1
|
Sarmasti K, Golchin A, Bostani A, Misaghi M. Magnetite/reduced graphene oxide composites: A sustainable strategy for selenium immobilization and improved corn growth. CHEMOSPHERE 2025; 378:144424. [PMID: 40250260 DOI: 10.1016/j.chemosphere.2025.144424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/06/2025] [Accepted: 04/12/2025] [Indexed: 04/20/2025]
Abstract
This study investigated the effectiveness of magnetite/reduced graphene oxide (MRGO) in immobilizing selenium (Se) in contaminated soils and its impact on corn (Zea mays) growth and nutrient uptake. A factorial experiment was conducted in a completely randomized design with three replications under greenhouse conditions. Soil samples were contaminated with sodium selenate at Se concentrations of 0, 2, 4, 8, 16, and 32 mg/kg, equilibrated for two months, and subsequently treated with MRGO at 0, 0.25, 0.5, and 1 %, followed by a three-month incubation period. Corn plants were then cultivated from the seedling stage to the vegetative phase, and growth parameters, along with Se and nutrient concentrations in roots and shoots, were analyzed. MRGO significantly enhanced Se immobilization, increasing retention from 62-71 % to 82-90 % at 1 % MRGO. Se exhibited a biphasic effect on plant growth, promoting growth at 2 mg/kg but inducing toxicity at concentrations exceeding 4 mg/kg, leading to reduced biomass and nutrient uptake. MRGO mitigated Se toxicity by lowering Se accumulation in roots and shoots. However, in Se-free soils, higher MRGO levels negatively affected plant growth, likely due to nutrient adsorption. Trends in potassium (K), iron (Fe), and zinc (Zn) mirrored plant growth, peaking at 2 mg/kg Se and 1 % MRGO, whereas P (P) exhibited an inverse root-shoot distribution. These findings underscore MRGO's potential for Se immobilization in contaminated soils, improving plant performance at optimal Se levels. However, its application in Se-deficient soils requires careful management to prevent nutrient depletion (P, K, Zn, and Fe) and long-term declines in soil fertility.
Collapse
Affiliation(s)
- Khatereh Sarmasti
- Soil Science Department, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| | - Ahmad Golchin
- Soil Science Department, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| | - Amir Bostani
- Soil Science Department, Faculty of Agriculture, Shahed University, Tehran, Iran.
| | - Mehran Misaghi
- Soil Science Department, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| |
Collapse
|
2
|
da Costa L, Zopfi J, Alewell C, Lehmann MF, Lenz M. Antimony mobility in soils: current understanding and future research directions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:833-848. [PMID: 40109006 DOI: 10.1039/d4em00743c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Antimony (Sb) has gained increased attention over the past few decades due to its possible detrimental effects on biota and its potential to leach and disperse from contaminated soils. The fate of Sb in the environment is largely controlled by its chemical speciation, as well as the speciation of solid phases (e.g. Mn/Fe-oxyhydroxides) that interact with Sb in soils. Microbes have the capacity to facilitate a multitude of oxidation and reduction reactions in soils. Therefore, they exert control over the reactivity of Sb in the environment, either directly and/or indirectly, by changing Sb speciation and/or affecting the redox state of soil solid phases. Here, we outline processes that determine the behaviour of Sb in soils. We conclude that based on laboratory studies there is a good theoretical understanding of pure soil components interacting with Sb species. However, comparatively little is known concerning the contribution of these interactions in complex natural systems that are dynamic in terms of biogeochemical conditions and that can hardly be simulated using laboratory incubations. We note that important biochemical foundations of microbially driven Sb conversions (i.e. molecular constraints on organisms, genes and enzymes involved) have emerged recently. Again, these are based on laboratory incubations and investigations in environments high in Sb. In this regard, an important remaining question is which microorganisms actively impact Sb speciation under real-world conditions, in particular where Sb concentrations are low. Multiple dissolved Sb species have been described in the literature. We note that more analytical development is needed to identify and quantify possible key Sb species in natural systems, as well as anthropogenically impacted environments with only moderate Sb concentrations. With these research needs addressed, we believe that the Sb fate in the environment can be more accurately assessed, and remediation options can be developed.
Collapse
Affiliation(s)
- Lara da Costa
- Institute for Ecopreneurship, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Hofackerstrasse 30, 4132 Muttenz, Switzerland.
- University of Basel, Department of Environmental Science, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Jakob Zopfi
- University of Basel, Department of Environmental Science, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Christine Alewell
- University of Basel, Department of Environmental Science, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Moritz F Lehmann
- University of Basel, Department of Environmental Science, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Markus Lenz
- Institute for Ecopreneurship, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Hofackerstrasse 30, 4132 Muttenz, Switzerland.
- Department of Environmental Technology, Wageningen University, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
3
|
D’Eusanio V, Frignani E, Marchetti A, Pigani L, Rivi M, Roncaglia F. Long-Term Variability in the Content of Some Metals and Metalloids in Aesculus Flowers: A Four-Year Study Using ICP OES and PCA Analysis. Molecules 2025; 30:908. [PMID: 40005218 PMCID: PMC11858342 DOI: 10.3390/molecules30040908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
This study investigates the content of some metals and metalloids in the flowers of three Aesculus cultivars (AHP, Aesculus hippocastanum pure species, with white flowers; AHH, Aesculus hippocastanum hybrid species, with pink flowers; and AXC, Aesculus × carnea, with red flowers) over a four-year period (2016-2019) using inductively coupled plasma optical emission spectrometry (ICP OES) and principal component analysis (PCA). The research focuses on assessing macro- and micro-elemental compositions, identifying variations in mineral uptake, and exploring potential correlations with soil composition. Results highlight significant differences in elemental profiles among the three species, despite similar total ash content. Potassium and phosphorus emerged as dominant macroelements, with AXC showing lower magnesium levels compared to AHP and AHH. Particularly intriguing was the detection of antimony in all cultivars, raising questions about its role and bioaccumulation pathways in floral tissues. Iron and aluminum concentrations varied significantly across species, indicating species-specific metal transport mechanisms. Nickel content showed temporal fluctuations, potentially influenced by climatic conditions and soil properties. PCA revealed distinct clustering patterns, linking elemental concentrations to specific species and years. This comprehensive analysis enhances understanding of metal absorption and distribution in ornamental plants, providing insights into their metabolic processes and potential implications for environmental monitoring and phytoremediation strategies.
Collapse
Affiliation(s)
- Veronica D’Eusanio
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.F.); (A.M.); (L.P.); (M.R.); (F.R.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
| | - Elia Frignani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.F.); (A.M.); (L.P.); (M.R.); (F.R.)
| | - Andrea Marchetti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.F.); (A.M.); (L.P.); (M.R.); (F.R.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
- Interdepartmental Research Center BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| | - Laura Pigani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.F.); (A.M.); (L.P.); (M.R.); (F.R.)
| | - Mirco Rivi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.F.); (A.M.); (L.P.); (M.R.); (F.R.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
| | - Fabrizio Roncaglia
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.F.); (A.M.); (L.P.); (M.R.); (F.R.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
| |
Collapse
|
4
|
Rajabpoor S, Kiani S, Hajihashemi S. Application of iron on improving antimony tolerance in Salvia spinosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117852. [PMID: 39923574 DOI: 10.1016/j.ecoenv.2025.117852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/13/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Antimony (Sb) is a potential threat to living organisms, but very little is known on strategies manage its toxicity in plants. This study aimed to clarify the role of Fe on alleviation Sb toxicity in a metallicolous population of Salvia spinose and its mechanisms. With regard to the toxicity of Sb in plants and the importance of Fe potential in alleviation of Sb toxicity, S. spinosa was treated with 0 and 27 mg l-1 Sb (Ш or V) along with 0, 50 and 300 μM FeEDTA in a hydroponic system. The plants exposure to iron minimized the uptake of both Sb species by Salvia roots. The limitation of H2O2 generation in response to co-application of Fe with Sb was followed by counterbalancing the antioxidant enzymes (e.g. catalase, superoxide dismutase and ascorbate peroxidase), phenols, flavonoids, lipid membrane preservation, and increase of the carbohydrates and proteins contents, which altogether improved growth in Sb-stressed plants. The Sb (III) toxicity to plants was much higher than Sb (V), but 300 μM Fe was significantly efficient in reducing Sb damages to Salvia. Altogether, application of Fe could efficiently alleviate the physiological and morphological functions in Sb-stressed Salvia.
Collapse
Affiliation(s)
- Shakiba Rajabpoor
- Department of Biology, Payame Noor University (PNU), PO Box 19395-3697, Tehran, Iran
| | - Soghra Kiani
- Department of Agriculture, Payame Noor University (PNU), PO Box 19395-3697, Tehran, Iran
| | - Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan 47189-63616, Iran.
| |
Collapse
|
5
|
Jiao Y, Ran M, Wu J, Li J. Boron contributes to enhance antimony tolerance in rice (Oryza sativa L.) by activating antioxidant system, modifying the cell wall component and promoting cell wall deposition of Sb. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124100. [PMID: 39813807 DOI: 10.1016/j.jenvman.2025.124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/02/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Boron (B) is essential for plant growth and helps mitigate metal toxicity in various crop plants. However, the potential role and underlying mechanisms of B in alleviating antimony (Sb) toxicity in rice remain unexplored. In this study, we investigated the effects of H₃BO₃ supplementation (30, 50, and 75 μM) on morphological growth, physiological and biochemical traits, Sb content, and the subcellular distribution of Sb in rice plants under 100 μM Sb stress during the seedling stage in a hydroponic system. The results revealed that Sb toxicity severely impaired rice growth, reducing shoot biomass by 38.3%, shoot and root length by 38.9% and 23.2%, and leaf relative water content by 15.5%. Supplementation with 30 μM B mitigated these adverse effects by enhancing photosynthesis and chlorophyll synthesis, restoring root activity, and improving oxidative balance through increased antioxidant enzyme activities in rice tissues. Furthermore, B supplementation significantly reduced Sb concentration in roots by 56.28%, while promoting Sb distribution in the cell wall (CW) fraction. Scanning electron microscopy equipped with energy-dispersive X-ray (SEM-EDS) microanalysis confirmed that B enhanced Sb adsorption on root CWs. Fourier transform infrared spectroscopy (FTIR) analysis indicated increased carboxyl groups in the CWs following B application under Sb treatment. Moreover, B supplementation increased the levels of pectin and hemicellulose and elevated pectin methylesterase (PME) activity by 22.0%, 69.0%, and 29.0% in roots, respectively, thus promoting Sb chelation onto the CWs. Taken together, our results provide a scientific basis and theoretical guidance for applying B to alleviate Sb toxicity in crops.
Collapse
Affiliation(s)
- Ying Jiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Maodi Ran
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Jiaxing Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
6
|
Chen Z, Xia B, Yang Y, Hu S, Cheng K, Cheng P, Wang S, Chen G, Wang Q, Dong H, Guo C, Chen Y, Liu T. Evaluating the influence of alternating flooding and drainage on antimony speciation and translocation in a soil-rice system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177721. [PMID: 39581447 DOI: 10.1016/j.scitotenv.2024.177721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
The quantitative evaluation of antimony (Sb) accumulation in rice has garnered significant attention due to the potential risks to human health. A pot experiment was conducted to investigate the essential nodes of Sb transfer in soil-rice system. Seven step extract results showed that during the flooding period, organic matter releasing was the primary factor contributing 14.1 % to the increase in Sb availability, while weakly crystallized Fe-Mn oxides and sulfides respectively accounted for 6.9 % and 1.42 %. During the drainage period, a notable increase in active Sb was observed, coinciding with decrease in Fe-Mn oxides and sulfides bond Sb. The migration rate constant of Sb from the root to the above-ground parts increased dramatically during the early flooding stage, being 2000 times higher than that in the mid-to-late stage. The shoot-to-grain migration rate constant remained low, at 1.07 × 10-2 d-1 and 3.52 × 10-3 d-1 during the flooding and drainage periods, respectively. Consequently, Sb accumulation amount in the grain (11.5 μg) was 2.2 times and 6.24 times lower than that in the roots and shoots, respectively. This study quantitatively evaluates the key processes controlling Sb transformation, uptake and translocation throughout different growth stages of the rice plant.
Collapse
Affiliation(s)
- Zhao Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Bingqing Xia
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Shiwen Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kuan Cheng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Pengfei Cheng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Shan Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Haibo Dong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chao Guo
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Yating Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-Hong Kong Polytechnic University, Chengdu 610207, China.
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
7
|
Haider FU, Zulfiqar U, Ain NU, Mehmood T, Ali U, Ramos Aguila LC, Li Y, Siddique KHM, Farooq M. Managing antimony pollution: Insights into Soil-Plant system dynamics and remediation Strategies. CHEMOSPHERE 2024; 362:142694. [PMID: 38925521 DOI: 10.1016/j.chemosphere.2024.142694] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/28/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Researchers are increasingly concerned about antimony (Sb) in ecosystems and the environment. Sb primarily enters the environment through anthropogenic (urbanization, industries, coal mining, cars, and biosolid wastes) and geological (natural and chemical weathering of parent material, leaching, and wet deposition) processes. Sb is a hazardous metal that can potentially harm human health. However, no comprehensive information is available on its sources, how it behaves in soil, and its bioaccumulation. Thus, this study reviews more than 160 peer-reviewed studies examining Sb's origins, geochemical distribution and speciation in soil, biogeochemical mechanisms regulating Sb mobilization, bioavailability, and plant phytotoxicity. In addition, Sb exposure effects plant physio-morphological and biochemical attributes were investigated. The toxicity of Sb has a pronounced impact on various aspects of plant life, including a reduction in seed germination and impeding plant growth and development, resulting from restricted essential nutrient uptake, oxidative damages, disruption of photosynthetic system, and amino acid and protein synthesis. Various widely employed methods for Sb remediation, such as organic manure and compost, coal fly ash, biochar, phytoremediation, microbial-based bioremediation, micronutrients, clay minerals, and nanoremediation, are reviewed with a critical assessment of their effectiveness, cost-efficiency, and suitability for use in agricultural soils. This review shows how plants deal with Sb stress, providing insights into lowering Sb levels in the environment and lessening risks to ecosystems and human health along the food chain. Examining different methods like bioaccumulation, bio-sorption, electrostatic attraction, and complexation actively works to reduce toxicity in contaminated agricultural soil caused by Sb. In the end, the exploration of recent advancements in genetics and molecular biology techniques are highlighted, which offers valuable insights into combating Sb toxicity. In conclusion, the findings of this comprehensive review should help develop innovative and useful strategies for minimizing Sb absorption and contamination and thus successfully managing Sb-polluted soil and plants to reduce environmental and public health risks.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Noor Ul Ain
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Tariq Mehmood
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department Sensors and Modeling, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Umed Ali
- Department of Agriculture, Mir Chakar Khan Rind University, Sibi 82000, Balochistan, Pakistan
| | - Luis Carlos Ramos Aguila
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Muhammad Farooq
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman.
| |
Collapse
|
8
|
Fan J, Chen Y, Li X, Huang J, Zhang X, Chen K, Xiang Y, Wu F, Yan X, Wen B. Transcriptomic and metabolomic insights into the antimony stress response of tall fescue (Festuca arundinacea). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172990. [PMID: 38710395 DOI: 10.1016/j.scitotenv.2024.172990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Antimony (Sb) is a toxic heavy metal that severely inhibits plant growth and development and threatens human health. Tall fescue, one of the most widely used grasses, has been reported to tolerate heavy metal stress. However, the adaptive mechanisms of Sb stress in tall fescue remain largely unknown. In this study, transcriptomic and metabolomic techniques were applied to elucidate the molecular mechanism of the Sb stress response in tall fescue. These results showed that the defense process in tall fescue was rapidly triggered during the early stages of Sb stress. Sb stress had toxic effects on tall fescue, and the cell wall and voltage-gated channels are crucial for regulating Sb permeation into the cells. In addition, the pathway of glycine, serine and threonine metabolism may play key roles in the Sb stress response of tall fescue. Genes such as ALDH7A1 and AGXT2 and metabolites such as aspartic acid, pyruvic acid, and biuret, which are related to biological processes and pathways, were key genes and compounds in the Sb stress response of tall fescue. Therefore, the regulatory mechanisms of specific genes and pathways should be investigated further to improve Sb stress tolerance.
Collapse
Affiliation(s)
- Jibiao Fan
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, 210042 Nanjing, Jiangsu, People's Republic of China; College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu, People's Republic of China
| | - Yao Chen
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu, People's Republic of China
| | - Xiaoqin Li
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu, People's Republic of China
| | - Jianbo Huang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, 210042 Nanjing, Jiangsu, People's Republic of China
| | - Xingyu Zhang
- College of Resources and Environment, South-Central Minzu University, 430074 Wuhan, Hubei, People's Republic of China
| | - Ke Chen
- College of Resources and Environment, South-Central Minzu University, 430074 Wuhan, Hubei, People's Republic of China
| | - Yuanhang Xiang
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu, People's Republic of China
| | - Fangming Wu
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu, People's Republic of China
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu, People's Republic of China.
| | - Bing Wen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, 210042 Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Diallo A, Hasnaoui SE, Dallahi Y, Smouni A, Fahr M. Native plant species growing on the abandoned Zaida lead/zinc mine site in Morocco: Phytoremediation potential for biomonitoring perspective. PLoS One 2024; 19:e0305053. [PMID: 38924033 PMCID: PMC11207124 DOI: 10.1371/journal.pone.0305053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This study aims to assess the level of metal contamination and the ecological risk index at the abandoned Zaida Pb/Zn mining site in eastern Morocco and identify native plant species found on the site that can be used in site rehabilitation through phytoremediation strategies. Samples from seven native and abundant plant species at the site, along with their rhizospheric soils, were collected and analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to determine the concentrations of various metal(loid)s, including As, Cu, Ni, Cd, Sb, Zn, and Pb. Indicators of soil pollution and ecological risks were also assessed, including the enrichment factor (EF), pollution index (PI), and ecological risk index (ERI). The Biological Accumulation Coefficient (BAC), Translocation Factor (TF), and Biological Concentration Factor (BCF) of plant samples were calculated. The results reveal polymetallic soil contamination, with notably higher concentrations of Pb, Cu and Zn, reaching respectively 5568 mg kg-1 DW, 152 mg kg-1 DW, and 148 mg kg-1 DW, indicating a significant potential ecological risk. The enrichment factor (EF) was also assessed for each metal(loid)s, and the results indicated that the metal contamination was of anthropogenic origin and linked to intensive mining activities in Zaida. These findings are supported by the pollution index (PI) ranging from 1.6 to 10.01, which reveals an extremely high metal(loid)s pollution level. None of the plant species exhibited a hyperaccumulation of metal(loid)s. However, Artemisia herba alba demonstrated a strong capacity to accumulate Pb in its aboveground parts, with a concentration of 468 mg kg-1 DW. Stipa tenacissima, Retama spherocarpa, and Astragalus armatus, showed a significant Pb accumulation in their roots reaching 280, 260, and 256 mg kg-1 DW.respectively. Based on BAC, TF, and BCF, Stipa tenacissima exhibited potential for Ni and Cd phytostabilization, as well as the ability for Zn phytoextraction. Additionally, Artemisia herba alba displayed the capability to phytoextract Cd and had a high propensity to translocate all the studied metal(loid)s. Astragalus armatus has the potential to be used in the phytostabilization of Zn and Ni, as well as for the phytoextraction of As and Sb. These native species from the Zaida site, although not hyperaccumulators, have the potential to contribute significantly to the phytoextraction or phytostabilization of potentially toxic elements (PTEs). Moreover, they can serve as vegetative cover to mitigate the erosion and dispersion of metal(loid)s.
Collapse
Affiliation(s)
- Alassane Diallo
- Faculté des Sciences, Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Université Mohammed V de Rabat, Rabat, Morocco
- Laboratoire International Associé « Sciences, Environnements, Sociétés et Activités Minières » « LIA-SESAM », Université Mohammed V Morocco/ Université Laval, Laval, Canada
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, Rabat, Morocco
- Centre d’Excellence Africain Mines et Environnement Minier, Institut National Polytechnique Félix HOUPHOUET BOIGNY, Yamoussoukro, Côte d’Ivoire
| | - Said El Hasnaoui
- Faculté des Sciences, Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Université Mohammed V de Rabat, Rabat, Morocco
- Laboratoire International Associé « Sciences, Environnements, Sociétés et Activités Minières » « LIA-SESAM », Université Mohammed V Morocco/ Université Laval, Laval, Canada
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, Rabat, Morocco
| | - Youssef Dallahi
- Faculté des Sciences, Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Université Mohammed V de Rabat, Rabat, Morocco
- Laboratoire International Associé « Sciences, Environnements, Sociétés et Activités Minières » « LIA-SESAM », Université Mohammed V Morocco/ Université Laval, Laval, Canada
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, Rabat, Morocco
| | - Abdelaziz Smouni
- Faculté des Sciences, Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Université Mohammed V de Rabat, Rabat, Morocco
- Laboratoire International Associé « Sciences, Environnements, Sociétés et Activités Minières » « LIA-SESAM », Université Mohammed V Morocco/ Université Laval, Laval, Canada
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, Rabat, Morocco
| | - Mouna Fahr
- Faculté des Sciences, Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Université Mohammed V de Rabat, Rabat, Morocco
- Laboratoire International Associé « Sciences, Environnements, Sociétés et Activités Minières » « LIA-SESAM », Université Mohammed V Morocco/ Université Laval, Laval, Canada
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, Rabat, Morocco
| |
Collapse
|
10
|
Safeer R, Liu G, Yousaf B, Ashraf A, Haider MIS, Cheema AI, Ijaz S, Rashid A, Sikandar A, Pikoń K. Insights into the biogeochemical transformation, environmental impacts and biochar-based soil decontamination of antimony. ENVIRONMENTAL RESEARCH 2024; 251:118645. [PMID: 38485077 DOI: 10.1016/j.envres.2024.118645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/17/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Every year, a significant amount of antimony (Sb) enters the environment from natural and anthropogenic sources like mining, smelting, industrial operations, ore processing, vehicle emissions, shooting activities, and coal power plants. Humans, plants, animals, and aquatic life are heavily exposed to hazardous Sb or antimonide by either direct consumption or indirect exposure to Sb in the environment. This review summarizes the current knowledge about Sb global occurrence, its fate, distribution, speciation, associated health hazards, and advanced biochar composites studies used for the remediation of soil contaminated with Sb to lessen Sb bioavailability and toxicity in soil. Anionic metal(loid) like Sb in the soil is significantly immobilized by pristine biochar and its composites, reducing their bioavailability. However, a comprehensive review of the impacts of biochar-based composites on soil Sb remediation is needed. Therefore, the current review focuses on (1) the fundamental aspects of Sb global occurrence, global soil Sb contamination, its transformation in soil, and associated health hazards, (2) the role of different biochar-based composites in the immobilization of Sb from soil to increase biochar applicability toward Sb decontamination. The review aids in developing advanced, efficient, and effective engineered biochar composites for Sb remediation by evaluating novel materials and techniques and through sustainable management of Sb-contaminated soil, ultimately reducing its environmental and health risks.
Collapse
Affiliation(s)
- Rabia Safeer
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Muhammad Irtaza Sajjad Haider
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Ayesha Imtiyaz Cheema
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Samra Ijaz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Audil Rashid
- Botany Department, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Anila Sikandar
- Department of Environmental Science, Kunming University of Science and Technology, 650500, Yunnan, PR China
| | - Krzysztof Pikoń
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| |
Collapse
|
11
|
Ran M, Wu J, Jiao Y, Li J. Biosynthetic selenium nanoparticles (Bio-SeNPs) mitigate the toxicity of antimony (Sb) in rice (Oryza sativa L.) by limiting Sb uptake, improving antioxidant defense system and regulating stress-related gene expression. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134263. [PMID: 38613951 DOI: 10.1016/j.jhazmat.2024.134263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Nanotechnology offers a promising and innovative approach to mitigate biotic and abiotic stress in crop production. In this study, the beneficial role and potential detoxification mechanism of biogenic selenium nanoparticles (Bio-SeNPs) prepared from Psidium guajava extracts in alleviating antimony (Sb) toxicity in rice seedlings (Oryza sativa L.) were investigated. The results revealed that exogenous addition of Bio-SeNPs (0.05 g/L) into the hydroponic-cultured system led to a substantial enhancement in rice shoot height (73.3%), shoot fresh weight (38.7%) and dry weight (28.8%) under 50 μM Sb(III) stress conditions. Compared to Sb exposure alone, hydroponic application of Bio-SeNPs also greatly promoted rice photosynthesis, improved cell viability and membrane integrity, reduced reactive oxygen species (ROS) levels, and increased antioxidant activities. Meanwhile, exogenous Bio-SeNPs application significantly lowered the Sb accumulation in rice roots (77.1%) and shoots (35.1%), and reduced its root to shoot translocation (55.3%). Additionally, Bio-SeNPs addition were found to modulate the subcellular distribution of Sb and the expression of genes associated with Sb detoxification in rice, such as OsCuZnSOD2, OsCATA, OsGSH1, OsABCC1, and OsWAK11. Overall, our findings highlight the great potential of Bio-SeNPs as a promising alternative for reducing Sb accumulation in crop plants and boosting crop production under Sb stress conditions.
Collapse
Affiliation(s)
- Maodi Ran
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jiaxing Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Ying Jiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
12
|
Wu J, Jiao Y, Ran M, Li J. The role of an Sb-oxidizing bacterium in modulating antimony speciation and iron plaque formation to reduce the accumulation and toxicity of Sb in rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133897. [PMID: 38442599 DOI: 10.1016/j.jhazmat.2024.133897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/04/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
Microbial antimony (Sb) oxidation in the root rhizosphere and the formation of iron plaque (IP) on the root surface are considered as two separate strategies to mitigate Sb(III) phytotoxicity. Here, the effect of an Sb-oxidizing bacterium Bacillus sp. S3 on IP characteristics of rice exposed to Sb(III) and its alleviating effects on plant growth were investigated. The results revealed that Fe(II) supply promoted IP formation under Sb(III) stress. However, the formed IP facilitated rather than hindered the uptake of Sb by rice roots. In contrast, the combined application of Fe(II) and Bacillus sp. S3 effectively alleviated Sb(III) toxicity in rice, resulting in improved rice growth and photosynthesis, reduced oxidative stress levels, enhanced antioxidant systems, and restricted Sb uptake and translocation. Despite the ability of Bacillus sp. S3 to oxidize Fe(II), bacterial inoculation inhibited the formation of IP, resulting in a reduction in Sb absorption on IP and uptake into the roots. Additionally, the bacterial inoculum enhanced the transformation of Sb(III) to less toxic Sb(V) in the culture solution, further influencing the adsorption of Sb onto IP. These findings highlight the potential of combining microbial Sb oxidation and IP as an effective strategy for minimizing Sb toxicity in sustainable rice production systems.
Collapse
Affiliation(s)
- Jiaxing Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Ying Jiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Maodi Ran
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
13
|
Lu Y, Peng F, Wang Y, Yang Z, Li H. Selenium increases antimony uptake in ramie (Boehmeria nivea L.) by enhancing the physiological, antioxidative, and ionomic mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120694. [PMID: 38522271 DOI: 10.1016/j.jenvman.2024.120694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 03/26/2024]
Abstract
Ramie (Boehmeria nivea L.) is a promising phytoremediation candidate due to its high tolerance and enrichment capacity for antimony (Sb). However, challenges arise as Sb accumulated mainly in roots, complicating soil extraction. Under severe Sb contamination, the growth of ramie may be inhibited. Strategies are needed to enhance Sb accumulation in ramie's aboveground parts and improve tolerance to Sb stress. Considering the beneficial effects of selenium (Se) on plant growth and enhancing resistance to abiotic stresses, this study aimed to investigate the potential use of Se in enhancing Sb uptake by ramie. We investigated the effects of Se (0.5, 1, 2, 5, or 10 μM) on ramie growth, Sb uptake and speciation, antioxidant responses, and ionomic profiling in ramie under 10 mg/L of SbIII or antimonate (SbV) stresses. Results revealed that the addition of 0.5 μM Se significantly increased shoot biomass by 75.73% under SbIII stress but showed minimal effects on shoot and root length in both SbIII and SbV treatments. Under SbIII stress, 2 μM Se significantly enhanced Sb concentrations by 48.42% in roots and 62.88% in leaves. In the case of SbV exposure, 10 μM Se increased Sb content in roots by 42.57%, and 1 μM Se led to a 91.74% increase in leaves. The speciation analysis suggested that Se promoted the oxidation of SbIII to less toxic SbV to mitigate Sb toxicity. Additionally, Se addition effectively minimized the excess reactive oxygen species produced by Sb exposure, with the lowest malondialdehyde (MDA) content at 0.5 μM Se under SbIII and 2 μM Se under SbV, by activating antioxidant enzymes including superoxide dismutase, catalase, peroxidase, and glutathione peroxidase. Ionomic analysis revealed that Se helped in maintaining the homeostasis of certain nutrient elements, including magnesium, potassium (K), calcium (Ca), iron (Fe), and copper (Cu) in the SbIII-treated roots and K and manganese (Mg) in the SbV-treated roots. The results suggest that low concentrations of Se can be employed to enhance the phytoremediation of Sb-contaminated soils using ramie.
Collapse
Affiliation(s)
- Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Yingyang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China.
| |
Collapse
|
14
|
Ma C, Bai D, Wu C, Li Y, Wang H. The uptake, transportation, and chemical speciation of Sb(III) and Sb(V) by wetland plants Arundinoideae (Phragmites australis) and Potamogetonaceae (Potamogeton crispus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170606. [PMID: 38316307 DOI: 10.1016/j.scitotenv.2024.170606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Antimony (Sb) is increasingly released and poses a risk to the environment and human health. Antimonite (Sb(III)) oxidation can decrease Sb toxicity, but the current knowledge regarding the effects of Sb(III) and antimonate (Sb(V)) exposure is limited to wetland plants, especially the Sb speciation in plants. In this study, Phragmites australis and Potamogeton crispus were exposed to 10 and 30 mg/L Sb(III) or Sb(V) for 20 days. The total concentration, subcellular distribution, and concentration in the iron plaque of Sb were determined. The Sb speciation in plants was analyzed by HPLC-ICP-MS. It illustrated that Sb(III) exposure led to more Sb accumulation in plants than Sb(V) treatments, with the highest Sb concentration of 405.35 and 3218 mg/kg in Phragmites australis and Potamogeton crispus, respectively. In the subcellular distribution of Sb, accumulation of Sb mainly occurred in cell walls and cell cytosol. In Phragmites australis, the transport factor in the Sb(V) treatments was about 3 times higher than the Sb(III) treatments, however, it was lower in the Sb(V) treatments than Sb(III) treatments for Potamogeton crispus. Sb(V) was detected in the plants of Sb(III) treatments with different Sb(V)-total Sb vitro (Phragmites australis: 34 % and, Potamogeton crispus: 15 %), moreover, Sb(V) was also detected in the nutrient solution of Sb(III) treatments. Antimony exposure caused a reduction of the iron plaque formation, at the same time, the root aerenchyma formation was disrupted, and this phenomenon is more pronounced in the Sb(III) treatments. Moreover, the iron plaque has a higher sorption potential to Sb under Sb(III) exposure than that under Sb(V) exposure. The results can fill the gap for antinomy speciation in wetland plants and expand the current knowledge regarding the Sb translocation in wetland systems.
Collapse
Affiliation(s)
- Congli Ma
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Dongju Bai
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Chenle Wu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Yadong Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Xiongan New Area, Hebei University, Baoding 071002, China.
| |
Collapse
|
15
|
Espinosa-Vellarino FL, Garrido I, Casimiro I, Silva AC, Espinosa F, Ortega A. Enzymes Involved in Antioxidant and Detoxification Processes Present Changes in the Expression Levels of Their Coding Genes under the Stress Caused by the Presence of Antimony in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:609. [PMID: 38475456 DOI: 10.3390/plants13050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Currently, there is an increasing presence of heavy metals and metalloids in soils and water due to anthropogenic activities. However, the biggest problem caused by this increase is the difficulty in recycling these elements and their high permanence in soils. There are plants with great capacity to assimilate these elements or make them less accessible to other organisms. We analyzed the behavior of Solanum lycopersicum L., a crop with great agronomic interest, under the stress caused by antimony (Sb). We evaluated the antioxidant response throughout different exposure times to the metalloid. Our results showed that the enzymes involved in the AsA-GSH cycle show changes in their expression level under the stress caused by Sb but could not find a relationship between the NITROSOGLUTATHIONE REDUCTASE (GSNOR) expression data and nitric oxide (NO) content in tomato roots exposed to Sb. We hypothesize that a better understanding of how these enzymes work could be key to develop more tolerant varieties to this kind of abiotic stress and could explain a greater or lesser phytoremediation capacity. Moreover, we deepened our knowledge about Glutathione S-transferase (GST) and Glutathione Reductase (GR) due to their involvement in the elimination of the xenobiotic component.
Collapse
Affiliation(s)
- Francisco Luis Espinosa-Vellarino
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Inmaculada Garrido
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Ilda Casimiro
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Ana Cláudia Silva
- Centro Tecnológico Nacional Agroalimentario "Extremadura" (CTAEX), Ctra. Villafranco-Balboa 1.2, 06195 Badajoz, Spain
| | - Francisco Espinosa
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Alfonso Ortega
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
16
|
Bożym M, Rybak J. In vitro chronic phytotoxicity of heavy metals and metalloids to Lepidium sativum (garden cress). ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:94-103. [PMID: 38227083 DOI: 10.1007/s10646-024-02729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
The paper presents the results of studies on the influence of selected concentrations (10-100 mg L-1) of heavy metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Zn) and metalloids (As, Sb, Se) on the germination and root elongation of garden cress (Lepidium sativum L). There are not many studies on phytotoxicity of heavy metals and metalloids with the complex use of single plant species so far. On the basis of the germination index (GI) and inhibition concentration IC50, the following order of phytotoxicity of the tested elements was determined: Se> As> Hg> Sb > Mo > Cd> Co > Zn > Ni. The other metals showed no phytotoxicity or even stimulating effect. In our study the stimulating effect of the majority of Pb concentrations and the lowest concentrations of Cd and Hg has been revealed. These metals do not play any role in living organisms, however some authors confirm their stimulating effect on plants at low concentrations. Toxic concentration of metals and metalloids calculated as IC50 are lower than the concentration calculated as GI (not phytotoxic). It is well known that seeds are more independent and tolerant to toxicants when they contain reserve substances which are used during the germination period. On the basis of conducted research, high tolerance of L. sativum to heavy metals and metalloids was found, which may indicate its usefulness for phytotoxicity assessment of leachate from contaminated soil or waste (e.g. foundry waste) and its application for bioremediation to manage heavy metal pollution of soils or foundry wastes containing heavy metals and metalloids. The understanding of heavy metal and metalloids toxicity will facilitate bioremediation.
Collapse
Affiliation(s)
- Marta Bożym
- Opole University of Technology, Prószkowska 76, 45-271, Opole, Poland
| | - Justyna Rybak
- Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50- 370, Wrocław, Poland.
| |
Collapse
|
17
|
Seridou P, Fyntrilakis K, Kyritsi S, Syranidou E, Kalogerakis N. Effect of endophytic bacteria on the phytoremediation potential of halophyte Tamarix smyrnensis for Sb-contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:964-974. [PMID: 38038643 DOI: 10.1080/15226514.2023.2288144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Phytoremediation, including bacteria-assisted phytoremediation, presents a promising technology for treating shooting range soils contaminated with toxic metalloids. In this study, a pot experiment was performed using the halophyte Tamarix smyrnensis and soil collected from a shooting range and artificially spiked at two different antimonite (Sb(III)) concentrations (50 mg/kg and 250 mg/kg) with the aim to explore the Sb phytoremediation of the halophyte. The effect of salt (0.3%) and Mn addition (300 ppm) on its remediation capacity was also investigated. Moreover, the root endophytic community of the halophyte was found able to remove Sb(III) and was periodically inoculated to the plants. The consortium application increased the Sb bioavailable fraction in the soil and enhanced the Sb accumulation in root and aerial parts (up to 50% and 55% respectively at high Sb(III) concentration) compared to the uninoculated plants. Moreover, the presence of Mn increased the translocation factor (21% increase for inoculated and 46% increase for uninoculated plants) while lower TF was observed at high Sb concentrations (0,2 and 0,07 was the lowest value at low and high Sb treatments respectively). The addition of salt, Mn and root endophytic bacteria aided the halophyte to cope with elevated Sb concentrations. The total chlorophyll concentration was higher in inoculated plants compared to the uninoculated ones in all treatments, implying the positive effects of endophytic inoculation. The halophyte T. smyrnensis with the aid of endophytic community presents a promising alternative for remediating shooting range soils especially in areas impacted by salinity.
Collapse
Affiliation(s)
- Petroula Seridou
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| | | | - Sofia Kyritsi
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| | - Evdokia Syranidou
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
- Institute of Geoenergy, Foundation for Research and Technology - Hellas (FORTH), Chania, Greece
| |
Collapse
|
18
|
Tang H, Hassan MU, Nawaz M, Yang W, Liu Y, Yang B. A review on sources of soil antimony pollution and recent progress on remediation of antimony polluted soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115583. [PMID: 37862748 DOI: 10.1016/j.ecoenv.2023.115583] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Antimony (Sb) is a serious toxic and non-essential metalloid for animals, humans, and plants. The rapid increase in anthropogenic inputs from mining and industrial activities, vehicle emissions, and shoot activity increased the Sb concentration in the environment, which has become a serious concern across the globe. Hence, remediation of Sb-contaminated soils needs serious attention to provide safe and healthy foods to humans. Different techniques, including biochar (BC), compost, manures, plant additives, phyto-hormones, nano-particles (NPs), organic acids (OA), silicon (Si), microbial remediation techniques, and phytoremediation are being used globally to remediate the Sb polluted soils. In the present review, we described sources of soil Sb pollution, the environmental impact of antimony pollution, the multi-faceted nature of antimony pollution, recent progress in remediation techniques, and recommendations for the remediation of soil Sb-pollution. We also discussed the success stories and potential of different practices to remediate Sb-polluted soils. In particular, we discussed the various mechanisms, including bio-sorption, bio-accumulation, complexation, and electrostatic attraction, that can reduce the toxicity of Sb by converting Sb-V into Sb-III. Additionally, we also identified the research gaps that need to be filled in future studies. Therefore, the current review will help to develop appropriate and innovative strategies to limit Sb bioavailability and toxicity and sustainably manage Sb polluted soils hence reducing the toxic effects of Sb on the environment and human health.
Collapse
Affiliation(s)
- Haiying Tang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Muhammad Umair Hassan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mohsin Nawaz
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenting Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ying Liu
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Binjuan Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
19
|
Lu Y, Peng F, Wang Y, Li H, Yang Z. Effects of Transporter Inhibitors and Chemical Analogs on the Uptake of Antimonite and Antimonate by Boehmeria nivea L. TOXICS 2023; 11:860. [PMID: 37888710 PMCID: PMC10611037 DOI: 10.3390/toxics11100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Antimony (Sb) is a non-essential metalloid that can be taken up by plants from contaminated soils and thus enter the food chain and threaten human health. Boehmeria nivea L. (ramie) is a promising phytoremediation plant for Sb-polluted soils. However, the mechanisms of antimonite (SbIII) and antimonate (SbV) uptake by ramie remain unclear. In this study, a hydroponic system was established to investigate how different substances affect the uptake of SbIII or SbV by ramie, including an energy inhibitor (malonic acid), an aquaglyceroporin inhibitor (silver nitrate), an SbV analog (phosphate-PV), and SbIII analogs (arsenite-AsIII, glycerol, silicic acid-Si, and glucose). The results indicated that ramie primarily transported Sb by increasing the Sb concentration in the bleeding sap, rather than increasing the weight of the bleeding sap. After 16 h of Sb exposure, the absolute amount of transported Sb from the roots to the aboveground parts was 1.90 times higher under SbIII than under SbV. The addition of malonic acid significantly inhibited the uptake of SbV but had limited effects on SbIII, indicating that SbV uptake was energy dependent. PV addition significantly reduced SbV uptake, while the addition of AsIII, glycerol, and Si obviously inhibited SbIII uptake. This suggested that the uptake of SbV might be via low-affinity P transporters and SbIII might use aquaglyceroporins. These findings deepen the understanding of Sb uptake pathways in ramie, contribute to a better comprehension of Sb toxicity mechanisms in ramie, and establish a foundation for identifying the most effective Sb uptake pathways, which could further improve the efficiency of phytoremediation of Sb-polluted soils.
Collapse
Affiliation(s)
- Yi Lu
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, China
| | - Fangyuan Peng
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, China
| | - Yingyang Wang
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, China
| | - Haipu Li
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, China
| | - Zhaoguang Yang
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, China
| |
Collapse
|
20
|
Lu Y, Wu J, Li J. The alleviating effects and underlying mechanisms of exogenous selenium on both Sb(III) and Sb(V) toxicity in rice seedlings (Oryza sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89927-89941. [PMID: 37460885 DOI: 10.1007/s11356-023-28631-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/02/2023] [Indexed: 08/11/2023]
Abstract
Selenium (Se) has been used to detoxify various heavy metals in plants. However, the effects and underlying mechanisms of exogenous Se application on the toxicity of antimonite [Sb(III)] and antimonate [Sb(V)] in crops are still poorly understood. Therefore, the potential alleviating roles of Se on the plant growth, antioxidant system, uptake and subcellular distribution of Sb, and expression of Sb-related genes were comprehensively investigated in rice seedlings (Oryza sativa L.) under both Sb(III) and Sb(V) stress conditions. The results showed that high concentrations of Sb(III) (100 µM) and Sb(V) (300 µM) caused a significant decrease in plant growth parameters, photosynthetic pigments and relative water content in rice seedlings. In contrast, the addition of Se (20 or 2 µM) improved rice growth, decreased Sb accumulation, and reduced oxidative stress in rice seedlings when exposed to 100 µM Sb(III) and 300 µM Sb(V), respectively. Furthermore, Se application could effectively improve the physiological adaptability of rice seedlings under Sb(III) and Sb(V) stress by regulating enzymatic and non-enzymatic antioxidant systems, Sb subcellular distribution and transcription levels of Sb-related genes, including in antioxidant response (OsCuZnSOD2, OsCATA and OsGSH1), detoxification (OsPCS1, OsPCS2 and OsABCC1) and Sb transport and sequestration (OsLsi1 and OsWAK11). Moreover, we also discovered that the mitigation effect of Se was dose-dependent and depended on Sb valence states. Thus, these findings contribute to our understanding of the mechanisms underlying Se-Sb antagonism in rice, offering a potentially useful method for producing both safe and Se-rich crops.
Collapse
Affiliation(s)
- Yongqing Lu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Jiaxing Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
21
|
Lu Y, Zhang Z, Wang Y, Peng F, Yang Z, Li H. Uptake, tolerance, and detoxification mechanisms of antimonite and antimonate in Boehmeria nivea L. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117504. [PMID: 36801690 DOI: 10.1016/j.jenvman.2023.117504] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Boehmeria nivea L. (ramie) is a promising phytoremediation plant for antimony (Sb)-contaminated soils. However, the uptake, tolerance, and detoxification mechanisms of ramie to Sb, which are the basis for finding efficient phytoremediation strategies, remain unclear. In the present study, ramie was exposed to 0, 1, 10, 50, 100, and 200 mg/L of antimonite (Sb(III)) or antimonate (Sb(V)) for 14 days in hydroponic culture. The Sb concentration, speciation, subcellular distribution, and antioxidant and ionomic responses in ramie were investigated. The results illustrated that ramie was more effective in the uptake of Sb(III) than Sb(V). Most of the Sb accumulated in ramie roots, with the highest level reaching 7883.58 mg/kg. Sb(V) was the predominant species in leaves, with 80.77-96.38% and 100% in the Sb(III) and Sb(V) treatments, respectively. Immobilization of Sb on the cell wall and leaf cytosol was the primary mechanism of accumulation. Superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) contributed significantly to root defense against Sb(III), while CAT and glutathione peroxidase (GPX) were the major antioxidants in leaves. CAT and POD played crucial roles in the defense against Sb(V). B, Ca, K, Mg, and Mn in Sb(V)-treated leaves and K and Cu in Sb(III)-treated leaves may be related to the biological processes of Sb toxicity mitigation. This study is the first to investigate the ionomic responses of plants toward Sb and could provide valuable information for the phytoremediation of Sb-polluted soils.
Collapse
Affiliation(s)
- Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Zhaoxue Zhang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China; Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Yingyang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China.
| |
Collapse
|
22
|
He SX, Peng YJ, Chen JY, Liu CJ, Cao Y, Li W, Ma LQ. Antimony uptake and speciation, and associated mechanisms in two As-hyperaccumulators Pteris vittata and Pteris cretica. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131607. [PMID: 37182466 DOI: 10.1016/j.jhazmat.2023.131607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
The behaviors of antimony (Sb) and arsenic (As) in plants are different, though they are chemical analogs. Here, we examined the Sb uptake and speciation in two As-hyperaccumulators P. vittata and P. cretica, which were exposed to 0.5 or 5 mg L-1 antimonate (SbV) or antimonite (SbIII) under hydroponics for 7 d. Both plants grew better under Sb exposure, especially for P. cretica. The biomass of P. cretica roots increased by 29-46% after exposing to SbV, possibly due to increased S. Further, the Sb content in P. vittata was 17-93% greater than P. cretica, with 2-3 times more SbIII than SbV in both plants and > 92% Sb being concentrated in the roots, showing limited translocation. Under SbV exposure, SbV was dominant in P. vittata roots at 86-94%, while SbIII was predominant in P. cretica roots at 36-95%. P. cretica's stronger reducing ability than P. vittata may be due to arsenate reductases HAC1 and ACR2, which were upregulated in both plants. In short, while effective in Sb accumulation, it is mostly concentrated in the roots for both plants. The differences in their accumulation and speciation may help to better understand Sb behaviors in other plants.
Collapse
Affiliation(s)
- Si-Xue He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - You-Jing Peng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jia-Yi Chen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yue Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Pleijel H, Klingberg J, Strandberg B, Sjöman H, Wallin G. Accumulation of antimony and lead in leaves and needles of trees: The role of traffic emissions. Heliyon 2023; 9:e13548. [PMID: 36846706 PMCID: PMC9947302 DOI: 10.1016/j.heliyon.2023.e13548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Antimony (Sb) is a toxic metalloid, which has been increasingly used in the brake lining of vehicles, and increased concentrations have been found in soils near abundant traffic. However, since very few investigations of Sb accumulation in urban vegetation have been undertaken there exists a knowledge gap. We studied the concentrations of Sb in leaves and needles of trees in the Gothenburg City area, Sweden. In addition, lead (Pb), also associated with traffic, was investigated. Sb and Pb concentrations of Quercus palustris leaves at seven sites with contrasting traffic intensity varied substantially, correlated with the traffic-related PAH (polycyclic aromatic hydrocarbon) air pollution at the sites and increased during the growing season. Sb but not Pb concentrations were significantly higher in needles of Picea abies and Pinus sylvestris near major roads compared to sites at larger distances. In Pinus nigra needles at two urban streets both Sb and Pb were higher compared to an urban nature park environment, emphasising the role of traffic emissions for these elements. A continued accumulation of Sb and Pb in three years old needles of Pinus nigra, two years old needles of Pinus sylvestris and eleven years old needles of Picea abies was observed. Our data suggest a pronounced link between traffic pollution and Sb accumulation in leaves and needles, where the particles carrying Sb seem not to be transported very far from the source. We also conclude that there exists a strong potential for Sb and Pb bioaccumulation over time in leaves and needles. Implications of these findings are that increased concentrations of toxic Sb and Pb are likely to prevail in environments with high traffic intensity and that Sb can enter the ecological food chain by accumulation in leaves and needles, which is important for the biogeochemical cycling.
Collapse
Affiliation(s)
- Håkan Pleijel
- University of Gothenburg, Biological and Environmental Sciences, P.O. Box 461, SE-40530, Gothenburg, Sweden,Corresponding author.
| | - Jenny Klingberg
- Gothenburg Botanical Garden, Carl Skottsbergs gata 22A, SE-41319, Gothenburg, Sweden,Gothenburg Global Biodiversity Centre, Carl Skottsbergs gata 22B, SE-41319, Gothenburg, Sweden
| | - Bo Strandberg
- Lund University, Division of Occupational and Environmental Medicine, SE-22100, Lund, Sweden,Department of Occupational and Environmental Medicine, Region Skåne, SE-22381 Lund, Sweden
| | - Henrik Sjöman
- Gothenburg Botanical Garden, Carl Skottsbergs gata 22A, SE-41319, Gothenburg, Sweden,Gothenburg Global Biodiversity Centre, Carl Skottsbergs gata 22B, SE-41319, Gothenburg, Sweden,Swedish University of Agricultural Science, Department of Landscape Architecture, Planning and Management, 23053 Alnarp, Sweden
| | - Göran Wallin
- University of Gothenburg, Biological and Environmental Sciences, P.O. Box 461, SE-40530, Gothenburg, Sweden,Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, United Kingdom
| |
Collapse
|
24
|
Labancová E, Vivodová Z, Šípošová K, Kollárová K. Silicon Actuates Poplar Calli Tolerance after Longer Exposure to Antimony. PLANTS (BASEL, SWITZERLAND) 2023; 12:689. [PMID: 36771773 PMCID: PMC9919072 DOI: 10.3390/plants12030689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The presence of antimony (Sb) in high concentrations in the environment is recognized as an emerging problem worldwide. The toxicity of Sb in plant tissues is known; however, new methods of plant tolerance improvement must be addressed. Here, poplar callus (Populus alba L. var. pyramidallis) exposed to Sb(III) in 0.2 mM concentration and/or to silicon (Si) in 5 mM concentration was cultivated in vitro to determine the impact of Sb/Si interaction in the tissue. The Sb and Si uptake, growth, the activity of superoxide dismutase (SOD), catalase (CAT), guaiacol-peroxidase (G-POX), nutrient concentrations, and the concentrations of photosynthetic pigments were investigated. To elucidate the action of Si during the Sb-induced stress, the impact of short and long cultivations was determined. Silicon decreased the accumulation of Sb in the calli, regardless of the length of the cultivation (by approx. 34%). Antimony lowered the callus biomass (by approx. 37%) and decreased the concentrations of photosynthetic pigments (up to 78.5%) and nutrients in the tissue (up to 21.7%). Silicon supported the plant tolerance to Sb via the modification of antioxidant enzyme activity, which resulted in higher biomass production (increased by approx. 35%) and a higher uptake of nutrients from the media (increased by approx. 10%). Silicon aided the development of Sb-tolerance over the longer cultivation period. These results are key in understanding the action of Si-developed tolerance against metalloids.
Collapse
|
25
|
Pervaiz A, Zhong Q, Rehman SAU, Ma C, Jiao Y, He M. Immobilization and phytoavailability of antimony (Sb) in contaminated agricultural soils amended with composted manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159213. [PMID: 36206908 DOI: 10.1016/j.scitotenv.2022.159213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/14/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
A pot experiment was conducted to assess the Sb phytoavailability and its accumulation in the wheat before and after remediation, using the composted manure of poultry and sheep, and a chemical amendment (limestone). The present study evaluates the effects of amendments on Sb bioavailability in different soils and investigates the relationship between bioaccumulated Sb and its availability in spiked soils using two different single extraction methods. Furthermore, a sequential extraction procedure was used to measure different fractions of Sb in soil, in order to assess the effect of remediation. The results revealed that bioavailability of Sb were highly affected by the three soil amendments on plant height, uptake of Sb by wheat. Poultry compost (Pc) and Sheep compost (Sc) increased the residual fraction of Sb in soils, and decreased the Sb uptake by wheat, enhanced the height, biomass and dry yield of the wheat crop. While the residual fraction of Sb in soils didn't obviously increased by adding Chemical (limestone) in the four soils. It is concluded that uptake of Sb in the soils significantly decreased with the addition of amended materials in the Sb spiked soils, and poultry compost is the most effective. In the lower level of Sb contaminated soils remediated by poultry compost (Pc), the uptake of Sb in wheat decreased 63.1-74.4 %, 68.7-79.0 %, 68.9-76.9 % and 66.3-82.6 % in S1, S2, S3, S4, compared to the contaminated soils without amendments, respectively.
Collapse
Affiliation(s)
- Aneesah Pervaiz
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Qianyun Zhong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China; Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China.
| | - Syed Aziz Ur Rehman
- Department of Environmental Sciences, University of Veterinary and Animal Sciences, 54000, Lahore, Punjab, Pakistan
| | - Congli Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Yonghong Jiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| |
Collapse
|
26
|
Duan R, Lin Y, Yang L, Zhang Y, Hu W, Du Y, Huang M. Effects of antimony stress on growth, structure, enzyme activity and metabolism of Nipponbare rice (Oryza sativa L.) roots. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114409. [PMID: 36508805 DOI: 10.1016/j.ecoenv.2022.114409] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Some antimony (Sb) contaminated areas are used for rice cultivation in response to economic demands. However, little is known about the effects of Sb stress on the growth and metabolism of rice roots. Thus, a hydroponic experiment was carried out on the growth, root anatomy, enzyme activity, and metabolism of Nipponbare rice (Oryza sativa L. ssp. japonica cv. Nipponbare) under varying levels of Sb (III) stress (0 mg L-1, 10 mg L-1, and 50 mg L-1). With the increase of Sb concentration, rice root length and root fresh weight declined by 67.8 % and 90.5 % for 10 mg L-1 Sb stress and 94.1 % and 98.4 % for 50 mg L-1 Sb stress, respectively. Anatomical analysis of cross-sections of Sb-treated roots showed an increase in cell wall thickness and an increase in the number of cell mitochondria. The 10 mg L-1 and 50 mg L-1 Sb stress increased the activity of enzyme superoxide dismutase (SOD) in root cells by 1.94 and 2.40 times, respectively. Compared to the control, 10 mg L-1 Sb treatment increased the activity of catalase (CAT) and peroxidase (POD), as well as the concentrations of antioxidant glutathione (GSH) in the root by 1.46, 1.38, and 0.52 times, respectively. However, 50 mg L-1 Sb treatment significantly decreased the activity or content of CAT, POD and GSH by 28.1 %, 13.5 % and 28.2 %, respectively. Nontargeted LC/MS-based metabolomics analysis identified 23 and 13 significantly differential metabolites in rice roots exposed to 10 mg L-1 and 50 mg L-1 Sb, respectively, compared to the control. These differential metabolites were involved in four main metabolic pathways including the tricarboxylic acid cycle (TCA cycle), butanoate metabolism, alanine, aspartate and glutamate metabolism, and alpha-linolenic acid metabolism. Taken together, these findings indicate that Sb stress destroys the structure of rice roots, changes the activity of enzymes, and affects the metabolic pathway, thereby reducing the growth of rice roots and leading to toxicity.
Collapse
Affiliation(s)
- Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Yuxiang Lin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Li Yang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Yaqi Zhang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Wei Hu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Yihuan Du
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China.
| |
Collapse
|
27
|
Tang H, Meng G, Xiang J, Mahmood A, Xiang G, SanaUllah, Liu Y, Huang G. Toxic effects of antimony in plants: Reasons and remediation possibilities-A review and future prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:1011945. [PMID: 36388491 PMCID: PMC9643749 DOI: 10.3389/fpls.2022.1011945] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 09/06/2023]
Abstract
Antimony (Sb) is a dangerous heavy metal (HM) that poses a serious threat to the health of plants, animals, and humans. Leaching from mining wastes and weathering of sulfide ores are the major ways of introducing Sb into our soils and aquatic environments. Crops grown on Sb-contaminated soils are a major reason of Sb entry into humans by eating Sb-contaminated foods. Sb toxicity in plants reduces seed germination and root and shoot growth, and causes substantial reduction in plant growth and final productions. Moreover, Sb also induces chlorosis, causes damage to the photosynthetic apparatus, reduces membrane stability and nutrient uptake, and increases oxidative stress by increasing reactive oxygen species, thereby reducing plant growth and development. The threats induced by Sb toxicity and Sb concentration in soils are increasing day by day, which would be a major risk to crop production and human health. Additionally, the lack of appropriate measures regarding the remediation of Sb-contaminated soils will further intensify the current situation. Therefore, future research must be aimed at devising appropriate measures to mitigate the hazardous impacts of Sb toxicity on plants, humans, and the environment and to prevent the entry of Sb into our ecosystem. We have also described the various strategies to remediate Sb-contaminated soils to prevent its entry into the human food chain. Additionally, we also identified the various research gaps that must be addressed in future research programs. We believe that this review will help readers to develop the appropriate measures to minimize the toxic effects of Sb and its entry into our ecosystem. This will ensure the proper food production on Sb-contaminated soils.
Collapse
Affiliation(s)
- Haiying Tang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Guiyuan Meng
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Junqing Xiang
- Loudi Liancheng Hi-Tech Agricultural Development Co. LTD, Loudi, China
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Guohong Xiang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - SanaUllah
- Agronomic Research Station Karor, Layyah, Pakistan
| | - Ying Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Guoqin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetics Breeding (Jiangxi Agricultural University), Ministry of Education, Nanchang, China
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
28
|
Shtangeeva I. Accumulation of scandium, cerium, europium, hafnium, and tantalum in oats and barley grown in soils that differ in their characteristics and level of contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40839-40853. [PMID: 35083671 DOI: 10.1007/s11356-021-18247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Up to now, information about biogeochemistry of many trace elements is scarce. Meanwhile, all the elements are always present in soil and plants. It may be suggested that the trace elements also play certain role in the biogeochemical processes. The aim of the research was to study bioaccumulation of poorly investigated trace elements (scandium, cerium, europium, hafnium, and tantalum) and well-known elements (chromium, iron, cobalt, zinc, and arsenic) in two crops, oats and barley, and examine how these elements interact with each other as they absorbed by plants. The plants were grown in the soils that differed in their parameters and in level of contamination. Although oats and barley are botanically similar and were grown under the same conditions, the plants differed in the ability to accumulate many elements. The uptake of the elements by the plants also depended on type of soil. For example, concentrations of Cr, Fe, Co, As, Sc, Ce, Eu, Hf, and Ta in roots of the oats grown in slightly contaminated soil were much higher as compared to the concentrations of the elements in roots of the barley grown in the same soil. In leaves of the oats grown in moderately contaminated soil, the concentrations of Cr, As, Ce, Eu, and Ta were statistically significantly higher than those in leaves of the barley grown in the soil. In soils and in plants, relationships between elements were both similar and different. A statistically significant correlation was found between the poorly investigated trace elements and well-studied elements.
Collapse
Affiliation(s)
- Irina Shtangeeva
- Institute of Earth Sciences, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
29
|
Huang H, Fan L, Zhao Y, Jin Q, Yang G, Zhao D, Xu Z. Integrating Broussonetia papyrifera and Two Bacillus Species to Repair Soil Antimony Pollutions. Front Microbiol 2022; 13:871581. [PMID: 35592006 PMCID: PMC9111523 DOI: 10.3389/fmicb.2022.871581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/05/2022] [Indexed: 12/02/2022] Open
Abstract
Heavy metal resistant bacteria play an important role in the metal biogeochemical cycle in soil, but the benefits of microbial oxidation for plants and soil have not been well-documented. The purpose of this study was to explore the contribution of two Bacillus spp. to alleviate the antimony (Sb) toxicity in plants, and, then, to propose a bioremediation method for Sb contaminated soil, which is characterized by environmental protection, high efficiency, and low cost. This study explored the effects of Bacillus cereus HM5 and Bacillus thuringiensis HM7 inoculation on Broussonetia papyrifera and soil were evaluated under controlled Sb stressed conditions (0 and 100 mmol/L, antimony slag) through a pot experiment. The results show that the total root length, root volume, tips, forks, crossings, and root activities of B. papyrifera with inoculation are higher than those of the control group, and the strains promote the plant absorption of Sb from the soil environment. Especially in the antimony slag treatment group, B. cereus HM5 had the most significant effect on root promotion and promoting the absorption of Sb by B. papyrifera. Compared with the control group, the total root length, root volume, tips, forks, crossings, and root activities increased by 64.54, 70.06, 70.04, 78.15, 97.73, and 12.95%, respectively. The absorption of Sb by root, stem, and leaf increased by 265.12, 250.00, and 211.54%, compared with the control group, respectively. Besides, both B. cereus HM5 and B. thuringiensis HM7 reduce the content of malondialdehyde, proline, and soluble sugars in plant leaves, keeping the antioxidant enzyme activity of B. papyrifera at a low level, and alleviating lipid peroxidation. Principal component analysis (PCA) shows that both B. cereus HM5 and B. thuringiensis HM7 are beneficial to the maintenance of plant root functions and the improvement of the soil environment, thereby alleviating the toxicity of Sb. Therefore, B. cereus HM5 and B. thuringiensis HM7 in phytoremediation with B. papyrifera is a promising inoculant used for bacteria-assisted phytoremediation on Sb contaminated sites.
Collapse
Affiliation(s)
- Huimin Huang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
- Changsha Environmental Protection College, Changsha, China
| | - Li Fan
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Qi Jin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Guiyan Yang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Xianyang, China
| | - Di Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Zhenggang Xu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Xianyang, China
| |
Collapse
|
30
|
Handa N, Gupta P, Khanna K, Kohli SK, Bhardwaj R, Alam P, Ahmad P. Aquaporin-mediated transport: Insights into metalloid trafficking. PHYSIOLOGIA PLANTARUM 2022; 174:e13687. [PMID: 35514154 DOI: 10.1111/ppl.13687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/23/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Metalloids in plants have diverse physiological effects. From being essential to beneficial to toxic, they have significant effects on many physiological processes, influencing crop yield and quality. Aquaporins are a group of membrane channels that have several physiological substrates along with water. Metalloids have emerged as one of their important substrates and they are found to have a substantial role in regulating plant metalloid homeostasis. The present review comprehensively details the multiple isoforms of aquaporins having specificity for metalloids and being responsible for their influx, distribution or efflux. In addition, it also highlights the usage of aquaporin-mediated transport as a selection marker in toxic screens and as tracer elements for closely related metalloids. Therefore, aquaporins, with their imperative contribution to the regulation of plant growth, development and physiological processes, need more research to unravel the metalloid trafficking mechanisms and their future applications.
Collapse
Affiliation(s)
- Neha Handa
- Plant Stress Physiology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pawan Gupta
- Department of Pharmacology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, India
| | - Kanika Khanna
- Plant Stress Physiology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhmeen Kaur Kohli
- Plant Stress Physiology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Renu Bhardwaj
- Plant Stress Physiology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, GDC Pulwama, Pulwama, Jammu and Kashmir, India
| |
Collapse
|
31
|
Álvarez-Ayuso E, Murciego A, Rodríguez MA, Fernández-Pozo L, Cabezas J, Naranjo-Gómez JM, Mosser-Ruck R. Antimony distribution and mobility in different types of waste derived from the exploitation of stibnite ore deposits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151566. [PMID: 34758344 DOI: 10.1016/j.scitotenv.2021.151566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Wastes derived from the exploitation of stibnite ore deposits were studied to determine their mineralogical, chemical, and environmental characteristics and establish the Sb distribution and the current and long-term risks of Sb mobilization. Representative samples of mine waste rocks, mine tailings, and smelting waste were studied by X-ray powder diffraction, polarized light microscopy, electron microprobe analysis, and digestion, leaching, and extraction procedures. The main Sb-bearing minerals and phases identified in the smelting waste were natrojarosite, iron (oxyhydr)oxides, mixtures of iron and antimony (oxyhydr)oxides, and tripuhyite; those in the mine tailings and mine waste rocks were iron (oxyhydr)oxides and/or mixtures of iron and antimony (oxyhydr)oxides. Iron (oxyhydr)oxides and natrojarosite had high Sb contents, with maximum values of 16.51 and 9.63 wt% Sb2O5, respectively. All three types of waste were characterized as toxic; the mine waste rocks and mine tailings would require pretreatment to decrease their leachable Sb content before they would be acceptable at hazardous waste landfills. Relatively little of the Sb was in desorbable forms, which accounted for <0.01 and <0.8% of the total Sb content in the smelting waste and mine waste rocks/mine tailings, respectively. Under reducing conditions, further Sb mobilization from mine waste rocks and mine tailings could occur (up to 4.6 and 3.3% of the total content, respectively), considerably increasing the risk that Sb will be introduced into the surroundings. Although the smelting waste had the highest total Sb content, it showed the lowest risk of Sb release under different environmental conditions. The significant Fe levels in the smelting waste facilitated the formation of various Fe compounds that greatly decreased the Sb mobilization from these wastes.
Collapse
Affiliation(s)
- E Álvarez-Ayuso
- Department of Environmental Geochemistry, IRNASA (CSIC), C/ Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - A Murciego
- Department of Geology, Salamanca University, Plza. de los Caídos s/n, 37008 Salamanca, Spain
| | - M A Rodríguez
- Department of Environmental Resources Analysis, Extremadura University, Avda. Elvas s/n, 06071 Badajoz, Spain
| | - L Fernández-Pozo
- Department of Environmental Resources Analysis, Extremadura University, Avda. Elvas s/n, 06071 Badajoz, Spain
| | - J Cabezas
- Department of Environmental Resources Analysis, Extremadura University, Avda. Elvas s/n, 06071 Badajoz, Spain
| | - J M Naranjo-Gómez
- Agricultural School, Extremadura University, Avda. de Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - R Mosser-Ruck
- Georessources UMR 7359 CNRS-UL, Université de Lorraine, BP 70239, Vandœuvre-lès-Nancy 54506 Cedex, France
| |
Collapse
|
32
|
Chang C, Li F, Wang Q, Hu M, Du Y, Zhang X, Zhang X, Chen C, Yu HY. Bioavailability of antimony and arsenic in a flowering cabbage-soil system: Controlling factors and interactive effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152920. [PMID: 35007579 DOI: 10.1016/j.scitotenv.2022.152920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination with antimony (Sb) and arsenic (As) has become a well-recognized environmental and human health issue. Consumption of vegetables, especially leafy vegetables, is one of the most important sources of Sb and As exposure in humans. Accordingly, it is necessary to understand the behaviors of Sb and As in the vegetable-soil system. Moreover, although Sb and As are often assumed to have similar biogeochemical behavior, identified differences in the controlling factors affecting mobility and bioavailability of Sb and As in soils need further investigation. In this study, 112 pairs of soil and flowering cabbage samples were collected from typical farmland protection areas and vegetable-producing regions across the Pearl River Delta (PRD), South China. The contamination levels of Sb and As in soils and harvested cabbages across the PRD were investigated. The main factors affecting the mobility and bioavailability of Sb and As in the cabbage-soil system were disentangled using a random forest model. The contamination levels of Sb in the cabbages and soils of the PRD were generally low, but the soils were moderately polluted by As. Increased concentrations of Fe oxides could decrease Sb accumulation in cabbages but increased the mobilization of As in soils to some extent. In contrast, Al oxides contributed strongly to the mobilization of Sb and the immobilization of As. Moreover, an increased sand content promoted the mobility of Sb and As, whereas increased silt and clay contents showed inhibitory effects. The interactions of As and Sb with Fe oxides decreased the mobility of Sb but moderately increased the mobility of As in soils. Overall, the behaviors of Sb and As in the cabbage-soil system under the effect of several important environmental factors showed some differences indicating that these differences should be considered in the remediation of co-contaminated soils.
Collapse
Affiliation(s)
- Chunying Chang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong Key Laboratory of Contaminated Sited Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Min Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yanhong Du
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoqing Zhang
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, Hubei Province 430081, China
| | - Xiaolu Zhang
- Guangdong Key Laboratory of Contaminated Sited Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Chunyi Chen
- Monitoring Center of Eco-Environment of Guangdong Province, China
| | - Huan-Yun Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
33
|
Zhou M, Li X, Liu X, Mi Y, Fu Z, Zhang R, Su H, Wei Y, Liu H, Wang F. Effects of Antimony on Rice Growth and Its Existing Forms in Rice Under Arbuscular Mycorrhizal Fungi Environment. Front Microbiol 2022; 13:814323. [PMID: 35391723 PMCID: PMC8981305 DOI: 10.3389/fmicb.2022.814323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can form symbiotic relationships with most terrestrial plants and regulate the uptake and distribution of antimony (Sb) in rice. The effect of AMF on the uptake and transport of Sb in rice was observed using pot experiments in the greenhouse. The results showed that AMF inoculation increased the contact area between roots and metals by forming mycelium, and changed the pH and Eh of the root soil, leading to more Sb entering various parts of the rice, especially at an Sb concentration of 1,200 mg/kg. The increase in metal toxicity further led to a decrease in the rice chlorophyll content, which directly resulted in a 22.7% decrease in aboveground biomass, 21.7% in underground biomass, and 11.3% in grain biomass. In addition, the antioxidant enzyme results showed that inoculation of AMF decreased 22.3% in superoxide dismutase, 9.9% in catalase, and 20.7% in peroxidase compared to the non-inoculation groups, further verifying the negative synergistic effect of AMF inoculation on the uptake of Sb in rice. The present study demonstrated the effect of AMF on the uptake and transport of Sb in the soil–rice system, facilitating future research on the related mechanism in the soil–rice system under Sb stress.
Collapse
Affiliation(s)
- Min Zhou
- College of Environment, Hohai University, Nanjing, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xinru Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xuesong Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yidong Mi
- College of Environment, Hohai University, Nanjing, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhiyou Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Ruiqing Zhang
- School of Ecology and Environment, Inner Mongolla University, Hohhot, China
| | - Hailei Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yuan Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- *Correspondence: Yuan Wei,
| | - Huifang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Fanfan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- Fanfan Wang,
| |
Collapse
|
34
|
Chen X, Wang J, Pan C, Feng L, Guo Q, Chen S, Xie S. Metagenomic analysis reveals the response of microbial community in river sediment to accidental antimony contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152484. [PMID: 34923019 DOI: 10.1016/j.scitotenv.2021.152484] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The mining of deposits containing metals like antimony (Sb) causes serious environmental issues that threaten human health and ecological systems. However, information on the effect of Sb on freshwater sediment microorganisms and the mechanism of microbial Sb resistance is still very limited. This was the first attempt to explore microbial communities in river sediments impacted by accidental Sb spill. Metagenomic analysis revealed the high relative abundance of Proteobacteria and Actinobacteria in all the studied river sediments, showing their advantage in resistance to Sb pollution. Under Sb stress, microbial functions related to DNA repair and ion transport were enhanced. Increase in heavy metal resistance genes (HMRGs), particularly Sb transport-related arsB gene, was observed at Sb spill-impacted sites. HMRGs were significantly correlated with ARGs and MGEs, and the abundant MGEs at Sb spill-impacted sites might contribute to the increase in HMRGs and ARGs via horizontal gene transfer. Deinococcus, Sphingopyxis and Paracoccus were identified as potential tolerant genera under Sb pressure and might be related to the transmission of HMRGs and ARGs. This study can add new insights towards the effect of accidental metal spill on sediment microbial community.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ji Wang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Chaoyi Pan
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Lishi Feng
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Qingwei Guo
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Sili Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China.
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
35
|
Xia B, Yang Y, Li F, Liu T. Kinetics of antimony biogeochemical processes under pre-definite anaerobic and aerobic conditions in a paddy soil. J Environ Sci (China) 2022; 113:269-280. [PMID: 34963536 DOI: 10.1016/j.jes.2021.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 06/14/2023]
Abstract
While the transformation of antimony (Sb) in paddy soil has been previously investigated, the biogeochemical processes of highly chemical active Sb in the soil remain poorly understood. In addition, there is a lack of quantitative understanding of Sb transformation in soil. Therefore, in this study, the kinetics of exogenous Sb in paddy soils were investigated under anaerobic and aerobic incubation conditions. The dissolved Sb(V) and the Sb(V) extracted by diffusive gradient technique decreased under anaerobic conditions and then increased under aerobic conditions. The redox reaction of Sb occurred, and Sb bioavailability significantly decreased after 55 days of incubation. The kinetics of Fe and the scanning transmission electron microscopy analysis revealed that the Fe oxides were reduced and became dispersed under anaerobic conditions, whereas they were oxidized and re-aggregated during the aerobic stage. In addition, the redox processes of sulfur and nitrogen were detected under both anaerobic and aerobic conditions. Based on these observations, a simplified kinetic model was established to distinguish the relative contributions of the transformation processes. The bioavailability of Sb was controlled by immobilization as a result of S reduction and by mobilization as a result of Fe reductive dissolution and S oxidation, rather than the pH. These processes coupled with the redox reaction of Sb jointly resulted in the complex behavior of Sb transformation under anaerobic and aerobic conditions. The model-based method and findings of this study provide a comprehensive understanding of the Sb transformation in a complex soil biogeochemical system under changing redox conditions.
Collapse
Affiliation(s)
- Bingqing Xia
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
36
|
Fehlauer T, Collin B, Angeletti B, Santaella C, Dentant C, Chaurand P, Levard C, Gonneau C, Borschneck D, Rose J. Uptake patterns of critical metals in alpine plant species growing in an unimpaired natural site. CHEMOSPHERE 2022; 287:132315. [PMID: 34600011 DOI: 10.1016/j.chemosphere.2021.132315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/02/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
The range of metals used for industrial purposes - electrical engineering, solar panels, batteries - has increased substantially over the last twenty years. Some of these emerging metals are the subject of geopolitical conflict and are considered critical as their unique properties make them irreplaceable. Many of these elements are poorly studied and their biogeochemical cycles still raise many questions. Aim of this study is to analyse the soil-to-plant transfer of some of these chemical elements and to shed light on their uptake pathways. For this purpose, the geological site of Jas Roux (France) was chosen as this alpine site is naturally rich in critical and potentially toxic elements such as As, Sb, Ba and Tl, but nevertheless is host to a high diversity of plants. Elemental concentrations were analysed in the topsoil and in 12 selected alpine plant species sampled in situ. Statistical tools were used to detect species dependent characteristics in elemental uptake. Our analyses revealed accumulation of rare earth elements by Saxifraga paniculata, selective oxyanion absorption by Hippocrepis comosa, accumulation of Tl by Biscutella laevigata and Galium corrudifolium and an exclusion strategy in Juniperus communis. These findings advance our understanding of the environmental behaviour of critical metals and metalloids such as V, As, Y, Sb, Ce, Ba and Tl and might bare valuable information for phytoremediation applications.
Collapse
Affiliation(s)
- Till Fehlauer
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France.
| | - Blanche Collin
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Bernard Angeletti
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Catherine Santaella
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108, St-Paul-lez-Durance, France
| | - Cedric Dentant
- Parc national des Écrins, Domaine de Charance, Gap, 05000, France; Univ. Grenoble Alpes, CNRS, Sciences Po Grenoble, Pacte, Grenoble, 38000, France
| | - Perrine Chaurand
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Clement Levard
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Cedric Gonneau
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Daniel Borschneck
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Jérôme Rose
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| |
Collapse
|
37
|
Bolan N, Kumar M, Singh E, Kumar A, Singh L, Kumar S, Keerthanan S, Hoang SA, El-Naggar A, Vithanage M, Sarkar B, Wijesekara H, Diyabalanage S, Sooriyakumar P, Vinu A, Wang H, Kirkham MB, Shaheen SM, Rinklebe J, Siddique KHM. Antimony contamination and its risk management in complex environmental settings: A review. ENVIRONMENT INTERNATIONAL 2022; 158:106908. [PMID: 34619530 DOI: 10.1016/j.envint.2021.106908] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Antimony (Sb) is introduced into soils, sediments, and aquatic environments from various sources such as weathering of sulfide ores, leaching of mining wastes, and anthropogenic activities. High Sb concentrations are toxic to ecosystems and potentially to public health via the accumulation in food chain. Although Sb is poisonous and carcinogenic to humans, the exact mechanisms causing toxicity still remain unclear. Most studies concerning the remediation of soils and aquatic environments contaminated with Sb have evaluated various amendments that reduce Sb bioavailability and toxicity. However, there is no comprehensive review on the biogeochemistry and transformation of Sb related to its remediation. Therefore, the present review summarizes: (1) the sources of Sb and its geochemical distribution and speciation in soils and aquatic environments, (2) the biogeochemical processes that govern Sb mobilization, bioavailability, toxicity in soils and aquatic environments, and possible threats to human and ecosystem health, and (3) the approaches used to remediate Sb-contaminated soils and water and mitigate potential environmental and health risks. Knowledge gaps and future research needs also are discussed. The review presents up-to-date knowledge about the fate of Sb in soils and aquatic environments and contributes to an important insight into the environmental hazards of Sb. The findings from the review should help to develop innovative and appropriate technologies for controlling Sb bioavailability and toxicity and sustainably managing Sb-polluted soils and water, subsequently minimizing its environmental and human health risks.
Collapse
Affiliation(s)
- Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia.
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Ekta Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Aman Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - S Keerthanan
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Son A Hoang
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya 70140, Sri Lanka
| | - Saranga Diyabalanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Prasanthi Sooriyakumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea.
| | - Kadambot H M Siddique
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
38
|
Espinosa-Vellarino FL, Garrido I, Ortega A, Casimiro I, Espinosa F. Response to Antimony Toxicity in Dittrichia viscosa Plants: ROS, NO, H 2S, and the Antioxidant System. Antioxidants (Basel) 2021; 10:antiox10111698. [PMID: 34829569 PMCID: PMC8615290 DOI: 10.3390/antiox10111698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 11/20/2022] Open
Abstract
Dittrichia viscosa plants were grown hydroponically with different concentrations of Sb. There was preferential accumulation of Sb in roots. Fe and Cu decreased, while Mn decreased in roots but not in leaves. Chlorophyll content declined, but the carotenoid content increased, and photosynthetic efficiency was unaltered. O2●− generation increased slightly, while lipid peroxidation increased only in roots. H2O2, NO, ONOO−, S-nitrosothiols, and H2S showed significant increases, and the enzymatic antioxidant system was altered. In roots, superoxide dismutase (SOD) and monodehydroascorbate reductase (MDAR) activities declined, dehydroscorbate reductase (DHAR) rose, and ascorbate peroxidase (APX), peroxidase (POX), and glutathione reductase (GR) were unaffected. In leaves, SOD and POX increased, MDAR decreased, and APX was unaltered, while GR increased. S-nitrosoglutathione reductase (GSNOR) and l-cysteine desulfhydrilase (l-DES) increased in activity, while glutathione S-transferase (GST) decreased in leaves but was enhanced in roots. Components of the AsA/GSH cycle decreased. The great capacity of Dittrichia roots to accumulate Sb is the reason for the differing behaviour observed in the enzymatic antioxidant systems of the two organs. Sb appears to act by binding to thiol groups, which can alter free GSH content and SOD and GST activities. The coniferyl alcohol peroxidase activity increased, possibly to lignify the roots’ cell walls. Sb altered the ROS balance, especially with respect to H2O2. This led to an increase in NO and H2S acting on the antioxidant system to limit that Sb-induced redox imbalance. The interaction NO, H2S and H2O2 appears key to the response to stress induced by Sb. The interaction between ROS, NO, and H2S appears to be involved in the response to Sb.
Collapse
|
39
|
Shetty R, Vidya CSN, Weidinger M, Vaculík M. Silicon alleviates antimony phytotoxicity in giant reed (Arundo donax L.). PLANTA 2021; 254:100. [PMID: 34665350 DOI: 10.1007/s00425-021-03756-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Silicon enhances photosynthetic efficiency, biomass, and lignification of root structures possibly limiting antimony translocation and mitigating phytotoxicity in giant reed plants. Antimony (Sb) is a non-essential metalloid causing toxic effects in plants. Silicon has been reported to impart tolerance against biotic and abiotic stress in plants. Fast-growing plant, giant reed (Arundo donax L.) is a promising energy crop, can be a suitable plant for phytoremediation. However, information regarding the tolerance capacity with respect to Sb toxicity and potential of Si to mitigate the Sb phytotoxicity in giant reed are very scarce. Rhizomes of giant reed were grown for ten weeks in hydroponics exposed to Sb, Si, and their combination wherein treatment without Sb/Si served as control. Effect of these treatments on rate of net photosynthesis and photosynthetic pigments, phytoextraction ability of Sb, Si and Sb uptake, plant biomass, and lignification and suberization of roots along with localization of Sb and Si were analysed. We found that Si considerably improved the growth and biomass of giant reed under Sb toxicity. Antimony reduced the photosynthesis and decreased the content of photosynthetic pigments, which was completely alleviated by Si. Silicon amendment to Sb treated plants enhanced root lignification. Silicon enhanced lignification of root structures probably restricted the Sb translocation. However, co-localization of Sb with Si has not been observed neither at the shoot nor at the root levels. Similarly, Sb was also not detected in leaf phytoliths. These findings suggest that Si treatment promotes overall plant growth by improving photosynthetic parameters and decreasing Sb translocation from root to shoot in giant reed by improving root lignification.
Collapse
Affiliation(s)
- Rajpal Shetty
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovičova 6, 842 15, Bratislava, Slovakia.
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovakia.
| | | | - Marieluise Weidinger
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovičova 6, 842 15, Bratislava, Slovakia
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovakia
| |
Collapse
|
40
|
Kolbert Z, Ördög A. Involvement of nitric oxide (NO) in plant responses to metalloids. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126606. [PMID: 34271449 DOI: 10.1016/j.jhazmat.2021.126606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 05/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Plants respond to the limited or excess supply of metalloids, boron (B), silicon (Si), selenium (Se), arsenic (As), and antimony (Sb) via complex signaling pathways that are mainly regulated by nitric oxide (NO). The absorption of metalloids from the soil is facilitated by pathways that involve aquaporins, aquaglyceroporins, phosphate, and sulfate transporters; however, their regulation by NO is poorly understood. Using in silico software, we predicted the S-nitrosation of known metalloid transporters, proposing NO-dependent regulation of metalloid transport systems at the posttranslational level. NO intensifies the stress-mitigating effect of Si, whereas in the case of Se, As, and Sb, the accumulation of NO or reactive nitrogen species contributes to toxicity. NO promotes the beneficial effect of low Se concentrations and mitigates the damage caused by B deficiency. In addition, the exogenous application of NO donor, sodium nitroprusside, reduces B, Se, and As toxicity. The primary role of NO in metalloid stress response is to mitigate oxidative stress by activating antioxidant defense at the level of protein activity and gene expression. This review discusses the role of NO in plant responses to metalloids and suggests future research directions.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, H6726 Szeged Közép fasor 52., Hungary.
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, H6726 Szeged Közép fasor 52., Hungary
| |
Collapse
|
41
|
Shetty R, Vidya CSN, Vaculík M. Comparison of the single and combined effects of arsenic and antimony on growth and physiology of giant reed (Arundo donax L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55476-55485. [PMID: 34138437 DOI: 10.1007/s11356-021-14870-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Fast-growing plant, giant reed (Arundo donax L.) has been gaining a lot of popularity in the phytoremediation of metal-polluted soils. However, information regarding the physiological background of tolerance and accumulation capacity of A. donax with respect to antimony (Sb), arsenic (As), and their co-contamination are very limited. Rooted stem cuttings were grown for 5 months in hydroponics exposed to Sb (10 mg L-1), As (10 mg L-1), and their combined toxicity (Sb 5 mg L-1 + As 5 mg L-1) wherein treatment without As/Sb served as control. Effect of these treatments on key photosynthetic parameters (rate of net photosynthesis, effective quantum yield of photosystem II, chlorophyll fluorescence, and photosynthetic pigments), phytoextraction ability of metalloids, nutrient uptake, root growth, and lignification were analyzed. Arsenic-containing treatments severely affected root morphology of A. donax compared to Sb/control and plants exposed to As showed intensive lignification already in young apical part of the root in the present study. Shoot concentration was found to be 11.35±0.75 Sb mg kg-1 and 8.97±0.52 As mg kg-1 compared to root concentration of 1028.3±19.1 Sb mg kg-1 and 705.3±69.9 As mg kg-1 in the treatments of Sb and As. Even though Sb and As were translocated to the shoots in relatively small amount, both metalloids significantly decreased the shoot and root growth of A. donax and negatively affected the photosynthetic parameters. Moreover, co-contamination of Sb and As proved to be severely toxic to growth and physiology of A. donax even though the magnitudes of the metalloids used were lower than those of Sb/As alone treatments. In conclusion, Sb and As caused a marked reduction in growth and physiological characteristics of A. donax, opposing its use in phytoremediation of highly contaminated soils. Tolerance capacity of plants to simultaneous presence of As and Sb in the environment is crucial for the successful implementation of phytoremediation since the co-contamination by As and Sb might reduce the efficiency of phytoremediation when using this fast-growing and high biomass-producing plant species.
Collapse
Affiliation(s)
- Rajpal Shetty
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovičova 6, SK-842 15, Bratislava, Slovakia.
| | - Chirappurathu Sukumaran-Nair Vidya
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23, Bratislava, Slovakia
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovičova 6, SK-842 15, Bratislava, Slovakia
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23, Bratislava, Slovakia
| |
Collapse
|
42
|
Singh S, Kumar V, Datta S, Dhanjal DS, Singh S, Kumar S, Kapoor D, Prasad R, Singh J. Physiological responses, tolerance, and remediation strategies in plants exposed to metalloids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40233-40248. [PMID: 32748354 DOI: 10.1007/s11356-020-10293-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/27/2020] [Indexed: 05/25/2023]
Abstract
Metalloids are a subset of particular concern to risk assessors and toxicologists because of their well-documented potential hazards to plant system. Most of the metalloids are major environmental contaminants which affect crop productivity when present in high concentrations in soil. Metalloids are coupled with carrier proteins of the plasma membrane and translocated to various organs causing changes in key metabolic processes, damages cell biomolecules, and finally inhibit its growth. Phytoremediation-based approaches help in understanding the molecular and biochemical mechanisms for prerequisite recombinant genetic approaches. Recent advancements in proteomics and plant genomics help in understanding the role of transcription factors, metabolites, and genes in plant system which confers metal tolerance. The present review summarizes our current status of knowledge in this direction related to various physiological responses, detoxification mechanisms, and remediation strategies of metalloids in crop plants in relation to plant-metalloid tolerance. Further, the role of various transcription factors and miRNAs in conferring metal tolerance is also briefed. Hence, the present review mainly focused on the alterations in the physiological activities of plants due to metalloid toxicity and the various mechanisms which get activated inside the plants to mitigate their toxic effects.
Collapse
Affiliation(s)
- Simranjeet Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India
- Punjab Biotechnology Incubator (PBTI), Phase-V, S.A.S. Nagar, Punjab, 160059, India
- RAWTL, Department of Water Supply and Sanitation, Phase-II, S.A.S. Nagar, Punjab, 160054, India
| | - Vijay Kumar
- Regional Ayurveda Research Institute for Drug Development, Gwalior, Madhya Pradesh, 474009, India
| | - Shivika Datta
- Department of Zoology, Doaba College Jalandhar, Jalandhar, Punjab, 144001, India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Satyender Singh
- RAWTL, Department of Water Supply and Sanitation, Phase-II, S.A.S. Nagar, Punjab, 160054, India
| | - Sanjay Kumar
- Punjab Biotechnology Incubator (PBTI), Phase-V, S.A.S. Nagar, Punjab, 160059, India
- RAWTL, Department of Water Supply and Sanitation, Phase-II, S.A.S. Nagar, Punjab, 160054, India
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India.
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
43
|
Nishad PA, Bhaskarapillai A. Antimony, a pollutant of emerging concern: A review on industrial sources and remediation technologies. CHEMOSPHERE 2021; 277:130252. [PMID: 33780676 DOI: 10.1016/j.chemosphere.2021.130252] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Technologies for remediation of industrial effluents and natural sources contaminated with antimony - a pollutant of emerging concern - are just emerging. The complex speciation of antimony makes it challenging to devise effective remediation technologies. Antimony is used in several industrial applications and comes into the environment majorly through human induced activities such as antimony mining and other activities involving the use of various products containing antimony. Many researchers are working on the important task of developing methodologies to stop or limit the release of antimony into the environment through these activities. Antimony removal is an important requirement in nuclear industry as well due to the formation of its radioactive isotopes during power plant operations. Thus, better antimony remediation or removal techniques can have wider applications ranging from domestic water treatment and industrial effluent remediation to safe isolation of radioactive waste in the nuclear industry. Proper understanding of the problem is very important in designing the source appropriate remediation technique. Treatment methodologies needed for antimony effluents from antimony mining and smelting industries are different from antimony decontamination in nuclear reactors. The problem of antimony leaching from a polyethylene terephthalate bottle is very much different from the leaching of antimony from mining wastes. Each process necessitates custom-made treatment methodologies by taking into account various factors including the speciation and concentration. The current review is focused on this aspect. The review attempts to bring out a clear understanding on various industry specific sources of antimony pollution and the available antimony removal/remediation technologies.
Collapse
Affiliation(s)
- Padala Abdul Nishad
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, 603 102, India.
| | - Anupkumar Bhaskarapillai
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, 603 102, India; HomiBhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
44
|
Karimian N, Hockmann K, Planer-Friedrich B, Johnston SG, Burton ED. Antimonate Controls Manganese(II)-Induced Transformation of Birnessite at a Circumneutral pH. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9854-9863. [PMID: 34228928 DOI: 10.1021/acs.est.1c00916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Manganese (Mn) oxides, such as birnessite (δ-MnO2), are ubiquitous mineral phases in soils and sediments that can interact strongly with antimony (Sb). The reaction between birnessite and aqueous Mn(II) can induce the formation of secondary Mn oxides. Here, we studied to what extent different loadings of antimonate (herein termed Sb(V)) sorbed to birnessite determine the products formed during Mn(II)-induced transformation (at pH 7.5) and corresponding changes in Sb behavior. In the presence of 10 mM Mn(II)aq, low Sb(V)aq (10 μmol L-1) triggered the transformation of birnessite to a feitknechtite (β-Mn(III)OOH) intermediary phase within 1 day, which further transformed into manganite (γ-Mn(III)OOH) over 30 days. Medium and high concentrations of Sb(V)aq (200 and 600 μmol L-1, respectively) led to the formation of manganite, hausmannite (Mn(II)Mn(III)2O4), and groutite (αMn(III)OOH). The reaction of Mn(II) with birnessite enhanced Sb(V)aq removal compared to Mn(II)-free treatments. Antimony K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that heterovalent substitution of Sb(V) for Mn(III) occurred within the secondary Mn oxides, which formed via the Mn(II)-induced transformation of Sb(V)-sorbed birnessite. Overall, Sb(V) strongly influenced the products of the Mn(II)-induced transformation of birnessite, which in turn attenuated Sb mobility via incorporation of Sb(V) within the secondary Mn oxide phases.
Collapse
Affiliation(s)
- Niloofar Karimian
- Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480, Australia
| | - Kerstin Hockmann
- Department of Hydrology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95447 Bayreuth, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95447 Bayreuth, Germany
| | - Scott G Johnston
- Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480, Australia
| | - Edward D Burton
- Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
45
|
Guo W, Zhang Z, Wang H, Qin H, Fu Z. Exposure characteristics of antimony and coexisting arsenic from multi-path exposure in typical antimony mine area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112493. [PMID: 33823409 DOI: 10.1016/j.jenvman.2021.112493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/07/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
In this study, samples of daily foods, drinking waters, surface waters, and soils were collected and screened to investigate the external exposure of Sb and As from various intake pathways in typical Sb mining area. Biomarker samples of residents were analyzed to monitor internal exposure characteristic of Sb and As in human body. Exposure dosages of As and Sb and transfer of Sb and As from environment to human body were estimated based on the external and internal exposure. The following results were obtained: daily intakes of food accounted for major intakes of both Sb and As, and highlighted the significance of foods intakes from rice and vegetable. The results of Monte Carlo simulations showed that total daily intake of Sb(n = 1444)and As(n = 1131) approximately reached 1.08 × 10-2 mg/kg/d and 1.19 × 10-3 mg/kg/d, in which 98.82% and 63.07% of residents have exceeded the threshold dosages of Sb and As. The contaminants contents in biomarkers indicated that Sb exhibited the similar internal exposure as As, while the total transfer rate of Sb from environment to human were estimated as approximately 2.04-2.40 times lower than As. This study also suggested that drinking water is another important pathway with high bioavailability and male resident may present higher priority than female in uptake of Sb and As. The paper suggested the similarity and difference on bioavailability existed in Sb and its group V elements, As, that would provide the essential information on exposure of Sb and As in the typical Sb mine area.
Collapse
Affiliation(s)
- Wenjing Guo
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Zhiyong Zhang
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Hao Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Hongjie Qin
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Zhiyou Fu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
46
|
Potentially toxic elements in macromycetes and plants from areas affected by antimony mining. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00788-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Antimony induced structural and ultrastructural changes in Trapa natans. Sci Rep 2021; 11:10695. [PMID: 34021213 PMCID: PMC8140150 DOI: 10.1038/s41598-021-89865-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 12/15/2020] [Indexed: 02/04/2023] Open
Abstract
Antimony (Sb) is considered as a priority toxic metalloid in the earth crust having no known biological function. The current study was carried out in a hydroponic experiment to study the accumulation of ecotoxic Sb in subcellular level, and to find out the ultrastructural damage caused by Sb in different vegetative parts of Trapa natans. Sb-induced structural and ultrastructural changes of T. natans were investigated using scanning electron microscope (SEM) and transmission electron microscope (TEM). Experimental plants were exposed to different Sb(III) treatments: SbT1 (1.5 μmol/L), SbT2 (40 μmol/L) and SbT3 (60 μmol/L). Calculated bioconcentration factor (BCF) and translocation factor (TF) showed that at higher concentration (SbT2, SbT3), T. natans is a potent phytoexcluder whereas it can translocate a substantial amount of Sb to the aerial parts at lower concentration (SbT1). SEM analysis revealed Sb-mediated structural changes in the size of stomatal aperture, intercellular spaces and vascular bundles of different vegetative tissues of T. natans. TEM results showed subcellular compartmentalization of Sb in vacuole and cell wall as electron dense deposition. This is considered as a part of strategy of T. natans to detoxify the deleterious effects under Sb stress conditions. Fourier transform infrared spectroscopy (FTIR) study of plant biomass revealed possible metabolites of T. natans which can bind Sb.
Collapse
|
48
|
Garrido I, Ortega A, Hernández M, Fernández-Pozo L, Cabezas J, Espinosa F. Effect of antimony in soils of an Sb mine on the photosynthetic pigments and antioxidant system of Dittrichia viscosa leaves. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1367-1383. [PMID: 32562108 DOI: 10.1007/s10653-020-00616-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Antimony is a toxic element whose concentration in soil and water has been rising due to anthropogenic activities. This study focuses on its accumulation in leaves of Dittrichia viscosa growing in soils of an abandoned Sb mine, and the effect on oxidant/antioxidant systems and photosynthetic efficiency. The results showed leaves to have a high Sb accumulation capacity. The amount of total chlorophyll decreased depending on Sb concentration and of carotenoids increased slightly, with a consequent increase in carotenoid/chlorophyll ratio. Photosynthetic efficiency was unaffected. The amount of O 2 .- rose, although there was no increase in cell membrane damage, with lipid peroxidation levels being similar to normal. This response may be due to considerable increases that were observed in total phenolics, PPO activity, and enzymatic antioxidant system. SOD, POX, and DHAR activities increased in response to increased Sb amounts in leaves. The ascorbate/glutathione cycle was also affected, with strong increases observed in all of its components, and consequent increases in total contents of the ascorbate and glutathione pools. However, the ratio between reduced and oxidized forms declined, reflecting an imbalance between the two, especially that between GSH and GSSG. Efficient detoxification of Sb may take place either through increases in phenolics, carotenoids, and components of the glutathione-ascorbate cycle or through the enzymatic antioxidant system. Since Dittrichia viscosa accumulates large amounts of Sb without suffering oxidative damage, it could be used for phytoremediation.
Collapse
Affiliation(s)
- I Garrido
- Research Group of Physiology, Cellular and Molecular Biology of Plants, UEx, Av. Elvas, s/n, 06071, Badajoz, Spain
| | - A Ortega
- Research Group of Physiology, Cellular and Molecular Biology of Plants, UEx, Av. Elvas, s/n, 06071, Badajoz, Spain
| | - M Hernández
- European University of the Atlantic, Scientific and Technological Park of Cantabria, 39011, Santander, Spain
| | - L Fernández-Pozo
- Research Group of Environmental Resources Analysis, UEx, Avenida de Elvas, s/n, 06071, Badajoz, Spain
| | - J Cabezas
- Research Group of Environmental Resources Analysis, UEx, Avenida de Elvas, s/n, 06071, Badajoz, Spain
| | - F Espinosa
- Research Group of Physiology, Cellular and Molecular Biology of Plants, UEx, Av. Elvas, s/n, 06071, Badajoz, Spain.
| |
Collapse
|
49
|
Webster AB, Rossouw R, Callealta FJ, Bennett NC, Ganswindt A. Assessment of trace element concentrations in sediment and vegetation of mesic and arid African savannahs as indicators of ecosystem health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143358. [PMID: 33187707 DOI: 10.1016/j.scitotenv.2020.143358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
The savannah biome supports unique biodiversity and provides a multitude of ecosystem services. Defining background concentrations for trace elements in the environment is beneficial for the determination of nutrient deficiencies/hotspots and for the management of pollution. Sediment and corresponding vegetation samples were collected around 48 surface water points in two savannah wildlife areas for assessment and comparison of 20 trace elements using ICP-MS. Site-specific and matrix-specific differences were evident for essential B, Co, Cu, Fe, Mn, Mo, Ni, Se and Zn, potentially toxic As, Cd, Cr, Hg, Pb and V and additional elements Al, Ba, Sb, Sn and Sr analysed. Sediment and vegetation from all sampled locations at both sites contained single or multiple potentially toxic elements at various concentrations. Although the presence of all elements can be linked to underlying geology and geochemistry specific to each site, evidence of anthropogenic cause was also evident at both sites. This paper covers the widest range of trace elements assessed in protected terrestrial wildlife reserves in the South African savannah biome to date and highlights the potential for deleterious consequences of trace element contamination of the environment.
Collapse
Affiliation(s)
- Andrea B Webster
- Mammal Research Institute, Department of Zoology and Entomology, Cnr Lynwood and University Roads, University of Pretoria, 0083, South Africa.
| | - Riana Rossouw
- Central Analytical Facilities, ICP-MS Laboratory, Cnr Ryneveld & Merriman Street, University of Stellenbosch, South Africa, 7600
| | - F Javier Callealta
- Department of Economics, Universidad de Alcalá, Plaza Victoria, 2, Alcalá de Henares 28802, Spain
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, Cnr Lynwood and University Roads, University of Pretoria, 0083, South Africa
| | - Andre Ganswindt
- Mammal Research Institute, Department of Zoology and Entomology, Cnr Lynwood and University Roads, University of Pretoria, 0083, South Africa
| |
Collapse
|
50
|
Gu J, Yao J, Duran R, Sunahara G. Comprehensive genomic and proteomic profiling reveal Acinetobacter johnsonii JH7 responses to Sb(III) toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141174. [PMID: 32805562 DOI: 10.1016/j.scitotenv.2020.141174] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Antimony (Sb) pollution poses a severe health threat to ecosystems. However, the toxic effects of Sb on biota are far from being elucidated. One of the unresolved questions is the molecular signal pathways underlying microbial adaptation to excess antimonite or Sb(III) exposure. The response of a Sb(III)-resistant bacterium Acinetobacter. johnsonii JH7 to Sb(III) stress was investigated using genomic and proteomic profiling. Sb(III) induced the formation of reactive oxygen species thereby leading to oxidative stress and the up-regulation of antioxidant enzyme activities. In addition, two important operons (ars and pst) playing critical roles in this cellular response were identified. The ars proteins functioned cooperatively to expel Sb(III) thereby decreasing antimonite toxicity. Downregulation of the phosphate-specific transporter might reduce the uptake of Sb(V) while hindering phosphorus assimilation. Interaction of Sb(III) with JH7 strain cells also affected peptide syntheses and folding, energy conversion, and stability of the cellular envelope. The present study provides for the first time a global map of cellular adaptation to excess Sb(III). Such information is potentially useful to future Sb pollution remediation strategies.
Collapse
Affiliation(s)
- Jihai Gu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Jun Yao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China.
| | - Robert Duran
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China; Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| | - Geoffrey Sunahara
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|