physics, Government
College for Women, University of Kerala, Thiruvananthapuram, Kerala 695014, India
| | | | | | - Xavier Thankappan Suryabai
- Centre
for Advanced Materials Research, Department of Physics, Government
College for Women, University of Kerala, Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
9
|
Zhu Y, Ma J, Das P, Wang S, Wu ZS. High-Voltage MXene-Based Supercapacitors: Present Status and Future Perspectives. SMALL METHODS 2023; 7:e2201609. [PMID: 36703554 DOI: 10.1002/smtd.202201609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/30/2022] [Indexed: 06/18/2023]
Abstract
As an emerging class of 2D materials, MXene exhibits broad prospects in the field of supercapacitors (SCs). However, the working voltage of MXene-based SCs is relatively limited (typically ≤ 0.6 V) due to the oxidation of MXene electrode and the decomposition of electrolyte, ultimately leading to low energy density of the device. To solve this issue, high-voltage MXene-based electrodes and corresponding matchable electrolytes are developed urgently to extend the voltage window of MXene-based SCs. Herein, a comprehensive overview and systematic discussion regarding the effects of electrolytes (aqueous, organic, and ionic liquid electrolytes), asymmetric device configuration, and material modification on the operating voltage of MXene-based SCs, is presented. A deep dive is taken into the latest advances in electrolyte design, structure regulation, and high-voltage mechanism of MXene-based SCs. Last, the future perspectives on high-voltage MXene-based SCs and their possible development directions are outlined and discussed in depth, providing new insights for the rational design and realization of advanced next-generation MXene-based electrodes and high-voltage electrolytes.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Jiaxin Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sen Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
10
|
Ustad RE, Kundale SS, Rokade KA, Patil SL, Chavan VD, Kadam KD, Patil HS, Patil SP, Kamat RK, Kim DK, Dongale TD. Recent progress in energy, environment, and electronic applications of MXene nanomaterials. NANOSCALE 2023; 15:9891-9926. [PMID: 37097309 DOI: 10.1039/d2nr06162g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the discovery of graphene, two-dimensional (2D) materials have gained widespread attention, owing to their appealing properties for various technological applications. Etched from their parent MAX phases, MXene is a newly emerged 2D material that was first reported in 2011. Since then, a lot of theoretical and experimental work has been done on more than 30 MXene structures for various applications. Given this, in the present review, we have tried to cover the multidisciplinary aspects of MXene including its structures, synthesis methods, and electronic, mechanical, optoelectronic, and magnetic properties. From an application point of view, we explore MXene-based supercapacitors, gas sensors, strain sensors, biosensors, electromagnetic interference shielding, microwave absorption, memristors, and artificial synaptic devices. Also, the impact of MXene-based materials on the characteristics of respective applications is systematically explored. This review provides the current status of MXene nanomaterials for various applications and possible future developments in this field.
Collapse
Affiliation(s)
- Ruhan E Ustad
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Somnath S Kundale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| | - Kasturi A Rokade
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| | - Snehal L Patil
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| | - Vijay D Chavan
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Kalyani D Kadam
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Harshada S Patil
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Sarita P Patil
- School of Physical Science, Sanjay Ghodawat University, Atigre, Kolhapur-416118, MH, India
| | - Rajanish K Kamat
- Department of Electronics, Shivaji University, Kolhapur-416004, India
- Dr Homi Bhabha State University, 15, Madam Cama Road, Mumbai-400032, India
| | - Deok-Kee Kim
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Tukaram D Dongale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| |
Collapse
|
11
|
Zhang W, Du J, Wang K, Li Y, Chen C, Yang L, Kan Z, Dong B, Wang L, Xu L. Integrated dual-channel electrochemical immunosensor for early diagnosis and monitoring of periodontitis by detecting multiple biomarkers in saliva. Anal Chim Acta 2023; 1247:340878. [PMID: 36781246 DOI: 10.1016/j.aca.2023.340878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Periodontitis, as the sixth prevalence chronic inflammation worldwide, has inconspicuous and often-overlooked symptoms at early stage, eventually leading to permanent damage to the teeth and supporting tissues. The timely and accurate diagnosis of periodontitis and monitoring its progress appear to be particularly important for clinical treatment. Herein, a dual-channel electrochemical immunosensor was developed for the synchronized detection of two periodontitis-related biomarkers in saliva: interleukin-1β (IL-1β) and matrix metalloproteinase-8 (MMP-8). Owing to its miniaturization, detachability, and portability, this sensor has the potential to detect multiple biomarkers in a point-of-care manner for the early diagnosis and monitoring of periodontitis. The nanocomposites consisted of iridium oxide nanotubes and two-dimensional MXene nanosheets enhance the electrochemical performance of the sensor, achieving excellent sensitivity with wide detection ranges of 0.1-100 and 1-200 ng mL-1, low limits of detection of 0.014 and 0.13 ng mL-1, and relatively high correlation coefficients of 0.9911 and 0.9990 for IL-1β and MMP-8, respectively. Furthermore, this device possesses excellent selectivity in complex samples without cross-talk, as well as high recovery and accuracy in spiked artificial saliva. Importantly, the dual-channel device achieves higher diagnostic accuracy for different stages of periodontitis when MMP-8 and IL-1β were simultaneously monitored within clinicopathological saliva. This work proposes a considerable potential for early diagnosis and severity distinguishment of periodontitis in a point-of-care manner, which would be beneficial for progression prediction, treatment guidance, and prognosis assessment of periodontitis.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Juanrui Du
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Kun Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yige Li
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Cong Chen
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Long Yang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130021, China
| | - Zitong Kan
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130021, China.
| |
Collapse
|
12
|
Rational design and construction of iron oxide and titanium carbide MXene hierarchical structure with promoted energy storage properties for flexible battery. J Colloid Interface Sci 2022; 631:182-190. [DOI: 10.1016/j.jcis.2022.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
13
|
Yang R, Hu Q, Yang S, Zeng Z, Zhang H, Cao A, Gui X. Anchoring Oxidized MXene Nanosheets on Porous Carbon Nanotube Sponge for Enhancing Ion Transport and Pseudocapacitive Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41997-42006. [PMID: 36070442 DOI: 10.1021/acsami.2c10659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) MXene nanosheets are attractive for electrochemical energy storage applications due to their superior surface-controlled charge storage capacity. However, the slow ion transport in the closely packed electrode limits their electrochemical performances. Meanwhile, the restricted surface-controlled pseudocapacitance of MXene nanosheets requires to be enhanced. Herein, a well-controlled electrophoretic deposition strategy is developed to disperse Ti3C2Tx nanosheets into a freestanding, porous carbon nanotube (CNT) sponge. The constructed Ti3C2Tx@CNT hybrid sponge can provide high-speed ion-transport pathways for the charge-discharge process. Furthermore, by tuning the deposition potential, the inserted MXene nanosheets can be partially oxidized, boosting the pseudocapacitance performance. A large gravimetric capacitance of 468 F g-1 at 10 mV s-1 and a retention of 79.8% at 100 mV s-1 can be achieved in the Ti3C2Tx@CNT electrode. Meanwhile, the highest areal capacitance of 661 mF cm-2 at 1 mA cm-2 was obtained in the sample with high-loading Ti3C2Tx. For the assembled symmetric supercapacitor, 92.8% of the capacitance is retained after 10 000 cycles of the charge-discharge process at 10 mA cm-2. Thus, this study develops a promising electrophoretic deposition strategy for dispersing 2D MXene nanosheets and boosting their pseudocapacitive performance, resulting in a high-capacitive electrochemical energy storage electrode.
Collapse
Affiliation(s)
- Rongliang Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingmei Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaodian Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiping Zeng
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Hao Zhang
- Instrumental Analysis and Research Center (IARC), Sun Yat-sen University, Guangzhou 510275, China
| | - Anyuan Cao
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
14
|
Song H, Pan S, Wang Y, Cai Y, Zhang W, Shen Y, Li C. MXene-mediated electron transfer in Cu(II)/PMS process: From Cu(III) to Cu(I). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214544] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Electrochemical Performance of MoO3-RuO2/Ti in H2SO4 electrolyte as anodes for Asymmetric Supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Man S, Luo D, Sun Q, Yang H, Bao H, Xu K, Zeng X, He M, Yin Z, Wang L, Mo Z, Yang W, Li X. When MXene (Ti 3C 2T x) meet Ti/PbO 2: An improved electrocatalytic activity and stability. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128440. [PMID: 35158250 DOI: 10.1016/j.jhazmat.2022.128440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Stable electrode materials with high catalytic activity are urgently required for electrochemical degradation of refractory organic pollutants in wastewater treatment. Herein, high conductive MXene (Ti3C2Tx) was firstly fabricated by electrophoretic deposition (EPD) as an interlayer for preparing a novel PbO2 electrode. The well-conducted Ti3C2Tx interlayer significantly improved the electrochemical performance of the EPD-2.0/PbO2 (EPD time was 2.0 min) electrode with the charge transfer resistance decreased by 9.51 times, the inner active sites increased by 5.21 times and the ∙OH radicals generation ability enhanced by 4.07 times than the control EPD-0/PbO2 anode. Consequently, the EPD-2.0/PbO2 electrode achieved nearly 100% basic fuchsin (BF) and 86.78% COD removal efficiency after 3.0 h electrolysis. Therefore, this new PbO2 electrode presented a promising potential for electrochemical degradation of BF and the new Ti3C2Tx middle layer could also be used to fabricate other efficient and stable anodes, such as SnO2, MnO2, TiO2, etc.
Collapse
Affiliation(s)
- Shuaishuai Man
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Dehui Luo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Qing Sun
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Haifeng Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Hebin Bao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China; Fundamental Studies department, Army logistics University of PLA, Chongqing 401311, PR China
| | - Ke Xu
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xuzhong Zeng
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Miao He
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Zehao Yin
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Li Wang
- College of Power Engineering, Chongqing Electric Power College, Chongqing 400053, PR China
| | - Zhihong Mo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Wenjing Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| | - Xueming Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
18
|
Idumah CI, Ezeani OE, Okonkwo UC, Nwuzor IC, Odera SR. Novel Trends in MXene/Conducting Polymeric Hybrid Nanoclusters. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02243-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Baig MM, Gul IH, Baig SM, Shahzad F. 2D MXenes: Synthesis, properties, and electrochemical energy storage for supercapacitors – A review. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115920] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Nagarajan RD, Sundaramurthy A, Sundramoorthy AK. Synthesis and characterization of MXene (Ti 3C 2T x)/Iron oxide composite for ultrasensitive electrochemical detection of hydrogen peroxide. CHEMOSPHERE 2022; 286:131478. [PMID: 34303904 DOI: 10.1016/j.chemosphere.2021.131478] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Due to the widespread usage of hydrogen peroxide (H2O2) in various consumer and industrial products (Examples: fuel cells and antibacterial agents), it became important to accurately detect H2O2 concentration in environmental, medical and food samples. Herein, titanium carbide Ti3C2Tx (MXene) was synthesized by using Ti, Al and C powders at high-temperature. Then, nanocrystalline iron oxide (α-Fe2O3) was obtained from a single solid-phase method. Using Ti3C2Tx and Fe2O3 powders, Ti3C2Tx-Fe2O3 nanocomposite was prepared by ultrasonication. As-synthesized, Ti3C2Tx-Fe2O3 composite had been characterized by UV-Visible (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Raman spectroscopy. The Fe2O3 nanoparticles (NPs) were decorated on the surface of Ti3C2Tx as observed by high resolution scanning electron microscopy (HR-SEM) and high resolution transmission electron microscopy (HR-TEM). The Ti3C2Tx nanosheets were formed with the average size of 400-500 nm. HR-SEM images of α-Fe2O3 showed that the coral-like particles with the average length ~5 μm were obtained. The electrochemical properties of the individual (Ti3C2Tx and α-Fe2O3) and composite materials (Ti3C2Tx-Fe2O3) were investigated by cyclic voltammetry (CV). Ti3C2Tx-Fe2O3 nanocomposite modified electrode had exhibited potent electro-catalytic activity for H2O2 reduction by reducing the overpotential about 320 mV and a linear response was recorded from 10 nM to 1 μM H2O2. The optimization of various parameters such as material composition ratio, amount of catalyst, effects of pH, scan rate and interference effects with other biomolecules were carried out. In addition, the kinetic parameters such as rate constant, diffusion coefficient and the active surface area of the electrodes were calculated. Moreover, the Ti3C2Tx-Fe2O3 composite modified electrode was used successfully to detect H2O2 in food and urine samples. We believe that Ti3C2Tx-Fe2O3 composite based materials could be used for the fabrication of non-enzymatic H2O2 sensors for medical diagnosis, food safety and environmental monitoring applications.
Collapse
Affiliation(s)
- Ramila D Nagarajan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Anandhakumar Sundaramurthy
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ashok K Sundramoorthy
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
21
|
Wei Y, Zhang P, Soomro RA, Zhu Q, Xu B. Advances in the Synthesis of 2D MXenes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103148. [PMID: 34423479 DOI: 10.1002/adma.202103148] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/06/2021] [Indexed: 05/21/2023]
Abstract
2D transition metal carbides, nitrides, and carbonitrides, also known as MXenes, are versatile materials due to their adjustable structure and rich surface chemistry. The physical and chemical diversity has recognized MXenes as a potential 2D material with a wide spectrum of application domains. Since the discovery of MXenes in 2011, a wide variety of synthetic routes has been proposed with advancement toward large-scale preparing methods for MXene nanosheets and derivative products. Herein, the critical synthesis aspects and the operating conditions that influence the physical and chemical characteristics of MXenes are discussed in detail. The emerging etching methods including HF etching methods, in situ HF-forming etching methods, electrochemical etching methods, alkali etching methods, and molten salt etching methods, as well as delamination strategies are discussed. Considering the future developments and practical applications, the large-scale synthesis routes and the antioxidation strategies of MXenes are also summarized. In summary, a generalized overview of MXenes synthesis protocols with an outlook for the current challenges and promising technologies for large-scale preparation and stable storage is provided.
Collapse
Affiliation(s)
- Yi Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Razium A Soomro
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qizhen Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bin Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
22
|
Ates M, Kuzgun O, Candan I. Supercapacitor performances of titanium–polymeric nanocomposites: a review study. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00982-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Bin X, Tian Y, Luo Y, Sheng M, Luo Y, Ju M, Que W. High-performance flexible and free-standing N-doped Ti3C2T / MoO films as electrodes for supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Biocompatible MXene (Ti 3C 2T x) Immobilized with Flavin Adenine Dinucleotide as an Electrochemical Transducer for Hydrogen Peroxide Detection in Ovarian Cancer Cell Lines. MICROMACHINES 2021; 12:mi12080862. [PMID: 34442484 PMCID: PMC8401909 DOI: 10.3390/mi12080862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022]
Abstract
Flavin adenine dinucleotide (FAD) is a coenzyme and acts as a redox cofactor in metabolic process. Owing to such problems as poor electron transfer properties, unfavorable adsorption, and lack of stability on rigid electrodes, the bio-electrochemical applications of FAD have been limited. Herein, a novel fabrication method was developed for the immobilization process using 2D MXene (Ti3C2Tx), which enhanced the redox property of FAD and improved the electro-catalytic reduction of hydrogen peroxide (H2O2) in neutral medium. The FAD-immobilized Ti3C2Tx electrode (FAD/Ti3C2Tx) was studied by UV-Visible and Raman spectroscopies, which confirmed the successful adsorption of FAD on the Ti3C2Tx surface. The surface morphology and the elemental composition of Ti3C2Tx were investigated by high resolution transmission electron microscopy and the energy dispersive X-ray analysis. The redox property of the FAD/Ti3C2Tx modified glassy carbon electrode (FAD/Ti3C2Tx/GCE) was highly dependent on pH and exhibited a stable redox peak at −0.455 V in neutral medium. Higher amounts of FAD molecules were loaded onto the 2D MXene (Ti3C2Tx)-modified electrode, which was two times higher than the values in the reported work, and the surface coverage (ᴦFAD) was 0.8 × 10−10 mol/cm2. The FAD/Ti3C2Tx modified sensor showed the electrocatalytic reduction of H2O2 at −0.47 V, which was 130 mV lower than the bare electrode. The FAD/Ti3C2Tx/GCE sensor showed a linear detection of H2O2 from 5 nM to 2 µM. The optimization of FAD deposition, amount of Ti3C2Tx loading, effect of pH and the interference study with common biochemicals such as glucose, lactose, dopamine (DA), potassium chloride (KCl), ascorbic acid (AA), amino acids, uric acid (UA), oxalic acid (OA), sodium chloride (NaCl) and acetaminophen (PA) have been carried out. The FAD/Ti3C2Tx/GCE showed high selectivity and reproducibility. Finally, the FAD/Ti3C2Tx modified electrode was successfully applied to detect H2O2 in ovarian cancer cell lines.
Collapse
|
25
|
Shi TZ, Feng YL, Peng T, Yuan BG. Sea urchin-shaped Fe2O3 coupled with 2D MXene nanosheets as negative electrode for high-performance asymmetric supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138245] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Yu T, Lei X, Zhou Y, Chen H. Ti
3
C
2
Tx MXenes
reinforced
PAA
/
CS
hydrogels with self‐healing function as flexible supercapacitor electrodes. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ting Yu
- College of Materials Science and Engineering Xi'an University of Architecture and Technology Xi'an China
| | - Xiping Lei
- College of Materials Science and Engineering Xi'an University of Architecture and Technology Xi'an China
- Shaanxi Key Laboratory of Nano Materials and Technology Xi'an China
| | - Yali Zhou
- College of Materials Science and Engineering Xi'an University of Architecture and Technology Xi'an China
| | - Haonan Chen
- College of Materials Science and Engineering Xi'an University of Architecture and Technology Xi'an China
| |
Collapse
|
27
|
Construction of two-dimensional bimetal (Fe-Ti) oxide/carbon/MXene architecture from titanium carbide MXene for ultrahigh-rate lithium-ion storage. J Colloid Interface Sci 2021; 588:147-156. [PMID: 33388580 DOI: 10.1016/j.jcis.2020.12.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/13/2020] [Accepted: 12/19/2020] [Indexed: 11/23/2022]
Abstract
The development of battery systems with high specific capacity and power density could fuel various energy-related applications from personal electronics to grid storage. (Fe2.5Ti0.5)1.04O4 possessing high theoretical specific capacity has been considered as a promising high rate anode material for lithium ion batteries due to the replacement of Fe3+ (0.64 Å) by Ti4+ (0.68 Å) with a larger radius to expand the interlayer space for ion intercalation. However, its extreme volume variation upon cycling as well as poor electrical conductivity hinder its further application. To tackle the above problems, in this work, we successfully synthesized two-dimensional (2D) (Fe2.5Ti0.5)1.04O4/C/MXene architecture derived from Ti3C2Tx MXene via solvo-hydrothermal, ultrasound hybridizing and high temperature annealing processes. The (Fe2.5Ti0.5)1.04O4/C/MXene shows a high discharge capacity of 757.2 mAh g-1 after 800 cycles at a current density of 3 A g-1 with excellent rate performance. The superior electrochemical performances are triggered primarily by the incorporation of carbon and MXene into (Fe2.5Ti0.5)1.04O4 moiety to construct a 2D layered structure, which can improve the ion diffusion and electron transport. In addition, the synergistic contributions from diffusion controlled and capacitive processes for (Fe2.5Ti0.5)1.04O4/C/MXene improve the ion diffusion rate and offer high specific capacity at high current density. The MXene-derived synthesis strategy in this work should be a promising pathway to synthesize other anode materials with 2D layered architecture for high performance lithium storage.
Collapse
|
28
|
Arun T, Mohanty A, Rosenkranz A, Wang B, Yu J, Morel MJ, Udayabhaskar R, Hevia SA, Akbari-Fakhrabadi A, Mangalaraja R, Ramadoss A. Role of electrolytes on the electrochemical characteristics of Fe3O4/MXene/RGO composites for supercapacitor applications. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137473] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Li Y, Deng Y, Zhang X, Ying G, Wang Z, Zhang J. Facile fabrication of novel Ti3C2T -supported fallen leaf-like Bi2S3 nanopieces by a combined local-repulsion and macroscopic attraction strategy with enhanced symmetrical supercapacitor performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Gu TH, Kwon NH, Lee KG, Jin X, Hwang SJ. 2D inorganic nanosheets as versatile building blocks for hybrid electrode materials for supercapacitor. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213439] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
|
32
|
Balasubramaniam S, Mohanty A, Balasingam SK, Kim SJ, Ramadoss A. Comprehensive Insight into the Mechanism, Material Selection and Performance Evaluation of Supercapatteries. NANO-MICRO LETTERS 2020; 12:85. [PMID: 34138304 PMCID: PMC7770895 DOI: 10.1007/s40820-020-0413-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/13/2020] [Indexed: 05/21/2023]
Abstract
Electrochemical energy storage devices (EESs) play a crucial role for the construction of sustainable energy storage system from the point of generation to the end user due to the intermittent nature of renewable sources. Additionally, to meet the demand for next-generation electronic applications, optimizing the energy and power densities of EESs with long cycle life is the crucial factor. Great efforts have been devoted towards the search for new materials, to augment the overall performance of the EESs. Although there are a lot of ongoing researches in this field, the performance does not meet up to the level of commercialization. A further understanding of the charge storage mechanism and development of new electrode materials are highly required. The present review explains the overview of recent progress in supercapattery devices with reference to their various aspects. The different charge storage mechanisms and the multiple factors involved in the performance of the supercapattery are described in detail. Moreover, recent advancements in this supercapattery research and its electrochemical performances are reviewed. Finally, the challenges and possible future developments in this field are summarized.
Collapse
Affiliation(s)
- Saravanakumar Balasubramaniam
- School for Advanced Research in Polymers, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar, 751024, India
| | - Ankita Mohanty
- School for Advanced Research in Polymers, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar, 751024, India
| | - Suresh Kannan Balasingam
- Department of Materials Science and Engineering, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Sang Jae Kim
- Nanomaterials and Systems Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea
| | - Ananthakumar Ramadoss
- School for Advanced Research in Polymers, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar, 751024, India.
| |
Collapse
|
33
|
Zang X, Wang J, Qin Y, Wang T, He C, Shao Q, Zhu H, Cao N. Enhancing Capacitance Performance of Ti 3C 2T x MXene as Electrode Materials of Supercapacitor: From Controlled Preparation to Composite Structure Construction. NANO-MICRO LETTERS 2020; 12:77. [PMID: 34138313 PMCID: PMC7770793 DOI: 10.1007/s40820-020-0415-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/19/2020] [Indexed: 05/18/2023]
Abstract
Ti3C2Tx, a novel two-dimensional layer material, is widely used as electrode materials of supercapacitor due to its good metal conductivity, redox reaction active surface, and so on. However, there are many challenges to be addressed which impede Ti3C2Tx obtaining the ideal specific capacitance, such as restacking, re-crushing, and oxidation of titanium. Recently, many advances have been proposed to enhance capacitance performance of Ti3C2Tx. In this review, recent strategies for improving specific capacitance are summarized and compared, for example, film formation, surface modification, and composite method. Furthermore, in order to comprehend the mechanism of those efforts, this review analyzes the energy storage performance in different electrolytes and influencing factors. This review is expected to predict redouble research direction of Ti3C2Tx materials in supercapacitors.
Collapse
Affiliation(s)
- Xiaobei Zang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Jiali Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Yijiang Qin
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Teng Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Chengpeng He
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Qingguo Shao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Hongwei Zhu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Ning Cao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| |
Collapse
|
34
|
|
35
|
Hu M, Zhang H, Hu T, Fan B, Wang X, Li Z. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem Soc Rev 2020; 49:6666-6693. [DOI: 10.1039/d0cs00175a] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review provides a comprehensive understanding of the emerging 2D MXene electrode materials for supercapacitor application.
Collapse
Affiliation(s)
- Minmin Hu
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- Chinese Academy of Sciences
- Shenyang
- China
| | - Hui Zhang
- Energy Geoscience Division Lawrence Berkeley National Laboratory
- USA
| | - Tao Hu
- Institute for Materials Science and Devices
- Suzhou University of Science and Technology
- Suzhou
- China
| | - Bingbing Fan
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou, 450001
- China
| | - Xiaohui Wang
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- Chinese Academy of Sciences
- Shenyang
- China
| | - Zhenjiang Li
- School of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| |
Collapse
|
36
|
An C, Zhang Y, Guo H, Wang Y. Metal oxide-based supercapacitors: progress and prospectives. NANOSCALE ADVANCES 2019; 1:4644-4658. [PMID: 36133113 PMCID: PMC9419102 DOI: 10.1039/c9na00543a] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/01/2019] [Indexed: 05/05/2023]
Abstract
Distinguished by particular physical and chemical properties, metal oxide materials have been a focus of research and exploitation for applications in energy storage devices. Used as supercapacitor electrode materials, metal oxides have certified attractive performances for fabricating various supercapacitor devices in a broad voltage window. In comparison with single metal oxides, bimetallic oxide materials are highly desired for overcoming the constraint of the poor electric conductivity of single metal oxide materials, achieving a high capacitance and raising the energy density at this capacitor-level power. Herein, we investigate the principal elements affecting the properties of bimetallic oxide electrodes to reveal the relevant energy storage mechanisms. Thus, the influences of the chemical constitution, structural features, electroconductivity, oxygen vacancies and various electrolytes in the electrochemical behavior are discussed. Moreover, the progress, development and improvement of multifarious devices are emphasized systematically, covering from an asymmetric to hybrid configuration, and from aqueous to non-aqueous systems. Ultimately, some obstinate and unsettled issues are summarized as well as a prospective direction has been given on the future of metal oxide-based supercapacitors.
Collapse
Affiliation(s)
- Cuihua An
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of Technology, Institute for New Energy Material & Low-Carbon Technologies Tianjin 300384 P. R. China
| | - Yan Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Huinan Guo
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yijing Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|