1
|
van der Schyff V, Kalina J, Abballe A, Iamiceli AL, Govarts E, Melymuk L. Has Regulatory Action Reduced Human Exposure to Flame Retardants? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19106-19124. [PMID: 37992205 PMCID: PMC10702444 DOI: 10.1021/acs.est.3c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/10/2023] [Accepted: 09/29/2023] [Indexed: 11/24/2023]
Abstract
Flame retardant (FR) exposure has been linked to several environmental and human health effects. Because of this, the production and use of several FRs are regulated globally. We reviewed the available records of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDDs) in human breast milk from literature to evaluate the efficacy of regulation to reduce the exposure of FRs to humans. Two-hundred and seven studies were used for analyses to determine the spatial and temporal trends of FR exposure. North America consistently had the highest concentrations of PBDEs, while Asia and Oceania dominated HBCDD exposure. BDE-49 and -99 indicated decreasing temporal trends in most regions. BDE-153, with a longer half-life than the aforementioned isomers, typically exhibited a plateau in breast milk levels. No conclusive trend could be established for HBCDD, and insufficient information was available to determine a temporal trend for BDE-209. Breakpoint analyses indicated a significant decrease in BDE-47 and -99 in Europe around the time that regulation has been implemented, suggesting a positive effect of regulation on FR exposure. However, very few studies have been conducted globally (specifically in North America) after 2013, during the time when the most recent regulations have been implemented. This meta-analysis provides insight into global trends in human exposure to PBDEs and HBCDD, but the remaining uncertainty highlights the need for ongoing evaluation and monitoring, even after a compound group is regulated.
Collapse
Affiliation(s)
| | - Jiří Kalina
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech
Republic
| | - Annalisa Abballe
- Department
of Environment and Health, Italian National
Institute for Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Anna Laura Iamiceli
- Department
of Environment and Health, Italian National
Institute for Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eva Govarts
- VITO
Health, Flemish Institute for Technological
Research (VITO), 2400 Mol, Belgium
| | - Lisa Melymuk
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech
Republic
| |
Collapse
|
2
|
Schreder E, Zheng G, Sathyanarayana S, Gunaje N, Hu M, Salamova A. Brominated flame retardants in breast milk from the United States: First detection of bromophenols in U.S. breast milk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122028. [PMID: 37315884 DOI: 10.1016/j.envpol.2023.122028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Brominated flame retardants (BFRs) are a class of compounds with many persistent, toxic, and bioaccumulative members. BFRs have been widely detected in breast milk, posing health risks for breastfeeding infants. Ten years after the phaseout of polybrominated diphenyl ethers (PBDEs) in the United States, we analyzed breast milk from 50 U.S. mothers for a suite of BFRs to assess current exposures to BFRs and the impact of changing use patterns on levels of PBDEs and current-use compounds in breast milk. Compounds analyzed included 37 PBDEs, 18 bromophenols, and 11 other BFRs. A total of 25 BFRs were detected, including 9 PBDEs, 8 bromophenols, and 8 other BFRs. PBDEs were found in every sample but at concentrations considerably lower than in previous North American samples, with a median ∑PBDE concentration (sum of 9 detected PBDEs) of 15.0 ng/g lipid (range 1.46-1170 ng/g lipid). Analysis of time trends in PBDE concentrations in North American breast milk indicated a significant decline since 2002, with a halving time for ∑PBDE concentrations of 12.2 years; comparison with previous samples from the northwest U.S region showed a 70% decline in median levels. Bromophenols were detected in 88% of samples with a median ∑12bromophenol concentration (sum of 12 detected bromophenols) of 0.996 ng/g lipid and reaching up to 71.1 ng/g lipid. Other BFRs were infrequently detected but concentrations reached up to 278 ng/g lipid. These results represent the first measurement of bromophenols and other replacement flame retardants in breast milk from U.S. mothers. In addition, these results provide data on current PBDE contamination in human milk, as PBDEs were last measured in U.S. breast milk ten years ago. The presence of phased-out PBDEs, bromophenols, and other current-use flame retardants in breast milk reflects ongoing prenatal exposure and increased risk for adverse impacts on infant development.
Collapse
Affiliation(s)
| | - Guomao Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA; Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Navya Gunaje
- Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Min Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, 30322, GA, USA
| |
Collapse
|
3
|
Ma S, Ren G, Zheng K, Cui J, Li P, Huang X, Lin M, Liu R, Yuan J, Yin W, Peng P, Sheng G, Yu Z. New Insights into Human Biotransformation of BDE-209: Unique Occurrence of Metabolites of Ortho-Substituted Hydroxylated Higher Brominated Diphenyl Ethers in the Serum of e-Waste Dismantlers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10239-10248. [PMID: 35790344 DOI: 10.1021/acs.est.2c02074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extremely high levels of decabromodiphenyl ether (BDE-209) are frequently found in the serum of occupationally exposed groups, such as e-waste dismantlers and firefighters. However, the metabolism of BDE-209 in the human body is not adequately studied. In this study, 24 serum samples were collected from workers at a typical e-waste recycling workshop in Taizhou, Eastern China, and the occurrence and fate of these higher brominated diphenyl ethers (PBDEs) were investigated. The median concentration of the total PBDEs in the serum was 199 ng/g lipid weight (lw), ranging from 125 to 622 ng/g lw. Higher brominated octa- to deca-BDEs accounted for more than 80% of the total PBDEs. Three ortho-hydroxylated metabolites of PBDEs─6-OH-BDE196, 6-OH-BDE199, and 6'-OH-BDE206─were widely detected with a total concentration (median) of 92.7 ng/g lw. The concentrations of the three OH-PBDEs were significantly higher than their octa- and nona-PBDE homologues, even exceeding those of the total PBDEs in several samples, indicating that the formation of OH-PBDEs was a major metabolic pathway of the higher brominated PBDEs in occupationally exposed workers. An almost linear correlation between 6-OH-BDE196 and 6-OH-BDE199 (R = 0.971, P < 0.001) indicates that they might undergo a similar biotransformation pathway in the human body or may be derived from the same precursor. In addition, the occurrence of a series of penta- to hepta- ortho-substituted OH-PBDEs was preliminarily identified according to their unique "predioxin" mass spectral profiles by GC-ECNI-MS. Taken together, the tentative metabolic pathway for BDE-209 in e-waste dismantlers was proposed. The oxidative metabolism of BDE-209 was mainly observed at the ortho positions to form 6'-OH-BDE-206, which later underwent a consecutive loss of bromine atoms at the meta or para positions to generate other ortho-OH-PBDEs. Further studies are urgently needed to identify the chemical structures of these ortho-OH-PBDE metabolites, and perhaps more importantly to clarify the potentially toxic effects, along with their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Shengtao Ma
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China
| | - Guofa Ren
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Kewen Zheng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Juntao Cui
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Pei Li
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaomei Huang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Meiqing Lin
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China
| | - Ranran Liu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jing Yuan
- Department of Occupational and Environmental Health and The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenjun Yin
- Department of Occupational and Environmental Health and The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, Hubei 430015, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China
| | - Guoying Sheng
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China
| |
Collapse
|
4
|
Critical review of analytical methods for the determination of flame retardants in human matrices. Anal Chim Acta 2022; 1193:338828. [PMID: 35058002 DOI: 10.1016/j.aca.2021.338828] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022]
Abstract
Human biomonitoring is a powerful approach in assessing exposure to environmental pollutants. Flame retardants (FRs) are of particular concern due to their wide distribution in the environment and adverse health effects. This article reviews studies published in 2009-2020 on the chemical analysis of FRs in a variety of human samples and discusses the characteristics of the analytical methods applied to different FR biomarkers of exposure, including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), novel halogenated flame retardants (NHFRs), bromophenols, incl. tetrabromobisphenol A (TBBPA), and organophosphorous flame retardants (PFRs). Among the extraction techniques, liquid-liquid extraction (LLE) and solid phase extraction (SPE) were used most frequently due to the good efficiencies in the isolation of the majority of the FR biomarkers, but with challenges for highly lipophilic FRs. Gas chromatography-mass spectrometry (GC-MS) is mainly applied in the instrumental analysis of PBDEs and most NHFRs, with recent inclusions of GC-MS/MS and high resolution MS techniques. Liquid chromatography-MS/MS is mainly applied to HBCD, bromophenols, incl. TBBPA, and PFRs (including metabolites), however, GC-based analysis following derivatization has also been used for phenolic compounds and PFR metabolites. Developments are noticed towards more universal analytical methods, which enable widening method scopes in the human biomonitoring of FRs. Challenges exist with regard to sensitivity required for the low concentrations of FRs in the general population and limited sample material for some human matrices. A strong focus on quality assurance/quality control (QA/QC) measures is required in the analysis of FR biomarkers in human samples, related to their variety of physical-chemical properties, low levels in most human samples and the risk of contamination.
Collapse
|
5
|
Huang X, Ding C, Su Q, Wang Y, Cui Z, Yin Q, Wang X. A simplified method for determination of short-, medium-, and long-chain chlorinated paraffins using tetramethyl ammonium chloride as mobile phase modifier. J Chromatogr A 2021; 1642:462002. [PMID: 33735642 DOI: 10.1016/j.chroma.2021.462002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 11/19/2022]
Abstract
The formation of halide adducts ion is an important pathway to improve the sensitivity of analytes in liquid chromatography (LC) combined with negative electrospray ionization (ESI) mass spectrometry (MS). Although adding modifier in mobile phase is generally the simplest way to form anions adducts, the formation of halide adducts ion requires a complex post-column addition strategy since traditional halide ionization enhancement reagents are incompatible with LC systems. To solve this problem, the volatile organochlorine salt tetramethyl ammonium chloride (TMAC) was therefore investigated as a potentially non-corrosive mobile phase modifier that was confirmed to be compatible with both LC and MS systems in this study. When short-chain, medium-chain, and long-chain chlorinated paraffins (CPs) were determinated simultaneously by ultra-high performance LC combined with ESI high resolution MS (UPLC-ESI-HRMS), all of them tended to ionize by forming [M+Cl]- ions and exhibited excellent sensitivity with the instrumental detection limits of 1-4 pg/μL. Meanwhile, their sensitivities towards CPs were less dependent on their Cl content with the total relative response factors of 0.8-3.5. The method's utility was demonstrated through determination of CPs in surface soil and chicken muscle samples. This was an effective and practical method to enhance the selectivity for [M + Cl]- ions and improve sensitivity towards CPs with various carbon lengths. Importantly, post-column addition was not required, and thus the analytical procedure was simplified. The method has also improved sensitivity towards some other organohalides and may be generally useful in the determination of challenging organic analytes.
Collapse
Affiliation(s)
- Xiaomei Huang
- Institute of Quality Standard and Monitoring Technology for Agro-products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Laboratory of Quality & Safety Risk Assessment For Agro-products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Chenhong Ding
- Institute of Quality Standard and Monitoring Technology for Agro-products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qiuquan Su
- Institute of Quality Standard and Monitoring Technology for Agro-products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ying Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zefeng Cui
- Institute of Quality Standard and Monitoring Technology for Agro-products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qiumiao Yin
- Institute of Quality Standard and Monitoring Technology for Agro-products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Laboratory of Quality & Safety Risk Assessment For Agro-products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Laboratory of Quality & Safety Risk Assessment For Agro-products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China.
| |
Collapse
|
6
|
Wu Z, He C, Han W, Song J, Li H, Zhang Y, Jing X, Wu W. Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans: A review. ENVIRONMENTAL RESEARCH 2020; 187:109531. [PMID: 32454306 DOI: 10.1016/j.envres.2020.109531] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/21/2020] [Accepted: 04/12/2020] [Indexed: 05/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are extensively used as brominated flame retardants (BFRs) in different types of materials, which have been listed as Persistent Organic Pollutants (POPs) by the Stockholm Convention in 2009 and 2017. Due to their ubiquities in the environment and toxicities, PBDEs have posed great threat to both human health and ecosystems. The aim of this review is to offer a comprehensive understanding of the exposure pathways, levels and trends and associated health risks of PBDEs in human body in a global scale. We systematically reviewed and described the scientific data of PBDE researches worldwide from 2010 to March 2020, focusing on the following three areas: (1) sources and human external exposure pathways of PBDEs; (2) PBDE levels and trends in humans; (3) human data of PBDEs toxicity. Dietary intake and dust ingestion are dominant human exposure pathways. PBDEs were widely detected in human samples, especially in human serum and human milk. Data showed that PBDEs are generally declining in human samples worldwide as a result of their phasing out. Due to the common use of PBDEs, their levels in humans from the USA were generally higher than that in other countries. High concentrations of PBDEs have been detected in humans from PBDE production regions and e-waste recycling sites. BDE-47, -153 and -99 were proved to be the primary congeners in humans. Human toxicity data demonstrated that PBDEs have extensively endocrine disruption effects, developmental effects, and carcinogenic effects among different populations.
Collapse
Affiliation(s)
- Zhineng Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Chang He
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 4102, Brisbane, Australia
| | - Wei Han
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huijun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yadi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaohua Jing
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455002, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
7
|
Yu YJ, Lin BG, Qiao J, Chen XC, Chen WL, Li LZ, Chen XY, Yang LY, Yang P, Zhang GZ, Zhou XQ, Chen CR. Levels and congener profiles of halogenated persistent organic pollutants in human serum and semen at an e-waste area in South China. ENVIRONMENT INTERNATIONAL 2020; 138:105666. [PMID: 32203811 DOI: 10.1016/j.envint.2020.105666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/29/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Typical halogenated persistent organic pollutants (Hal-POPs), including polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs), polychlorinated biphenyls (PCBs), and dichlorodiphenyltrichloroethane (DDT), are a group of ubiquitous organic pollutants with an endocrine disrupting effect. This study evaluated the accumulation and congener profiles of Hal-POPs in the bodies of men who live/work in areas of South China where electronic wastes are collected and managed, especially in their semen samples. The results show that the detection frequency and serum concentrations of Hal-POP congeners within the high-exposure group (HEG) were higher than those of the low-exposure group (LEG). Furthermore, an identical trend was observed for the seminal plasma concentrations of Hal-POPs. The distribution characteristics, such as their mean, median, and discrete values, of PBDE congeners in serum and semen samples from the same subjects were consistent with each other. However, the distribution characteristics of PCB congeners in serum samples were different from those in semen samples. BDE153 was one of the most abundant congeners found in the serum and semen samples; hence, it can be identified as an indicator PBDE congener. Further research is needed to explore the mechanism of Hal-POPs distribution in human semen and serum samples.
Collapse
Affiliation(s)
- Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Bi-Gui Lin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Jing Qiao
- Reproductive Medicine Center, People's Hospital of Qingyuan, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, China
| | - Xi-Chao Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Wan-le Chen
- Reproductive Medicine Center, People's Hospital of Qingyuan, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, China
| | - Liang-Zhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xiao-Yan Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Liu-Yan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Pan Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of the Environment, Jinan University, Guangzhou 510632, China
| | - Guo-Zhi Zhang
- Reproductive Medicine Center, People's Hospital of Qingyuan, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, China
| | - Xiu-Qin Zhou
- Reproductive Medicine Center, People's Hospital of Qingyuan, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, China
| | - Cai-Rong Chen
- Reproductive Medicine Center, People's Hospital of Qingyuan, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, China.
| |
Collapse
|
8
|
Zhou Y, Yuan B, Nyberg E, Yin G, Bignert A, Glynn A, Odland JØ, Qiu Y, Sun Y, Wu Y, Xiao Q, Yin D, Zhu Z, Zhao J, Bergman Å. Chlorinated Paraffins in Human Milk from Urban Sites in China, Sweden, and Norway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4356-4366. [PMID: 32101003 PMCID: PMC7343287 DOI: 10.1021/acs.est.9b06089] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 05/12/2023]
Abstract
Short-, medium-, and long-chain chlorinated paraffins (SCCPs, MCCPs, and LCCPs) were analyzed in human milk from the Yangtze River Delta (YRD) and Scandinavia. Individual samples were collected from Shanghai, Jiaxing, and Shaoxing (China), Stockholm (Sweden), and Bodø (Norway) between 2010 and 2016. Mean concentrations (range) of SCCPs, MCCPs, and LCCPs in samples from the YRD were 124 [
Collapse
Affiliation(s)
- Yihui Zhou
- State
Key Laboratory of Pollution Control and Resource Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, China
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bo Yuan
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Elisabeth Nyberg
- Department
of Contaminants, Swedish Environmental Protection
Agency, Virkesvägen
2, SE-106 48 Stockholm, Sweden
| | - Ge Yin
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
- Shimadzu
Scientific Instrument Company, Shanghai 200233, China
| | - Anders Bignert
- Department
of Environmental Monitoring and Research, Swedish Museum of Natural History, Box
50007, SE-104 15 Stockholm, Sweden
| | - Anders Glynn
- Department
of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, SE-75007 Uppsala, Sweden
| | - Jon Øyvind Odland
- Faculty
of Health Sciences, Norwegian University
of Science and Technology, Postboks 8905, N-7491 Trondheim, Norway
| | - Yanling Qiu
- Key
Laboratory of Yangtze River Water Environment (Ministry of Education),
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yajie Sun
- State
Key Laboratory of Pollution Control and Resource Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, China
| | - Yongning Wu
- NHC
Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Qianfen Xiao
- State
Key Laboratory of Pollution Control and Resource Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, China
| | - Daqiang Yin
- Key
Laboratory of Yangtze River Water Environment (Ministry of Education),
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiliang Zhu
- Key
Laboratory of Yangtze River Water Environment (Ministry of Education),
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianfu Zhao
- State
Key Laboratory of Pollution Control and Resource Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, China
| | - Åke Bergman
- State
Key Laboratory of Pollution Control and Resource Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, China
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
- Department
of Science and Technology, Örebro
University, SE-701 82 Örebro, Sweden
| |
Collapse
|
9
|
Jiang Y, Yuan L, Lin Q, Ma S, Yu Y. Polybrominated diphenyl ethers in the environment and human external and internal exposure in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133902. [PMID: 31470322 DOI: 10.1016/j.scitotenv.2019.133902] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 05/12/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame retardants. Because of their toxicity and persistence, some PBDEs were restricted under the Stockholm Convention in 2009. Since then, many studies have been carried out on PBDEs in China and in many other countries. In the present review, the occurrences and contamination of PBDEs in air, water, sediment, soil, biota and daily food, human blood, hair, and other human tissues in China are comprehensively reviewed and described. The human exposure pathways and associated health risks of PBDEs are summarized. The data showed no obvious differences between North and South China, but concentrations from West China were generally lower than in East China, which can be mainly attributed to the production and widespread use of PBDEs in eastern regions. High levels of PBDEs were generally observed in the PBDE production facilities (e.g., Jiangsu Province and Shandong Province, East China) and e-waste recycling sites (Taizhou City, Zhejiang Province, East China, and Guiyu City and Qingyuan City, both located in Guangdong Province, South China) and large cities, whereas low levels were detected in rural and less-developed areas, especially in remote regions such as the Tibetan Plateau. Deca-BDE is generally the major congener. Existing problems for PBDE investigations in China are revealed, and further studies are also discussed and anticipated. In particular, non-invasive matrices such as hair should be more thoroughly studied; more accurate estimations of human exposure and health risks should be performed, such as adding bioaccessibility or bioavailability to human exposure assessments; and the degradation products and metabolites of PBDEs in human bodies should receive more attention. More investigations should be carried out to evaluate the quantitative relationships between internal and external exposure so as to provide a scientific basis for ensuring human health.
Collapse
Affiliation(s)
- Yufeng Jiang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Longmiao Yuan
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Qinhao Lin
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shentao Ma
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
10
|
Wang X, Hu Z, Chen K, Dong H, Li S, Li X, Li L. Efficient photocatalytic debromination of 2,2',4,4'-tetrabromodiphenyl ether by Ag-loaded CdS particles under visible light. CHEMOSPHERE 2019; 220:723-730. [PMID: 30611070 DOI: 10.1016/j.chemosphere.2018.12.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/20/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Highly active and visible light-driven Ag-loaded CdS photocatalysts were prepared via a hydrothermal synthesis and photodeposition method. The removal and debromination of 2,2',4,4'-tetrabromodiphenyl ether was achieved efficiently using this Ag-loaded CdS under visible light, with a removal efficiency of 100% and a debromination ratio of 44.3% being achieved within 30 min. Both the reaction solvent and the water content were found to have a strong influence on the removal efficiency and the debromination ratio. In addition, the stepwise debromination preference was ortho ≫ para, thereby indicating that the main debromination pathway was electron reduction. The stability and efficiency of these Ag-loaded CdS photocatalysts for the removal of BDE47 were satisfactory, and so our results confirmed the development of a promising visible light-driven catalyst for the removal of polybrominated diphenyl ethers.
Collapse
Affiliation(s)
- Xi Wang
- Guangdong Provincial Engineering Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, School of Chemistry & Environment, South China Normal University, Guangzhou, 510006, China.
| | - Zhe Hu
- Guangdong Provincial Engineering Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, School of Chemistry & Environment, South China Normal University, Guangzhou, 510006, China
| | - Kexin Chen
- Guangdong Provincial Engineering Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, School of Chemistry & Environment, South China Normal University, Guangzhou, 510006, China
| | - Haitai Dong
- Guangdong Provincial Engineering Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, School of Chemistry & Environment, South China Normal University, Guangzhou, 510006, China
| | - Shangyi Li
- Guangdong Provincial Engineering Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, School of Chemistry & Environment, South China Normal University, Guangzhou, 510006, China
| | - Xukai Li
- Guangdong Provincial Engineering Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, School of Chemistry & Environment, South China Normal University, Guangzhou, 510006, China
| | - Laisheng Li
- Guangdong Provincial Engineering Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, School of Chemistry & Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Huang Y, Yan M, Nie H, Wang W, Wang J. Persistent halogenated organic pollutants in follicular fluid of women undergoing in vitro fertilization from China: Occurrence, congener profiles, and possible sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:1-8. [PMID: 30317085 DOI: 10.1016/j.envpol.2018.09.134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Analysis of persistent halogenated organic pollutants (HOPs) in human follicular fluid is important given previous reports of their adverse effects on the reproductivity of women. In the present work, HOPs, including polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs), were analyzed in 127 follicular fluid samples collected from patients who were undergoing in vitro fertilization in Central China. The concentrations of ∑7BDEs (sum of BDE-28, -47, -99, -100, -153, -154, and -183) in follicular fluid ranged from not detected (n.d.) to 110 ng/g lipid weight (lw), with an average of 50 ± 24 ng/g lw. BDE-100 was suggested to be an indicator of BDE congeners in follicular fluid, with the highest concentrations and showing a significantly high correlation (p < 0.01) with ∑7BDEs. Penta-BDE products were the principal source of PBDEs in follicular fluid samples. The concentrations of ∑7CBs (CB-28, -52, -101, -118, -138, -153, and -180) in follicular fluids ranged from n.d. to 250 ng/g lw, with an average of 77 ± 69 ng/g lw. CB-28 and CB-52 were considered to be indicator CB congeners, with tri-CBs and tetra-CBs dominating in follicular fluid. No significant correlation was observed between patient age and PBDE or PCB concentrations in follicular fluid, indicating that age was not the controlling factor influencing the bioaccumulation of most HOPs in this study.
Collapse
Affiliation(s)
- Yumei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Muting Yan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huayue Nie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjing Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Shi Z, Zhang L, Li J, Wu Y. Legacy and emerging brominated flame retardants in China: A review on food and human milk contamination, human dietary exposure and risk assessment. CHEMOSPHERE 2018; 198:522-536. [PMID: 29428767 DOI: 10.1016/j.chemosphere.2018.01.161] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Brominated flame retardants (BFRs) are a large group of widely used chemicals, which have been produced and used since 1970s. As a consequence of substantial and long-term usage, BFRs have been found to be ubiquitous in humans, wildlife, and abiotic matrices around the world. Although several reports have reviewed BFRs contamination in general, none have focused specifically on foods and human milk, and the corresponding dietary exposure. Foods (including human milk) have long been recognized as a major pathway of BFRs intake for non-occupationally exposed persons. This review summarizes most available BFRs data in foods and human milk from China in recent years, and emphasizes several specific aspects, i.e., contamination levels of legacy and emerging BFRs, dietary exposure assessment and related health concerns, comparison between various BFRs, and temporal changes in BFRs contamination.
Collapse
Affiliation(s)
- Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lei Zhang
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| |
Collapse
|
13
|
Chen MW, Castillo BAA, Lin DY, Chao HR, Tayo LL, Gou YY, Chen FA, Huang KL. Levels of PCDD/Fs, PBDEs, and PBDD/Fs in Breast Milk from Southern Taiwan. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:369-375. [PMID: 29368304 DOI: 10.1007/s00128-018-2278-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/17/2018] [Indexed: 06/07/2023]
Abstract
This study investigates the congener-specific concentrations of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated dibenzo-p-dioxins/furans (PBDD/Fs), and polybrominated diphenyl ethers (PBDEs) in 25 breast milk samples from southern Taiwan. Most investigated congeners in Taiwanese breast milk are detectable except for PBDD/Fs. The geometric means of PCDD/Fs and PBDEs in the breast milk are 2.44 pg WHO2005-TEQ/g lipid and 2810 pg/g lipid. Several PCDD/F and PBDE congeners were highly correlated to each other like 1,2,3,7,8-PeCDD and 2,3,4,7,8-PeCDF (r = 0.919, p < 0.001). The longest duration of menstruation could be predicted by BDE-153 (β = 0.252) and 1,2,3,4,6,7,8-HpCDF (β = 0.345) with adjustment of confounders using a multiple stepwise linear regression model (r = 0.963, p < 0.001).
Collapse
Affiliation(s)
- Men-Wen Chen
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, 912, Pingtung County, Taiwan
| | - Bryan Angelo A Castillo
- School of Chemical Engineering, Chemistry, Biological Engineering and Material Science and Engineering, Mapúa Institute of Technology, Muralla St., Intramuros, Manila, 1002, Philippines
| | - Din-Yan Lin
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, 912, Pingtung County, Taiwan
| | - How-Ran Chao
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, 912, Pingtung County, Taiwan.
| | - Lemmuel L Tayo
- School of Chemical Engineering, Chemistry, Biological Engineering and Material Science and Engineering, Mapúa Institute of Technology, Muralla St., Intramuros, Manila, 1002, Philippines
| | - Yan-You Gou
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, 912, Pingtung County, Taiwan
| | - Fu-An Chen
- Department of Pharmacy and Master Program, Tajen University, Yanpu Township, 90741, Pingtung, Taiwan.
| | - Kuo-Lin Huang
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, 912, Pingtung County, Taiwan.
| |
Collapse
|
14
|
Milovanovic V, Buha A, Matovic V, Curcic M, Vucinic S, Nakano T, Antonijevic B. Oxidative stress and renal toxicity after subacute exposure to decabrominated diphenyl ether in Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7223-7230. [PMID: 26676538 DOI: 10.1007/s11356-015-5921-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Fully brominated diphenyl ether (BDE-209) is a flame retardant widely used in plastics and textiles. Because of its high persistence, humans are exposed to it continuously, mainly via dust ingestion. We investigated effects of BDE-209 on renal function and oxidative stress development in the kidney after subacute exposure in rats. Five groups of animals were given by oral gavage 31.25-500 mg BDE-209/kg b.w./day for 28 days, and relative kidney weight, serum urea and creatinine, and oxidative stress parameters in the kidney were determined. Benchmark-dose approach was used for dose response modeling. Serum creatinine was increased, while results obtained for serum urea were inconclusive. Relative kidney weight was not affected by BDE-209. Kidney reduced glutathione was elevated, while superoxide dismutase activity was not changed after BDE-209 treatment. Also, levels of thiobarbituric acid reactive substances (TBARS) were increased and total -SH groups were decreased, which indicated oxidative imbalance. The critical effect dose (CED)/CEDL ratios for the effects on TBARS and total -SH groups indicated estimated CEDs for these markers can be used in risk assessment of BDE-209. Our study results have shown that a relatively low dose of BDE-209 affects kidney function and that oxidative stress is one of the mechanisms of its nephrotoxicity.
Collapse
Affiliation(s)
- Vesna Milovanovic
- Chemicals Department, Ministry of Agriculture and Environmental Protection of Republic of Serbia, Omladinskih brigada 1, 11070, Belgrade, Serbia.
| | - Aleksandra Buha
- Department of Toxicology "Akademik Danilo Soldatovic", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Vesna Matovic
- Department of Toxicology "Akademik Danilo Soldatovic", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marijana Curcic
- Department of Toxicology "Akademik Danilo Soldatovic", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Slavica Vucinic
- National Poison Control Center, Military Medical Academy, Crnotravska 17, 11000, Belgrade, Serbia
| | - Takeshi Nakano
- Graduate School of Engineering, Osaka University, Yamadaoka 2-4, Suita, Japan
| | - Biljana Antonijevic
- Department of Toxicology "Akademik Danilo Soldatovic", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
15
|
Li M, Huo X, Pan Y, Cai H, Dai Y, Xu X. Proteomic evaluation of human umbilical cord tissue exposed to polybrominated diphenyl ethers in an e-waste recycling area. ENVIRONMENT INTERNATIONAL 2018; 111:362-371. [PMID: 29169793 DOI: 10.1016/j.envint.2017.09.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/17/2017] [Accepted: 09/19/2017] [Indexed: 02/05/2023]
Abstract
Parental exposure to polybrominated diphenyl ethers (PBDEs) is associated with adverse birth outcomes. This study aims to examine differentially-expressed protein profiles in umbilical cord tissue, derived from mothers exposed to PBDEs, and investigate candidate biomarkers to reveal the underlying molecular mechanisms. Umbilical cord samples were obtained from women residing in an electronic waste (e-waste) recycling area (Guiyu) and reference area (Haojiang) in China. The concentration of PBDEs in umbilical cord tissue was determined by gas chromatography and mass spectrometry (GC/MS). Isobaric tagging for relative and absolute quantification (iTRAQ)-based proteomic technology was conducted to analyze differentially-expressed protein profiles. The total PBDE concentration was approximately five-fold higher in umbilical cords from Guiyu than from Haojiang (median 71.92ng/g vs. 15.52ng/g lipid, P<0.01). Neonatal head circumference, body-mass index (BMI) and Apgar1 score were lower in Guiyu and negatively correlated with PBDE concentration (P<0.01). Proteomic analysis showed 697 proteins were differentially expressed in the e-waste-exposed group compared with the reference group. The differentially-expressed proteins were principally involved in antioxidant defense, apoptosis, cell structure and metabolism. Among them, catalase and glutathione S-transferase omega-1, were down-regulated, and cytochrome c was found to be up-regulated, changes which were further verified by enzyme-linked immunosorbent assays. These results suggest that an antioxidant imbalance and cell apoptosis in the umbilical cord following PBDE exposure is associated with neonatal birth outcomes.
Collapse
Affiliation(s)
- Minghui Li
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yukui Pan
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Haoxing Cai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
16
|
Zhang J, Chen L, Xiao L, Ouyang F, Zhang QY, Luo ZC. Polybrominated Diphenyl Ether Concentrations in Human Breast Milk Specimens Worldwide. Epidemiology 2017; 28 Suppl 1:S89-S97. [DOI: 10.1097/ede.0000000000000714] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Zheng S, Liu C, Huang Y, Bao M, Huang Y, Wu K. Effects of 2,2′,4,4′-tetrabromodiphenyl ether on neurobehavior and memory change and bcl-2 , c-fos , grin1b and lingo1b gene expression in male zebrafish ( Danio rerio ). Toxicol Appl Pharmacol 2017; 333:10-16. [PMID: 28807763 DOI: 10.1016/j.taap.2017.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 02/05/2023]
|
18
|
Tang J, Zhai JX. Distribution of polybrominated diphenyl ethers in breast milk, cord blood and placentas: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21548-21573. [PMID: 28831660 DOI: 10.1007/s11356-017-9821-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been extensively used as flame retardants in consumer products. PBDEs rapidly bioaccumulate in the environment, food, wild animals and humans. In this review, we investigated the harmful effects of PBDEs on humans, especially in early life, and summarised the levels of PBDEs in human biological samples (breast milk, cord blood and placentas). In addition, we described the spatiotemporal distribution of PBDEs in this review. PBDE levels in breast milk, cord blood and placentas were generally higher in North America than in other regions, such as Asia, Europe, Oceania and Africa. However, high levels of PBDEs in human biological samples were detected at e-waste recycling sites in South China, East China and South Korea. This finding suggests that newborns living in e-waste regions are exposed to high levels of PBDEs during prenatal and postnatal periods. The time trends of PBDE concentration differed according to the region. Few studies have investigated PBDE levels in humans from 1967 to 2000, but they increased rapidly after 2000. PBDE concentration peaked at approximately 2006 globally. Compared with other PBDE congeners, BDE-47, BDE-153 and BDE-209 were the major components, but the detection rate of BDE-209 was lower than those of others. Future studies should focus on determining the BDE-209 concentration, which requires the implementation of different analytical approaches. Additionally, the levels of PBDEs in human samples and the environment should be monitored, especially in e-waste recycling regions. Graphical abstract The figures described the spatial distribution of the lowest (Fig. a1) and highest concentration of ∑PBDE (Fig. a2) in different countries by 2006 and described the spatial distribution of the lowest (Fig. b1) and highest concentration of ∑PBDE (Fig. b2) in different countries from 2007 to 2015. All the figures indicated that the levels of PBDEs in North America were substantially higher than those in many regions of Europe, Asia, Oceania, or Africa. Comparing Fig. a1-b1 or Fig. a2-b2, increasing trends were observed in some countries, especially in some regions in China, Korea and Canada.
Collapse
Affiliation(s)
- Jing Tang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jin Xia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
19
|
Markowski VP, Miller-Rhodes P, Cheung R, Goeke C, Pecoraro V, Cohen G, Small DJ. Motor deficits, impaired response inhibition, and blunted response to methylphenidate following neonatal exposure to decabromodiphenyl ether. Neurotoxicol Teratol 2017; 63:51-59. [PMID: 28764964 DOI: 10.1016/j.ntt.2017.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 12/30/2022]
Abstract
Decabromodiphenyl ether (decaBDE) is an applied brominated flame retardant that is widely-used in electronic equipment. After decades of use, decaBDE and other members of its polybrominated diphenyl ether class have become globally-distributed environmental contaminants that can be measured in the atmosphere, water bodies, wildlife, food staples and human breastmilk. Although it has been banned in Europe and voluntarily withdrawn from the U.S. market, it is still used in Asian countries. Evidence from epidemiological and animal studies indicate that decaBDE exposure targets brain development and produces behavioral impairments. The current study examined an array of motor and learning behaviors in a C57BL6/J mouse model to determine the breadth of the developmental neurotoxicity produced by decaBDE. Mouse pups were given a single daily oral dose of 0 or 20mg/kg decaBDE from postnatal day 1 to 21 and were tested in adulthood. Exposed male mice had impaired forelimb grip strength, altered motor output in a circadian wheel-running procedure, increased response errors during an operant differential reinforcement of low rates (DRL) procedure and a blunted response to an acute methylphenidate challenge administered before DRL testing. With the exception of altered wheel-running output, exposed females were not affected. Neither sex had altered somatic growth, motor coordination impairments on the Rotarod, gross learning deficits during operant lever-press acquisition, or impaired food motivation. The overall pattern of effects suggests that males are more sensitive to developmental decaBDE exposure, especially when performing behaviors that require effortful motor output or when learning tasks that require sufficient response inhibition for their successful completion.
Collapse
Affiliation(s)
- Vincent P Markowski
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States.
| | - Patrick Miller-Rhodes
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Randy Cheung
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Calla Goeke
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Vincent Pecoraro
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Gideon Cohen
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Deena J Small
- Department of Biochemistry, University of New England, Biddeford, ME 04005, United States
| |
Collapse
|
20
|
Kaw HY, Kannan N. A Review on Polychlorinated Biphenyls (PCBs) and Polybrominated Diphenyl Ethers (PBDEs) in South Asia with a Focus on Malaysia. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 242:153-181. [PMID: 27807635 DOI: 10.1007/398_2016_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Malaysia is a developing country in Southeast Asia, with rapid industrial and economic growth. Speedy population growth and aggressive consumerism in the past five decades have resulted in environmental pollution issues, including products containing polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). PCBs and PBDEs are classified as persistent organic pollutants (POPs) by the Stockholm Convention due to their persistence, bioaccumulation in the environment and toxicity to humans and wildlife. These compounds are known to cause liver dysfunction, thyroid toxicity, developmental neuro-toxicity and possibly cancer. PCBs in air, mussels, pellets, seawater, fresh water, and human breast milk samples were analyzed in Malaysia, while studies on the pollution level of PBDEs in Malaysia were conducted on mussels, soils, leachate and sediment samples. PCBs in breast milk collected from Malaysia was the highest among Asian developing countries, with mean concentration of 80 ng/g lipid weight. On the other hand, the mean concentration of PCBs in mussels collected from Malaysia recorded the second lowest, with 56 ng/g and 89 ng/g lipid weight in two studies respectively. The concentrations of PBDEs in mussels taken from Malaysia fall in the range of 0.84-16 ng/g lipid weight, which is considerably low compared to 104.5 ng/g lipid weight in Philippines and 90.59 ng/g in Korea. Nevertheless, there are limited studies on these compounds in Malaysia, particularly there is no research on PBDEs in breast milk and sediment samples. This review will summarize the contamination levels of PCBs and PBDEs in different samples collected from Asian countries since 1988 until 2010 with a focus on Malaysia and will provide needed information for further research in this field.
Collapse
Affiliation(s)
- Han Yeong Kaw
- Key Laboratory of Nature Resources of Changhai Mountain and Functional Molecular (Yanbian University) Ministry of Education, Jilin, China
| | - Narayanan Kannan
- Institute for Graduate Studies, Taylor's University (Lakeside Campus), No. 1, Jalan Taylor's, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
21
|
Simultaneous Determination of Multiple Persistent Halogenated Compounds in Human Breast Milk. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61008-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
English K, Toms LML, Gallen C, Mueller JF. BDE-209 in the Australian Environment: Desktop review. JOURNAL OF HAZARDOUS MATERIALS 2016; 320:194-203. [PMID: 27544732 DOI: 10.1016/j.jhazmat.2016.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
The commercial polybrominated diphenyl ether (PBDE) flame retardant mixture c-decaBDE is now being considered for listing on the Stockholm Convention on Persistent Organic Pollutants. The aim of our study was to review the literature regarding the use and detection of BDE-209, a major component of c-decaBDE, in consumer products and provide a best estimate of goods that are likely to contain BDE-209 in Australia. This review is part of a larger study, which will include quantitative testing of items to assess for BDE-209. The findings of this desktop review will be used to determine which items should be prioritized for quantitative testing. We identified that electronics, particularly televisions, computers, small household appliances and power boards, were the items that were most likely to contain BDE-209 in Australia. Further testing of these items should include items of various ages. Several other items were identified as high priority for future testing, including transport vehicles, building materials and textiles in non-domestic settings. The findings from this study will aid in the development of appropriate policies, should listing of c-decaBDE on the Stockholm Convention and Australia's ratification of that listing proceed.
Collapse
Affiliation(s)
- Karin English
- School of Medicine, The University of Queensland, Brisbane, Australia; Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia; Queensland Children's Medical Research Institute, Children's Health Research Centre, Brisbane, Australia.
| | - Leisa-Maree L Toms
- School of Public Health and Social Work, and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Christie Gallen
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, Australia
| | - Jochen F Mueller
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, Australia
| |
Collapse
|
23
|
Yang L, Lu Y, Wang L, Chang F, Zhang J, Liu Y. Levels and Profiles of Polybrominated Diphenyl Ethers in Breast Milk During Different Nursing Durations. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:510-516. [PMID: 27553216 DOI: 10.1007/s00128-016-1908-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
Eight PBDE congeners, BDE-28, 47, 99, 100, 153, 154, 183 and 209, were measured using gas chromatography coupled to mass spectrometry. The concentrations of Σ8PBDEs ranged from 0.04 to 19.93 ng g(-1) lipid weight (lw), with median and mean value of 1.21 and 2.72 ng g(-1) lw. PBDE congeners were detected in approximately 90 % of samples with BDE-209 as the dominant one. No significant correlations were found between the mothers' age, body mass index and PBDEs concentrations. We estimated the infant's dietary intake of the studied PBDEs via human milk during different nursing durations, and found that babies younger than 1 month might take a relatively higher body burden of PBDEs. The median levels of Σ8PBDEs were 0.74, 2.80, 2.43 and 0.90 ng g(-1) lw in colostrum, milk sampled at 1, 3 and 6 months after birth, respectively. High consumption of animal-origin food after birth may lead to the elevated ΣPBDEs concentrations in breast milk. A rational nutrition deployment is essential for postpartum mother.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Yang Lu
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, 050021, People's Republic of China
| | - Liying Wang
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, 050021, People's Republic of China
| | - Fengqi Chang
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, 050021, People's Republic of China
| | - Jianbo Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, People's Republic of China.
| | - Yinping Liu
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, 050021, People's Republic of China.
| |
Collapse
|
24
|
Environmental Health: Children׳s Health, a Clinician׳s Dilemma. Curr Probl Pediatr Adolesc Health Care 2016; 46:184-9. [PMID: 26846483 DOI: 10.1016/j.cppeds.2015.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/04/2015] [Indexed: 11/20/2022]
Abstract
Few pediatricians receive training in environmental health, yet accumulating research shows that a disproportionate burden of exposure from environmental toxicants (man-made contaminants) is borne by children, adolescents, and the developing fetus. This is explained in part because of children׳s vulnerability to environmental-toxicants based on socioeconomic status, body surface area, metabolism, and potential transfers via placenta and breast milk. Public concern about toxicants affecting children in air, land, water, food, and beverages places pediatricians in the challenging position of being expected to knowledgably answer questions about environmental exposures while lacking sufficient training in the field. Surveys show pediatricians have high interest in environmental topics, yet feel a low sense of self-efficacy regarding patient education and lack evidence-based treatment guidelines and other effective educational tools. The goal of this article is to provide an overview of selected toxicants relevant to pediatric health, review practical suggestions to reduce or eliminate children's exposures, and introduce resources for taking an environmental health history to better prepare pediatricians and other clinicians caring for children to decrease harmful exposures in infants, children, and adolescents.
Collapse
|
25
|
Xu F, Tang W, Zhang W, Liu L, Lin K. Levels, distributions and correlations of polybrominated diphenyl ethers in air and dust of household and workplace in Shanghai, China: implication for daily human exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3229-38. [PMID: 26490892 DOI: 10.1007/s11356-015-5559-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/05/2015] [Indexed: 05/21/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) were measured in air (TSP and PM2.5) and dust samples collected from 16 households and the corresponding workplaces of eight volunteer citizens in Shanghai, China. The PBDEs concentrations in the workplace air (mean: 281 ± 126 pg m(-3)) were over two times higher than those in the household (121 ± 44.0 pg m(-3)), while the mean levels of PBDEs in dust were 995 ± 547 and 544 ± 188 ng g(-1) for workplace and household, respectively. BDE209 was the most abundant congener in all samples. PBDEs appeared to be composed of mostly small particles. The C particle/C dust ratios of less brominated PBDEs in PM2.5 were higher than those in TSP, while the values were approximately constant for the more brominated PBDEs. A correlation analysis by network indicated different sources and behavior of the PBDE congeners. The results of a cluster analysis were displayed on a heat map that specified the source and abundance of each PBDE congener. The daily PBDE exposure via dust ingestion was the predominant part of the total intake and was more than 10 times higher than the intake via inhalation.
Collapse
Affiliation(s)
- Feng Xu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, College of Resource and Environmental Engineering, East China University of Science and Technology, No.130, Mei Long Road, Shanghai, 200237, China
| | - Weibiao Tang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Zhang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lili Liu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kuangfei Lin
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, College of Resource and Environmental Engineering, East China University of Science and Technology, No.130, Mei Long Road, Shanghai, 200237, China.
| |
Collapse
|
26
|
Mackintosh SA, Wallace JS, Gross MS, Navarro DD, Pérez-Fuentetaja A, Alaee M, Montecastro D, Aga DS. Review on the occurrence and profiles of polybrominated diphenyl ethers in the Philippines. ENVIRONMENT INTERNATIONAL 2015; 85:314-326. [PMID: 26453821 DOI: 10.1016/j.envint.2015.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 06/05/2023]
Abstract
The environmental occurrence of polybrominated diphenyl ethers (PBDEs) has been a subject of concern for the past decade because they are persistent, bioaccumulative, and toxic. These compounds have been listed as persistent organic pollutants (POPs) by the Stockholm Convention and are expected to disperse in the global environment even after their use and production. While the occurrence of PBDEs has been well characterized in environmental and biological samples from North America, Europe, and some Asian countries (i.e. China, Japan, and Korea), there is a scarcity of available data in developing Asian countries, such as the Philippines. Examination of PBDE contamination in the Philippine environment is particularly important because regulations have only recently been implemented on the production and use of PBDEs in this country. Additionally, the Philippines receives e-waste from Western countries, which is becoming a major source of organic contaminants in the tropical Asian regions. Ultimately, the Philippines may be a hot spot for contributing to on-going global PBDE pollution due to long-range atmospheric transport. This paper presents a review of the available literature on PBDEs in both environmental and biological samples collected from the Philippines. It is also intended to provide an overview on the levels and congener profiles of PBDEs in samples from the Philippines and to compare these data with other Asian countries. New data are presented on PBDE occurrence and congener profiles in fish commonly consumed by Filipinos and in particulate matter samples collected in Metro Manila, the capital of the Philippines. Both studies contribute to the available knowledge of PBDEs in the Philippines. We aim to stress the importance of future studies in countries receiving e-wastes, such as the Philippines, and suggest what future directions might be taken to enhance the available data on the presence of PBDEs in the Philippine environment.
Collapse
Affiliation(s)
- Susan A Mackintosh
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Joshua S Wallace
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Michael S Gross
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Denise D Navarro
- Department of Chemistry, Ateneo de Manila University, Quezon City, Philippines.
| | - Alicia Pérez-Fuentetaja
- Department of Biology and Great Lakes Center, The State University of New York- Buffalo State, Buffalo, NY 14222, USA.
| | - Mehran Alaee
- Aquatic Ecosystem Protection Research Division, Water Science and Technology Directorate, Environment Canada, Burlington, Ontario L7R 4A6, Canada.
| | - Doris Montecastro
- Department of Chemistry, Ateneo de Manila University, Quezon City, Philippines.
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
27
|
Cequier E, Marcé RM, Becher G, Thomsen C. Comparing human exposure to emerging and legacy flame retardants from the indoor environment and diet with concentrations measured in serum. ENVIRONMENT INTERNATIONAL 2015; 74:54-59. [PMID: 25454220 DOI: 10.1016/j.envint.2014.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
This study investigates associations between serum concentrations of emerging and legacy halogenated flame retardants (HFRs) in 46 Norwegian women and measured indoor air and dust concentrations of the HFRs as well as detailed information on diet and household factors. Hexabromobenzene (median 0.03ng/g lipid) and Dechlorane 602 (median 0.18ng/g lipid) were detected in about 50% of the samples and Dechlorane Plus syn (median 0.45ng/g lipid) and anti (median 0.85ng/g lipid) in more than 78%. The most abundant polybrominated diphenyl ethers were 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153; median 0.82ng/g lipid) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47; median 0.49ng/g lipid) detected in more than 70% of the samples. In the bivariate analysis, no consistent associations were observed between the biomonitoring data and measured concentrations in indoor air and dust. On the other hand, consumption of specific food items (mainly lamb/mutton and margarine) correlated significantly with more than two HFR serum concentrations, while this was not the case for household factors (electronic appliances). Only the significant bivariate associations with diet were confirmed by multivariate linear regression analyses, which might indicate a higher contribution from food compared to the indoor environment to the variation of the body burden of these HFRs.
Collapse
Affiliation(s)
- Enrique Cequier
- Department of Exposure and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway; Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain.
| | - Rosa Maria Marcé
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| | - Georg Becher
- Department of Exposure and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway; Department of Chemistry, University of Oslo, Norway
| | - Cathrine Thomsen
- Department of Exposure and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
28
|
Chen ZJ, Liu HY, Cheng Z, Man YB, Zhang KS, Wei W, Du J, Wong MH, Wang HS. Polybrominated diphenyl ethers (PBDEs) in human samples of mother-newborn pairs in South China and their placental transfer characteristics. ENVIRONMENT INTERNATIONAL 2014; 73:77-84. [PMID: 25090577 DOI: 10.1016/j.envint.2014.07.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/05/2014] [Accepted: 07/07/2014] [Indexed: 05/11/2023]
Abstract
There are limited data concerning the placenta transfer characteristics and accumulation of polybrominated diphenyl ethers (PBDEs) in infants. However, PBDEs received increasing health concerns due to their endocrine disrupt and neurodevelopment toxicity effects. The present study assessed the accumulation of PBDEs in 30 paired placenta, breast milk, fetal cord blood, and neonatal urine samples collected from five major cities of the South China. The age of mothers ranged from 21 to 39 (mean 27.6±4.56). The ∑PBDE concentrations were 15.8±9.88 ng g(-1) lipid in placenta, 13.2±7.64 ng g(-1) lipid in breast milk, 16.5±19.5 ng g(-1) lipid in fetal cord blood, and 1.80±1.99 ng ml(-1) in neonatal urine. BDE-47 was the predominant congener in all types of human sample. Octa-BDEs such as BDE-196/-197 were detected highly in placenta and cord blood while moderately in breast milk and neonatal urine. Significant (p<0.01) correlations were observed for both total and most individual PBDEs in cord blood-maternal placenta and breast milk-urine paired individual samples. The extent of placental transfer of higher brominated BDEs such as BDE-196/-197 was greater than that of BDE-47. The estimated daily intake (EDI) analysis for breast-fed infants revealed that newborns in these areas were exposed to relatively high levels of PBDEs via breast milk. Our study not only provided systematic fundamental data for PBDE distribution but also revealed the placenta transfer characteristics of PBDE congeners in South China.
Collapse
Affiliation(s)
- Zhuo-Jia Chen
- Department of Pharmacy, Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| | - Han-Yan Liu
- Center for Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou 510150, China
| | - Zhang Cheng
- College of Resources and Environment, Sichuan Agricultural University, Sichuan 61130, China
| | - Yu-Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, Hong Kong Institute of Education, Tai Po, Hong Kong P.R. China; State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong, China
| | - Kun-Shui Zhang
- Department of Pharmacy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Wei Wei
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Ming-Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, Hong Kong Institute of Education, Tai Po, Hong Kong P.R. China; State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong, China.
| | - Hong-Sheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China; State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
29
|
Zhang X, Zhang K, Yang D, Ma L, Lei B, Zhang X, Zhou J, Fang X, Yu Y. Polybrominated biphenyl ethers in breast milk and infant formula from Shanghai, China: temporal trends, daily intake, and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 497-498:508-515. [PMID: 25155891 DOI: 10.1016/j.scitotenv.2014.08.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/18/2014] [Accepted: 08/08/2014] [Indexed: 05/06/2023]
Abstract
To investigate the temporal trend of polybrominated diphenyl ethers (PBDEs) in breast milk and assess the risks to breast- and formula-fed infants, breast milk and infant formula samples were collected from Shanghai, China. The PBDE concentrations decreased from 14.8 to 4.85 pmol/g lipid weight during 2006-2012, with a rate of decrease by half approximately every four years. Although there were no significant correlations between the total PBDEs in breast milk and age, parity, and pre-pregnant BMI of mothers, there were significant differences between primiparous and multiparous mothers for tri- to hepta-BDEs. PBDEs in breast milk were much higher than those in infant formula (equivalent to 91.9 vs. 5.25 pg/mL). Among the different brand infant formulas, there were no significant differences in their PBDE concentrations. The estimated daily intake of PBDEs by breast- and formula-fed infants suggested that breast-fed infants are exposed to much more PBDEs than formula-fed ones (12.9 vs. 0.72 ng/kg-bw/day). However, the hazard quotient values were much smaller than one, indicating that the ingested PBDEs did not exert obvious adverse effects on both breast- and formula-fed infants considering non-carcinogenic effect endpoint. This is the first report on temporal trend of PBDEs in breast milk from China.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Kaiqiong Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Dan Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Li Ma
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xinyu Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jing Zhou
- Food and Chemical Quality Inspection Institution, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, PR China
| | - Xiangming Fang
- Shanghai Huangpu Maternity & Infant Health Hospital, Shanghai 200020, PR China
| | - Yingxin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
30
|
Pereira LC, Miranda LFC, de Souza AO, Dorta DJ. BDE-154 induces mitochondrial permeability transition and impairs mitochondrial bioenergetics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:24-36. [PMID: 24555644 DOI: 10.1080/15287394.2014.861337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Brominated flame retardants are used in various consumer goods to make these materials difficult to burn. Polybrominated diphenyl ethers (PBDE), which are representative of this class of retardants, consist of two benzene rings linked by an oxygen atom, and contain between 1 and 10 bromine atoms in their chemical structure, with the possibility of up to 209 different congeners. Among these congeners, BDE-154 (hexa-BDE) is persistent in the environment and easy to detect in the biota, but no apparent information regarding the mechanism underlying action and toxicity is available. Mitochondria, as the main energy-producing organelles, play an important role in the maintenance of various cellular functions. Therefore, mitochondria were used in the present study as an experimental model to determine the effects of BDE-154 congener at concentrations ranging from 0.1 μM to 50 μM. Our results demonstrated that BDE-154 interacts with the mitochondrial membrane, preferably by inserting into the hydrophobic core of the mitochondrial membrane, which partially inhibits respiration, dissipates Δψ, and permeabilizes the inner mitochondrial membrane to deplete ATP. These effects are more pronounced at concentrations equal to or higher than 10 μM. Results also showed that BDE-154 did not induce reactive oxygen species (ROS) accumulation within the mitochondria, indicating the absence of oxidative stress. Therefore, BDE-154 impairs mitochondrial bioenergetics and permeabilizes the mitochondrial membrane, potentially leading to cell death but not via mechanisms involving oxidative stress.
Collapse
Affiliation(s)
- Lílian Cristina Pereira
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas , Toxicológicas e Bromatológicas, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | | | | | | |
Collapse
|
31
|
Zhao J, Xu T, Yin DQ. Locomotor activity changes on zebrafish larvae with different 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) embryonic exposure modes. CHEMOSPHERE 2014; 94:53-61. [PMID: 24080000 DOI: 10.1016/j.chemosphere.2013.09.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 08/22/2013] [Accepted: 09/02/2013] [Indexed: 06/02/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants and are banned around the world as potent environmental contaminants. PBDE-47 is the most concerned PBDE with its environmental prevalence and various toxicity characteristics including neurotoxicity. In this paper, we studied larval zebrafish behavioral alterations caused by PBDE-47 neurotoxicity. The light-dark cycle stimulation was used to investigate the locomotor changes of zebrafish larvae at different ages (4-6 day post-fertilization, dpf) after PBDE-47 exposure (5, 50, 500 μg L(-1)). Three exposure modes, namely continuous exposure, early pulse exposure and interval exposure, were adopted to assess and compare the impacts of exposure modes on larval zebrafish locomotion. Our results showed that locomotor effects upon PBDE exposure depended on the specific exposure mode studied. In the early pulse exposure mode, the locomotion of zebrafish larvae did not change significantly at all PBDE-47 concentrations tested. In contrast, for both the continuous exposure and interval exposure modes, the highest dose of PBDE-47 (500 μg L(-1)) elicited pronounced hypoactivity at 5 dpf during dark periods except for the initial one. However, at 6 dpf, hypoactivity was only observed in the continuously exposed zebrafish larvae (to an even higher degree compared to 5 dpf), but not in the interval exposure treatment group. Our results suggested that the conventional, continuous exposure mode might not be enough to evaluate the toxicity of chemicals in the real environments.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092, China
| | | | | |
Collapse
|
32
|
Coakley JD, Harrad SJ, Goosey E, Ali N, Dirtu AC, Van den Eede N, Covaci A, Douwes J, Mannetje A'. Concentrations of polybrominated diphenyl ethers in matched samples of indoor dust and breast milk in New Zealand. ENVIRONMENT INTERNATIONAL 2013; 59:255-261. [PMID: 23850586 DOI: 10.1016/j.envint.2013.06.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 06/02/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are present in many consumer goods. There is evidence that PBDEs are toxic to humans, particular young children. The purpose of this study was to assess indoor dust as an exposure source for PBDEs. Concentrations of 16 PBDEs were determined in dust samples from 33 households in New Zealand, and in breast milk samples from 33 mothers living in these households. Associations between dust and breast milk PBDE concentrations were assessed, and children's PBDE intake from breast milk and dust estimated. Influences of household and demographic factors on PBDE concentrations in dust were investigated. Indoor dust concentrations ranged from 0.1ng/g for BDE17 to 2500ng/g for BDE209. Breast milk concentrations were positively correlated (p<0.05) with mattress dust concentrations for BDE47, BDE153, BDE154, and BDE209 and with floor dust for BDE47, BDE183, BDE206, and BDE209. The correlation for BDE209 between dust and breast milk is a novel finding. PBDE concentrations in floor dust were lower from households with new carpets. The estimated children's daily intake of PBDEs from dust and breast milk was below U.S. EPA Reference Dose values. The study shows that dust is an important human exposure source for common PBDE formulations in New Zealand.
Collapse
Affiliation(s)
- Jonathan D Coakley
- Centre for Public Health Research, Massey University, Wellington 6140, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
BDE-99 congener induces cell death by apoptosis of human hepatoblastoma cell line – HepG2. Toxicol In Vitro 2013; 27:580-7. [DOI: 10.1016/j.tiv.2012.09.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 11/21/2022]
|
34
|
Pereira LC, de Souza AO, Dorta DJ. Polybrominated diphenyl ether congener (BDE-100) induces mitochondrial impairment. Basic Clin Pharmacol Toxicol 2013; 112:418-24. [PMID: 23302053 DOI: 10.1111/bcpt.12046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/20/2012] [Indexed: 01/05/2023]
Abstract
Brominated flame retardants are used in various consumer products to increase their resistance to fire and/or high temperatures. Polybrominated diphenyl ethers (PBDEs) are representatives of this class and among the most widely used congeners, and BDE-100 is produced on a large scale. There is a lack of toxicological data about these compounds, which has recently become a matter of concern to the scientific community. The mitochondria are recognized as the main energy-producing organelles, as well as playing a vital role in the maintenance of many cell functions. Therefore, mitochondria were used in the present work as an experimental model to evaluate the effects of the BDE-100 congeners at concentrations ranging from 0.1 μM to 50 μM. The results showed that high concentrations of BDE-100 were able to induce mitochondrial alterations. It was observed that the substance had an affinity for the hydrophilic portion of the mitochondrial membrane, as monitored by ANS, inhibiting the glutamate + malate-stimulated mitochondrial respiration and also inducing dissipation of the mitochondrial membrane potential, deregulation of calcium homoeostasis and mitochondrial swelling, the latter being insensitive to cyclosporin A (CsA) but partially inhibited by Ruthenium Red and N-ethyl maleimide. In addition, a significant reduction in mitochondrial ATP content was found, but on the other hand, no oxidative stress was observed after exposure of the mitochondria to BDE-100. These results show the key role of mitochondria in the cytotoxicity induced by BDE-100.
Collapse
Affiliation(s)
- Lílian Cristina Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
35
|
Polybrominated diphenyl ethers in food and human dietary exposure: A review of the recent scientific literature. Food Chem Toxicol 2012; 50:238-49. [DOI: 10.1016/j.fct.2011.11.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 11/17/2022]
|
36
|
Zhang JG, Sun XW, Ai H. Levels and congener profiles of polybrominated diphenyl ethers (PBDEs) in primipara breast milk from Shenzhen and exposure risk for breast-fed infants. ACTA ACUST UNITED AC 2012; 14:893-900. [DOI: 10.1039/c2em10739b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|