1
|
Cheng Y, Zhang K, Huang K, Zhang H. Meta-Analysis and Machine Learning Models for Anaerobic Biodegradation Rates of Organic Contaminants in Sediments and Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12976-12988. [PMID: 38988037 DOI: 10.1021/acs.est.4c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Anaerobic biodegradation rates (half-lives) of organic chemicals are pivotal for environmental risk assessment and remediation. Traditional experimental evaluation, constrained by prolonged, oxygen-free conditions, struggles to keep pace with emerging contaminants. Data-driven machine learning (ML) models serve as promising complements. However, reported quantitative structure-biodegradation relationships or ML models on anaerobic biodegradation are mostly based on small data sets (<100 records) and neglect experimental conditions, usually achieving compromised predictions. This work aimed to develop ML models for predicting the biodegradation half-lives of organic pollutants in anaerobic environments (i.e., sediment/soil and sludge). Focusing on important features of both chemicals and experimental conditions, we first curated two data sets, one for sediment/soil (SED) and the other for sludge (SLD), covering 978 records for 206 chemicals from the literature, and then conducted a meta-analysis. Next, we built a binary classification (half-life of 30 days as the cutoff) model with an accuracy of 81% and a regression model with R2 of 0.56 for SED based on LightGBM (80% and 0.31 for SLD based on Extra tree, respectively). The model interpretations underscored the significance of experimental conditions (e.g., temperature and inoculum dosage), as evidenced by their high feature importance, and the models were found to correctly capture the effects of chemical substructures, for example, branched structures and aromatic rings prolonged half-lives while methyl group and ortho-substitution on rings shortened half-lives. The applicability domains of the models were also defined, resulting in reasonable prediction for the half-lives of 41% (SED) or 67% (SLD) of over 4000 persistent, bioaccumulative, and toxic chemicals. Overall, this study pioneers ML models for predicting the anaerobic degradation half-lives, offering valuable support for future evaluation and implementation of chemical anaerobic biodegradation.
Collapse
Affiliation(s)
- Yushu Cheng
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kai Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kuan Huang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
2
|
Li X, Cao X, Zhang Z, Li Y, Zhang Y, Wang C, Fan W. Mechanism of phenanthrene degradation by the halophilic Pelagerythrobacter sp. N7. CHEMOSPHERE 2024; 350:141175. [PMID: 38211788 DOI: 10.1016/j.chemosphere.2024.141175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/19/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
PAHs has shown worldwide accumulation and causes a significant environmental problem especially in saline and hypersaline environments. Moderately halophilic bacteria could be useful for the bioremediation of PAH pollution in hypersaline environments. Pelagerythrobacter sp. N7 was isolated from the PAH-degrading consortium 5H, which was enriched from mixed saline soil samples collected in Shanxi Province, China. 16S rRNA in the genomic DNA revealed that strain N7 belonged to Pelagerythrobacter. Strain N7 exhibited a high tolerance to a wide range of salinities (1-10%) and was highly efficient under neutral to weak alkaline conditions (pH 6-9). The whole genome of strain N7 was sequenced and analyzed, revealing an abundance of catabolic genes. Using the whole genome information, we conducted preliminary research on key enzymes and gene clusters involved in the upstream and downstream PAH degradation pathways of strain N7, thereby inferring its degradation pathway for phenanthrene and naphthalene. This study adds to our understanding of PAH degradation in hypersaline environments and, for the first time, identifies a Pelagerythrobacter with PAH-degrading capability. Strain N7, with its high efficiency in phenanthrene degradation, represents a promising resource for the bioremediation of PAHs in hypersaline environments.
Collapse
Affiliation(s)
- Xiangjin Li
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Xinghong Cao
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Yichun Li
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Yue Zhang
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Chongyang Wang
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Weihua Fan
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| |
Collapse
|
3
|
Wang J, Zhang Y, Ding Y, Zhang Y, Xu W, Zhang X, Wang Y, Li D. Adaptive characteristics of indigenous microflora in an organically contaminated high salinity groundwater. CHEMOSPHERE 2024; 349:140951. [PMID: 38101485 DOI: 10.1016/j.chemosphere.2023.140951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Salinity, a critical factor, could directly or indirectly affect the microbial community structure and diversity. Changes in salinity levels act as environmental filters that influence the transformation of key microbial species. This study investigates the adaptive characteristics of indigenous microflora in groundwater in relation to external organic pollutants under high salinity stress. A highly mineralized shallow groundwater in Northwest China was conducted as the study area, and six representative sampling points were chosen to explore the response of groundwater hydrochemical parameters and microflora, as well as to identify the tolerance mechanisms of indigenous microflora to combined pollution. The results revealed that the dominant genera found in high salinity groundwater contaminated with organic pollutants possess the remarkable ability to degrade such pollutants even under challenging high salinity conditions, including Halomonas, Pseudomonas, Halothiobacillus, Sphingomonas, Lutibacter, Aquabacterium, Thiomicrospira, Aequorivita, etc. The hydrochemical factors, including total dissolved solids (TDS), sulfide, nitrite, nitrate, oxidation reduction potential (ORP), NH3-N, Na, Fe, benzene series, phenols, and halogenated hydrocarbons, demonstrated a significant influence on microflora. High levels of sulphate and sulfide in groundwater can exhibit dual effects on microflora. On one hand, these compounds can inhibit the growth and metabolism of microorganisms. On the other hand, they can also serve as effective electron donors/receptors during the microbial degradation of organic pollutants. Microorganisms exhibit resilience to the inhibitory effects of high salinity and organic pollutants via a series of tolerance mechanisms, such as strengthening the extracellular membrane barrier, enhancing the synthesis of relevant enzymes, initiating novel biochemical reactions, improving cellular self-healing capabilities, responding to unfavorable environmental conditions by migration, and enhancing the S cycle for the microbial metabolism of organic pollutants.
Collapse
Affiliation(s)
- Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China.
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yi Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Weiqing Xu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Xinying Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yiliang Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Dong Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| |
Collapse
|
4
|
Sajid S, de Dios VR, Zveushe OK, Nabi F, Shen S, Kang Q, Zhou L, Ma L, Zhang W, Zhao Y, Han Y, Dong F. Newly isolated halotolerant Aspergillus sp. showed high diesel degradation efficiency under high salinity environment aided with hematite. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130324. [PMID: 36444053 DOI: 10.1016/j.jhazmat.2022.130324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The contamination of saline soil with hazardous petroleum hydrocarbons is a common problem across coastal areas globally. Bioaugmentation combined with chemical treatment is an emerging remediation technique, but it currently shows low efficiency under high saline environments. In this study, we screened and used a novel halotolerant lipolytic fungal consortium (HLFC) combined with hematite (Fe2O3) for the bioremediation of diesel contaminated saline soils. The changes in total petroleum hydrocarbons (TPH) concentrations, enzyme activity, and microbial diversity were compared among different treatments (HLFC, hematite, hematite-HLFC, and control). The results showed that TPH degradation was significantly (P < 0.05) enhanced in hematite-HLFC (47.59-88.01%) and HLFC (24.26-72.04%) amended microcosms across all salinity levels, compared to the treatments of hematite (23.71-66.26%) and control (6.39-55.20%). TPH degradation was positively correlated with lipase and laccase enzyme activities, electrical conductivity, and the water holding capacity of the soil. Analyses of the microbial community structure showed that microbial richness decreased, while evenness increased in HLFC and hematite-HLFC treatments. The relative abundances of Alicyclobacillus, Sediminibacillus, Alcanivorax, Penicillium, Aspergillus, and Candida genera were significantly high in hematite-HLFC and HLFC amended microcosms. Our findings provide a promising new microbial-based technique, which can degrade TPH efficiently in saline soil.
Collapse
Affiliation(s)
- Sumbal Sajid
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Víctor Resco de Dios
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Joint Research Unit CTFC-AGROTECNIO, Universitat de Lleida, 25198 Lérida, Spain
| | - Obey Kudakwashe Zveushe
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Farhan Nabi
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Songrong Shen
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qianlin Kang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Zhou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lin Ma
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wei Zhang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Center of Analysis and Testing, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yulian Zhao
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ying Han
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Faqin Dong
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| |
Collapse
|
5
|
Dell'Anno F, Joaquim van Zyl L, Trindade M, Buschi E, Cannavacciuolo A, Pepi M, Sansone C, Brunet C, Ianora A, de Pascale D, Golyshin PN, Dell'Anno A, Rastelli E. Microbiome enrichment from contaminated marine sediments unveils novel bacterial strains for petroleum hydrocarbon and heavy metal bioremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120772. [PMID: 36455775 DOI: 10.1016/j.envpol.2022.120772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Petroleum hydrocarbons and heavy metals are some of the most widespread contaminants affecting marine ecosystems, urgently needing effective and sustainable remediation solutions. Microbial-based bioremediation is gaining increasing interest as an effective, economically and environmentally sustainable strategy. Here, we hypothesized that the heavily polluted coastal area facing the Sarno River mouth, which discharges >3 tons of polycyclic aromatic hydrocarbons (PAHs) and ∼15 tons of heavy metals (HMs) into the sea annually, hosts unique microbiomes including marine bacteria useful for PAHs and HMs bioremediation. We thus enriched the microbiome of marine sediments, contextually selecting for HM-resistant bacteria. The enriched mixed bacterial culture was subjected to whole-DNA sequencing, metagenome-assembled-genomes (MAGs) annotation, and further sub-culturing to obtain the major bacterial species as pure strains. We obtained two novel isolates corresponding to the two most abundant MAGs (Alcanivorax xenomutans strain-SRM1 and Halomonas alkaliantarctica strain-SRM2), and tested their ability to degrade PAHs and remove HMs. Both strains exhibited high PAHs degradation (60-100%) and HMs removal (21-100%) yield, and we described in detail >60 genes in their MAGs to unveil the possible genetic basis for such abilities. Most promising yields (∼100%) were obtained towards naphthalene, pyrene and lead. We propose these novel bacterial strains and related genetic repertoire to be further exploited for effective bioremediation of marine environments contaminated with both PAHs and HMs.
Collapse
Affiliation(s)
- Filippo Dell'Anno
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Leonardo Joaquim van Zyl
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, 7535, Cape Town, South Africa.
| | - Marla Trindade
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, 7535, Cape Town, South Africa.
| | - Emanuela Buschi
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| | - Antonio Cannavacciuolo
- Department of Integrative Marine Ecology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| | - Milva Pepi
- Department of Integrative Marine Ecology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Christophe Brunet
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Peter N Golyshin
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK.
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| |
Collapse
|
6
|
Wang J, Zhang Y, Ding Y, Song H, Liu T, Xu W, Zhang Y, Shi Y. Stress response characteristics of indigenous microorganisms in aromatic-hydrocarbons-contaminated groundwater in the cold regions of Northeast China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114139. [PMID: 36193588 DOI: 10.1016/j.ecoenv.2022.114139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The resistance mechanism of microbial communities in contaminated groundwater under combined stresses of aromatic hydrocarbons (AHs), NH4+, and Fe-Mn exceeding standard levels was studied in an abandoned oil depot in Northeast China. The response of environmental parameters and microbial communities under different pollution levels in the study area was discussed, and microscopic experiments were conducted using background groundwater with different AHs concentrations. The results showed that indigenous microbial community were significantly affected by environmental factors, including pH, TH, CODMn, TFe, Cr (VI), NH4+, NO3-, and SO42-. AHs likely had a limited influence on microbial communities, mainly causing indirect changes in the microbial community structure by altering the electron donor/acceptor (mainly Fe, Mn, NO3-, NO2-, NH4+, and SO42-) content in groundwater, and there was no linear effect of AHs content on the microbial community. In low- and medium-AHs-contaminated groundwater, the microbial diversity increased, whereas high AHs contents decreased the diversity of the microbial community. The microbial community had the strongest ability to metabolize AHs in the medium-AHs-contaminated groundwater. In the high-AHs-contaminated groundwater, microbial communities mainly degraded AHs through a complex co-metabolic mechanism due to the inhibitory effect caused by the high concentration of AHs, whereas in low-AHs-contaminated groundwater, microbial communities mainly caused a mutual transformation of inorganic electron donors/acceptors (mainly including N, S), and the microbial community's ability to metabolize AHs was weak. In the high-AHs-contaminated groundwater, the microbial community resisted the inhibitory effect of AHs mainly via a series of resistance mechanisms, such as regulating their life processes, avoiding unfavorable environments, and enhancing their feedback to the external environment under high-AHs-contaminated conditions.
Collapse
Affiliation(s)
- Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China.
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Hewei Song
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Ting Liu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Weiqing Xu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yi Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yujia Shi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
7
|
Robin SL, Marchand C. Polycyclic aromatic hydrocarbons (PAHs) in mangrove ecosystems: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119959. [PMID: 35977644 DOI: 10.1016/j.envpol.2022.119959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants of increasing concern in the different fields of the environment and human health. There are 16 of them that are recognized as priority pollutants by the US environmental protection agency due to their mutagenic and carcinogenic potentials. Due to their hydrophobicity and stability, they are persistent in the environment and can be transported over long distances. Their toxicological effects on multiple species, including humans, as well as their bioaccumulation in the food web became major topics in organic pollutants research this last decade. In the environment, multiple studies have been conducted on their accumulation in the soil and their degradation processes resulting in numerous review papers. However, the dynamics of PAHs in mangrove ecosystems is not yet completely understood. In this review paper, an exhaustive presentation of what is known about PAHs and their transfer, accumulation, and degradation in mangrove ecosystems is offered. This article brings to light the knowledge already acquired on the subject and the perspective research necessary to fully comprehend PAHs dynamics in mangrove ecosystems.
Collapse
Affiliation(s)
- Sarah Louise Robin
- Institut de Sciences Exactes et Appliquées (ISEA EA7484), Université de la Nouvelle-Calédonie, 145 Avenue James Cook, Nouville, BP R4 98851, Nouméa Cedex, New Caledonia.
| | - Cyril Marchand
- Institut de Sciences Exactes et Appliquées (ISEA EA7484), Université de la Nouvelle-Calédonie, 145 Avenue James Cook, Nouville, BP R4 98851, Nouméa Cedex, New Caledonia
| |
Collapse
|
8
|
Liang C, Ye Q, Huang Y, Wang Y, Zhang Z, Wang H. Shifts of the new functional marker gene (pahE) of polycyclic aromatic hydrocarbons (PAHs) degrading bacterial population and its relationship with PAHs biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129305. [PMID: 35709619 DOI: 10.1016/j.jhazmat.2022.129305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/22/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Identification of polycyclic aromatic hydrocarbons (PAHs) degrading bacterial populations and understanding their responses to PAHs are crucial for the designing of appropriate bioremediation strategies. In this study, the responses of PAHs-degrading bacterial populations to different PAHs were studied in terms of the compositions and abundance variations of their new functional marker gene (pahE) by gene-targeted metagenomic and qPCR analysis. Overall, PAHs species significantly affected the composition and abundance of pahE gene within the PAHs-degrading bacteria in each treatment and different pahE of PAHs-degrading bacteria involved in the different stages of PAHs degradation. Noted that new pahE genotypes were also discovered in all PAHs treatment groups, indicating that some potential new PAHs-degrading bacterial genera were also involved in PAHs degradation. Besides, all three PAH removal rates were significantly positively related with pahE gene abundances (R2 = 0.908 ~ 0.922, p < 0.01), demonstrating that pahE could be a good indicator of PAHs degradation activity or potential. This is the first study focusing on the dynamic changes of the pahE gene within PAHs-degrading bacterial community during the degradation of PAHs in mangrove sediment, providing novel insights into the use of pahE gene as the functional marker to indicate PAH degradation.
Collapse
Affiliation(s)
- Chengyue Liang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Quanhui Ye
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Huang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zuotao Zhang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Fan W, Jin J, Zhang Z, Han L, Li K, Wang C. Degradation of phenanthrene by consortium 5H under hypersaline conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119730. [PMID: 35809715 DOI: 10.1016/j.envpol.2022.119730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
PAHs have been widely detected to accumulate in saline and hypersaline environments. Moderately halophilic microbes are considered the most suitable player for the elimination of PAHs in such environments. In this study, consortium 5H was enriched under 5% salinity and completely degraded phenanthrene in 5 days. By high-throughput sequencing, consortium 5H was identified as being mainly composed of Methylophaga, Marinobacter and Thalassospira. Combined with the investigation of intermediates and enzymatic activities, the degradation pathway of consortium 5H on phenanthrene was proposed. Consortium 5H was identified as having the ability to tolerate a wide range of salinities (1%-10%) and initial PAH concentrations (50 mg/L to 400 mg/L). It was also able to function under neutral to weak alkaline conditions (pH from 6 to 9) and the phytotoxicity of the produced intermediates showed no significant difference with distilled water. Furthermore, the metagenome of consortium 5H was measured and analyzed, which showed a great abundance of catabolic genes contained in consortium 5H. This study expanded the knowledge of PAH-degradation under hypersaline environments and consortium 5H was proposed to have good potential for the elimination of PAH pollution in saline/hypersaline environments.
Collapse
Affiliation(s)
- Weihua Fan
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Jiaqi Jin
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Lu Han
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Keyuan Li
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Chongyang Wang
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| |
Collapse
|
10
|
Dhar K, Panneerselvan L, Venkateswarlu K, Megharaj M. Efficient bioremediation of PAHs-contaminated soils by a methylotrophic enrichment culture. Biodegradation 2022; 33:575-591. [PMID: 35976498 PMCID: PMC9581816 DOI: 10.1007/s10532-022-09996-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/05/2022] [Indexed: 01/13/2023]
Abstract
Bioaugmentation effectively enhances microbial bioremediation of hazardous polycyclic aromatic hydrocarbons (PAHs) from contaminated environments. While screening for pyrene-degrading bacteria from a former manufactured gas plant soil (MGPS), the mixed enrichment culture was found to be more efficient in PAHs biodegradation than the culturable pure strains. Interestingly, analysis of 16S rRNA sequences revealed that the culture was dominated by a previously uncultured member of the family Rhizobiaceae. The culture utilized C1 and other methylotrophic substrates, including dimethylformamide (DMF), which was used as a solvent for supplementing the culture medium with PAHs. In the liquid medium, the culture rapidly degraded phenanthrene, pyrene, and the carcinogenic benzo(a)pyrene (BaP), when provided as the sole carbon source or with DMF as a co-substrate. The efficiency of the culture in the bioremediation of PAHs from the MGPS and a laboratory waste soil (LWS) was evaluated in bench-scale slurry systems. After 28 days, 80% of Σ16 PAHs were efficiently removed from the inoculated MGPS. Notably, the bioaugmentation achieved 90% removal of four-ringed and 60% of highly recalcitrant five- and six-ringed PAHs from the MGPS. Likewise, almost all phenanthrene, pyrene, and 65% BaP were removed from the bioaugmented LWS. This study highlights the application of the methylotrophic enrichment culture dominated by an uncultured bacterium for the efficient bioremediation of PAHs.
Collapse
Affiliation(s)
- Kartik Dhar
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Logeshwaran Panneerselvan
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia. .,Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
11
|
A Review on Biotechnological Approaches Applied for Marine Hydrocarbon Spills Remediation. Microorganisms 2022; 10:microorganisms10071289. [PMID: 35889007 PMCID: PMC9324126 DOI: 10.3390/microorganisms10071289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
The increasing demand for petroleum products generates needs for innovative and reliable methods for cleaning up crude oil spills. Annually, several oil spills occur around the world, which brings numerous ecological and environmental disasters on the surface of deep seawaters like oceans. Biological and physico-chemical remediation technologies can be efficient in terms of spill cleanup and microorganisms—mainly bacteria—are the main ones responsible for petroleum hydrocarbons (PHCs) degradation such as crude oil. Currently, biodegradation is considered as one of the most sustainable and efficient techniques for the removal of PHCs. However, environmental factors associated with the functioning and performance of microorganisms involved in hydrocarbon-degradation have remained relatively unclear. This has limited our understanding on how to select and inoculate microorganisms within technologies of cleaning and to optimize physico-chemical remediation and degradation methods. This review article presents the latest discoveries in bioremediation techniques such as biostimulation, bioaugmentation, and biosurfactants as well as immobilization strategies for increasing the efficiency. Besides, environmental affecting factors and microbial strains engaged in bioremediation and biodegradation of PHCs in marines are discussed.
Collapse
|
12
|
Li L, Peng C, Yang Z, He Y, Liang M, Cao H, Qiu Q, Song J, Su Y, Gong B. Microbial communities in swamps of four mangrove reserves driven by interactions between physicochemical properties and microbe in the North Beibu Gulf, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37582-37597. [PMID: 35066825 DOI: 10.1007/s11356-021-18134-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Mangroves are distributed in coastal and estuarine regions and are characterized as a sink for terrestrial pollution. It is believed that complex interactions between environmental factors and microbial communities exist in mangrove swamps. However, little is known about environment-microbe interactions. There is a need to clarify some important environmental factors shaping microbial communities and how environmental factors interact with microbial assemblages in mangrove swamps. In the present study, physicochemical and microbial characteristics in four mangrove reserves (named ZZW, Qin, Bei, and GQ) in the North Beibu Gulf were determined. The interactions between environmental factors and microbial assemblages were analyzed with statistical methods in addition to CCA and RDA. Higher concentrations of sulfate (SO42--S) and Fe but lower concentrations of total phosphorus (TP) and NO3--N were detected in ZZW and Qin. Nutrient elements (NO3--N, NH4+-N, organic matter (OM), SO42--S, Fe, and TP) were more important than heavy metals for determining the microbial assemblages, and NO3--N was the most important factor. NO3--N, SO42--S, TP, and Fe formed a significant co-occurrence network in conjunction with some bacterial taxa, most of which were Proteobacteria. Notably, comparatively elevated amounts of sulfate-reducing bacteria (Desulfatibacillum, Desulfomonile, and Desulfatiglans) and sulfur-oxidizing bacteria (Thioprofundum and Thiohalophilus) were found in ZZW and Qin. The co-occurrence network suggested that some bacteria involved in sulfate reduction and sulfur oxidation drive the transformation of P and N, resulting in the reduction of P and N in mangrove swamps. Through the additional utilization of multivariate regression tree (MRT) and co-occurrence network analysis, our research provides a new perspective for understanding the interactions between environmental factors and microbial communities in mangroves.
Collapse
Affiliation(s)
- Lu Li
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Chunyan Peng
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Zicong Yang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Yu He
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Meng Liang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Hongmin Cao
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Qinghua Qiu
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Jingjing Song
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China.
| | - Youlu Su
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Bin Gong
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China.
| |
Collapse
|
13
|
Jimoh AA, Ikhimiukor OO, Adeleke R. Prospects in the bioremediation of petroleum hydrocarbon contaminants from hypersaline environments: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35615-35642. [PMID: 35247173 DOI: 10.1007/s11356-022-19299-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Hypersaline environments are underappreciated and are frequently exposed to pollution from petroleum hydrocarbons. Unlike other environs, the high salinity conditions present are a deterrent to various remediation techniques. There is also production of hypersaline waters from oil-polluted ecosystems which contain toxic hydrophobic pollutants that are threat to public health, environmental protection, and sustainability. Currently, innovative advances are being proposed for the remediation of oil-contaminated hypersaline regions. Such advancements include the exploration and stimulation of native microbial communities capable of utilizing and degrading petroleum hydrocarbons. However, prevailing salinity in these environments is unfavourable for the growth of non-halophylic microorganisms, thus limiting effective bioremediation options. An in-depth understanding of the potentials of various remediation technologies of hydrocarbon-polluted hypersaline environments is lacking. Thus, we present an overview of petroleum hydrocarbon pollution in hypersaline ecosystems and discuss the challenges and prospects associated with several technologies that may be employed in remediation of hydrocarbon pollution in the presence of delimiting high salinities. The application of biological remediation technologies including the utilization of halophilic and halotolerant microorganisms is also discussed.
Collapse
Affiliation(s)
- Abdullahi Adekilekun Jimoh
- Unit for Environmental Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, 2520, South Africa.
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, Bellville, Cape Town, 7535, South Africa.
| | - Odion Osebhahiemen Ikhimiukor
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, 2520, South Africa
| |
Collapse
|
14
|
Geng S, Qin W, Cao W, Wang Y, Ding A, Zhu Y, Fan F, Dou J. Pilot-scale bioaugmentation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil using an indigenous bacterial consortium in soil-slurry bioreactors. CHEMOSPHERE 2022; 287:132183. [PMID: 34500332 DOI: 10.1016/j.chemosphere.2021.132183] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/08/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Soil-slurry bioreactor based bioremediation of polycyclic aromatic hydrocarbons (PAHs) contaminated soil was studied through laboratory and pilot-scale trials, in which the degradation mechanism was explored. Indigenous PAH-degrading consortium was firstly screened out and it degraded 80.5% of total PAHs in lab-scale bioreactors. Then a pilot-scale trial lasting 410 days was conducted in two bioreactors of 1.5 m3 to examine the operating parameters and validate the optimum running conditions. During the initial 200 days, the crucial running parameters affecting PAH removal were evaluated and selected. Subsequently, an average PAH removal rate of 93.4% was achieved during 15 consecutive batches (210 days) under the optimum running conditions. The kinetic analysis showed that the reactor under optimum conditions achieved the highest PAH degradation rate of 0.1795 day-1 and the shortest half-life of 3.86 days. Notably, efficient mass transfer of PAHs and high biodegradation capability by bioaugmented consortia in soil-slurry bioreactors were two key mechanisms for appreciable PAH removal performance. Under the optimal operating conditions, the degradation rate of low-molecular-weight (LMW) PAHs was significantly higher than high-molecular-weight (HMW) PAHs; when the mass transfer was limited, there was no significant difference between their degradation behaviors. Both microbial co-metabolism and collaborative metabolism might occur when all PAHs demonstrated low degradation rates. The findings provide insightful guidance on the future assessment and remediation practices of PAH-contaminated sites.
Collapse
Affiliation(s)
- Shuying Geng
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Wei Qin
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Wei Cao
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yingying Wang
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Aizhong Ding
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yi Zhu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Fuqiang Fan
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China.
| | - Junfeng Dou
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
15
|
Tiralerdpanich P, Nasaree S, Pinyakong O, Sonthiphand P. Variation of the mangrove sediment microbiomes and their phenanthrene biodegradation rates during the dry and wet seasons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117849. [PMID: 34325096 DOI: 10.1016/j.envpol.2021.117849] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/07/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Mangrove sediment is a major sink for phenanthrene in natural environments. Consequently, this study investigated the effects of seasonal variation on the biodegradation rates of low (150 mg kg-1), moderate (600 mg kg-1), and high (1200 mg kg-1) phenanthrene-contaminated mangrove sediments using a microcosm study and identified potential key phenanthrene-degrading bacteria using high throughput sequencing of 16 S rRNA gene and quantitative-PCR of the PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes. The biodegradation rates of phenanthrene in all treatments were higher in the wet-season sediments (11.58, 14.51, and 8.94 mg kg-1 sediment day-1) than in the dry-season sediments (3.51, 12.56, and 5.91 mg kg-1 sediment day-1) possibly due to higher nutrient accumulation caused by rainfall and higher diversity of potential phenanthrene-degrading bacteria. The results suggested that the mangrove sediment microbiome significantly clustered according to season. Although Gram-negative phenanthrene-degrading bacteria (i.e., Anaerolineaceae, Marinobacter, and Rhodobacteraceae) played a key role in both dry and wet seasons, distinctly different phenanthrene-degrading bacterial taxa were observed in each season. Halomonas and Porticoccus were potentially responsible for the degradation of phenanthrene in the dry and wet seasons, respectively. The knowledge gained from this study contributes to the development of effective and rationally designed microbiome innovations for oil removal.
Collapse
Affiliation(s)
- Parichaya Tiralerdpanich
- International Postgraduate Program in Hazardous Substance and Environmental Management, Chulalongkorn University, 9th Floor, CU Research Building, Phayathai Road, Bangkok, 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, 8th Floor, CU Research Building, Phayathai Road, Bangkok, 10330, Thailand
| | - Sirawit Nasaree
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Rachadhavi, Bangkok, 10400, Thailand
| | - Onruthai Pinyakong
- Center of Excellence on Hazardous Substance Management, Chulalongkorn University, 8th Floor, CU Research Building, Phayathai Road, Bangkok, 10330, Thailand; Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330, Thailand
| | - Prinpida Sonthiphand
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Rachadhavi, Bangkok, 10400, Thailand.
| |
Collapse
|
16
|
Abstract
Bioremediation is a sustainable remediation technology as it utilizes microorganisms to convert hazardous compounds into their less toxic or non-toxic constituent elements. This technology has achieved some success in the past decades; however, factors involving microbial consortia, such as microbial assembly, functional interactions, and the role of member species, hinder its development. Microbial consortia may be engineered to reconfigure metabolic pathways and reprogram social interactions to get the desired function, thereby providing solutions to its inherent problems. The engineering of microbial consortia is commonly applied for the commercial production of biomolecules. However, in the field of bioremediation, the engineering of microbial consortia needs to be emphasized. In this review, we will discuss the molecular and ecological mechanisms of engineering microbial consortia with a particular focus on metabolic cross-feeding within species and the transfer of metabolites. We also discuss the advantages and limitations of top-down and bottom-up approaches of engineering microbial consortia and their applications in bioremediation.
Collapse
|
17
|
Zhang L, Qiu X, Huang L, Xu J, Wang W, Li Z, Xu P, Tang H. Microbial degradation of multiple PAHs by a microbial consortium and its application on contaminated wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126524. [PMID: 34323721 DOI: 10.1016/j.jhazmat.2021.126524] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in the environment and pose a serious threat to human health. Due to their unfavorable biological effects and persistent properties, it is extremely urgent to effectively degrade PAHs that are present in the environment, especially in wastewater. In this study, we obtained an efficient bacterial consortium (PDMC), consisting of the genera Sphingobium (58.57-72.40%) and Pseudomonas (25.93-39.75%), which is able to efficiently utilize phenanthrene or dibenzothiophene as the sole carbon source. The phenanthrene-cultivated consortium could also degrade naphthalene, acenaphthene, fluorene, anthracene, fluoranthene, benzo[a]anthracene, dibenzofuran, carbazole and indole, respectively. Furthermore, we identified the multiple key intermediates of aforementioned 11 substrates and discussed proposed pathways involved. Notably, a novel intermediate 1,2-dihydroxy-4a,9a-dihydroanthracene-9,10-dione of anthracene degradation was detected, which is extremely rare compared to previous reports. The PDMC consortium removed 100% of PAHs within 5 days in the small-scale wastewater bioremediation added with PAHs mixture, with a sludge settling velocity of 5% after 10 days of incubation. Experiments on the stability reveal the PDMC consortium always has excellent degrading ability for totaling 24 days. Combined with the microbial diversity analysis, the results suggest the PDMC consortium is a promising candidate to facilitate the bioremediation of PAHs-contaminated environments.
Collapse
Affiliation(s)
- Lige Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaoyu Qiu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ling Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jijun Xu
- Befar Group Co., LTD., Shandong, Binzhou 256619, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhao Li
- Befar Group Co., LTD., Shandong, Binzhou 256619, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
18
|
Ma XX, Jiang ZY, Wu P, Wang YF, Cheng H, Wang YS, Gu JD. Effect of mangrove restoration on sediment properties and bacterial community. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1672-1679. [PMID: 33864552 DOI: 10.1007/s10646-021-02370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Mangrove reconstruction is an efficient approach for mangrove conservation and restoration. The present study aimed to explore the effects of mangrove reconstruction on sediment properties and bacterial community. The results showed that mangrove restoration greatly promoted sediment fertility, whereas the improvements were more obvious induced by Kandelia obovata when compared to Avicennia marina. In all the samples, the dominant top5 bacterial group were Proteobacteria (48.31-54.52%), Planctomycetes (5.98-8.48%), Bacteroidetes (4.49-11.14%) and Acidobacteria (5.69-8.16%). As for the differences among the groups, the relative abundance of Chloroflexi was higher in the sediments of K. obovata, while Bacteroidetes was more abundant in A. marina group. Furthermore, the two bacterial genera (Rhodoplanes and Novosphingobium) were more dominant in the sediments of K. obovata, while the sediments of A. marina contained higher abundance of Vibrio and Marinobacterium. Besides, bacterial community was highly correlated with mangrove species and sediment property and nutrient status. The results of this study would provide a better understanding of the ecological benefits of mangroves and highlighted the information on biogeochemical processes driven by mangrove restoration and microorganisms.
Collapse
Affiliation(s)
- Xiao-Xia Ma
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
- Department of Bioengineering, Jinan University, Guangzhou, 510632, China
| | - Zhao-Yu Jiang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Peng Wu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yong-Fei Wang
- Department of Bioengineering, Jinan University, Guangzhou, 510632, China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China
| |
Collapse
|
19
|
Chi Z, Hou L, Li H, Wu H, Yan B. Indigenous bacterial community and function in phenanthrene-polluted coastal wetlands: Potential for phenanthrene degradation and relation with soil properties. ENVIRONMENTAL RESEARCH 2021; 199:111357. [PMID: 34022228 DOI: 10.1016/j.envres.2021.111357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
The Yellow River Delta, adjacent to Shengli Oilfield, has a potential risk of petroleum pollution. In this study, soil samples were collected from phenanthrene (PHE)-polluted (adjacent to abandoned oil well, Zone D) and non-polluted (far away from abandoned oil well, Zone E) coastal wetlands. The influence of PHE pollution on indigenous bacterial community and function, and their relationship with soil characteristics were investigated. The levels of PHE, salinity and NH4+-N were higher in Zone D than in Zone E. PHE-degrading bacteria Achromobacter and Acinetobacter were mainly distributed in Zone E, whereas Halomonas, Marinobacter, and Roseovarius were highly abundant in Zone D. Halomonas and Marinobacter had the potential for denitrification and could achieve PHE degradation through mutual cooperation. PHE pollution could increase the abundance of functional bacteria but reduce the diversity of microbial community. PHE and salinity played key roles in shaping microbial community structure and function. High PHE level inhibited microbial metabolism but stimulated self-protection potential. PHE aerobic degradation associated with the catechol and phthalic acid pathways was found in Zone D, whereas the catechol pathway dominated in Zone E. Interestingly, PHE anaerobic degradation with nitrate reduction also dominated in Zone D, whereas the process coupled with multiple electron acceptors co-existed in Zone E, which was associated with tidal seawater carrying nutrients. This study illustrated the importance of comprehensive consideration of microbial community structure and function under PHE pollution, suggesting indigenous microorganisms as potential microbial consortium for bioremediation in coastal wetlands.
Collapse
Affiliation(s)
- Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Lining Hou
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China.
| | - Haitao Wu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China
| |
Collapse
|
20
|
Zhen L, Hu T, Lv R, Wu Y, Chang F, Jia F, Gu J. Succession of microbial communities and synergetic effects during bioremediation of petroleum hydrocarbon-contaminated soil enhanced by chemical oxidation. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124869. [PMID: 33422735 DOI: 10.1016/j.jhazmat.2020.124869] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/19/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Biotechnologies integrated with chemical techniques are promising in treating the soils contaminated by petroleum hydrocarbons. Experiments by applying the degrading consortium and the modified Fenton (MF) with the chelator sodium citrate simultaneously were carried out to investigate the effects of the MF reagents on the degradation of total petroleum hydrocarbons (TPHs), changes in enzyme activities and the succession of microbial communities at the 0, 20, 100 and 500 mmol/kg hydrogen peroxide concentration levels. The ratio between hydrogen peroxide, ferrous sulfate and sodium citrate in the MF reagents was 100:1:1. The results indicated that the degradation of TPHs conformed to first-order kinetics and MF treatments increased the total removal rates of TPHs (4.73-24.26%) and activated dehydrogenase and polyphenol oxidase activities. A shift in microbial communities from Proteobacteria to Bacteroidetes was observed during the enhanced bioremediation, and the predominant genus shifted from Pseudomonas with an average relative abundance (ARAs) of 76.61% at the beginning to Sphingobacterium with ARAs of 52.06% at the later stage. The MF reagents at the proper level could simplify the relationship among the community populations, alleviate their competition and strengthen their associations, which would optimize the removal efficiency.
Collapse
Affiliation(s)
- Lisha Zhen
- Shaanxi Province Institute of Microbiology, Xi'an, Shaanxi 710043, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A & Forestry University, Yangling, Shaanxi 712100, China
| | - Rui Lv
- Shaanxi Province Institute of Microbiology, Xi'an, Shaanxi 710043, China
| | - Yucheng Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fan Chang
- Shaanxi Province Institute of Microbiology, Xi'an, Shaanxi 710043, China
| | - Feng'an Jia
- Shaanxi Province Institute of Microbiology, Xi'an, Shaanxi 710043, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A & Forestry University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
21
|
Tong T, Li R, Chen J, Ke Y, Xie S. Bisphenol A biodegradation differs between mudflat and mangrove forest sediments. CHEMOSPHERE 2021; 270:128664. [PMID: 33757276 DOI: 10.1016/j.chemosphere.2020.128664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/22/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is one of the widely detected endocrine disrupting chemicals in coastal sediment. Biodegradation is a vital pathway of BPA elimination in sediment. However, the impact of vegetation on BPA degradation in coastal sediment is still unclear. In this study, the differences of BPA biodegradation and the functional microbial community and metabolic pathway were explored between mangrove forest and mudflat sediments. A nearly complete BPA attenuation was detected in 4 days in mudflat sediment but 8 days in forest sediment. Bacterial abundance varied greatly in different sediment types. Bacterial community structure changed with BPA biodegradation, dependent on sediment type. During the degradation, the proportions of Alphaproteobacteria and Gammaproteobacteria were higher in BPA amended microcosms than in un-amended microcosms. With BPA biodegradation, a substantial increase in Novosphingobium and Croceicoccus occurred in forest sediment and mudflat sediment, respectively. Additionally, two divergent BPA biodegradation pathways were proposed based on functional annotation and KEGG pathway database. The abundance of functional genes also varied with BPA biodegradation, dependent on sediment type. Gene pcaGH decreased, while genes ligK and pcaD increased in both sediment types. Gene pcaB showed a remarkable increase in forest sediment but a decrease in mudflat sediment. Therefore, BPA degradation and the associated microbial community and metabolic pathway differed between mudflat and mangrove forest sediments.
Collapse
Affiliation(s)
- Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Ruili Li
- School of Environmental and Energy, Shenzhen Graduate School of Peking University, Shenzhen, 518055, Guangdong, China.
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; School of Environmental and Energy, Shenzhen Graduate School of Peking University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
22
|
Qiao K, Tian W, Bai J, Wang L, Zhao J, Song T, Chu M. Removal of high-molecular-weight polycyclic aromatic hydrocarbons by a microbial consortium immobilized in magnetic floating biochar gel beads. MARINE POLLUTION BULLETIN 2020; 159:111489. [PMID: 32892922 DOI: 10.1016/j.marpolbul.2020.111489] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
A bacterial consortium immobilized in magnetic floating biochar gel beads is proposed to remove high-molecular-weight polycyclic aromatic hydrocarbons. The microbial consortium performed better than single strains and consisted of four strains of marine bacteria for degrading pyrene (PYR), two strains for benzo(a)pyrene (BAP), and three strains for indeno(1,2,3-cd)pyrene (INP), which were isolated from oil-contaminated seawater. The immobilized cells could biodegrade 89.8%, 66.9% and 78.2% of PYR, BAP and INP, respectively, and had better tolerance to pH, temperature and salinity than free cells. The Andrews model was used to explore the biodegradation kinetics, and when the initial concentrations of PYR, BAP, and INP were 7.80, 3.05, and 3.41 mg/L, the specific biodegradation rates reached maximum values of 0.2507, 0.1286, and 0.1930 d-1, respectively. The immobilized microbial consortium had a high HMW-PAH removal ability and good floatability and magnetic properties and could be collected by an external magnetic field.
Collapse
Affiliation(s)
- Kaili Qiao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China
| | - Liang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jing Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tiantian Song
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Meile Chu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
23
|
Hidalgo KJ, Sierra-Garcia IN, Dellagnezze BM, de Oliveira VM. Metagenomic Insights Into the Mechanisms for Biodegradation of Polycyclic Aromatic Hydrocarbons in the Oil Supply Chain. Front Microbiol 2020; 11:561506. [PMID: 33072021 PMCID: PMC7530279 DOI: 10.3389/fmicb.2020.561506] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/24/2020] [Indexed: 02/01/2023] Open
Abstract
Petroleum is a very complex and diverse organic mixture. Its composition depends on reservoir location and in situ conditions and changes once crude oil is spilled into the environment, making the characteristics associated with every spill unique. Polycyclic aromatic hydrocarbons (PAHs) are common components of the crude oil and constitute a group of persistent organic pollutants. Due to their highly hydrophobic, and their low solubility tend to accumulate in soil and sediment. The process by which oil is sourced and made available for use is referred to as the oil supply chain and involves three parts: (1) upstream, (2) midstream and (3) downstream activities. As consequence from oil supply chain activities, crude oils are subjected to biodeterioration, acidification and souring, and oil spills are frequently reported affecting not only the environment, but also the economy and human resources. Different bioremediation techniques based on microbial metabolism, such as natural attenuation, bioaugmentation, biostimulation are promising approaches to minimize the environmental impact of oil spills. The rate and efficiency of this process depend on multiple factors, like pH, oxygen content, temperature, availability and concentration of the pollutants and diversity and structure of the microbial community present in the affected (contaminated) area. Emerging approaches, such as (meta-)taxonomics and (meta-)genomics bring new insights into the molecular mechanisms of PAH microbial degradation at both single species and community levels in oil reservoirs and groundwater/seawater spills. We have scrutinized the microbiological aspects of biodegradation of PAHs naturally occurring in oil upstream activities (exploration and production), and crude oil and/or by-products spills in midstream (transport and storage) and downstream (refining and distribution) activities. This work addresses PAH biodegradation in different stages of oil supply chain affecting diverse environments (groundwater, seawater, oil reservoir) focusing on genes and pathways as well as key players involved in this process. In depth understanding of the biodegradation process will provide/improve knowledge for optimizing and monitoring bioremediation in oil spills cases and/or to impair the degradation in reservoirs avoiding deterioration of crude oil quality.
Collapse
Affiliation(s)
- Kelly J. Hidalgo
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabel N. Sierra-Garcia
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
- Biology Department & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Bruna M. Dellagnezze
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
| | - Valéria Maia de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
| |
Collapse
|
24
|
Wang C, Huang Y, Zhang Z, Hao H, Wang H. Absence of the nahG-like gene caused the syntrophic interaction between Marinobacter and other microbes in PAH-degrading process. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121387. [PMID: 31648897 DOI: 10.1016/j.jhazmat.2019.121387] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
In this study, Marinobacter sp. N4 isolated from the halophilic consortium CY-1 was found to degrade phenanthrene as a sole carbon source with the accumulation of 1-Hydroxy-2-naphthoic acid (1H2N). With the assistance of Halomonas sp. G29, phenanthrene could be completely mineralized. The hpah1 and hpah2 gene cluster was amplified from the genome of strain N4, that were responsible for upstream and downstream of PAH degradation. Strain N4 was predicted for the transformation from phenanthrene to 1H2N, and strain G29 could transform the produced 1H2N into 1,2-dihydroxynaphthalene (1,2-DHN). The produced 1,2-DHN could be further transformed into salicylic acid (SALA) by strain N4. SALA could be catalyzed into catechol by strain G29 and further utilized by strains N4 and G29 via the catechol 2,3-dioxygenase pathway and catechol 1,2-dioxygenase pathway, respectively. NahG, encoding salicylate hydroxylase, was absent from the hpah2 gene cluster and predicted to be the reason for 1H2N accumulation in the PAH-degrading process by pure culture of strain N4. The syntrophic interaction mode among Marinobacter and other microbes was also predicted. According to our knowledge, this is the first report of the PAH-degrading gene cluster in Marinobacter and the syntrophic interaction between Marinobacter and other microbes in the PAH-degrading process.
Collapse
Affiliation(s)
- Chongyang Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Yong Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Han Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
25
|
Gholami F, Shavandi M, Dastgheib SMM, Amoozegar MA. The impact of calcium peroxide on groundwater bacterial diversity during naphthalene removal by permeable reactive barrier (PRB). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35218-35226. [PMID: 31691896 DOI: 10.1007/s11356-019-06398-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Oxygen-releasing compounds (ORCs) have recently gained much attention in contaminated groundwater remediation. We investigated the impact of calcium peroxide nanoparticles on the groundwater indigenous bacteria in a bioremediation process by permeable reactive barrier (PRB). Three sand-packed columns were applied, including (1) control column (fresh groundwater), (2) natural remediation column (contaminated groundwater), and (3) biostimulation column (contaminated groundwater amended with CaO2). Actinobacteria and Proteobacteria constituted the main phyla among the identified isolates. According to the results of next-generation sequencing, Proteobacteria was the dominant phylum (81% relative abundance) in the natural remediation condition. But, it was declined to 38.1% in the biostimulation column. Meanwhile, the abundance of Actinobacteria and Bacteroidetes were increased to 25.9% and 15.4%, respectively, by exposing the groundwater microbial structure to CaO2 nanoparticles. Furthermore, orders Chlamydiales, Nitrospirales, and Oceanospirillales existing in the control column were detected in the presence of naphthalene. Shannon index was 4.32 for the control column samples, while it was reduced to 2.73 and 2.00 in the natural and biostimulation columns, respectively. Therefore, the present study provides a considerable insight into the impact of ORCs on the groundwater microbial community during the bioremediation process.
Collapse
Affiliation(s)
- Fatemeh Gholami
- Extremophiles Laboratory, Department of Microbiology, College of Science, University of Tehran, Tehran, Iran
| | - Mahmoud Shavandi
- Ecology and Environmental Pollution Control Research Group, Research Institute of Petroleum Industry, P.O. Box: 14665-137, Tehran, Iran.
| | | | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
26
|
Villaverde J, Láiz L, Lara-Moreno A, González-Pimentel JL, Morillo E. Bioaugmentation of PAH-Contaminated Soils With Novel Specific Degrader Strains Isolated From a Contaminated Industrial Site. Effect of Hydroxypropyl-β-Cyclodextrin as PAH Bioavailability Enhancer. Front Microbiol 2019; 10:2588. [PMID: 31798552 PMCID: PMC6874150 DOI: 10.3389/fmicb.2019.02588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/25/2019] [Indexed: 11/13/2022] Open
Abstract
A PAHs-contaminated industrial soil was analyzed using PCR amplification of the gene 16S ribosomal RNA for the detection and identification of different isolated bacterial strains potentially capable of degrading PAHs. Novel degrader strains were isolated and identified as Achromobacter xylosoxidans 2BC8 and Stenotrophomonas maltophilia JR62, which were able to degrade PYR in solution, achieving a mineralization rate of about 1% day-1. A. xylosoxidans was also able to mineralize PYR in slurry systems using three selected soils, and the total extent of mineralization (once a plateau was reached) increased 4.5, 21, and 57.5% for soils LT, TM and CR, respectively, regarding the mineralization observed in the absence of the bacterial degrader. Soil TM contaminated with PYR was aged for 80 days and total extent of mineralization was reduced (from 46 to 35% after 180 days), and the acclimation period increased (from 49 to 79 days). Hydroxypropyl-ß-cyclodextrin (HPBCD) was used as a bioavailability enhancer of PYR in this aged soil, provoking a significant decrease in the acclimation period (from 79 to 54 days) due to an increase in PYR bioavailable fraction just from the beginning of the assay. However, a similar global extension of mineralization was obtained. A. xylosoxidans was then added together with HPBCD to this aged TM soil contaminated with PYR, and the total extent of mineralization decreased to 25% after 180 days, possibly due to the competitive effect of endogenous microbiota and the higher concentration of PYR in the soil solution provoked by the addition of HPBCD, which could have a toxic effect on the A. xylosoxidans strain.
Collapse
Affiliation(s)
- Jaime Villaverde
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | - Leonila Láiz
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | - Alba Lara-Moreno
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | - J L González-Pimentel
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | - Esmeralda Morillo
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| |
Collapse
|
27
|
Dagher DJ, de la Providencia IE, Pitre FE, St-Arnaud M, Hijri M. Plant Identity Shaped Rhizospheric Microbial Communities More Strongly Than Bacterial Bioaugmentation in Petroleum Hydrocarbon-Polluted Sediments. Front Microbiol 2019; 10:2144. [PMID: 31572347 PMCID: PMC6753587 DOI: 10.3389/fmicb.2019.02144] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/30/2019] [Indexed: 01/21/2023] Open
Abstract
Manipulating the plant-root microbiota has the potential to reduce plant stress and promote their growth and production in harsh conditions. Community composition and activity of plant-roots microbiota can be either beneficial or deleterious to plant health. Shifting this equilibrium could then strongly affect plant productivity in anthropized areas. In this study, we tested whether repeated bioaugmentation with Proteobacteria influenced plant productivity and the microbial communities associated with the rhizosphere of four plant species growing in sediments contaminated with petroleum hydrocarbons (PHCs). A mesocosm experiment was performed in randomized block design with two factors: (1) presence or absence of four plants species collected from a sedimentation basin of a former petrochemical plant, and (2) bioaugmentation or not with a bacterial consortium composed of ten isolates of Proteobacteria. Plants were grown in a greenhouse over 4 months. MiSeq amplicon sequencing, targeting the bacterial 16S rRNA gene and the fungal ITS, was used to assess microbial community structures of sediments from planted or unplanted microcosms. Our results showed that while bioaugmentation caused a significant shift in microbial communities, presence of plant and their species identity had a stronger influence on the structure of the microbiome in PHCs contaminated sediments. The outcome of this study provides knowledge on the diversity and behavior of rhizosphere microbes associated with indigenous plants following repeated bioaugmentation, underlining the importance of plant selection in order to facilitate their efficient management, in order to accelerate processes of land reclamation.
Collapse
Affiliation(s)
- Dimitri J. Dagher
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montreal, QC, Canada
| | | | - Frédéric E. Pitre
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montreal, QC, Canada
| | - Marc St-Arnaud
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montreal, QC, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montreal, QC, Canada
| |
Collapse
|
28
|
Patel AB, Singh S, Patel A, Jain K, Amin S, Madamwar D. Synergistic biodegradation of phenanthrene and fluoranthene by mixed bacterial cultures. BIORESOURCE TECHNOLOGY 2019; 284:115-120. [PMID: 30927648 DOI: 10.1016/j.biortech.2019.03.097] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly recalcitrant compounds and difficult to degrade. Therefore in this work, using a bioremediation approach, mixed bacterial cultures (ASPF) was developed and enriched from polluted marine sediments capable of degrading 400 mg/L of phenanthrene and fluoranthene in Bushnell Hass medium. ASPF consists of 22 bacterial genera dominated by Azoarcus and Chelativorans. The biostimulation effect of three water soluble fertilizers (NPK, urea, and ammonium sulfate) showed that NPK and ammonium sulfate have enhanced the degradation, whereas urea has decreased their degradation. ASPF was also able to degrade phenanthrene and fluoranthene in the presence of petroleum hydrocarbons. But degradation was found to decrease in the presence of pathway intermediates (phthalic acid and catechol) due to enzymatic feedback inhibition. Optimum degradation of both PAHs was observed under room temperature, suggesting the practical applicability of ASPF.
Collapse
Affiliation(s)
- Avani Bharatkumar Patel
- Department of Biosciences, UGC Center of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol 388 315, Anand, Gujarat, India
| | - Shilpi Singh
- Department of Biosciences, UGC Center of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol 388 315, Anand, Gujarat, India
| | - Aaishwarya Patel
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Charusat Campus, Changa 388 421, Anand, Gujarat, India
| | - Kunal Jain
- Department of Biosciences, UGC Center of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol 388 315, Anand, Gujarat, India
| | - Seema Amin
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Charusat Campus, Changa 388 421, Anand, Gujarat, India
| | - Datta Madamwar
- Department of Biosciences, UGC Center of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol 388 315, Anand, Gujarat, India.
| |
Collapse
|
29
|
Abo-State M, Riad B, Bakr A, Abdel Aziz M. Biodegradation of naphthalene byBordetella aviumisolated from petroleum refinery wastewater in Egypt and its pathway. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2017.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M.A.M. Abo-State
- Department of Radiation Microbiology, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - B.Y. Riad
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - A.A. Bakr
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute (EPRI), Egypt
| | - M.F. Abdel Aziz
- Department of Biochemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
30
|
Resilience and Assemblage of Soil Microbiome in Response to Chemical Contamination Combined with Plant Growth. Appl Environ Microbiol 2019; 85:AEM.02523-18. [PMID: 30658982 DOI: 10.1128/aem.02523-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022] Open
Abstract
A lack of knowledge of the microbial responses to environmental change at the species and functional levels hinders our ability to understand the intrinsic mechanisms underlying the maintenance of microbial ecosystems. Here, we present results from temporal microcosms that introduced inorganic and organic contaminants into agro-soils for 90 days, with three common legume plants. Temporal dynamics and assemblage of soil microbial communities and functions in response to contamination under the influence of growth of different plants were explored via sequencing of the 16S rRNA amplicon and by shotgun metagenomics. Soil microbial alpha diversity and structure at the taxonomic and functional levels exhibited resilience patterns. Functional profiles showed greater resilience than did taxonomic ones. Different legume plants imposed stronger selection on taxonomic profiles than on functional ones. Network and random forest analyses revealed that the functional potential of soil microbial communities was fostered by various taxonomic groups. Betaproteobacteria were important predictors of key functional traits such as amino acid metabolism, nucleic acid metabolism, and hydrocarbon degradation. Our study reveals the strong resilience of the soil microbiome to chemical contamination and sensitive responses of taxonomic rather than functional profiles to selection processes induced by different legume plants. This is pivotal to develop approaches and policies for the protection of soil microbial diversity and functions in agro-ecosystems with different response strategies from global environmental drivers, such as soil contamination and plant invasion.IMPORTANCE Exploring the microbial responses to environmental disturbances is a central issue in microbial ecology. Understanding the dynamic responses of soil microbial communities to chemical contamination and the microbe-soil-plant interactions is essential for forecasting the long-term changes in soil ecosystems. Nevertheless, few studies have applied multi-omics approaches to assess the microbial responses to soil contamination and the microbe-soil-plant interactions at the taxonomic and functional levels simultaneously. Our study reveals clear succession and resilience patterns of soil microbial diversity and structure in response to chemical contamination. Different legume plants exerted stronger selection processes on taxonomic than on functional profiles in contaminated soils, which could benefit plant growth and fitness as well as foster the potential abilities of hydrocarbon degradation and metal tolerance. These results provide new insight into the resilience and assemblage of soil microbiome in response to environmental disturbances in agro-ecosystems at the species and functional levels.
Collapse
|
31
|
Yang CW, Tsai LL, Chang BV. Fungi extracellular enzyme-containing microcapsules enhance degradation of sulfonamide antibiotics in mangrove sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10069-10079. [PMID: 29383640 DOI: 10.1007/s11356-018-1332-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/18/2018] [Indexed: 05/22/2023]
Abstract
Mangroves represent a special coastal vegetation along the coastlines of tropical and subtropical regions. Sulfonamide antibiotics (SAs) are the most commonly used antibiotics. The application of white-rot fungi extracellular enzyme-containing microcapsules (MC) for aerobic degradation of SAs in mangrove sediments was investigated in this study. Degradation of three SAs, sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamethazine (SMZ), was enhanced by adding MC to the sediments. The order of SA degradation in batch experiments was SMX > SDM > SMZ. Bioreactor experiments revealed that SA removal rates were higher with than without MC. The enhanced SA removal rates with MC persisted with three re-additions of SAs. Thirteen bacteria genera (Achromobacter, Acinetobacter, Alcaligenes, Aquamicrobium, Arthrobacter, Brevundimonas, Flavobacterium, Methylobacterium, Microbacterium, Oligotropha, Paracoccus, Pseudomonas, and Rhodococcus) were identified to be associated with SA degradation in mangrove sediments by combination of next-generation sequencing, bacterial strain isolation, and literature search results. Results of this study suggest that MC could be used for SA removal in mangrove sediments.
Collapse
Affiliation(s)
- Chu-Wen Yang
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Li-Ling Tsai
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Bea-Ven Chang
- Department of Microbiology, Soochow University, Taipei, Taiwan.
| |
Collapse
|
32
|
Aziz A, Agamuthu P, Alaribe FO, Fauziah SH. Biodegradation of benzo[a]pyrene by bacterial consortium isolated from mangrove sediment. ENVIRONMENTAL TECHNOLOGY 2018; 39:527-535. [PMID: 28281885 DOI: 10.1080/09593330.2017.1305455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Benzo[a]pyrene is a high-molecular-weight polycyclic aromatic hydrocarbon highly recalcitrant in nature and thus harms the ecosystem and/or human health. Therefore, its removal from the marine environment is crucial. This research focuses on benzo[a]pyrene degradation by using enriched bacterial isolates in consortium under saline conditions. Bacterial isolates capable of using benzo[a]pyrene as sole source of carbon and energy were isolated from enriched mangrove sediment. These isolates were identified as Ochrobactrum anthropi, Stenotrophomonas acidaminiphila, and Aeromonas salmonicida ss salmonicida. Isolated O. anthropi and S. acidaminiphila degraded 26% and 20%, respectively, of an initial benzo[a]pyrene concentration of 20 mg/L after 8 days of incubation in seawater (28 ppm of NaCl). Meanwhile, the bacterial consortium decomposed 41% of an initial 50 mg/L benzo[a]pyrene concentration after 8 days of incubation in seawater (28 ppm of NaCl). The degradation efficiency of benzo[a]pyrene increased to 54%, when phenanthrene was supplemented as a co-metabolic substrate. The order of biodegradation rate by temperature was 30°C > 25°C > 35°C. Our results suggest that co-metabolism by the consortium could be a promising biodegradation strategy for benzo[a]pyrene in seawater.
Collapse
Affiliation(s)
- A Aziz
- a Lasbela University of Agriculture, Water and Marine Sciences , Uthal , Pakistan
- b Institute of Biological Sciences, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
- c Center for Research in Waste Management, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| | - P Agamuthu
- b Institute of Biological Sciences, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
- c Center for Research in Waste Management, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| | - F O Alaribe
- b Institute of Biological Sciences, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
- c Center for Research in Waste Management, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| | - S H Fauziah
- b Institute of Biological Sciences, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
- c Center for Research in Waste Management, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
33
|
Acosta-Rubí S, Campocosio AT, Montes-Horcasitas MDC, Quintanar-Vera L, Esparza-García F, Rodríguez-Vázquez R. Production of a halotolerant biofilm from green coffee beans immobilized on loofah fiber (Luffa cylindrica) and its effect on phenanthrene degradation in seawater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:632-640. [PMID: 28301290 DOI: 10.1080/10934529.2017.1294965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A biofilm developed from low quality green coffee beans was tested for its capacity to degrade the polynuclear aromatic hydrocarbon (PAH), phenanthrene (Phe), in seawater. Microorganisms were immobilized on two types of Luffa cylindrica (with three and four placental cavities), and the effects of moisture content (20, 30 and 40% of water holding capacity) and particle size (<0.42 mm, 0.42-0.86 mm and 0.86-2.0 mm) of green coffee beans on microbial activity were considered. Biofilm growth determined by respirometry showed a highest microbial activity at a moisture content of 40% and particle size of 0.42-0.86 mm. The loofah fiber with three placental cavities showed the highest adherence of microorganisms. The kinetics of microbial growth in both seawater and distilled water and the scanning electron microscopies indicated that the microorganisms associated with green coffee beans are halotolerant. In fact, I-GCB-SW-G biofilm degraded 67.56% of Phe (50 mg L-1) in seawater, at a significantly higher rate than in distilled water (I-GCB-DW-W).
Collapse
Affiliation(s)
- Sonia Acosta-Rubí
- a Department of Biotechnology and Bioengineering , Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Mexico City , Mexico
| | | | - María Del Carmen Montes-Horcasitas
- a Department of Biotechnology and Bioengineering , Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Mexico City , Mexico
| | - Liliana Quintanar-Vera
- c Department of Chemistry , Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Mexico City , Mexico
| | - Fernando Esparza-García
- a Department of Biotechnology and Bioengineering , Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Mexico City , Mexico
| | - Refugio Rodríguez-Vázquez
- a Department of Biotechnology and Bioengineering , Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Mexico City , Mexico
| |
Collapse
|
34
|
Gupta G, Kumar V, Pal AK. Microbial Degradation of High Molecular Weight Polycyclic Aromatic Hydrocarbons with Emphasis on Pyrene. Polycycl Aromat Compd 2017. [DOI: 10.1080/10406638.2017.1293696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Gauri Gupta
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - A. K. Pal
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|
35
|
Sukhdhane KS, Pandey PK, Ajima MNO, Jayakumar T, Vennila A, Raut SM. Isolation and Characterization of Phenanthrene-Degrading Bacteria from PAHs Contaminated Mangrove Sediment of Thane Creek in Mumbai, India. Polycycl Aromat Compd 2017. [DOI: 10.1080/10406638.2016.1261911] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- K. S. Sukhdhane
- Fishery Environment and Management Division, Veraval Regional Centre of Central Marine Fisheries Research Institute, Veraval, India
| | - P. K. Pandey
- Aquatic Environment and Health Management Division, Central Institute of Fisheries Education, Mumbai, India
| | - M. N. O. Ajima
- Aquatic Environment and Health Management Division, Central Institute of Fisheries Education, Mumbai, India
- Department of Fisheries and Aquaculture Technology, Federal University of Technology, Owerri, Nigeria
| | - T. Jayakumar
- Aquatic Environment and Health Management Division, Central Institute of Fisheries Education, Mumbai, India
| | - A. Vennila
- Department of Soil Science and Soil Nutrition, Sugarcane Breeding Institute, Coimbatore, India
| | - S. M. Raut
- Aquatic Environment and Health Management Division, Central Institute of Fisheries Education, Mumbai, India
| |
Collapse
|
36
|
de Almeida DG, da Silva MDGC, do Nascimento Barbosa R, de Souza Pereira Silva D, da Silva RO, de Souza Lima GM, de Gusmão NB, de Queiroz Sousa MDFV. Biodegradation of marine fuel MF-380 by microbial consortium isolated from seawater near the petrochemical Suape Port, Brazil. INTERNATIONAL BIODETERIORATION & BIODEGRADATION 2017. [DOI: https://doi.org/10.1016/j.ibiod.2016.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Wang D, Boukhalfa H, Marina O, Ware DS, Goering TJ, Sun F, Daligault HE, Lo CC, Vuyisich M, Starkenburg SR. Biostimulation and microbial community profiling reveal insights on RDX transformation in groundwater. Microbiologyopen 2016; 6. [PMID: 27860341 PMCID: PMC5387309 DOI: 10.1002/mbo3.423] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 11/06/2022] Open
Abstract
Hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) is a high explosive released to the environment as a result of weapons manufacturing and testing worldwide. At Los Alamos National Laboratory, the Technical Area (TA) 16 260 Outfall discharged high‐explosives‐bearing water from a high‐explosives‐machining facility to Cañon de Valle during 1951 through 1996. These discharges served as a primary source of high‐explosives and inorganic‐element contamination in the area. Data indicate that springs, surface water, alluvial groundwater, and perched‐intermediate groundwater contain explosive compounds, including RDX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine); HMX (octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine); and TNT (2,4,6‐trinitrotoluene). RDX has been detected in the regional aquifer in several wells, and a corrective measures evaluation is planned to identify remedial alternatives to protect the regional aquifer. Perched‐intermediate groundwater at Technical Area 16 is present at depths from 650 ft to 1200 ft bgs. In this study, we examined the microbial diversity in a monitoring well completed in perched‐intermediate groundwater contaminated by RDX, and examined the response of the microbial population to biostimulation under varying geochemical conditions. Results show that the groundwater microbiome was dominated by Actinobacteria and Proteobacteria. A total of 1,605 operational taxonomic units (OTUs) in 96 bacterial genera were identified. Rhodococcus was the most abundant genus (30.6%) and a total of 46 OTUs were annotated as Rhodococcus. One OTU comprising 25.2% of total sequences was closely related to a RDX ‐degrading strain R. erythropolis HS4. A less abundant OTU from the Pseudomonas family closely related to RDX‐degrading strain P. putida II‐B was also present. Biostimulation significantly enriched Proteobacteria but decreased/eliminated the population of Actinobacteria. Consistent with RDX degradation, the OTU closely related to the RDX‐degrading P. putida strain II‐B was specifically enriched in the RDX‐degrading samples. Analysis of the accumulation of RDX‐degradation products reveals that during active RDX degradation, there is a transient increase in the concentration of the degradation products MNX, DNX, TNX, and NDAB. The accumulation of these degradation products suggests that RDX is degraded via sequential reduction of the nitro functional groups followed by abiotic ring‐cleavage. The results suggest that strict anaerobic conditions are needed to stimulate RDX degradation under the TA‐16 site‐specific conditions.
Collapse
Affiliation(s)
- Dongping Wang
- Earth Systems Observations EES-14, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Hakim Boukhalfa
- Earth Systems Observations EES-14, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Oana Marina
- Earth Systems Observations EES-14, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Doug S Ware
- Earth Systems Observations EES-14, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Tim J Goering
- Environmental Programs ADEP, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USA
| | - Hajnalka E Daligault
- Bioenergy and Biome Sciences, Biology Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Chien-Chi Lo
- Bioenergy and Biome Sciences, Biology Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Momchilo Vuyisich
- Bioenergy and Biome Sciences, Biology Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shawn R Starkenburg
- Bioenergy and Biome Sciences, Biology Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
38
|
Wang H, Wang B, Dong W, Hu X. Co-acclimation of bacterial communities under stresses of hydrocarbons with different structures. Sci Rep 2016; 6:34588. [PMID: 27698451 PMCID: PMC5048299 DOI: 10.1038/srep34588] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/15/2016] [Indexed: 01/05/2023] Open
Abstract
Crude oil is a complex mixture of hydrocarbons with different structures; its components vary in bioavailability and toxicity. It is important to understand how bacterial communities response to different hydrocarbons and their co-acclimation in the process of degradation. In this study, microcosms with the addition of structurally different hydrocarbons were setup to investigate the successions of bacterial communities and the interactions between different bacterial taxa. Hydrocarbons were effectively degraded in all microcosms after 40 days. High-throughput sequencing offered a great quantity of data for analyzing successions of bacterial communities. The results indicated that the bacterial communities responded dramatically different to various hydrocarbons. KEGG database and PICRUSt were applied to predict functions of individual bacterial taxa and networks were constructed to analyze co-acclimations between functional bacterial groups. Almost all functional genes catalyzing degradation of different hydrocarbons were predicted in bacterial communities. Most of bacterial taxa were believed to conduct biodegradation processes via interactions with each other. This study addressed a few investigated area of bacterial community responses to structurally different organic pollutants and their co-acclimation and interactions in the process of biodegradation. The study could provide useful information to guide the bioremediation of crude oil pollution.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Bin Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Wenwen Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| |
Collapse
|
39
|
Biofilm and Planktonic Bacterial and Fungal Communities Transforming High-Molecular-Weight Polycyclic Aromatic Hydrocarbons. Appl Environ Microbiol 2016; 82:2288-2299. [PMID: 26850299 PMCID: PMC4959499 DOI: 10.1128/aem.03713-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/30/2016] [Indexed: 12/22/2022] Open
Abstract
High-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs) are natural components of fossil fuels that are carcinogenic and persistent in the environment, particularly in oil sands process-affected water (OSPW). Their hydrophobicity and tendency to adsorb to organic matter result in low bioavailability and high recalcitrance to degradation. Despite the importance of microbes for environmental remediation, little is known about those involved in HMW-PAH transformations. Here, we investigated the transformation of HMW-PAHs using samples of OSPW and compared the bacterial and fungal community compositions attached to hydrophobic filters and in suspension. It was anticipated that the hydrophobic filters with sorbed HMW-PAHs would select for microbes that specialize in adhesion. Over 33 days, more pyrene was removed (75% ± 11.7%) than the five-ring PAHs benzo[a]pyrene (44% ± 13.6%) and benzo[b]fluoranthene (41% ± 12.6%). For both bacteria and fungi, the addition of PAHs led to a shift in community composition, but thereafter the major factor determining the fungal community composition was whether it was in the planktonic phase or attached to filters. In contrast, the major determinant of the bacterial community composition was the nature of the PAH serving as the carbon source. The main bacteria enriched by HMW-PAHs were Pseudomonas, Bacillus, and Microbacterium species. This report demonstrates that OSPW harbors microbial communities with the capacity to transform HMW-PAHs. Furthermore, the provision of suitable surfaces that encourage PAH sorption and microbial adhesion select for different fungal and bacterial species with the potential for HMW-PAH degradation.
Collapse
|
40
|
Jiao S, Chen W, Wang E, Wang J, Liu Z, Li Y, Wei G. Microbial succession in response to pollutants in batch-enrichment culture. Sci Rep 2016; 6:21791. [PMID: 26905741 PMCID: PMC4764846 DOI: 10.1038/srep21791] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/01/2016] [Indexed: 11/29/2022] Open
Abstract
As a global problem, environmental pollution is an important factor to shape the microbial communities. The elucidation of the succession of microbial communities in response to pollutants is essential for developing bioremediation procedures. In the present study, ten batches of soil-enrichment subcultures were subjected to four treatments: phenanthrene, n-octadecane, phenanthrene + n-octadecane, or phenanthrene + n-octadecane + CdCl2. Forty pollutant-degrading consortia, corresponding to each batch of the four treatments were obtained. High-throughput sequencing of the 16S rRNA gene revealed that the diversity, richness and evenness of the consortia decreased throughout the subculturing procedure. The well-known hydrocarbon degraders Acinetobacter, Gordonia, Sphingobium, Sphingopyxis, and Castellaniella and several other genera, including Niabella and Naxibacter, were detected in the enriched consortia. The predominant microbes varied and the microbial community in the consortia gradually changed during the successive subculturing depending on the treatment, indicating that the pollutants influenced the microbial successions. Comparison of the networks in the treatments indicated that organic pollutants and CdCl2 affected the co-occurrence patterns in enriched consortia. In conclusion, single environmental factors, such as the addition of nutrients or selection pressure, can shape microbial communities and partially explain the extensive differences in microbial community structures among diverse environments.
Collapse
Affiliation(s)
- Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México, D.F., Mexico
| | - Junman Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| | - Zhenshan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| | - Yining Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| |
Collapse
|
41
|
Jiang S, Lu H, Zhang Q, Liu J, Yan C. Effect of enhanced reactive nitrogen availability on plant-sediment mediated degradation of polycyclic aromatic hydrocarbons in contaminated mangrove sediment. MARINE POLLUTION BULLETIN 2016; 103:151-158. [PMID: 26749225 DOI: 10.1016/j.marpolbul.2015.12.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/10/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
As land-ocean interaction zones, mangrove systems receive substantial polycyclic aromatic hydrocarbons (PAHs) from sewage and combustion of fossil fuel. In this study, we investigated the relationship between dissolved inorganic nitrogen (DIN) availability and degradation rate of phenanthrene, a typical PAH compound, in mangrove plant-sediment systems, using Avicennia marina as a model plant. After 50 day incubation, phenanthrene removal ratios in sediments ranged from 53.8% to 97.2%. In non-rhizosphere sediment, increasing DIN accessibility increased microbial biomass and total microbial activity, while enhancements in population size of phenanthrene degradation bacteria (PDB) and phenanthrene degradation rates were insignificant. In contrast, the presence of excessive DIN in rhizosphere sediment resulted in a significantly large number of PDB, leading to a rapid dissipation rate of phenanthrene. The differences in degradation rates and abundances of degrader in sediment may be explained by the enhanced root activity due to the elevation in DIN accessibility.
Collapse
Affiliation(s)
- Shan Jiang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, 361005, China
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, 361005, China
| | - Qiong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, 361005, China; School of Biological Sciences and Biotechnology, Minnan Normal University, 363000, China
| | - JingChun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, 361005, China
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, 361005, China.
| |
Collapse
|
42
|
Ben Said O, Louati H, Soltani A, Preud'homme H, Cravo-Laureau C, Got P, Pringault O, Aissa P, Duran R. Changes of benthic bacteria and meiofauna assemblages during bio-treatments of anthracene-contaminated sediments from Bizerta lagoon (Tunisia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15319-15331. [PMID: 25618309 DOI: 10.1007/s11356-015-4105-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 01/11/2015] [Indexed: 06/04/2023]
Abstract
Sediments from Bizerta lagoon were used in an experimental microcosm setup involving three scenarios for the bioremediation of anthracene-polluted sediments, namely bioaugmentation, biostimulation, and a combination of both bioaugmentation and biostimulation. In order to investigate the effect of the biotreatments on the benthic biosphere, 16S rRNA gene-based T-RFLP bacterial community structure and the abundance and diversity of the meiofauna were determined throughout the experiment period. Addition of fresh anthracene drastically reduced the benthic bacterial and meiofaunal abundances. The treatment combining biostimulation and bioaugmentation was most efficient in eliminating anthracene, resulting in a less toxic sedimentary environment, which restored meiofaunal abundance and diversity. Furthermore, canonical correspondence analysis showed that the biostimulation treatment promoted a bacterial community favorable to the development of nematodes while the treatment combining biostimulation and bioaugmentation resulted in a bacterial community that advantaged the development of the other meiofauna taxa (copepods, oligochaetes, polychaetes, and other) restoring thus the meiofaunal structure. The results highlight the importance to take into account the bacteria/meiofauna interactions during the implementation of bioremediation treatment.
Collapse
Affiliation(s)
- Olfa Ben Said
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, 7021, Zarzouna, Tunisia.
- Equipe Environnement et Microbiologie-MELODY Group-UMR CNRS IPREM 5254-IBEAS, Université de Pau et des Pays de l'Adour, Pau, France.
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia.
| | - Hela Louati
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, 7021, Zarzouna, Tunisia
- Laboratoire Ecosystèmes Marins Côtiers, UMR 5119 CNRS-UM2-IFREMER-IRD-ECOSYM, Université Montpellier 2, Montpellier, France
| | - Amel Soltani
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, 7021, Zarzouna, Tunisia
- Equipe Environnement et Microbiologie-MELODY Group-UMR CNRS IPREM 5254-IBEAS, Université de Pau et des Pays de l'Adour, Pau, France
| | - Hugues Preud'homme
- Laboratoire Chimie Analytique BioInorganique Environnement-UMR CNRS IPREM 5254-Helioparc, Université de Pau et des Pays de l'Adour, Pau, France
| | - Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie-MELODY Group-UMR CNRS IPREM 5254-IBEAS, Université de Pau et des Pays de l'Adour, Pau, France
| | - Patrice Got
- Laboratoire Ecosystèmes Marins Côtiers, UMR 5119 CNRS-UM2-IFREMER-IRD-ECOSYM, Université Montpellier 2, Montpellier, France
| | - Olivier Pringault
- Laboratoire Ecosystèmes Marins Côtiers, UMR 5119 CNRS-UM2-IFREMER-IRD-ECOSYM, Université Montpellier 2, Montpellier, France
| | - Patricia Aissa
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, 7021, Zarzouna, Tunisia
| | - Robert Duran
- Equipe Environnement et Microbiologie-MELODY Group-UMR CNRS IPREM 5254-IBEAS, Université de Pau et des Pays de l'Adour, Pau, France
| |
Collapse
|
43
|
Bahr A, Fischer A, Vogt C, Bombach P. Evidence of polycyclic aromatic hydrocarbon biodegradation in a contaminated aquifer by combined application of in situ and laboratory microcosms using (13)C-labelled target compounds. WATER RESEARCH 2015; 69:100-109. [PMID: 25437342 DOI: 10.1016/j.watres.2014.10.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 05/21/2023]
Abstract
The number of approaches to evaluate the biodegradation of polycyclic aromatic hydrocarbons (PAHs) within contaminated aquifers is limited. Here, we demonstrate the applicability of a novel method based on the combination of in situ and laboratory microcosms using (13)C-labelled PAHs as tracer compounds. The biodegradation of four PAHs (naphthalene, fluorene, phenanthrene, and acenaphthene) was investigated in an oxic aquifer at the site of a former gas plant. In situ biodegradation of naphthalene and fluorene was demonstrated using in situ microcosms (BACTRAP(®)s). BACTRAP(®)s amended with either [(13)C6]-naphthalene or [(13)C5/(13)C6]-fluorene (50:50) were incubated for a period of over two months in two groundwater wells located at the contaminant source and plume fringe, respectively. Amino acids extracted from BACTRAP(®)-grown cells showed significant (13)C-enrichments with (13)C-fractions of up to 30.4% for naphthalene and 3.8% for fluorene, thus providing evidence for the in situ biodegradation and assimilation of those PAHs at the field site. To quantify the mineralisation of PAHs, laboratory microcosms were set up with BACTRAP(®)-grown cells and groundwater. Naphthalene, fluorene, phenanthrene, or acenaphthene were added as (13)C-labelled substrates. (13)C-enrichment of the produced CO2 revealed mineralisation of between 5.9% and 19.7% for fluorene, between 11.1% and 35.1% for acenaphthene, between 14.2% and 33.1% for phenanthrene, and up to 37.0% for naphthalene over a period of 62 days. Observed PAH mineralisation rates ranged between 17 μg L(-1) d(-1) and 1639 μg L(-1) d(-1). The novel approach combining in situ and laboratory microcosms allowed a comprehensive evaluation of PAH biodegradation at the investigated field site, revealing the method's potential for the assessment of PAH degradation within contaminated aquifers.
Collapse
Affiliation(s)
- Arne Bahr
- UFZ - Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Anko Fischer
- Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany
| | - Carsten Vogt
- UFZ - Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Petra Bombach
- UFZ - Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany.
| |
Collapse
|
44
|
Bacosa HP, Inoue C. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:689-697. [PMID: 25464311 DOI: 10.1016/j.jhazmat.2014.09.068] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/22/2014] [Accepted: 09/27/2014] [Indexed: 06/04/2023]
Abstract
The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils.
Collapse
Affiliation(s)
- Hernando Pactao Bacosa
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, United States.
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
45
|
Zhang ZW, Xu XR, Sun YX, Yu S, Chen YS, Peng JX. Heavy metal and organic contaminants in mangrove ecosystems of China: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:11938-11950. [PMID: 24938806 DOI: 10.1007/s11356-014-3100-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
China's rapid economic growth has been accompanied by increasing environmental pollution. Mangrove ecosystems are now facing greater pollution pressures due to elevated chemical discharges from various land-based sources. Data on the levels of heavy metals and organic pollutants in mangrove compartments (sediments, plants, zoobenthos, and fish) in China over the past 20 years have been summarized to evaluate the current pollution status of the mangrove ecosystem. Overall, the Pearl River and Jiulong River estuaries were severely polluted spots. Concentrations of Cu, Zn, Cd, and Pb in mangrove sediments of Guangdong, Fujian, and Hong Kong were higher than those from Guangxi and Hainan. The pollution status was closely linked to industrialization and urbanization. The highest concentrations of polycyclic aromatic hydrocarbons (PAHs) were found in mangrove sediments from Hong Kong, followed by Fujian and Guangdong. Mangrove plants tend to have low-enriched ability for heavy metals and organic pollutants. Much higher levels of Pb, Cd, and Hg were observed in mollusks.
Collapse
Affiliation(s)
- Zai-Wang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
46
|
Ganesh Kumar A, Vijayakumar L, Joshi G, Magesh Peter D, Dharani G, Kirubagaran R. Biodegradation of complex hydrocarbons in spent engine oil by novel bacterial consortium isolated from deep sea sediment. BIORESOURCE TECHNOLOGY 2014; 170:556-564. [PMID: 25171211 DOI: 10.1016/j.biortech.2014.08.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/01/2014] [Accepted: 08/03/2014] [Indexed: 05/20/2023]
Abstract
Complex hydrocarbon and aromatic compounds degrading marine bacterial strains were isolated from deep sea sediment after enrichment on spent engine (SE) oil. Phenotypic characterization and phylogenetic analysis of 16S rRNA gene sequences showed the isolates were related to members of the Pseudoalteromonas sp., Ruegeria sp., Exiguobacterium sp. and Acinetobacter sp. Biodegradation using 1% (v/v) SE oil with individual and mixed strains showed the efficacy of SE oil utilization within a short retention time. The addition of non-ionic surfactant 0.05% (v/v) Tween 80 as emulsifying agent enhanced the solubility of hydrocarbons and renders them more accessible for biodegradation. The degradation of several compounds and the metabolites formed during the microbial oxidation process were confirmed by Fourier transform infrared spectroscopy and Gas chromatography-mass spectrometry analyses. The potential of this consortium to biodegrade SE oil with and without emulsifying agent provides possible application in bioremediation of oil contaminated marine environment.
Collapse
Affiliation(s)
- A Ganesh Kumar
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, ESSO - National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai 600100, India
| | - Lakshmi Vijayakumar
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, ESSO - National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai 600100, India
| | - Gajendra Joshi
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, ESSO - National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai 600100, India
| | - D Magesh Peter
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, ESSO - National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai 600100, India
| | - G Dharani
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, ESSO - National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai 600100, India
| | - R Kirubagaran
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, ESSO - National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai 600100, India.
| |
Collapse
|
47
|
Ma XK, ling Wu L, Fam H. Heavy metal ions affecting the removal of polycyclic aromatic hydrocarbons by fungi with heavy-metal resistance. Appl Microbiol Biotechnol 2014; 98:9817-27. [DOI: 10.1007/s00253-014-5905-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
|
48
|
Yan Z, Jiang H, Li X, Shi Y. Accelerated removal of pyrene and benzo[a]pyrene in freshwater sediments with amendment of cyanobacteria-derived organic matter. JOURNAL OF HAZARDOUS MATERIALS 2014; 272:66-74. [PMID: 24681443 DOI: 10.1016/j.jhazmat.2014.02.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 02/02/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
The removal of pyrene and benzo[a]pyrene (BaP) were investigated in freshwater sediments with amendment of seven different organic matters including cyanobacteria-derived organic matter (COM), plant-derived organic matter (POM), and humic substances (HS). During the 210 days of experiments, the amendment of COM or HS enhanced significantly the removal of pyrene and BaP in sediments, especially with fresh COM (FCOM) treatment much superior to HS. On the contrary, degradation of these polycyclic aromatic hydrocarbons (PAHs) was not significantly improved and even inhibited in POM-amended sediments. The first-order rate constants of pyrene and BaP degradation in the FCOM-amended sediments reached 0.00540±0.00017d(-1) and 0.00517±0.00057d(-1), respectively, and were about three and five folds of those in the control treatment. The enhanced PAHs degradation in FCOM-amended sediments was related to higher PAH-degrading bacteria number and bioavailability with a result of biostimulation and priming effect by labile carbon and high-value nutrition in FCOM. Thus, this study improved our understanding about effects of settled biomass from cyanobacterial blooms, which occurred frequently in eutrophic aquatic ecosystems, on the natural attenuation of PAHs in sediments. Furthermore, this study would also help develop a new promising approach to remediate PAH-contaminated sediments through utilization of cyanobacterial bloom biomass.
Collapse
Affiliation(s)
- Zaisheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xiaohong Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
49
|
Vera SS, Zambrano DF, Méndez-Sanchez SC, Rodríguez-Sanabria F, Stashenko EE, Duque Luna JE. Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parasitol Res 2014; 113:2647-54. [PMID: 24781026 DOI: 10.1007/s00436-014-3917-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
Abstract
Insecticidal activity of the essential oils (EOs) isolated from Tagetes lucida, Lippia alba, Lippia origanoides, Eucalyptus citriodora, Cymbopogon citratus, Cymbopogon flexuosus, Citrus sinensis, Swinglea glutinosa, and Cananga odorata aromatic plants, grown in Colombia (Bucaramanga, Santander), and of a mixture of L. alba and L. origanoides EOs were evaluated on Aedes (Stegomyia) aegypti Rockefeller larvae. The EOs were extracted by microwave-assisted hydrodistillation and characterized by gas chromatography-mass spectrometry (GC-MS). The main components of the EOs were identified using their linear retention indices and mass spectra. The lethal concentrations (LCs) of the EOs were determined between the third and fourth instar of A. aegypti. LC50 was determined by probit analysis using mortality rates of bioassays. All essential oils tested showed insecticidal activity. The following values were obtained for C. flexuosus (LC50 = 17.1 ppm); C. sinensis (LC50 = 20.6 ppm); the mixture of L. alba and L. origanoides (LC50 = 40.1 ppm); L. alba (LC50 = 42.2 ppm); C. odorata (LC50 = 52.9 ppm); L. origanoides (LC50 = 53.3 ppm); S. glutinosa (LC50 = 65.7 ppm); T. lucida (LC50 = 66.2 ppm); E. citriodora (LC50 = 71.2 ppm); and C. citratus (LC50 = 123.3 ppm). The EO from C. flexuosus, with citral (geranial + neral) as main component, showed the highest larvicidal activity.
Collapse
Affiliation(s)
- Sharon Smith Vera
- Center for Research on Tropical Diseases (Centro de Investigación en Enfermedades Tropicales-CINTROP), Faculty of Health, School of Medicine, Department of Basic Sciences, Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | | | | | | | | |
Collapse
|
50
|
Rocha LL, Colares GB, Angelim AL, Grangeiro TB, Melo VMM. Culturable populations of Acinetobacter can promptly respond to contamination by alkanes in mangrove sediments. MARINE POLLUTION BULLETIN 2013; 76:214-219. [PMID: 24050127 DOI: 10.1016/j.marpolbul.2013.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/26/2013] [Indexed: 06/02/2023]
Abstract
This study evaluated the potential of bacterial isolates from mangrove sediments to degrade hexadecane, an paraffin hydrocarbon that is a large constituent of diesel and automobile lubricants. From a total of 18 oil-degrading isolates obtained by an enrichment technique, four isolates showed a great potential to degrade hexadecane. The strain MSIC01, which was identified by 16S rRNA gene sequencing as Acinetobacter sp., showed the best performance in degrading this hydrocarbon, being capable of completely degrading 1% (v/v) hexadecane within 48 h without releasing biosurfactants. Its hydrophobic surface probably justifies its potential to degrade high concentrations of hexadecane. Thus, the sediments from the studied mangrove harbour bacterial communities that are able to use oil as a carbon source, which is a particularly interesting feature due to the risk of oil spills in coastal areas. Moreover, Acinetobacter sp. MSIC01 emerged as a promising candidate for applications in bioremediation of contaminated mangrove sediments.
Collapse
Affiliation(s)
- Lidianne L Rocha
- Laboratório de Ecologia Microbiana e Biotecnologia (LEMBiotech), Departamento de Biologia, Universidade Federal do Ceará, Av. Humberto Monte, 2977, Campus do Pici, Bloco 909, 60455-000 Fortaleza, Ceará, Brazil
| | | | | | | | | |
Collapse
|