1
|
Stüfchen I, Schweizer JROL, Völter F, Nowak E, Braun L, Kocabiyik J, Mederos Y Schnitzler M, Williams TA, Kunz S, Bidlingmaier M, Reincke M. The impact of endocrine disrupting chemicals on adrenal corticosteroids - A systematic review of epidemiological studies. ENVIRONMENTAL RESEARCH 2025; 276:121438. [PMID: 40118322 DOI: 10.1016/j.envres.2025.121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND The role of endocrine disrupting chemicals (EDCs) in the development of metabolic syndrome has gained increasing recognition in recent years. The underlying mechanisms are largely unresolved. Disruption of corticosteroid action and hypothalamic-pituitary-adrenal (HPA) axis are considered possible mechanisms. OBJECTIVE To summarise epidemiological studies investigating an association between EDC concentration and altered levels of corticosteroids and the adrenocorticotropic hormone (ACTH). METHODS Following the PRISMA guidelines, we searched PubMed and the Cochrane Library for epidemiological studies published from database inception until April 1st, 2024. Various groups of EDCs were evaluated with the prerequisite of direct measurement of the chemical, a metabolite, or biomarker. RESULTS We identified 2094 articles. After removing duplicates and screening, 27 studies were included. Studies focused predominantly on glucocorticoids (n = 26) compared to mineralocorticoids (n = 5) and ACTH (n = 2). The most studied EDCs were pesticides (n = 9) and phthalates (n = 8). Significant associations between the concentrations of specific EDCs and hormone levels were found in all but three studies. Only one study described an association between EDCs, and hormone concentration and metabolic features. CONCLUSION There is clear evidence for the impact of specific EDCs on plasma corticosteroid concentrations in different age groups worldwide, however, results varied according to EDC class, study population and study methodology. Further research combining EDC and hormone concentrations, and clinical features, complemented by experimental investigations to study cell mechanisms, is needed to gain holistic knowledge of EDCs' influence on glucocorticoid- and mineralocorticoid-related disorders.
Collapse
Affiliation(s)
- Isabel Stüfchen
- Department of Medicine IV, LMU University Hospital, LMU Munich, Germany.
| | | | - Friederike Völter
- Department of Medicine IV, LMU University Hospital, LMU Munich, Germany
| | - Elisabeth Nowak
- Department of Medicine IV, LMU University Hospital, LMU Munich, Germany
| | - Leah Braun
- Department of Medicine IV, LMU University Hospital, LMU Munich, Germany
| | - Julien Kocabiyik
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Germany
| | | | | | - Sonja Kunz
- Department of Medicine IV, LMU University Hospital, LMU Munich, Germany
| | | | - Martin Reincke
- Department of Medicine IV, LMU University Hospital, LMU Munich, Germany
| |
Collapse
|
2
|
Scovronick N, Lappe B, Pearson MA, Smith KA, Eick SM, D'Souza PE, Panuwet P, Kong M, Yakimavets V, Stephenson R, Barr DB. Assessment of human exposure to uncommon industrial toxicants in Glynn County, Georgia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126240. [PMID: 40239937 DOI: 10.1016/j.envpol.2025.126240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Coastal Glynn County, Georgia, is home to four hazardous sites on the United States EPA's National Priorities List. Toxicants of concern include mercury, the pesticide toxaphene, and Aroclor 1268, a mixture of highly chlorinated polychlorinated biphenyls (PCBs); these toxicants are known to persist in the local environment and/or regional aquatic life, including local seafood. At the invitation of, and in partnership with, local community leaders and environmental groups, we conducted a human exposure study in Glynn County. The average age of the study participants was 61 years, 66 % were female, and 46 % were Black. Mercury levels in study participants were comparable to the general US population. Levels of less chlorinated PCBs (PCB 118, 138, 153 and 180) were lower in participants compared to the general population, but the highly chlorinated PCBs associated with Aroclor 1268 were elevated; 19.3 %, 25.0 % and 39.8 % of participants were above the estimated 95th percentile reference values for PCBs 196 + 203, 199, and 206, respectively. About 20 % of participants were above the 95th percentile reference level for both toxaphene Parlars tested (Parlars 26 and 50). We also report on several other toxicants including other metals (lead and cadmium), p,p'-DDE, and poly- and per-fluorinated alkyl substances (PFAS). This study provides evidence that toxicants associated with local hazardous sites have contributed to exposures in Glynn County residents, and that some residents have exposures far exceeding what is common in the general population.
Collapse
Affiliation(s)
- Noah Scovronick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd. NE, Atlanta, GA, 30322, USA.
| | - Brooke Lappe
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd. NE, Atlanta, GA, 30322, USA
| | - Melanie A Pearson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd. NE, Atlanta, GA, 30322, USA
| | - Katy A Smith
- University of Georgia Marine Extension and Georgia Sea Grant, 715 Bay Street, Brunswick, GA, 31520, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd. NE, Atlanta, GA, 30322, USA
| | - Priya E D'Souza
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd. NE, Atlanta, GA, 30322, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd. NE, Atlanta, GA, 30322, USA
| | - Minghao Kong
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd. NE, Atlanta, GA, 30322, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd. NE, Atlanta, GA, 30322, USA
| | - Rylee Stephenson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd. NE, Atlanta, GA, 30322, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd. NE, Atlanta, GA, 30322, USA
| |
Collapse
|
3
|
Botnaru AA, Lupu A, Morariu PC, Pop OL, Nedelcu AH, Morariu BA, Cioancă O, Di Gioia ML, Lupu VV, Avasilcai L, Dragostin OM, Vieriu M, Morariu ID. Balancing Health and Sustainability: Assessing the Benefits of Plant-Based Diets and the Risk of Pesticide Residues. Nutrients 2025; 17:727. [PMID: 40005055 PMCID: PMC11858420 DOI: 10.3390/nu17040727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
The increased consumption of fruit and vegetables is essential for moving towards a healthier and more sustainable diet. Vegetarian diets are gaining in popularity due to their environmental and health implications; however, there is a need for additional research investigating pesticide residues in these foods. It is increasingly recognized that the global food system must prioritize nutritional quality, health, and environmental impact over quantity. Food contaminants, including pesticides, mycotoxins, and heavy metals, pose a substantial threat to food safety due to their persistent nature and harmful effects. We conducted a literature search utilizing four distinct databases (PubMed, Google Scholar, NIH, ScienceDirect) and several combinations of keywords (pesticides, food, vegetarian diet, toxicity, sustainable, removal). Consequently, we selected recent and relevant studies for the proposed topic. We have incorporated articles that discuss pesticide residues in food items, particularly in plant-based products. This study rigorously analyzes the harmful environmental impacts of pesticides and ultimately provides sustainable solutions for their elimination or reduction, along with environmentally sound alternatives to pesticide use. This study concludes that the transition towards sustainable agriculture and food production is essential for reducing pesticide residues in food, thereby protecting human health, wildlife populations, and the environment. This paper argues for the urgent need to transform global food systems to prioritize health and sustainability.
Collapse
Affiliation(s)
- Alexandra Andreea Botnaru
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.B.); (O.C.); (L.A.); (M.V.); (I.D.M.)
- Department of Environmental and Food Chemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ancuta Lupu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (A.H.N.); (B.A.M.); (V.V.L.)
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Paula Cristina Morariu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (A.H.N.); (B.A.M.); (V.V.L.)
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Alin Horatiu Nedelcu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (A.H.N.); (B.A.M.); (V.V.L.)
- Department of Morpho-Functional Science I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Branco Adrian Morariu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (A.H.N.); (B.A.M.); (V.V.L.)
| | - Oana Cioancă
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.B.); (O.C.); (L.A.); (M.V.); (I.D.M.)
- Department of Pharmacognosy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maria Luisa Di Gioia
- Dipartimento di Farmacia, Salute e Scienze della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy;
| | - Vasile Valeriu Lupu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (A.H.N.); (B.A.M.); (V.V.L.)
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Liliana Avasilcai
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.B.); (O.C.); (L.A.); (M.V.); (I.D.M.)
- Department of Environmental and Food Chemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Maria Dragostin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800010 Galati, Romania;
| | - Madalina Vieriu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.B.); (O.C.); (L.A.); (M.V.); (I.D.M.)
- Department of Analytical Chemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.B.); (O.C.); (L.A.); (M.V.); (I.D.M.)
- Department of Environmental and Food Chemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
4
|
Zheng GJ, Fang ZE, Zhou BY, Zuo L, Chen X, Liu ML, Yu L, Jing CX, Hao G. DNA methylation in the association between pesticide exposures and type 2 diabetes. World J Diabetes 2025; 16:99200. [PMID: 39959275 PMCID: PMC11718482 DOI: 10.4239/wjd.v16.i2.99200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 11/21/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Numerous epidemiological studies have found that pesticide exposure is associated with the incidence of type 2 diabetes (T2D); however, the underlying mechanisms remain unknown. DNA methylation may play a role in this process. AIM To identify the genes associated with pesticide exposure and T2D by reviewing the current literature. METHODS We systematically searched PubMed and Embase for relevant studies that examined the association between pesticide exposure and DNA methylation, and studies on DNA methylation and T2D through January 15, 2024. RESULTS We identified six genes (Alu, CABLES1, CDH1, PDX1, PTEN, PTPRN2) related to pesticide exposure and T2D. We also suggested future research directions to better define the role of DNA methylation in the association between pesticide exposure and T2D. CONCLUSION DNA methylation of specific genes may play a vital role in the association between pesticide exposure and T2D.
Collapse
Affiliation(s)
- Guang-Jun Zheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Zheng-Er Fang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Bi-Ying Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Lei Zuo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Xia Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Ming-Liang Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Lei Yu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Chun-Xia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Guang Hao
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
5
|
Pande A, Kinkade CW, Prout N, Chowdhury SF, Rivera-Núñez Z, Barrett ES. Prenatal exposure to synthetic chemicals in relation to HPA axis activity: A systematic review of the epidemiological literature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177300. [PMID: 39488279 DOI: 10.1016/j.scitotenv.2024.177300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Pregnant people are widely exposed to numerous synthetic chemicals with known endocrine-disrupting properties (e.g., phthalates, phenols, per- and poly-fluoroalkyl substances (PFAS)). To date, most epidemiological research on how endocrine-disrupting chemicals (EDCs) disrupt hormone pathways has focused on estrogens, androgens, and thyroid hormones. Far less research has examined the impact of EDCs on the hypothalamic-pituitary-adrenal (HPA) axis, despite its central role in the physiologic stress response and metabolic function. OBJECTIVE To systematically review the epidemiological literature on prenatal synthetic EDC exposures in relation to HPA axis hormones (e.g., corticotropin-releasing hormone, adrenocorticotropic hormone, cortisol, cortisone) in pregnant people and their offspring. METHODS A literature search of PubMed, Scopus, and Embase was conducted. Primary research studies were selected for inclusion by two independent reviewers and risk of bias was assessed using the Office of Health Assessment and Translation guidelines established by the National Toxicology Program with customization for the specific research topic. Data were extracted from each study and included in a qualitative synthesis. RESULTS 22 published studies met the inclusion criteria. Phthalates were the most prevalent EDC studied, followed by PFAS, phenols, and parabens, with fewer studies considering other synthetic chemicals. Offspring glucocorticoids were the most commonly considered outcome, followed by maternal glucocorticoids and placental corticotropin-releasing hormone. There was considerable heterogeneity in methods across studies, particularly in HPA axis outcome measures and matrices, making cross-study comparisons challenging. Numerous studies suggested disruption of HPA axis hormones and sex differences in association, but results varied considerably across studies and EDC classes. CONCLUSIONS The limited literature to date suggests the HPA axis may be vulnerable to disruption by synthetic EDCs. Carefully designed studies that prioritize biospecimen collection specific to HPA axis hormones are needed along with greater standardization of biospecimen collection and analysis protocols to facilitate cross-study comparisons and interpretation.
Collapse
Affiliation(s)
- Anushka Pande
- Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Nashae Prout
- Wynne Center for Family Research, University of Rochester, Rochester, NY 14642, USA; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14620, USA
| | - Sadia F Chowdhury
- Wynne Center for Family Research, University of Rochester, Rochester, NY 14642, USA; Translational Biomedical Sciences Program, University of Rochester, Rochester, NY 14642, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA.
| |
Collapse
|
6
|
Hansel MC, Rosenberg AM, Kinkade CW, Capurro C, Rivera-Núñez Z, Barrett ES. Exposure to Synthetic Endocrine-Disrupting Chemicals in Relation to Maternal and Fetal Sex Steroid Hormones: A Scoping Review. Curr Environ Health Rep 2024; 11:356-379. [PMID: 39037689 PMCID: PMC11324767 DOI: 10.1007/s40572-024-00455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE OF REVIEW Many synthetic endocrine-disrupting chemicals (EDCs) are ubiquitous in the environment and highly detected among pregnant people. These chemicals may disrupt maternal and/or fetal sex steroid hormones, which are critical to pregnancy maintenance and fetal development. Here, we review the epidemiological literature examining prenatal exposure to common synthetic EDCs in relation to maternal and fetal sex steroid hormones. RECENT FINDINGS We performed a literature search using PubMed, SCOPUS, and Embase, ultimately identifying 29 articles for full review. Phenols, parabens, and persistent organic pollutants generally showed inverse associations with androgens, estrogens, and progesterone. Phthalates and per-and polyfluoroalkyl substances tended to be inversely associated with progesterone, while evidence regarding androgens and estrogens was mixed. Inconsistent, but noteworthy, differences by fetal sex and timing of exposure/outcome were observed. Overall, the literature suggests EDCs may disrupt maternal and fetal sex steroid activity, though findings are mixed. Given the pervasive, high-volume production of these synthetic chemicals and the critical functions sex steroid hormones play during gestation, additional research is warranted.
Collapse
Affiliation(s)
- Megan C Hansel
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Abigail M Rosenberg
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY, 14642, USA
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Camila Capurro
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY, 14642, USA.
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
7
|
Peng FJ, Palazzi P, Mezzache S, Adelin E, Bourokba N, Bastien P, Appenzeller BMR. Glucocorticoid hormones in relation to environmental exposure to bisphenols and multiclass pesticides among middle aged-women: Results from hair analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123839. [PMID: 38522601 DOI: 10.1016/j.envpol.2024.123839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Bisphenols and pesticides have been shown to alter circulating glucocorticoids levels in animals, but there is limited human data. Moreover, measurements from biological fluids may not be able to reflect long-term status of non-persistent pollutants and glucocorticoids due to the high variability in their levels. Using hair analysis, we examined the associations between glucocorticoid hormones and environmental exposure to multi-class organic pollutants among a healthy female population aged 25-45 years old. Concentrations of four glucocorticoids, four polychlorinated biphenyl congeners (PCBs), seven polybrominated diphenyl ether congeners (PBDEs), two bisphenols and 140 pesticides and their metabolites were measured in hair samples collected from 196 Chinese women living in urban areas. Due to the low detection frequency of some pollutants, associations were explored only on 54 pollutants, i.e. PCB 180, bisphenol A, bisphenol S and 51 pesticides and their metabolites. Using stability-based Lasso regression, there were associations of cortisol, tetrahydrocortisol, cortisone, and tetrahydrocortisone with 14, 10, 13 and 17 biomarkers of exposure to pollutants, respectively, with bisphenol S, p,p'-dichlorodiphenyldichloroethylene, diethyl phosphate, 3,5,6-trichloro-2-pyridinol, thiamethoxam, imidacloprid, fipronil, tebuconazole, trifluralin, pyraclostrobin and 1-(3,4-dichlorophenyl)-3-methylurea being associated with at least three of the four hormones. There were also associations between cortisone/cortisol molar ratio and pollutants, namely dimethyl phosphate, 3-methyl-4-nitrophenol, carbofuran, λ-cyhalothrin, permethrin, fipronil, flusilazole, prometryn and fenuron. Some of these relationships were confirmed by single-pollutant linear regression analyses. Overall, our results suggest that background level of exposure to bisphenols and currently used pesticides may interfere with the glucocorticoid homeostasis in healthy women.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Sakina Mezzache
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601, Aulnay Sous Bois, France
| | - Emilie Adelin
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601, Aulnay Sous Bois, France
| | - Nasrine Bourokba
- L'Oréal Research and Innovation, Biopolis Drive, Synapse, 138623, Singapore
| | - Philippe Bastien
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601, Aulnay Sous Bois, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, 1445, Strassen, Luxembourg.
| |
Collapse
|
8
|
Berlivet J, Payrastre L, Rebouillat P, Fougerat A, Touvier M, Hercberg S, Lairon D, Pointereau P, Guillou H, Vidal R, Baudry J, Kesse-Guyot E. Association between dietary pesticide exposure profiles and body weight change in French adults: Results from the NutriNet-Santé cohort. ENVIRONMENT INTERNATIONAL 2024; 184:108485. [PMID: 38350259 DOI: 10.1016/j.envint.2024.108485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Pesticides cause a wide range of deleterious health effects, including metabolic disorders. Little is known about the effects of dietary pesticide exposure on body weight (BW) change in the general population. We aimed to investigate the role of dietary pesticide exposure in BW change among NutriNet-Santé participants, focusing on potential sexual dimorphism. METHODS Participants completed a Food Frequency Questionnaire (2014), assessing conventional and organic food consumption. Dietary exposure from plant foods of 25 commonly used pesticides was estimated using a residue database, accounting for agricultural practices (conventional and organic). Exposure profiles based on dietary patterns were computed using Non-negative Matrix Factorization (NMF). Mixed models were used to estimate the associations between BW change and exposure to pesticide mixtures, overall and after stratification by sex and menopausal status. RESULTS The final sample included 32,062 participants (8,211 men, 10,637 premenopausal, and 13,214 postmenopausal women). The median (IQR) follow-up was 7.0 (4.4; 8.0) years. Four pesticides profiles were inferred. Overall, men and postmenopausal women lost BW during follow-up, whereas premenopausal women gained BW. Higher exposure to NMF3, reflecting a lower exposure to synthetic pesticides, was associated with a lower BW gain, especially in premenopausal women (β(95 %CI) = -0.04 (-0.07; 0) kg/year, p = 0.04). Higher exposure to NMF2, highly positively correlated with a mixture of synthetic pesticides (azoxystrobin, boscalid, chlorpropham, cyprodinil, difenoconazole, fenhexamid, iprodione, tebuconazole, and lamda-cyhalothrin), was associated with a higher BW loss in men (β(95 %CI) = -0.05 (-0.08; -0.03) kg/year, p < 0.0001). No associations were observed for NMF1 and 4. CONCLUSIONS This study suggests a role of pesticide exposure, inferred from dietary patterns, on BW change, with sexually dimorphic actions, including a potential role of a lower exposure to synthetic pesticides on BW change in women. In men, exposure to a specific pesticide mixture was associated with higher BW loss. The underlying mechanisms need further elucidation.
Collapse
Affiliation(s)
- Justine Berlivet
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - Laurence Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Pauline Rebouillat
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - Anne Fougerat
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Mathilde Touvier
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - Serge Hercberg
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France; Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Public Health Department, Groupe Hospitalier Paris-Seine-Saint-Denis, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France.
| | - Denis Lairon
- Aix Marseille Université, Inserm, INRAE, C2VN, 13005, Marseille, France.
| | | | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Rodolphe Vidal
- Institut de l'Agriculture et de l'Alimentation Biologiques (ITAB), 149 rue de Bercy 75595, Paris, France.
| | - Julia Baudry
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| |
Collapse
|
9
|
Ali SA, Destaye AG. Apparent Khat chewers exposure to DDT in Ethiopia and its potential toxic effects: A scoping review. Regul Toxicol Pharmacol 2024; 147:105555. [PMID: 38142813 DOI: 10.1016/j.yrtph.2023.105555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT) is an insecticide, a member of dirty dozen persistent organic pollutants, used widely in the world until it was banned in the 1970s.The banning of DDT was strengthened by the Stockholm Convention in 2001. DDT is allowed only for malaria control in Ethiopia. However, farmers are misusing DDT and applying it to Khat (Catha edulis) farming. So, this review analyzes available data in the literature on the current trend, application, occurrence, fate and effects of DDT and its metabolites, dichlorodiphenyldichloroethane (DDD), dichlorodiphenyldichloroethylene (DDE), in the chewable parts of Khat. Generally, the concentration level of DDT, DDD, and DDE, designated as DDTs, is detected in different farmlands of Ethiopia. Some of the DDTs concentrations detected are very high (141.2-973 μg/kg (Gelemso), 194.4-999 μg/kg (Aseno) and 6253-8413.3 μg/kg (Gurage), and these concentrations may indicate increasing recent unmonitored application of DDT on Khat leaves. Some of the detected concentrations of DDT in the literature were above the maximum residue limit (MRL) set by FAO/WHO (100 μg/kg) and the European Commission 10 μg/kg in vegetables and 50 μg/kg in cereals. DDT exposure of Khat chewers linked to the concentration of DDT on Khat leaves and the amount of Khat consumed. DDT might pose health risks to chewers due to chronic toxicity, bioaccumulation, persistent and endocrine disruption properties.
Collapse
Affiliation(s)
- Shimels Ayalew Ali
- Department of Biology, Environmental Toxicology, Dire Dawa University, Ethiopia.
| | | |
Collapse
|
10
|
Peng FJ, Palazzi P, Mezzache S, Adelin E, Bourokba N, Bastien P, Appenzeller BMR. Association between Environmental Exposure to Multiclass Organic Pollutants and Sex Steroid Hormone Levels in Women of Reproductive Age. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19383-19394. [PMID: 37934613 DOI: 10.1021/acs.est.3c06095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Organic pollutant exposure may alter sex steroid hormone levels in both animals and humans, but studies on mixture effects have been lacking and mainly limited to persistent organic pollutants, with few hormones being investigated. Moreover, measurements from a single blood or urine sample may not be able to reflect long-term status. Using hair analysis, here, we evaluated the relationship between multiclass organic pollutants and sex steroid hormones in 196 healthy Chinese women aged 25-45 years. Associations with nine sex steroid hormones, including progesterone, androstenedione (AD), testosterone (T), estrone (E1), and 17β-estradiol (E2), and eight related hormone ratios were explored on 54 pollutants from polychlorinated biphenyl (PCB), pesticide, and bisphenol families using stability-based Lasso regression analysis. Our results showed that each hormone was associated with a mixture of at least 10 examined pollutants. In particular, hair E2 concentration was associated with 19 pollutants, including γ-hexachlorocyclohexane, propoxur, permethrin, fipronil, mecoprop, prochloraz, and carbendazim. There were also associations between pollutants and hormone ratios, with pentachlorophenol, dimethylthiophosphate, 3-phenoxybenzoic acid, and flusilazole being related to both E1/AD and E2/T ratios. Our results suggest that exposure to background levels of pesticides PCB180 and bisphenol S may affect sex steroid hormone homeostasis among women of reproductive age.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Sakina Mezzache
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93601 Aulnay sous Bois, France
| | - Emilie Adelin
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93601 Aulnay sous Bois, France
| | - Nasrine Bourokba
- L'Oréal Research and Innovation, Biopolis Drive, Synapse, Singapore 138623, Singapore
| | - Philippe Bastien
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93601 Aulnay sous Bois, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
11
|
Liu Y, Bei K, Zheng W, Yu G, Sun C. Multiple pesticide residues and risk assessment of Dendrobium officinale Kimura et Migo: a three-year investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107827-107840. [PMID: 37740810 DOI: 10.1007/s11356-023-29892-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
Dendrobium officinale Kimura et Migo (D. officinale) is a traditional Chinese medicine homologous to food, and its safety has attracted considerable attention. Pesticide residues are critical indicators for evaluating the safety of D. officinale. This study investigated the levels of 130 pesticides in 137 stem samples and 82 leaf samples from five main production areas of D. officinale in Zhejiang Province, along with the associated risk of dietary exposure for the population between 2019 and 2021. Forty-five pesticides were detected in 171 samples, of which pyraclostrobin had the highest detection frequency. Multiple residues were detected in 52.56% of the stem samples and 54.88% of the leaf samples, and one stem sample contained up to 18 pesticides. Here, the level of difenoconazole in three samples (two stem samples and one leaf sample) was higher than the maximum residue limit (MRL) in China. Considering the possible health risks related to pesticide residues, a risk assessment of human exposure to pesticides via the intake of D. officinale stems and leaves was evaluated, indicating negligible short-term, long-term, and cumulative risks to human health. However, considering the high detection rate of unregistered pesticides, the supplementation of pesticide registration information on D. officinale should be expedited, and MRLs should be established to ensure food and drug safety.
Collapse
Affiliation(s)
- Yuhong Liu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Ke Bei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Weiran Zheng
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Guoguang Yu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Caixia Sun
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China.
| |
Collapse
|
12
|
Guo C, Liu Y, Liu Y, Zhang X, Lv L, Li M. Research on knowledge construction and analysis of pesticide exposure to children based on bibliometrics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100325-100339. [PMID: 37648921 DOI: 10.1007/s11356-023-29457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
Pesticide exposure is a major health problem that cannot be ignored, and children are particularly vulnerable and sensitive. As a result, the study of health damage in children caused by pesticide exposure has gradually developed into an important cross-disciplinary research topic. In this study, we reviewed the current state, characteristics, and trends of existing research findings and summarized them comprehensively and systematically through bibliometrics. We collected and examined a large number of studies using Citespace and Vosviewer, employing a clustering method to analyze the effects of pesticide exposure on children and to highlight the hot keywords in the research field. Through an analysis of the active time of high-frequency keywords, we found that the research field is in a hot spot, and the occurrence value of keywords was used to judge the innovation of the research results, thereby highlighting the frontier and key directions of future research in this field. We conclude that in addition to core pesticides, children, exposure, and other malaria and polychlorinated biphenyls also appear as high-frequency keywords in the research field of pesticide exposure effects on children. The core issues of concern in this field include occupational pesticide exposure and childhood leukemia, history of pesticide exposure during pregnancy and childhood leukemia, environmental factors and dietary intake and organophosphorus pesticide exposure in children, and pyrethroid pesticide exposure and neurobehavioral development in children. Future research may focus on how to control the safe use of pesticides, quantitative research on pesticide hazards, and potential effects on children's health.
Collapse
Affiliation(s)
- Chunyan Guo
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161000, China
- Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, 010010, China
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010110, China
| | - Yibo Liu
- Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, 010010, China
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010110, China
- Inner Mongolia Medical University, Hohhot, China
| | - Yuchao Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161000, China
| | - Xinyu Zhang
- Inner Mongolia Medical University, Hohhot, China
| | - Lijuan Lv
- Department of Basic Science, Tianjin Agricultural University, Tianjin, 300384, China
| | - Minhui Li
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161000, China.
- Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, 010010, China.
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010110, China.
- Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
13
|
Cresto N, Forner-Piquer I, Baig A, Chatterjee M, Perroy J, Goracci J, Marchi N. Pesticides at brain borders: Impact on the blood-brain barrier, neuroinflammation, and neurological risk trajectories. CHEMOSPHERE 2023; 324:138251. [PMID: 36878369 DOI: 10.1016/j.chemosphere.2023.138251] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are omnipresent, and they pose significant environmental and health risks. Translational studies indicate that acute exposure to high pesticide levels is detrimental, and prolonged contact with low concentrations of pesticides, as single and cocktail, could represent a risk factor for multi-organ pathophysiology, including the brain. Within this research template, we focus on pesticides' impact on the blood-brain barrier (BBB) and neuroinflammation, physical and immunological borders for the homeostatic control of the central nervous system (CNS) neuronal networks. We examine the evidence supporting a link between pre- and postnatal pesticide exposure, neuroinflammatory responses, and time-depend vulnerability footprints in the brain. Because of the pathological influence of BBB damage and inflammation on neuronal transmission from early development, varying exposures to pesticides could represent a danger, perhaps accelerating adverse neurological trajectories during aging. Refining our understanding of how pesticides influence brain barriers and borders could enable the implementation of pesticide-specific regulatory measures directly relevant to environmental neuroethics, the exposome, and one-health frameworks.
Collapse
Affiliation(s)
- Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom.
| | - Asma Baig
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Mousumi Chatterjee
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Julie Perroy
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
14
|
Treviño MJS, Pereira-Coelho M, López AGR, Zarazúa S, Dos Santos Madureira LA, Majchrzak T, Płotka-Wasylka J. How pesticides affect neonates? - Exposure, health implications and determination of metabolites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158859. [PMID: 36126706 DOI: 10.1016/j.scitotenv.2022.158859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
This review covers key information related to the effects of pesticides on fetal and child health. All humans are exposed to environmental toxicants, however child's health, due to their high vulnerability, should be of special concern. They are continuously exposed to environmental xenobiotics including a wide variety of pesticides, and other pollutants. These compounds can enter the child's body through various routes, both during fetal life, in the first days of life with breast milk, as well as during environmental exposure in later years of life. Consequently, in the body, some of them are metabolized and excreted with urine or faces, while others accumulate in tissues causing toxic effects. This review will provide information on the types of pesticides, their pathways of uptake and metabolism in children's bodies. Determination of the impact of them on children's organism performance is possible through effective identification of these compounds and their metabolites in children's tissues and biofluids. Therefore, the main procedures for the determination of pesticides are reviewed and future trends in this field are indicated. We believe that this comprehensive review can be a good starting place for the future readers interested in the impact of environmental xenobiotics on the health of children as well as the aspects relates with the analytical methods that can be used for analysis and monitoring of these pollutants in children's tissues and biofluids.
Collapse
Affiliation(s)
- María José Santoyo Treviño
- Coordinación para la innovación y aplicación para la Ciencia y la Tecnología, Mexico; Laboratorio de Neurotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | - Marina Pereira-Coelho
- Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | - Sergio Zarazúa
- Laboratorio de Neurotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | | | - Tomasz Majchrzak
- Department of Analytical Chemistry, Faculty of Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland.
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland.
| |
Collapse
|
15
|
Antignac JP, Figiel S, Pinault M, Blanchet P, Bruyère F, Mathieu R, Lebdai S, Fournier G, Rigaud J, Mahéo K, Marchand P, Guiffard I, Bichon E, le Bizec B, Multigner L, Fromont G. Persistent organochlorine pesticides in periprostatic adipose tissue from men with prostate cancer: Ethno-geographic variations, association with disease aggressiveness. ENVIRONMENTAL RESEARCH 2023; 216:114809. [PMID: 36403647 DOI: 10.1016/j.envres.2022.114809] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Although several studies have examined the relationship between organochlorine pesticides (OCPs) and prostate cancer (PCa) risk, no data are available concerning the association between OCPs concentrations in periprostatic adipose tissue (PPAT), which reflects cumulative exposure, and PCa aggressiveness. Moreover, no previous study has compared OCPs exposure in two distinct ethno-geographical populations. The objectives were to analyze OCPs in PPAT of PCa patients from either Mainland France or French West Indies in correlation with features of tumor aggressiveness, after adjusting for potential confounders such age, BMI, and polyunsaturated fatty acid (PUFA) content of PPAT. PPAT was analyzed in 160 patients (110 Caucasians and 50 African-Caribbeans), 80 with an indolent tumor (ISUP group 1 + pT2), and 80 with an aggressive tumor (ISUP group more than 3 + pT3). The concentrations of 29 OCPs were measured in PPAT concomitantly with the characterization of PUFA content. Exposure patterns of OCPs differed according to the ethno-geographical origin. Most OCPs were found at higher concentration in Caucasian patients, whereas pp'-DDE content was twice as high in African-Caribbeans. Chlordecone was only detected in PPAT from African-Caribbean patients. Most OCP concentrations were positively correlated with age, and some with BMI. After adjusting for age, BMI, and PUFA composition of PPAT, no significant association was found between OCPs content and risk of aggressive disease, except of mirex which appeared inversely associated with aggressive features of PCa in Caucasian patients. These results highlight a significant ethno-geographic variation in internal exposure to OCPs, which likely reflects differences in consumption patterns. The inverse relationship observed between mirex concentration and markers of PCa aggressiveness need to be further investigated.
Collapse
Affiliation(s)
| | - Sandy Figiel
- Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Faculté de Médecine, 10 bd Tonnellé, 37032, Tours, France
| | - Michèle Pinault
- Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Faculté de Médecine, 10 bd Tonnellé, 37032, Tours, France
| | - Pascal Blanchet
- CHU Pointe à Pitre, Department of Urology, France; Inserm UMR1085 - IRSET Rennes, France
| | - Franck Bruyère
- CHRU Bretonneau, Departments of Pathology and Urology, Tours, France
| | - Romain Mathieu
- Inserm UMR1085 - IRSET Rennes, France; CHU Rennes, Departments of Pathology and Urology, France
| | | | | | - Jerome Rigaud
- CHU Nantes, Departments of Pathology and Urology, France
| | - Karine Mahéo
- Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Faculté de Médecine, 10 bd Tonnellé, 37032, Tours, France
| | | | | | | | | | | | - Gaëlle Fromont
- Inserm UMR1069 "Nutrition, Croissance et Cancer" Université François Rabelais, Faculté de Médecine, 10 bd Tonnellé, 37032, Tours, France; CHRU Bretonneau, Departments of Pathology and Urology, Tours, France.
| |
Collapse
|
16
|
Djekkoun N, Depeint F, Guibourdenche M, El Khayat El Sabbouri H, Corona A, Rhazi L, Gay-Queheillard J, Rouabah L, Hamdad F, Bach V, Benkhalifa M, Khorsi-Cauet H. Chronic Perigestational Exposure to Chlorpyrifos Induces Perturbations in Gut Bacteria and Glucose and Lipid Markers in Female Rats and Their Offspring. TOXICS 2022; 10:toxics10030138. [PMID: 35324763 PMCID: PMC8949051 DOI: 10.3390/toxics10030138] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
An increasing burden of evidence is pointing toward pesticides as risk factors for chronic disorders such as obesity and type 2 diabetes, leading to metabolic syndrome. Our objective was to assess the impact of chlorpyrifos (CPF) on metabolic and bacteriologic markers. Female rats were exposed before and during gestation and during lactation to CPF (1 mg/kg/day). Outcomes such as weight, glucose and lipid profiles, as well as disturbances in selected gut bacterial levels, were measured in both the dams (at the end of the lactation period) and in their female offspring at early adulthood (60 days of age). The results show that the weight of CPF dams were lower compared to the other groups, accompanied by an imbalance in blood glucose and lipid markers, and selected gut bacteria. Intra-uterine growth retardation, as well as metabolic disturbances and perturbation of selected gut bacteria, were also observed in their offspring, indicating both a direct effect on the dams and an indirect effect of CPF on the female offspring. Co-treatment with inulin (a prebiotic) prevented some of the outcomes of the pesticide. Further investigations could help better understand if those perturbations mimic or potentiate nutritional risk factors for metabolic syndrome through high fat diet.
Collapse
Affiliation(s)
- Narimane Djekkoun
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
- Laboratory of Cellular and Molecular Biology, University of the Brothers Mentouri Constantine 1, Constantine 2500, Algeria;
| | - Flore Depeint
- Transformations & Agro-Ressources ULR7519, Institut Polytechnique UniLaSalle—Université d’Artois, 60026 Beauvais, France; (F.D.); (L.R.)
| | - Marion Guibourdenche
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Hiba El Khayat El Sabbouri
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Aurélie Corona
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Larbi Rhazi
- Transformations & Agro-Ressources ULR7519, Institut Polytechnique UniLaSalle—Université d’Artois, 60026 Beauvais, France; (F.D.); (L.R.)
| | - Jerome Gay-Queheillard
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Leila Rouabah
- Laboratory of Cellular and Molecular Biology, University of the Brothers Mentouri Constantine 1, Constantine 2500, Algeria;
| | - Farida Hamdad
- Center for Human Biology, CHU Amiens-Picardie, 80000 Amiens, France;
| | - Véronique Bach
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Moncef Benkhalifa
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
- Center for Human Biology, CHU Amiens-Picardie, 80000 Amiens, France;
| | - Hafida Khorsi-Cauet
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
- Correspondence: ; Tel.: +33-322-827-896
| |
Collapse
|
17
|
Seo SH, Choi SD, Batterman S, Chang YS. Health risk assessment of exposure to organochlorine pesticides in the general population in Seoul, Korea over 12 years: A cross-sectional epidemiological study. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127381. [PMID: 34638073 DOI: 10.1016/j.jhazmat.2021.127381] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the 12-year trends in serum levels of 28 organochlorine pesticides (OCPs) in 880 adults living in Seoul, Korea. The OCP levels decreased from 2006 to 2017, and p,p'-dichlorodiphenyldichloroethylene was a predominant compound. OCP levels were higher in females than in males, and showed positive associations with BMI and age. The OCP concentrations had inverted U-shaped associations with low-density lipoprotein cholesterol and total cholesterol. Concentrations of β-hexachlorocyclohexane were significantly higher in patients with hypertension than in participants that were normotensive. OCP levels showed positive associations with uric acid, creatinine, and thyroid-stimulating hormone, but negative associations with free thyroxine. Participants with diabetes had significantly higher OCP levels than those without it. Principal component analysis suggested possible differences in disease manifestation depending on the composition of OCPs. These results suggest that OCPs might disturb renal transport and thyroid homeostasis. To our knowledge, the inverted U-shaped associations of heptachlor epoxide and endosulfan with cholesterol, the epidemiological associations of trans-nonachlor and endosulfan with thyroid hormones, and the association of p,p'-DDE with hyperuricemia have not been previously reported in general population. This is the first long-term study to show trends of 28 OCPs in serum and associations with various health indicators in Korea.
Collapse
Affiliation(s)
- Sung-Hee Seo
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Sung-Deuk Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Stuart Batterman
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Yoon-Seok Chang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
18
|
Buser MC, Pohl HR, Abadin HG. Windows of sensitivity to toxic chemicals in the development of the endocrine system: an analysis of ATSDR's toxicological profile database. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:437-454. [PMID: 32495642 PMCID: PMC7714698 DOI: 10.1080/09603123.2020.1772204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
This review utilizes the robust database of literature contained in toxicological profiles developed by the Agency for Toxic Substances and Disease Registry. The aim was to use this database to identify developmental toxicity studies reporting alterations in hormone levels in the developing fetus and offspring and identify windows of sensitivity. We identified 74 oral exposure studies in rats that provided relevant information on 30 chemicals from 21 profiles. Most studies located provided information on thyroid hormones, with fewer studies on anterior pituitary, adrenal medulla, ovaries, and testes. No studies pertaining to hormones of the posterior pituitary, pancreas, or adrenal cortex were located. The results demonstrate that development of the endocrine system may be affected by exposure to environmental contaminants at many different points, including gestational and/or lactational exposure. Moreover, this review demonstrates the need for more developmental toxicity studies focused on the endocrine system and specifically alterations in hormone levels.
Collapse
Affiliation(s)
- M C Buser
- US Department of Health and Human Services, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, USA
| | - H R Pohl
- US Department of Health and Human Services, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, USA
| | - H G Abadin
- US Department of Health and Human Services, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, USA
| |
Collapse
|
19
|
Corona R, Ordaz B, Robles-Osorio L, Sabath E, Morales T. Neuroimmunoendocrine Link Between Chronic Kidney Disease and Olfactory Deficits. Front Integr Neurosci 2022; 16:763986. [PMID: 35173591 PMCID: PMC8841736 DOI: 10.3389/fnint.2022.763986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic kidney disease (CKD) is a multifactorial pathology that progressively leads to the deterioration of metabolic functions and results from deficient glomerular filtration and electrolyte imbalance. Its economic impact on public health is challenging. Mexico has a high prevalence of CKD that is strongly associated with some of the most common metabolic disorders like diabetes and hypertension. The gradual loss of kidney functions provokes an inflammatory state and endocrine alterations affecting several systems. High serum levels of prolactin have been associated with CKD progression, inflammation, and olfactory function. Also, the nutritional status is altered due to impaired renal function. The decrease in calorie and protein intake is often accompanied by malnutrition, which can be severe at advanced stages of the disease. Nutrition and olfactory functioning are closely interconnected, and CKD patients often complain of olfactory deficits, which ultimately can lead to deficient food intake. CKD patients present a wide range of deficits in olfaction like odor discrimination, identification, and detection threshold. The chronic inflammatory status in CKD damages the olfactory epithelium leading to deficiencies in the chemical detection of odor molecules. Additionally, the decline in cognitive functioning impairs the capacity of odor differentiation. It is not clear whether peritoneal dialysis and hemodialysis improve the olfactory deficits, but renal transplants have a strong positive effect. In the present review, we discuss whether the olfactory deficiencies caused by CKD are the result of the induced inflammatory state, the hyperprolactinemia, or a combination of both.
Collapse
Affiliation(s)
- Rebeca Corona
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Benito Ordaz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | - Ernesto Sabath
- Facultad de Nutrición, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Teresa Morales
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
20
|
Dusza HM, Manz KE, Pennell KD, Kanda R, Legler J. Identification of known and novel nonpolar endocrine disruptors in human amniotic fluid. ENVIRONMENT INTERNATIONAL 2022; 158:106904. [PMID: 34607043 DOI: 10.1016/j.envint.2021.106904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Prenatal exposure to endocrine-disrupting compounds (EDCs) may contribute to endocrine-related diseases and disorders later in life. Nevertheless, data on in utero exposure to these compounds are still scarce. OBJECTIVES We investigated a wide range of known and novel nonpolar EDCs in full-term human amniotic fluid (AF), a representative matrix of direct fetal exposure. METHODS Gas chromatography high-resolution mass spectrometry (GC-HRMS) was used for the targeted and non-targeted analysis of chemicals present in nonpolar AF fractions with dioxin-like, (anti-)androgenic, and (anti-)estrogenic activity. The contribution of detected EDCs to the observed activity was determined based on their relative potencies. The multitude of features detected by non-targeted analysis was tentatively identified through spectra matching and data filtering, and further investigated using curated and freely available sources to predict endocrine activity. Prioritized suspects were purchased and their presence in AF was chemically and biologically confirmed with GC-HRMS and bioassay analysis. RESULTS Targeted analysis revealed 42 known EDCs in AF including dioxins and furans, polybrominated diphenyl ethers, pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. Only 30% of dioxin activity and <1% estrogenic and (anti-)androgenic activity was explained by the detected compounds. Non-targeted analysis revealed 14,110 features of which 3,243 matched with library spectra. Our data filtering strategy tentatively identified 121 compounds. Further data mining and in silico predictions revealed in total 69 suspected EDCs. We selected 14 chemicals for confirmation, of which 12 were biologically active and 9 were chemically confirmed in AF, including the plasticizer diphenyl isophthalate and industrial chemical p,p'-ditolylamine. CONCLUSIONS This study reveals the presence of a wide variety of nonpolar EDCs in direct fetal environment and for the first time identifies novel EDCs in human AF. Further assessment of the source and extent of human fetal exposure to these compounds is warranted.
Collapse
Affiliation(s)
- Hanna M Dusza
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands.
| | - Katherine E Manz
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - Rakesh Kanda
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, Middlesex, United Kingdom
| | - Juliette Legler
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands
| |
Collapse
|
21
|
Qi SY, Xu XL, Ma WZ, Deng SL, Lian ZX, Yu K. Effects of Organochlorine Pesticide Residues in Maternal Body on Infants. Front Endocrinol (Lausanne) 2022; 13:890307. [PMID: 35757428 PMCID: PMC9218079 DOI: 10.3389/fendo.2022.890307] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023] Open
Abstract
There are many organochlorine pollutants in the environment, which can be directly or indirectly exposed to by mothers, and as estrogen endocrine disruptors can cause damage to the lactation capacity of the mammary gland. In addition, because breast milk contains a lot of nutrients, it is the most important food source for new-born babies. If mothers are exposed to organochlorine pesticides (OCPs), the lipophilic organochlorine contaminants can accumulate in breast milk fat and be passed to the infant through breast milk. Therefore, it is necessary to investigate organochlorine contaminants in human milk to estimate the health risks of these contaminants to breastfed infants. In addition, toxic substances in the mother can also be passed to the fetus through the placenta, which is also something we need to pay attention to. This article introduces several types of OCPs, such as dichlorodiphenyltrichloroethane (DDT), methoxychlor (MXC), hexachlorocyclohexane (HCH), endosulfan, chlordane, heptachlorand and hexachlorobenzene (HCB), mainly expounds their effects on women's lactation ability and infant health, and provides reference for maternal and infant health. In addition, some measures and methods for the control of organochlorine pollutants are also described here.
Collapse
Affiliation(s)
- Shi-Yu Qi
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue-Ling Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wen-Zhi Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
- *Correspondence: Wen-Zhi Ma, ; Kun Yu, ; Zheng-Xing Lian,
| | - Shou-Long Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Wen-Zhi Ma, ; Kun Yu, ; Zheng-Xing Lian,
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Wen-Zhi Ma, ; Kun Yu, ; Zheng-Xing Lian,
| |
Collapse
|
22
|
Miao Y, Rong M, Li M, He H, Zhang L, Zhang S, Liu C, Zhu Y, Deng YL, Chen PP, Zeng JY, Zhong R, Mei SR, Miao XP, Zeng Q. Serum concentrations of organochlorine pesticides, biomarkers of oxidative stress, and risk of breast cancer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117386. [PMID: 34051689 DOI: 10.1016/j.envpol.2021.117386] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Studies have documented that exposure to organochlorine pesticides (OCPs) is linked with breast cancer, but the underlying biological mechanisms are still unknown. This study included 313 women diagnosed with breast cancer and 313 controls in Wuhan, China, and measured 18 OCPs in serum and 3 oxidative stress biomarkers in urine. Multivariable adjusted regression models were used to evaluate the associations among OCPs, oxidative stress biomarkers, and breast cancer. The mediating effect of oxidative stress was assessed by mediation analysis. We observed that most OCPs were positively associated with risk of breast cancer (all FDR-P values < 0.05 or 0.10). Moreover, we found that p,p'-DDT, p,p'-DDD, dieldrin, heptachlor, and heptachlor epoxide were positively associated with 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA) and 8-iso-prostaglandin F2α (8-isoPGF2α), which in turn were positively associated with risk of breast cancer. Mediation analysis indicated that HNE-MA and 8-isoPGF2ɑ mediated the positive associations between these OCPs and risk of breast cancer, with mediating proportion ranging from 6.23% to 19.9%. Our results suggest that lipid peroxidation may mediate the positive associations between OCP exposures and risk of breast cancer.
Collapse
Affiliation(s)
- Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Mao Rong
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei, PR China; Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, Hubei, PR China
| | - Min Li
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei, PR China; Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, Hubei, PR China
| | - Heng He
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li Zhang
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei, PR China; Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan, Hubei, PR China
| | - Shanshan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Su-Rong Mei
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Ping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
23
|
Woldetsadik D, Simon MP, Knuth D, Hailu H, Gebresilassie A, Dejen A, Düring RA. Exposure to DDT and HCH congeners and associated potential health risks through khat (Catha edulis) consumption among adults in South Wollo, Ethiopia. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3597-3613. [PMID: 33594639 PMCID: PMC7886647 DOI: 10.1007/s10653-021-00846-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Khat (Catha edulis) chewing is widespread in the region of East Africa. Even low levels of organochlorine pesticides (OCPs) in khat could induce public health concern. In a market-based study, from five popular khat varieties, a total of 35 composite khat samples were analyzed for dichlorodiphenyltrichloroethane (DDT) and its main transformation products, and four hexachlorocyclohexane (HCH) isomers. Extraction was carried out by quick, easy, cheap, effective, rugged and safe method (QuEChERS). OCP concentrations were determined by head space solid phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME-GC-MS). Every sample contained β-HCH above the maximum residue limit set by the European Commission. For total DDT, this was the case for 25.7% of the samples. The ratios of (p,p'-DDD + p,p'-DDE) to p,p'-DDT were less than one for 85% of khat samples, demonstrating recent use of DDT in khat farmlands. Conversely, the ratio of β-HCH to total HCH varied from 0.56 to 0.96, implying historical input of technical HCH. Assuming a daily chewable portion of 100 g, dietary intakes of p,p'-DDT, total DDT and total HCH by adults ranged from 3.12 to 57.9, 6.49 to 80.2 and 39.2 to 51.9 ng (kg body weight)-1 day-1, respectively. These levels are below acceptable levels suggested by international organizations. Chewing khat showed lower non-cancer health risk, but showed relatively higher cancer risk in terms of OCPs. Because khat is chewed without being subjected to any treatment, uncertainties associated with estimated intakes and health risks should be low. Therefore, this practice is of great concern.
Collapse
Affiliation(s)
- Desta Woldetsadik
- Department of Soil and Water Resources Management, Wollo University, Dessie, Ethiopia
| | - Marcel Pierre Simon
- Department of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany
| | - Dennis Knuth
- Department of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany
| | - Hillette Hailu
- Department of Soil and Water Resources Management, Wollo University, Dessie, Ethiopia
| | - Araya Gebresilassie
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asmare Dejen
- Department of Plant Science, Wollo University, Dessie, Ethiopia
| | - Rolf-Alexander Düring
- Department of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
24
|
Wang X, Gao M, Wang B, Tan Y, Guo Y, Li Q, Ge S, Lan C, Chen J, Jiangtulu B, Li Z, Yu Y. Risk of dietary intake of organochlorine pesticides among the childbearing-age women: A multiple follow-up study in North China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112607. [PMID: 34411819 DOI: 10.1016/j.ecoenv.2021.112607] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Exposure to organochlorine pesticides (OCPs) can cause adverse health effects in the female population. We investigated the dietary OCP intake of childbearing-age women living in large agricultural areas of Northern China, as well as their associated health risks. Ten childbearing-age women were recruited during 2015-2016. Their weekly dietary intake diaries and food samples were collected over the course of five visits. The OCP residues of 322 food samples from seven categories (i.e., cereal, vegetable, fruit, fish, meat, egg, and milk) were analyzed by gas chromatography-mass spectrometry. The average concentrations of the total hexachlorocyclohexanes (ΣHCH), dichlorodiphenyltrichloroethanes and their metabolites (ΣDDX), endosulfans (ΣES), and dieldrin and endrin (ΣDrin) in all food categories were, overall, much lower than the maximum residue limits. Relative high mean residues of ΣDrin and ΣES were found in fruits (ΣDrin: 0.687 ng g-1 wet weight (w.w.), ΣES: 2.24 ng g-1 w.w.) and vegetables (ΣDrin: 0.690 ng g-1 w.w., ΣES: 2.11 ng g-1 w.w.). The estimated daily dietary intake (EDI) of these compounds was calculated, with mean levels of 10.6 (ΣES) > 4.37 (ΣDrin) > 1.51 (ΣHCH) > 0.850 (ΣDDX) ng kg-1 day-1. Women during the heating period (from January to March) tended to ingest more ΣHCH, ΣDDX, ΣDrin, and ΣES. Overall, women had no obvious non-carcinogenic and carcinogenic risks due to intake of OCPs, but 83.9% of them has potential carcinogenic risk, with estimated life carcinogenic risk (LCR) exceeding 10-6. Furthermore, women had a higher potential carcinogenic risk during the heating period (mean LCR: 1.33 × 10-5) than during the non-heating period (mean LCR: 8.50 × 10-6). ΣDrin was the dominant OCP responsible for health risks, followed by ΣHCH. We concluded that women in North China still have some dietary OCP intake, especially during the heating period.
Collapse
Affiliation(s)
- Xuepeng Wang
- School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Miaomiao Gao
- School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Yixi Tan
- School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yunhe Guo
- School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Qi Li
- School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Shufang Ge
- School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Changxin Lan
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Junxi Chen
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Bahabaike Jiangtulu
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Yanxin Yu
- School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
25
|
Fucic A, Duca RC, Galea KS, Maric T, Garcia K, Bloom MS, Andersen HR, Vena JE. Reproductive Health Risks Associated with Occupational and Environmental Exposure to Pesticides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126576. [PMID: 34207279 PMCID: PMC8296378 DOI: 10.3390/ijerph18126576] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
A marked reduction in fertility and an increase in adverse reproductive outcomes during the last few decades have been associated with occupational and environmental chemical exposures. Exposure to different types of pesticides may increase the risks of chronic diseases, such as diabetes, cancer, and neurodegenerative disease, but also of reduced fertility and birth defects. Both occupational and environmental exposures to pesticides are important, as many are endocrine disruptors, which means that even very low-dose exposure levels may have measurable biological effects. The aim of this review was to summarize the knowledge collected between 2000 and 2020, to highlight new findings, and to further interpret the mechanisms that may associate pesticides with infertility, abnormal sexual maturation, and pregnancy complications associated with occupational, environmental and transplacental exposures. A summary of current pesticide production and usage legislation is also included in order to elucidate the potential impact on exposure profile differences between countries, which may inform prevention measures. Recommendations for the medical surveillance of occupationally exposed populations, which should be facilitated by the biomonitoring of reduced fertility, is also discussed.
Collapse
Affiliation(s)
- Aleksandra Fucic
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-15682500; Fax: +3814673303
| | - Radu C. Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory, L-3555 Dudelange, Luxembourg;
- Centre for Environment and Health, KU Leuven, 3001 Leuven, Belgium
| | - Karen S. Galea
- Institute of Occupational Medicine, Edinburgh EH14 4AP, UK;
| | - Tihana Maric
- Medical School, University of Zagreb, 10000 Zagreb, Croatia;
| | - Kelly Garcia
- Department of Global and Community Health, George Mason University, Fairfax, VA 22030, USA; (K.G.); (M.S.B.)
| | - Michael S. Bloom
- Department of Global and Community Health, George Mason University, Fairfax, VA 22030, USA; (K.G.); (M.S.B.)
| | - Helle R. Andersen
- Department of Public Health, University of Southern Denmark, DK-5000 Odense C, Denmark;
| | - John E. Vena
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
26
|
Mitsui T. Effects of the prenatal environment on cryptorchidism: A narrative review. Int J Urol 2021; 28:882-889. [PMID: 34075642 DOI: 10.1111/iju.14600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/25/2021] [Indexed: 12/30/2022]
Abstract
Cryptorchidism, the absence of testes from the scrotum, is the most common genital disorder in boys and a risk factor for reduced fertility and testicular cancer. The mechanism responsible for cryptorchidism involves two discrete stages: a transabdominal and an inguinoscrotal phase. These phases of testicular descent are regulated by the prenatal sex hormone environment, including levels of testosterone, insulin-like factor 3, and calcitonin gene-related peptide. Environmental endocrine disruptors, which are unfavorable environmental factors, may also affect testicular descent through prenatal sex hormones. This review examined the effects of environmental factors, particularly environmental endocrine disruptors, such as phthalates, organochlorine pesticides, diethylstilbestrol, bisphenol A, dioxins/dioxin-like compounds, and perfluoroalkyl substances, and parental lifestyles on the risk of cryptorchidism. Although some studies have shown that environmental endocrine disruptors can affect testicular descent by changing the hormonal environment during the prenatal period, no significant association has been established between exposure to environmental endocrine disruptors and the incidence of cryptorchidism. Therefore, the role played by environmental endocrine disruptor exposure (if any) in the pathogenesis of cryptorchidism remains unknown. Further studies are needed to examine these issues.
Collapse
Affiliation(s)
- Takahiko Mitsui
- Department of Urology, University of Yamanashi Graduate School of Medical Sciences, Chuo, Yamanashi, Japan
| |
Collapse
|
27
|
Padmanabhan V, Song W, Puttabyatappa M. Praegnatio Perturbatio-Impact of Endocrine-Disrupting Chemicals. Endocr Rev 2021; 42:295-353. [PMID: 33388776 PMCID: PMC8152448 DOI: 10.1210/endrev/bnaa035] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 02/07/2023]
Abstract
The burden of adverse pregnancy outcomes such as preterm birth and low birth weight is considerable across the world. Several risk factors for adverse pregnancy outcomes have been identified. One risk factor for adverse pregnancy outcomes receiving considerable attention in recent years is gestational exposure to endocrine-disrupting chemicals (EDCs). Humans are exposed to a multitude of environmental chemicals with known endocrine-disrupting properties, and evidence suggests exposure to these EDCs have the potential to disrupt the maternal-fetal environment culminating in adverse pregnancy and birth outcomes. This review addresses the impact of maternal and fetal exposure to environmental EDCs of natural and man-made chemicals in disrupting the maternal-fetal milieu in human leading to adverse pregnancy and birth outcomes-a risk factor for adult-onset noncommunicable diseases, the role lifestyle and environmental factors play in mitigating or amplifying the effects of EDCs, the underlying mechanisms and mediators involved, and the research directions on which to focus future investigations to help alleviate the adverse effects of EDC exposure.
Collapse
Affiliation(s)
| | - Wenhui Song
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
28
|
Exposure to Organophosphate and Neonicotinoid Insecticides and Its Association with Steroid Hormones among Male Reproductive-Age Farmworkers in Northern Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115599. [PMID: 34073889 PMCID: PMC8197278 DOI: 10.3390/ijerph18115599] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022]
Abstract
Several studies indicated organophosphate (OP) and neonicotinoid (NEO) insecticides are endocrine disruptors; however, data are scarce. This cross-sectional study recruited 143 male farmworkers aged 18-40 years in Fang district, Chiang Mai province, northern Thailand. OP exposure was assessed by measuring urinary dialkylphosphate (DAPs) using a gas-chromatography flame photometric detector. Urinary NEOs, their metabolites (NEO/m) and serum steroid hormones were measured using liquid chromatography-tandem mass spectrometry. Characteristics of participants were determined by face-to-face interviews. DAPs and five NEO/m were detected in more than 60% of samples. The concentration of diethylphosphate was highest among DAP metabolites (geometric mean concentration (GM: 23.9 ng/mL) and the concentration of imidacloprid (IMI) was highest among NEO/m (GM: 17.4 ng/mL). Linear regression models showed that the IMI level was positively associated with testosterone, dehydrocorticosterone (DHC) and dehydroepiandrosterone (DHEA) levels. Imidacloprid-olefin and DHEA levels were positively associated. Thiamethoxam (THX) were inversely associated with DHC and deoxycorticosterone levels. Clothianidin (CLO), THX and N-desmethyl-acetamiprid levels were positively associated with the androstenedione level. CLO and THX levels were inversely associated with the cortisone level. In conclusion, the association between NEO insecticides exposure and adrenal androgens, glucocorticoids and mineralocorticoids, suggest potential steroidogenesis activities. Our findings warrant further investigation.
Collapse
|
29
|
Kishi R, Ikeda-Araki A, Miyashita C, Itoh S, Kobayashi S, Ait Bamai Y, Yamazaki K, Tamura N, Minatoya M, Ketema RM, Poudel K, Miura R, Masuda H, Itoh M, Yamaguchi T, Fukunaga H, Ito K, Goudarzi H. Hokkaido birth cohort study on environment and children's health: cohort profile 2021. Environ Health Prev Med 2021; 26:59. [PMID: 34022817 PMCID: PMC8141139 DOI: 10.1186/s12199-021-00980-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Hokkaido Study on Environment and Children's Health is an ongoing study consisting of two birth cohorts of different population sizes: the Sapporo cohort and the Hokkaido cohort. Our primary objectives are to (1) examine the effects that low-level environmental chemical exposures have on birth outcomes, including birth defects and growth retardation; (2) follow the development of allergies, infectious diseases, and neurobehavioral developmental disorders, as well as perform a longitudinal observation of child development; (3) identify high-risk groups based on genetic susceptibility to environmental chemicals; and (4) identify the additive effects of various chemicals, including tobacco. METHODS The purpose of this report is to provide an update on the progress of the Hokkaido Study, summarize recent results, and suggest future directions. In particular, this report provides the latest details from questionnaire surveys, face-to-face examinations, and a collection of biological specimens from children and measurements of their chemical exposures. RESULTS The latest findings indicate different risk factors of parental characteristics on birth outcomes and the mediating effect between socioeconomic status and children that are small for the gestational age. Maternal serum folate was not associated with birth defects. Prenatal chemical exposure and smoking were associated with birth size and growth, as well as cord blood biomarkers, such as adiponectin, leptin, thyroid, and reproductive hormones. We also found significant associations between the chemical levels and neuro development, asthma, and allergies. CONCLUSIONS Chemical exposure to children can occur both before and after birth. Longer follow-up for children is crucial in birth cohort studies to reinforce the Developmental Origins of Health and Disease hypothesis. In contrast, considering shifts in the exposure levels due to regulation is also essential, which may also change the association to health outcomes. This study found that individual susceptibility to adverse health effects depends on the genotype. Epigenome modification of DNA methylation was also discovered, indicating the necessity of examining molecular biology perspectives. International collaborations can add a new dimension to the current knowledge and provide novel discoveries in the future.
Collapse
Affiliation(s)
- Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan. .,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan.
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan.,Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Keiko Yamazaki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Naomi Tamura
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Machiko Minatoya
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Rahel Mesfin Ketema
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Kritika Poudel
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan.,Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Ryu Miura
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Hideyuki Masuda
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Mariko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Takeshi Yamaguchi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Hisanori Fukunaga
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Kumiko Ito
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Houman Goudarzi
- Faculty of Medicine and Graduate School of Medicine, Center for Medical Education and International Relations, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
30
|
Banker M, Puttabyatappa M, O’Day P, Goodrich JM, Kelley AS, Domino SE, Smith YR, Dolinoy DC, Song PXK, Auchus RJ, Padmanabhan V. Association of Maternal-Neonatal Steroids With Early Pregnancy Endocrine Disrupting Chemicals and Pregnancy Outcomes. J Clin Endocrinol Metab 2021; 106:665-687. [PMID: 33280001 PMCID: PMC7947779 DOI: 10.1210/clinem/dgaa909] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT Steroids play an important role in fetal development and parturition. Gestational exposures to endocrine-disrupting chemicals (EDCs) affect steroidal milieu and pregnancy outcomes, raising the possibility of steroids serving as biomarkers. Most studies have not addressed the impact of EDC mixtures, which are reflective of real life scenarios. OBJECTIVE Assess the association of maternal and neonatal steroids with pregnancy outcomes and early pregnancy EDC levels. DESIGN Prospective analysis of mother-infant dyads. SETTING University hospital. PARTICIPANTS 121 mother-infant dyads. MAIN OUTCOME MEASURES The associations of maternal and neonatal steroidal hormones from 121 dyads with pregnancy outcomes, the associations of first trimester EDCs individually and as mixtures with maternal and neonatal steroids in a subset of 56 dyads and the influence of body mass index (BMI), age, and offspring sex in modulating the EDC associations with steroids were determined. RESULTS Steroid-specific positive or negative associations with pregnancy measures were evident; many maternal first trimester EDCs were negatively associated with estrogens and positively with androgen/estrogen ratios; EDC-steroid associations were influenced by maternal age, pre-pregnancy BMI, and fetal sex; and EDCs individually and as mixtures showed direct and inverse fetal sex-dependent associations with maternal and neonatal steroids. CONCLUSIONS This proof-of-concept study indicates association of steroids with pregnancy outcomes depending on maternal age, prepregnancy BMI, and fetal sex, with the effects of EDCs differing when considered individually or as mixtures. These findings suggest that steroidal hormonal measures have potential to serve as biomarkers of impact of EDC exposures and pregnancy outcome.
Collapse
Affiliation(s)
- Margaret Banker
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | | | - Patrick O’Day
- Departments of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Angela S Kelley
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Steven E Domino
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Yolanda R Smith
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Peter X K Song
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Richard J Auchus
- Departments of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
31
|
Green MP, Harvey AJ, Finger BJ, Tarulli GA. Endocrine disrupting chemicals: Impacts on human fertility and fecundity during the peri-conception period. ENVIRONMENTAL RESEARCH 2021; 194:110694. [PMID: 33385395 DOI: 10.1016/j.envres.2020.110694] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 05/08/2023]
Abstract
It is becoming increasingly difficult to avoid exposure to man-made endocrine disrupting chemicals (EDCs) and environmental toxicants. This escalating yet constant exposure is postulated to partially explain the concurrent decline in human fertility that has occurred over the last 50 years. Controversy however remains as to whether associations exist, with conflicting findings commonly reported for all major EDC classes. The primary aim of this extensive work was to identify and review strong peer-reviewed evidence regarding the effects of environmentally-relevant EDC concentrations on adult male and female fertility during the critical periconception period on reproductive hormone concentrations, gamete and embryo characteristics, as well as the time to pregnancy in the general population. Secondly, to ascertain whether individuals or couples diagnosed as sub-fertile exhibit higher EDC or toxicant concentrations. Lastly, to highlight where little or no data exists that prevents strong associations being identified. From the greater than 1480 known EDCs, substantial evidence supports a negative association between exposure to phthalates, PCBs, PBDEs, pyrethroids, organochloride pesticides and male fertility and fecundity. Only moderate evidence exists for a negative association between BPA, PCBs, organochloride pesticides and female fertility and fecundity. Overall fewer studies were reported in women than men, with knowledge gaps generally evident for both sexes for all the major EDC classes, as well as a paucity of female fertility studies following exposure to parabens, triclosans, dioxins, PFAS, organophosphates and pyrethroids. Generally, sub-fertile individuals or couples exhibit higher EDC concentrations, endorsing a positive association between EDC exposure and sub-fertility. This review also discusses confounding and limiting factors that hamper our understanding of EDC exposures on fertility and fecundity. Finally, it highlights future research areas, as well as government, industry and social awareness strategies required to mitigate the negative effects of EDC and environmental toxicant exposure on human fertility and fecundity.
Collapse
Affiliation(s)
- Mark P Green
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Bethany J Finger
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard A Tarulli
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Rivera-Núñez Z, Ashrap P, Barrett ES, Watkins DJ, Cathey AL, Vélez-Vega CM, Rosario Z, Cordero JF, Alshawabkeh A, Meeker JD. Association of biomarkers of exposure to metals and metalloids with maternal hormones in pregnant women from Puerto Rico. ENVIRONMENT INTERNATIONAL 2021; 147:106310. [PMID: 33321388 PMCID: PMC7856269 DOI: 10.1016/j.envint.2020.106310] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/23/2020] [Accepted: 11/26/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Metal(loid)s have been associated to adverse birth outcomes in experimental and epidemiological studies, but the underlying mechanism(s) are not well understood. Endocrine disruption may be a mechanism by which the metal(loid)s impact birth outcomes. METHODS Pregnant women were recruited through the Puerto Rico Testsite for Exploring Contamination Threats (PROTECT). Urine, blood, demographic and pregnancy-related data were collected at recruitment and subsequent visits. Sixteen metal(loid)s were analyzed in urine and blood samples, while nine maternal hormones (corticotropin-releasing hormone (CRH), sex-hormone binding globulin (SHBG), estriol (E3), progesterone, testosterone, thyroid-stimulating hormone (TSH), total triiodothyronine (T3), total thyroxine (T4), and free thyroxine (fT4)) were measured in serum samples from 815 singleton pregnancies. Linear mixed models with random intercepts were used to examine associations between metal(loid)s in blood and urine with hormone concentrations. RESULTS Arsenic blood concentrations were significantly associated with increased levels in CRH (%Δ: 23.0, 95%CI: 8.4-39.6) and decreased levels in testosterone (%Δ: -16.3, 95%CI: -26.2--5.1). Cobalt, manganese, and lead blood concentrations were associated with small increases in SHBG (%Δ range: 3.3-4.2), E3 (%Δ range: 3.9-8.7) and progesterone (%Δ range: 4.1-6.3) levels, respectively. Nickel blood concentration was inversely associated with testosterone levels (%Δ -13.3, 95%CI: -18.7--7.6). Significant interactions were detected for the association between nickel and study visit in relation to CRH (p < 0.02) and testosterone levels (p < 0.01). CONCLUSION Our analysis suggests that metal(loid)s may act as endocrine disruptors by altering prenatal hormone levels. This disruption may depend on specific windows of exposure during pregnancy. Additionally, some essential metal(loid)s such as managense and cobalt may be contributors to adverse maternal and fetal outcomes. The study of metal(loid)s as endocrine disruptors is in the early stages of epidemiological research and future studies are needed to further investigate these associations.
Collapse
Affiliation(s)
- Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health and Rutgers Environmental and Occupational Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Pahriya Ashrap
- Department of Environmental Health Sciences, School of Public Health, University of Michigan Ann Arbor, MI, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health and Rutgers Environmental and Occupational Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, School of Public Health, University of Michigan Ann Arbor, MI, USA
| | - Amber L Cathey
- Department of Environmental Health Sciences, School of Public Health, University of Michigan Ann Arbor, MI, USA
| | - Carmen M Vélez-Vega
- Graduate Program of Public Health, University of Puerto Rico, UPR Medical Sciences Campus, San Juan, PR, USA
| | - Zaira Rosario
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | | | - John D Meeker
- Department of Environmental Health Sciences, School of Public Health, University of Michigan Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Horak I, Horn S, Pieters R. Agrochemicals in freshwater systems and their potential as endocrine disrupting chemicals: A South African context. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115718. [PMID: 33035912 PMCID: PMC7513804 DOI: 10.1016/j.envpol.2020.115718] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 05/28/2023]
Abstract
South Africa is the largest agrochemical user in sub-Saharan Africa, with over 3000 registered pesticide products. Although they reduce crop losses, these chemicals reach non-target aquatic environments via leaching, spray drift or run-off. In this review, attention is paid to legacy and current-use pesticides reported in literature for the freshwater environment of South Africa and to the extent these are linked to endocrine disruption. Although banned, residues of many legacy organochlorine pesticides (endosulfan and dichlorodiphenyltrichloroethane (DDT)) are still detected in South African watercourses and wildlife. Several current-use pesticides (triazine herbicides, glyphosate-based herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and chlorpyrifos) have also been reported. Agrochemicals can interfere with normal hormone function of non-target organism leading to various endocrine disrupting (ED) effects: intersex, reduced spermatogenesis, asymmetric urogenital papillae, testicular lesions and infertile eggs. Although studies investigating the occurrence of agrochemicals and/or ED effects in freshwater aquatic environments in South Africa have increased, few studies determined both the levels of agricultural pesticides present and associated ED effects. The majority of studies conducted are either laboratory-based employing in vitro or in vivo bioassays to determine ED effects of agrochemicals or studies that investigate environmental concentrations of pesticides. However, a combined approach of bioassays and chemical screening will provide a more comprehensive overview of agrochemical pollution of water systems in South Africa and the risks associated with long-term chronic exposure.
Collapse
Affiliation(s)
- Ilzé Horak
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - Suranie Horn
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Rialet Pieters
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
34
|
Yilmaz B, Terekeci H, Sandal S, Kelestimur F. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev Endocr Metab Disord 2020; 21:127-147. [PMID: 31792807 DOI: 10.1007/s11154-019-09521-z] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endocrine Disrupting Chemicals (EDCs) are a global problem for environmental and human health. They are defined as "an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action". It is estimated that there are about 1000 chemicals with endocrine-acting properties. EDCs comprise pesticides, fungicides, industrial chemicals, plasticizers, nonylphenols, metals, pharmaceutical agents and phytoestrogens. Human exposure to EDCs mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Most EDCs are lipophilic and bioaccumulate in the adipose tissue, thus they have a very long half-life in the body. It is difficult to assess the full impact of human exposure to EDCs because adverse effects develop latently and manifest at later ages, and in some people do not present. Timing of exposure is of importance. Developing fetus and neonates are the most vulnerable to endocrine disruption. EDCs may interfere with synthesis, action and metabolism of sex steroid hormones that in turn cause developmental and fertility problems, infertility and hormone-sensitive cancers in women and men. Some EDCs exert obesogenic effects that result in disturbance in energy homeostasis. Interference with hypothalamo-pituitary-thyroid and adrenal axes has also been reported. In this review, potential EDCs, their effects and mechanisms of action, epidemiological studies to analyze their effects on human health, bio-detection and chemical identification methods, difficulties in extrapolating experimental findings and studying endocrine disruptors in humans and recommendations for endocrinologists, individuals and policy makers will be discussed in view of the relevant literature.
Collapse
Affiliation(s)
- Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Hakan Terekeci
- Department of Internal Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
35
|
Qin K, Zhang Y, Wang Y, Shi R, Pan R, Yao Q, Tian Y, Gao Y. Prenatal organophosphate pesticide exposure and reproductive hormones in cord blood in Shandong, China. Int J Hyg Environ Health 2020; 225:113479. [PMID: 32062593 DOI: 10.1016/j.ijheh.2020.113479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/27/2020] [Accepted: 02/02/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Organophosphate pesticides (OPs) have been found to be associated with endocrine disorders, but limited research has been conducted to evaluate the relationship between maternal OP exposure and fetal reproductive hormone levels. In this study, we investigated the association between prenatal OP exposure and fetal reproductive hormones. METHODS A total of 306 healthy pregnant women were enrolled between September 2010 and February 2012. Pesticide exposure was assessed via the analysis of maternal urinary nonspecific metabolites of OPs (dialkylphosphate, DAP), and four reproductive hormones were measured in cord blood. Linear regression models and generalized linear models were used to estimate the associations between DAP metabolites and reproductive hormones, and further stratified by infant sex. RESULTS We found that concentrations of diethylphosphate (DEP) (β = -0.03; 95% CI: -0.07, -0.00) were inversely associated with estradiol (E2). Dimethylphosphate (DMP) (β = -0.08; 95% CI: -0.13, -0.03), diethylthiophosphate (DETP) (β = -0.08; 95% CI: -0.14, -0.01), and DAPs (β = -0.10; 95% CI: -0.17, -0.03) were inversely associated with testosterone (T) levels. DMP was inversely associated with follicle-stimulating hormone (FSH) levels (β = -0.03; 95% CI: -0.05, -0.01). DMP (β = -0.06; 95% CI: -0.10, -0.01) and DETP (β = -0.07; 95% CI: -0.13, -0.01) showed inverse associations with the testosterone/estradiol (T/E2) ratio. Moreover, the magnitude of associations notably increased in higher quartiles of concentrations in a dose-response manner. After stratification by sex, these effects were mainly observed among female infants. CONCLUSION Our findings suggest the potential impacts of prenatal OP exposure on fetal reproductive hormones, and that sex-related differences may exist.
Collapse
Affiliation(s)
- Kaili Qin
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Pan
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Yao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
36
|
Silvia SC, Magnarelli G, Rovedatti MG. Evaluation of endocrine disruption and gestational disorders in women residing in areas with intensive pesticide application: An exploratory study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 73:103280. [PMID: 31683255 DOI: 10.1016/j.etap.2019.103280] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The proximity to areas of intensive pesticide application is a risk factor that favors xenobiotic exposure. Pesticides may interfere with hormonal function and cause alterations in the reproductive system, pregnancy complications, and adverse fetal development. We evaluated potential endocrine disruption and the evolution of the third trimester of pregnancy in women residing in a rural area of Argentina with intense pesticide applications, and the characteristics of their newborns. Blood samples were collected from healthy women in the third trimester of pregnancy during the pesticide spraying (SP) (n = 26) and nonspraying (NSP) (n = 27) periods. Plasma cholinesterase activity and cortisol and DHEA-S levels were lower in SP than in NSP. The percentage of preterm premature rupture of membranes was higher in SP than in NSP. Macrosomia at birth was17% in both periods. This study reinforces the importance of preventing potential cases of cumulative toxicity during the perinatal period through monitoring and epidemiological studies.
Collapse
Affiliation(s)
- Santa Cruz Silvia
- Sanatorio del Personal de Industrias Químicas. Belgrano 305, Cinco Saltos (8303), Río Negro, Argentina.
| | - Gladis Magnarelli
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), CONICET, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina.
| | - María Gabriela Rovedatti
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina.
| |
Collapse
|
37
|
Tsai MS, Chen MH, Lin CC, Liu CY, Chen PC. Children's environmental health based on birth cohort studies of Asia (2) - air pollution, pesticides, and heavy metals. ENVIRONMENTAL RESEARCH 2019; 179:108754. [PMID: 31563033 DOI: 10.1016/j.envres.2019.108754] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/16/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
The life style and child raising environment in Asia are quite different compared with Western countries. Besides, the children's environmental threats and difficulties in conducting studies could be different. To address children's environmental health in Asia area, the Birth Cohort Consortium of Asia (BiCCA) was co-established in 2011. We reviewed the mercury, polychlorinated biphenyls, perfluoroalkyl substances, phthalates, and environmental tobacco smoke in pervious based on birth cohort studies in Asia. The aim of this study was to summarize the traditional environmental pollution and the target subjects were also based on the birth cohort in Asia area. Environmental pollutants included air pollutants, pesticides focusing on organochlorine pesticides, diakylphosphates, and pyrethroid, and heavy metals including lead, arsenic, cadmium, manganese, vanadium, and thallium. Fetal growth and pregnancy outcomes, childhood growth and obesity, neurodevelopment and behavioral problems, and allergic disease and immune function were classified to elucidate the children's health effects. In total, 106 studies were selected in this study. The evidences showed air pollution or pesticides may affect growth during infancy or childhood, and associated with neurodevelopmental or behavioral problems. Prenatal exposure to lead or manganese was associated with neurodevelopmental or behavioral problems, while exposure to arsenic or cadmium may influence fetal growth. In addition to the harmonization and international collaboration of birth cohorts in Asia; however, understand the whole picture of exposure scenario and consider more discipline in the research are necessary.
Collapse
Affiliation(s)
- Meng-Shan Tsai
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Mei-Huei Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Chun Lin
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Chen-Yu Liu
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan; Department of Public Health, National Taiwan University, College of Public Health, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan; Office of Occupational Safety and Health, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan; Innovation and Policy Center for Population Health and Sustainable Environment, National Taiwan University, College of Public Health, Taipei, Taiwan.
| |
Collapse
|
38
|
Liao Y, Hou Y, Zhong Y, Chen H, Xu C, Tsunoda M, Zhang Y, Deng S, Song Y. One-step ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of pyrethroids in traditional Chinese medicine oral liquid preparations. BMC Chem 2019; 13:61. [PMID: 31384809 PMCID: PMC6661737 DOI: 10.1186/s13065-019-0578-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 04/27/2019] [Indexed: 12/26/2022] Open
Abstract
In this study, a simple one-step ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction technique was coupled with high-performance liquid chromatography for the analysis of four pyrethroids in three kinds of traditional Chinese medicine oral liquid preparations: simotang oral liquid, kangbingdu oral liquid, and huaji oral liquid. The extraction parameters were examined to improve extraction efficiency. The optimum extraction conditions were 50 μL of 1-octyl-3-methylimidazolium hexafluorophosphate utilized as the extraction solvent and 800 μL of acetonitrile applied as the dispersive solvent. The extraction was assisted by ultrasonication for 8 min. The limits of detection for the four pyrethroids were within 0.007–0.024 mg L−1, and the limits of quantitation ranged between 0.023 and 0.080 mg L−1. The accuracy of the pyrethroid determination ranged from 80.1 to 106.4%. It was indicated that the proposed ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction method had an easy operation and was accurate and environmentally friendly. This approach has potential for the analysis of pyrethroids in traditional Chinese medicine oral liquid preparations.
Collapse
Affiliation(s)
- Yiyi Liao
- 1Key Laboratory of Tropical Biological Resources of Ministry of Education; Department of Pharmaceutical Sciences, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228 China
| | - Yuge Hou
- 1Key Laboratory of Tropical Biological Resources of Ministry of Education; Department of Pharmaceutical Sciences, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228 China
| | - Yan Zhong
- 1Key Laboratory of Tropical Biological Resources of Ministry of Education; Department of Pharmaceutical Sciences, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228 China
| | - Hong Chen
- 1Key Laboratory of Tropical Biological Resources of Ministry of Education; Department of Pharmaceutical Sciences, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228 China
| | - Chang Xu
- 1Key Laboratory of Tropical Biological Resources of Ministry of Education; Department of Pharmaceutical Sciences, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228 China
| | - Makoto Tsunoda
- 2Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033 Japan
| | - Yingxia Zhang
- 1Key Laboratory of Tropical Biological Resources of Ministry of Education; Department of Pharmaceutical Sciences, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228 China
| | - Shiming Deng
- 1Key Laboratory of Tropical Biological Resources of Ministry of Education; Department of Pharmaceutical Sciences, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228 China
| | - Yanting Song
- 1Key Laboratory of Tropical Biological Resources of Ministry of Education; Department of Pharmaceutical Sciences, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228 China
| |
Collapse
|
39
|
Fang J, Liu H, Zhao H, Wong M, Xu S, Cai Z. Association of prenatal exposure to organochlorine pesticides and birth size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:678-683. [PMID: 30448658 DOI: 10.1016/j.scitotenv.2018.10.384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
There has been substantial evidence showing the adverse effects of organochlorine pesticide (OCP) exposure on human, but studies focused on the prenatal exposure effects at low OCP levels on infant birth size were scarce and controversial. In this study, cord serum samples were collected at the delivery from 1028 pairs of mothers and newborns in Wuhan, China and investigated the associations of prenatal exposure to OCPs and birth size. The prenatal exposure of hexachlorocyclohexane isomers (HCHs), p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT) and its metabolites were analyzed. The associations between birth size and prenatal OCP exposure were examined by multiple linear regressions. A sex-specific relationship between the OCP exposure and birth size was observed. β-HCH was negatively associated with birth weight and ponderal index for boys [adjusted β = -28.61; 95% confidence interval (CI): -54.84, -4.37 and adjusted β = -0.17; 95% CI: -0.32, -0.01, respectively], whilst no significant associations with prenatal exposure of OCPs were found among girls. The inverse association of prenatal exposure to low levels of β-HCH was shown sex-specific difference, which was only observed significantly in boys. The findings strengthened the evidence that the fetal development was influenced by prenatal exposure to certain OCPs and the effects might be different in the newborn sex.
Collapse
Affiliation(s)
- Jing Fang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Minghung Wong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, and State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 5188055, China; Consortium on Health, Environment, Education and Research (CHEER), The Education University of Hong Kong Baptist, Hong Kong, SAR, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
40
|
Wahlang B. Exposure to persistent organic pollutants: impact on women's health. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:331-348. [PMID: 30110273 DOI: 10.1515/reveh-2018-0018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/18/2018] [Indexed: 05/23/2023]
Abstract
This literature review focuses on the causal relationship between persistent organic pollutants (POPs) exposure and women's health disorders, particularly cancer, cardio-metabolic events and reproductive health. Progressive industrialization has resulted in the production of a multitude of chemicals that are released into the environment on a daily basis. Environmental chemicals or pollutants are not only hazardous to our ecosystem but also lead to various health problems that affect the human population worldwide irrespective of gender, race or age. However, most environmental health studies that have been conducted, until recently, were exclusively biased with regard to sex and gender, beginning with exposure studies that were reported mostly in male, occupational workers and animal studies being carried out mostly in male rodent models. Health-related issues pertaining to women of all age groups have not been studied thoroughly and rather disregarded in most aspects of basic health science research and it is therefore pertinent that we address these limitations in environmental health. The review also addresses studies looking at the associations between health outcomes and exposures to POPs, particularly, polychlorinated biphenyls (PCBs), dioxins and pesticides, reported in cohort studies while accounting for gender differences. Considering that current levels of POPs in women can also impact future generations, informative guidelines related to dietary patterns and exposure history are needed for women of reproductive age. Additionally, occupational cohorts of highly exposed women worldwide, such as women working in manufacturing plants and female pesticide applicators are required to gather more information on population susceptibility and disease pathology.
Collapse
Affiliation(s)
- Banrida Wahlang
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, 505 S. Hancock Street, CTRB, Louisville, KY 40202-1617, USA
| |
Collapse
|
41
|
Swe MT, Pongchaidecha A, Chatsudthipong V, Chattipakorn N, Lungkaphin A. Molecular signaling mechanisms of renal gluconeogenesis in nondiabetic and diabetic conditions. J Cell Physiol 2018; 234:8134-8151. [PMID: 30370538 DOI: 10.1002/jcp.27598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022]
Abstract
The kidneys are as involved as the liver in gluconeogenesis which can significantly contribute to hyperglycemia in the diabetic condition. Substantial evidence has demonstrated the overexpression of rate-limiting gluconeogenic enzymes, especially phosphoenolpyruvate carboxykinase and glucose 6 phosphatase, and the accelerated glucose release both in the isolated proximal tubular cells and in the kidneys of diabetic animal models and diabetic patients. The aim of this review is to provide an insight into the mechanisms that accelerate renal gluconeogenesis in the diabetic conditions and the therapeutic approaches that could affect this process in the kidney. Increase in gluconeogenic substrates, reduced insulin concentration or insulin resistance, downregulation of insulin receptors and insulin signaling, oxidative stress, and inappropriate activation of the renin-angiotensin system are likely to participate in enhancing renal gluconeogenesis in the diabetic milieu. Several studies have suggested that controlling glucose metabolism at the renal level favors effective overall glycemic control in both type 1 and type 2 diabetes. Therefore, renal gluconeogenesis may be a promising target for effective glycemic control as a therapeutic strategy in diabetes.
Collapse
Affiliation(s)
- Myat Theingi Swe
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, University of Medicine 2, Yangon, Myanmar
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Varanuj Chatsudthipong
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nipon Chattipakorn
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
42
|
Araki A, Itoh S, Miyashita C, Minatoya M, Kishi R. [Environmental Chemical Exposure and Its Effects on Infants' Reproductive Hormones]. Nihon Eiseigaku Zasshi 2018; 73:313-321. [PMID: 30270299 DOI: 10.1265/jjh.73.313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years, the birthrate has been continuously declining in Japan. The main causes of the decline are social factors. On the other hand, there is increasing evidence that many environmental chemicals show endocrine disrupting properties. Thus, we hypothesized that exposure to these chemicals would also be a causal for the fertility crisis. In this review, we examined current evidence that focused on environmental chemical exposure in utero and its association with reproductive hormones in children. We have included the findings from a prospective birth cohorts, the Hokkaido Study on Environment and Children's Health Sapporo cohort. According to the literature, environmental chemical levels in utero, such as polychlorinated biphenyl, dioxins, perfluorinated chemical substances, phthalates, and bisphenol A were somewhat associated with the levels of reproductive hormones, such as testosterone, estradiol, progesterone, inhibin B, and insulin-like factor-3 in cord blood, in early childhood and adolescence. The literature also suggests the association between exposure to these chemicals and brain-sexual differentiation or the anogenital distance, which suggests the disruption of androgen shower during the developmental stage in the fetal period. There are still knowledge gaps on whether these hormones at an early stage affect the pubertal development and reproductive functions in later life. In addition, alternative chemicals are produced after banning one type. The health effects of alternative chemicals should be evaluated. Effects of exposure to a mixture of the chemicals should also be examined in future studies. In conclusion, the prevention of environmental chemical hazards in relation to human reproductive function is important. It would be one of the countermeasures to the falling birthrate caused by fertility issues.
Collapse
Affiliation(s)
- Atsuko Araki
- Hokkaido University Center for Environmental and Health Sciences
| | - Sachiko Itoh
- Hokkaido University Center for Environmental and Health Sciences
| | | | - Machiko Minatoya
- Hokkaido University Center for Environmental and Health Sciences
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences
| |
Collapse
|
43
|
Fang J, Liu H, Zhao H, Xu S, Cai Z. Concentrations of organochlorine pesticides in cord serum of newborns in Wuhan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:761-766. [PMID: 29727842 DOI: 10.1016/j.scitotenv.2018.04.337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Organochlorine pesticides (OCPs) had been widely used in China before they were banned decades ago due to the concern of the toxicology to human. Previous reports showed that OCPs were still often detectable in human bodies. However, there is limited study concerning the body burden of OCPs in infants and fetus in China. In this study, the prenatal exposure to OCPs was evaluated by measuring OCPs in cord serum. A total of 1046 cord serum samples were collected in Wuhan during 2014 and 2015, and analyzed for the concentrations of hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), dichlorodiphenyldichloroethanes (DDDs) and dichlorodiphenyldichloroethylenes (DDEs) by using gas chromatography-tandem mass spectrometry (GC-MS/MS). The median levels of ∑HCHs and ∑DDTs were 10.1 ng/g lipid (with the range from <LOD to 1910 ng/g lipid) and 35.5 ng/g lipid (with the range from 0.18 to 11,100 ng/g lipid), respectively. β-HCH and p,p'-DDE were found to be the major OCPs presenting in the cord serum samples. A minor positive association between the serum levels of α-HCH and β-HCH was observed, and the concentrations of o,p'- and p,p'-DDT isomers were found positively associated. The OCP exposure levels obtained in this study were comparable to those data from other areas in China and much lower than some of highly polluted countries. The prenatal exposure to OCPs would be of concern since fetuses were more vulnerable than adults and the cord serum is an accurate non-invasive matrix for monitoring of prenatal exposure.
Collapse
Affiliation(s)
- Jing Fang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education, Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education, Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
44
|
Kishi R, Araki A, Miyashita C, Itoh S, Minatoya M, Kobayashi S, Yamazaki K, Ait Bamai Y, Miura R, Tamura N. [Importance of Two Birth Cohorts (n=20,926 and n=514): 15 Years' Experience of the Hokkaido Study on Environment and Children's Health: Malformation, Development and Allergy]. Nihon Eiseigaku Zasshi 2018; 73:164-177. [PMID: 29848869 DOI: 10.1265/jjh.73.164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since "Our Stolen Future" by Theo Colborn was published in 1996, global interest on the impact of chemical substances, such as the endocrine-disrupting action of chemicals, has increased. In Japan, "The Hokkaido Study on Environment and Children's Health: Malformation, Development and Allergy" was launched in 2001. It was a model of Japan Environment and Children's Study of the Ministry of the Environment. In a large-scale, Hokkaido cohort, we obtained the consent of 20,926 mothers at the organogenesis stage with the cooperation of 37 obstetrics clinics in Hokkaido. We tracked the effects of endocrine disruptors on developmental disorders. In a small-scale Sapporo cohort, we observed in detail the neuropsychiatric development of children with the consent of 514 mothers in their late pregnancy. We examined how prenatal exposure to low concentrations of environmental chemicals affect the development of organs and the postnatal development of children. Maternal exposure to POPs, such as PCB/dioxins and perfluorinated alkyl substances, has affected not only children's birth size, thyroid functions, and sex hormone levels, but also postnatal neurodevelopment, infection, and allergy among others. The associations of short-half-life substances, such as DEHP and BPA, with obesity, ASD, and ADHD have been investigated. Gene-environment interactions have been found for smoking, caffeine, folic acid, and PCB/dioxin. In 2015, our center was officially designated as the WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, and we continue to the contribute to the global perspectives of child health.
Collapse
Affiliation(s)
- Reiko Kishi
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Atsuko Araki
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Sachiko Itoh
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Machiko Minatoya
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Sumitaka Kobayashi
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Keiko Yamazaki
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Ryu Miura
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Naomi Tamura
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| |
Collapse
|