1
|
Ruiz-Sobremazas D, Coca M, Morales-Navas M, Rodulfo-Cardenas R, Lopez-Granero C, Colomina MT, Perez-Fernandez C, Sanchez-Santed F. The effects of oral gestational particulate matter 10 exposure: Insights into neurodevelopmental milestones, inhibitory control, adult sociability, and object recognition. Neurotoxicology 2025; 108:231-245. [PMID: 40252736 DOI: 10.1016/j.neuro.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Air pollutants have been associated with various neurodevelopmental disorders, with several studies specifically linking Particulate Matter (PM) exposure to attentional and social deficits. This link is even more pronounced when exposure occurs during the prenatal period, as it can disrupt normal brain development. However, while social deficits have been extensively studied during adolescence, their impact on adult social behaviors remains largely unexplored. To investigate these effects, pregnant Wistar rats were exposed throughout gestation (GD1-GD21) to PM10 at a dosage of 200 μg/Kg/day diluted in PBS that was freely drunk. After birth, the pups were evaluated on developmental milestones such as weight progression, ocular opening, and muscular strength. In adulthood, inhibitory control was assessed using the Five Choice Serial Reaction Time Task (5-CSRTT), social behavior using the Three-Chambered Crawley's Test (3-CT), and object recognition using the Novelty Object Recognition test (NOR). The results indicated that prenatal PM10 exposure is associated with higher birth weight and poorer performance in neuromuscular tests. However, no significant differences were observed in inhibitory control (5-CSRTT) or social behavior (3-CT). Interestingly, prenatally exposed rodents showed heightened novelty responses in the NOR test. In conclusion, gestational exposure to PM10 is related to differences in neurodevelopmental milestones, including weight and muscular strength. While it does not impact adult inhibitory control or social behavior, it influences novelty recognition in later life.
Collapse
Affiliation(s)
- Diego Ruiz-Sobremazas
- Department of Psychology and Research Center for Well-Being and Social Inclusion (CIBIS), University of Almeria, Almeria 04120, Spain; Department of Psychology and Sociology, University of Zaragoza, Teruel, Aragón 44003, Spain
| | - Mario Coca
- Department of Psychology and Research Center for Well-Being and Social Inclusion (CIBIS), University of Almeria, Almeria 04120, Spain
| | - Miguel Morales-Navas
- Department of Health Sciences, Universidad de Burgos, Paseo de los Comendadores, Burgos 09001, Spain
| | - Rocío Rodulfo-Cardenas
- Universitat Rovira I Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Cataluña, Spain; Universitat Rovira I Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Cataluña, Spain; Universitat Rovira I Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Cataluña, Spain
| | - Caridad Lopez-Granero
- Department of Psychology and Sociology, University of Zaragoza, Teruel, Aragón 44003, Spain
| | - Maria-Teresa Colomina
- Universitat Rovira I Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Cataluña, Spain; Universitat Rovira I Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Cataluña, Spain; Universitat Rovira I Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Cataluña, Spain
| | - Cristian Perez-Fernandez
- Department of Health Sciences, Universidad de Burgos, Paseo de los Comendadores, Burgos 09001, Spain
| | - Fernando Sanchez-Santed
- Department of Psychology and Research Center for Well-Being and Social Inclusion (CIBIS), University of Almeria, Almeria 04120, Spain.
| |
Collapse
|
2
|
Bhandari D, Robinson E, Pollock W, Watterson J, Su TT, Lokmic-Tomkins Z. Mapping multilevel adaptation response to protect maternal and child health from climate change impacts: A scoping review. iScience 2025; 28:111914. [PMID: 40092619 PMCID: PMC11907458 DOI: 10.1016/j.isci.2025.111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Anthropogenic climate change attributed increases in air pollution, rising temperatures, and extreme weather events are linked to a higher risk of adverse pregnancy and birth outcomes, necessitating interventions to protect maternal and child health. This scoping review mapped multilevel adaptation strategies implemented to protect maternal and child health from climate change effects. Eighteen unique adaptation strategies we identified included educational interventions, risk communication, air purifiers, air cleaning strategies, nutrition supplementation, cash transfer, employment guarantee scheme, community health worker program, chemoprophylaxis, insecticide-treated nests, home and environmental remediation, and bioethanol cooking fuel. Our findings suggest that these adaptation strategies are generally nonspecific and fail to address the specialized needs and unique health risks faced by pregnant women and young children. Prioritizing the involvement of pregnant women, mothers of young children and local healthcare services in developing tailored adaptation interventions is crucial to support climate change adaptation, resilience, and reducing maternal and child health risks.
Collapse
Affiliation(s)
- Dinesh Bhandari
- School of Nursing and Midwifery, Monash University, Clayton, VIC, Australia
- Monash Health and Climate Initiative, Monash University, Clayton, VIC, Australia
| | - Eddie Robinson
- School of Nursing and Midwifery, Monash University, Clayton, VIC, Australia
| | - Wendy Pollock
- School of Nursing and Midwifery, Monash University, Clayton, VIC, Australia
| | - Jessica Watterson
- School of Health and Social Development, Faculty of Health, Deakin University, Burwood, VIC, Australia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Campus, Bandar Sunway, Selangor, Malaysia
| | - Tin Tin Su
- South East Asia Community Observatory (SEACO), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Campus, Bandar Sunway, Selangor, Malaysia
| | - Zerina Lokmic-Tomkins
- School of Nursing and Midwifery, Monash University, Clayton, VIC, Australia
- Monash Health and Climate Initiative, Monash University, Clayton, VIC, Australia
| |
Collapse
|
3
|
Strong J, Barrett R, Surtee Z, O’Hare M, Conway F, Portela A. Interventions to reduce the effects of air pollution and of extreme heat on maternal, newborn, and child health outcomes: a mapping of the literature. J Glob Health 2025; 15:04035. [PMID: 39950557 PMCID: PMC11826960 DOI: 10.7189/jogh.15.04035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025] Open
Abstract
Background There is an increasing awareness of the ongoing and projected impacts of air pollution and of extreme heat on maternal, newborn, and child health (MNCH) outcomes, showing significant short and long-term health problems. There is a dearth of information available for policy makers on interventions that have been implemented to reduce the impact on MNCH, impeding the integration of action into health planning. This paper presents an inventory of interventions aimed at reducing the effects of these two climate hazards on MNCH. Methods We conducted a scoping review of articles published in three databases and grey literature to identify and map interventions implemented to address the impact of air pollution and/or extreme heat on MNCH. Items were included if published between January 2016 and November 2022, regardless of language, and as this is an inventory, regardless of if the intervention was evaluated. Over 32 700 journal items were reviewed for inclusion and a sample of grey literature from web-based searches. Results A final inventory of 76 items were included. Interventions identified were primarily based in the Global North (n = 51), with the largest proportion in the USA (n = 17), while 32 items were based in the Global South. Fifty-seven items focused on air pollution, 18 on extreme heat, and one on both. Interventions were categorised in four adapted socioecological components: (i) individual and household interventions (n = 30), (ii) community and service interventions (n = 18), (iii) structural interventions and urban landscape interventions (n = 15), (iv) policy interventions (n = 16). Most items were focused on child health outcomes (n = 65); 61 items were evaluated. Conclusions This scoping review maps interventions implemented and proposes a categorisation of these to initiate reflections and dialogue on what has been done and how to start building an evidence base. The review also highlights gaps in interventions and the knowledge base, with most interventions implemented to address air pollution, in the Global North and most addressing child health need. As country programmes seek to address the impact of climate change on MNCH, additional efforts are needed to better understand what has been done, document lessons learned, agree on common outcome measurements and feasible study designs for evaluation to start building the evidence base.
Collapse
Affiliation(s)
- Joe Strong
- Department of International Development, London School of Economics and Political Science, Houghton Street, London, UK
| | - Rachael Barrett
- Department of International Development, London School of Economics and Political Science, Houghton Street, London, UK
| | - Ziyaad Surtee
- Department of International Development, London School of Economics and Political Science, Houghton Street, London, UK
| | - Maggie O’Hare
- Department of International Development, London School of Economics and Political Science, Houghton Street, London, UK
| | - Francesca Conway
- World Health Organization Department of Maternal, Newborn, Child and Adolescent Health and Ageing, Geneva, Switzerland
| | - Anayda Portela
- World Health Organization Department of Maternal, Newborn, Child and Adolescent Health and Ageing, Geneva, Switzerland
| |
Collapse
|
4
|
Alvarado-Jiménez D, Donzelli G, Morales-Suárez-Varela M. A systematic review on the association between exposure to air particulate matter during pregnancy and the development of hypertensive disorders of pregnancy and gestational diabetes mellitus. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:619-641. [PMID: 37141623 DOI: 10.1515/reveh-2022-0258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Particulate matter (PM) is considered an intrauterine toxin that can cross the blood-placental barrier and circulate in fetal blood, affecting fetal development, and implicating placental and intrauterine inflammation, and oxidative damage. However, the relationship between PM exposure and adverse pregnancy outcomes is still unclear and our aim was to systematically review toxicological evidence on the link between PM exposure during pregnancy and the development of gestational diabetes mellitus or hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia. PubMed and Science Direct were searched until January 2022. Of the 204 studies identified, 168 were excluded. The remaining articles were assessed in full-text, and after evaluation, 27 were included in the review. Most of the studies showed an association between PM exposure and gestational hypertension, systolic and diastolic blood pressure, pre-eclampsia, and gestational diabetes mellitus. These results should be interpreted with caution due to the heterogeneity of baseline concentrations, which ranged from 3.3 μg/m3 to 85.9 μg/m3 and from 21.8 μg/m3 to 92.2 μg/m3, respectively for PM2.5 and PM10. Moreover, critical exposure periods were not consistent among studies, with five out of ten observational studies reporting the second trimester as the critical period for hypertensive disorders of pregnancy, and ten out of twelve observational studies reporting the first or second trimester as the critical period for gestational diabetes mellitus. Overall, the findings support an association between PM exposure during pregnancy and adverse pregnancy outcomes, highlighting the need for further research to identify the critical exposure periods and underlying mechanisms.
Collapse
Affiliation(s)
| | - Gabriele Donzelli
- Department of Health Sciences, University of Florence, 50134 Florence, Italy
| | - María Morales-Suárez-Varela
- Department of Preventive Medicine and Public Health, Food Sciences, Toxicology, and Legal Medicine, School of Pharmacy, University of Valencia, Burjassot, Valencia, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
5
|
Latifi M, Rahim F, Ahmadlou M, Pouladian N, Allahbakhshian L. How Can Outdoor Air Pollutants Adversely Affect the Women's Fertility? Systematic Review. Adv Biomed Res 2024; 13:115. [PMID: 39717257 PMCID: PMC11665180 DOI: 10.4103/abr.abr_45_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 12/25/2024] Open
Abstract
In the current century, air pollution is known as one of the most critical environmental problems and it is important to find the relations of air pollution and human health. Various air pollutants, such as volatile organic compounds (VOCs), can negatively affect women's fertility. An exhaustive electronic search was done from 2013 until July 2023 in PUBMED and The Cochrane Central Register of Controlled Trials. The following keywords were combined using Boolean hints in the databases queried: air pollution AND (fertility OR miscarriage OR embryo quality OR embryo development OR pregnancy OR implantation OR live birth). The randomized controlled trials, case-control and cohort studies analyzing the impact of air pollutants on fertility were included in the review. In this systematic review, a significant relation was found between the increase in air pollution and the reduction of fertility health, live birth rates, embryo quality, fertility, implantation rates, and miscarriage in exposed women. These results suggest low fertility health rates are associated with traffic-related air pollution. This review has concluded four components (particulate matter, nitrogen dioxide, sulfur, and carbon monoxide) of traffic pollution that can impair women's fertility. Air pollution harms women's fertility. These effects affect gamete's quality at the genetic and epigenetic level. These effects also alter fetal development. Studies have also reported an effect on fetal growth with increased miscarriages. Since air pollution is everywhere and has many sources, it seems necessary to increase the awareness of people and government officials, especially in hygiene and health, to limit air pollutants as much as possible.
Collapse
Affiliation(s)
- Masoomeh Latifi
- Research and Technology, Ministry of Health and Medical Education, Tehran, Iran
| | - Forough Rahim
- Department of Information Management, Regional Information Center for Science and Technology, Shiraz, Iran
| | - Mojtaba Ahmadlou
- Department of Biostatistics, Clinical Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Nima Pouladian
- Department of Foreign Languages, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Leili Allahbakhshian
- Vice Chancellery for Research and Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Zhang T, Ren AX, Tong M, Li Y, Mendola P, Chen X, Wang M. Gestational exposure to wildfire PM 2.5 and its specific components and the risk of gestational hypertension and eclampsia in the southwestern United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175781. [PMID: 39187088 DOI: 10.1016/j.scitotenv.2024.175781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
In the southwestern United States, the frequency of summer wildfires has elevated ambient PM2.5 concentrations and rates of adverse birth outcomes. Notably, hypertensive disorders in pregnancy (HDP) constitute a significant determinant associated with maternal mortality and adverse birth outcomes. Despite the accumulating body of evidence, scant research has delved into the correlation between chemical components of wildfire PM2.5 and the risk of HDP. Derived from data provided by the National Center for Health Statistics, singleton births from >2.68 million pregnant women were selected across 8 states (Arizona, AZ; California, CA, Idaho, ID, Montana, MT; Nevada, NV; Oregon, OR; Utah, UT, and Wyoming, WY) in the southwestern US from 2001 to 2004. A spatiotemporal model and a Goddard Earth Observing System chemical transport model were employed to forecast daily concentrations of total and wildfire PM2.5-derived exposure. Various modeling techniques including unadjusted analyses, covariate-adjusted models, propensity-score matching, and double robust typical logit models were applied to assess the relationship between wildfire PM2.5 exposure and gestational hypertension and eclampsia. Exposure to fire PM2.5, fire-sourced black carbon (BC) and organic carbon (OC) were associated with an augmented risk of gestational hypertension (ORPM2.5 = 1.125, 95 % CI: 1.109,1.141; ORBC = 1.247, 95 % CI: 1.214,1.281; OROC = 1.153, 95 % CI: 1.132, 1.174) and eclampsia (ORPM2.5 = 1.217, 95 % CI: 1.145,1.293; ORBC = 1.458, 95 % CI: 1.291,1.646; OROC = 1.309, 95 % CI: 1.208,1.418) during the pregnancy exposure window with the strongest effect. The associations were stronger that the observed effects of ambient PM2.5 in which the sources primarily came from urban emissions. Social vulnerability index (SVI), education years, pre-pregnancy diabetes, and hypertension acted as effect modifiers. Gestational exposure to wildfire PM2.5 and specific chemical components (BC and OC) increased gestational hypertension and eclampsia risk in the southwestern United States.
Collapse
Affiliation(s)
- Tong Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Amber X Ren
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Mingkun Tong
- Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yang Li
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Pauline Mendola
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Xushen Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.
| | - Meng Wang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA; RENEW Institute, University at Buffalo, Buffalo, NY, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Tu Q, Liu G, Liu X, Zhang J, Xiao W, Lv L, Zhao B. Perspective on using non-human primates in Exposome research. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117199. [PMID: 39426107 DOI: 10.1016/j.ecoenv.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/02/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
The physiological and pathological changes in the human body caused by environmental pressures are collectively referred to as the Exposome. Human society is facing escalating environmental pollution, leading to a rising prevalence of associated diseases, including respiratory diseases, cardiovascular diseases, neurological disorders, reproductive development disorders, among others. Vulnerable populations to the pathogenic effects of environmental pollution include those in the prenatal, infancy, and elderly stages of life. Conducting Exposome mechanistic research and proposing effective health interventions are urgent in addressing the current severe environmental pollution. In this review, we address the core issues and bottlenecks faced by current Exposome research, specifically focusing on the most toxic ultrafine nanoparticles. We summarize multiple research models being used in Exposome research. Especially, we discuss the limitations of rodent animal models in mimicking human physiopathological phenotypes, and prospect advantages and necessity of non-human primates in Exposome research based on their evolutionary relatedness, anatomical and physiological similarities to human. Finally, we declare the initiation of NHPE (Non-Human Primate Exposome) project for conducting Exposome research using non-human primates and provide insights into its feasibility and key areas of focus. SYNOPSIS: Non-human primate models hold unique advantages in human Exposome research.
Collapse
Affiliation(s)
- Qiu Tu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Gaojing Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiuyun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiao Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Wenxian Xiao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Longbao Lv
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China.
| | - Bo Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
8
|
Li Q, Zhang Y, Fang J, Sun Q, Du Y, Wang Y, Lei J, Zhu Y, Xue X, Chen R, Kan H, Li T. Effect of air purification on blood pressure and heart rate among school children: A cluster, randomized, double-blind crossover trial. CHINESE SCIENCE BULLETIN 2024; 69:2454-2462. [DOI: 10.1360/tb-2023-1267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Cowan K, Semmens EO, Lee JY, Walker ES, Smith PG, Fu L, Singleton R, Cox SM, Faiella J, Chassereau L, Lawrence L, Ying J, Baldner J, Garza M, Annett R, Chervinskiy SK, Snowden J. Bronchiolitis recovery and the use of High Efficiency Particulate Air (HEPA) Filters (The BREATHE Study): study protocol for a multi-center, parallel, double-blind, randomized controlled clinical trial. Trials 2024; 25:197. [PMID: 38504367 PMCID: PMC10953277 DOI: 10.1186/s13063-024-08012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Acute viral bronchiolitis is the most common reason for hospitalization of infants in the USA. Infants hospitalized for bronchiolitis are at high risk for recurrent respiratory symptoms and wheeze in the subsequent year, and longer-term adverse respiratory outcomes such as persistent childhood asthma. There are no effective secondary prevention strategies. Multiple factors, including air pollutant exposure, contribute to risk of adverse respiratory outcomes in these infants. Improvement in indoor air quality following hospitalization for bronchiolitis may be a prevention opportunity to reduce symptom burden. Use of stand-alone high efficiency particulate air (HEPA) filtration units is a simple method to reduce particulate matter ≤ 2.5 µm in diameter (PM2.5), a common component of household air pollution that is strongly linked to health effects. METHODS BREATHE is a multi-center, parallel, double-blind, randomized controlled clinical trial. Two hundred twenty-eight children < 12 months of age hospitalized for the first time with bronchiolitis will participate. Children will be randomized 1:1 to receive a 24-week home intervention with filtration units containing HEPA and carbon filters (in the child's sleep space and a common room) or to a control group with units that do not contain HEPA and carbon filters. The primary objective is to determine if use of HEPA filtration units reduces respiratory symptom burden for 24 weeks compared to use of control units. Secondary objectives are to assess the efficacy of the HEPA intervention relative to control on (1) number of unscheduled healthcare visits for respiratory complaints, (2) child quality of life, and (3) average PM2.5 levels in the home. DISCUSSION We propose to test the use of HEPA filtration to improve indoor air quality as a strategy to reduce post-bronchiolitis respiratory symptom burden in at-risk infants with severe bronchiolitis. If the intervention proves successful, this trial will support use of HEPA filtration for children with bronchiolitis to reduce respiratory symptom burden following hospitalization. TRIAL REGISTRATION NCT05615870. Registered on November 14, 2022.
Collapse
Affiliation(s)
- Kelly Cowan
- Department of Pediatrics, Larner College of Medicine at the University of Vermont, 111 Colchester Ave, Smith 5, Burlington, VT, 05403, USA.
| | - Erin O Semmens
- School of Public and Community Health Sciences, University of Montana, 177 Skaggs, Missoula, MT, 59812-2016, USA
| | - Jeannette Y Lee
- University of Arkansas for Medical Sciences, 4301 West Markham, #781, Little Rock, AR, 72205, USA
| | - Ethan S Walker
- School of Public and Community Health Sciences, University of Montana, 177 Skaggs, Missoula, MT, 59812-2016, USA
| | - Paul G Smith
- School of Public and Community Health Sciences, University of Montana, 177 Skaggs, Missoula, MT, 59812-2016, USA
| | - Linda Fu
- National Institutes of Health Environmental Influences On Child, Health Outcomes (ECHO) Program, 11601, Landsdown Street, Rockville, MD, 20852, USA
| | - Rosalyn Singleton
- Alaska Native Tribal Health Consortium, AIP-CDC, 4055 Tudor Centre Drive, Anchorage, AK, 99508, USA
| | - Sara McClure Cox
- School of Public and Community Health Sciences, University of Montana, 177 Skaggs, Missoula, MT, 59812-2016, USA
| | - Jennifer Faiella
- School of Public and Community Health Sciences, University of Montana, 177 Skaggs, Missoula, MT, 59812-2016, USA
| | - Laurie Chassereau
- University of Vermont, Given C421, 89 Beaumont Ave, Burlington, VT, 05405, USA
| | - Lora Lawrence
- IDeA States Pediatric Network Data Coordination and Operations Center, 13 Children's Way, Slot 512-35, Little Rock, AR, 72202, USA
| | - Jun Ying
- Department of Family Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop F496, Academic Office One L15-3407, 12631 E 17th Avenue, Aurora, CO, 80045, USA
| | - Jaime Baldner
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham Street, Little Rock, AR, 72205, USA
| | - Maryam Garza
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham Street, Little Rock, AR, 72205, USA
| | - Robert Annett
- University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Sheva K Chervinskiy
- Cook Children's Department of Immunology, 1500 Cooper St, Fort Worth, TX, 76104, USA
| | - Jessica Snowden
- IDeA States Pediatric Network Data Coordination and Operations Center, 13 Children's Way, Slot 512-35, Little Rock, AR, 72202, USA
| |
Collapse
|
10
|
Enyew HD, Hailu AB, Mereta ST. Effect of a chimney-fitted improved stove on pregnancy outcomes in Northwest Ethiopia: a randomized controlled trial. BMC Pregnancy Childbirth 2024; 24:192. [PMID: 38475748 PMCID: PMC10936082 DOI: 10.1186/s12884-024-06363-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Exposure to household air pollution during pregnancy has been linked to adverse pregnancy outcomes. Improved stove was implemented in Ethiopia to reduce this exposure and related health problems. However, the effects of improved stove interventions on pregnancy outcomes remains uncertain. METHOD Individually randomized stove replacement trial was conducted among 422 households in six low-income rural kebeles of Northwestern Ethiopia. Pregnant women without known health conditions were recruited at ≤ 24 weeks gestation and randomized to an intervention or control group with a 1:1 ratio. A baseline survey was collected and a balance test was done. Two-sided independent samples t-test for continuous outcomes and chi-square for categorical variables were used to compare the effect of the intervention between the groups. Mean differences with 95% CIs were calculated and a p-value of < 0.05 was considered statistically significant. RESULT In this study, the mean birth weight was 3065 g (SD = 453) among the intervention group and not statistically different from 2995 g (SD = 541) of control group. After adjusting for covariates, infants born from intervention group weighed 55 g more [95% CI: - 43 to 170) than infants born from the control group, but the difference was not statistically significant (P = 0.274). The respective percentages for low birth weight were 8% and 10.3% for intervention and control groups respectively (P = 0.346). However, the average gestational age at delivery was higher among improved stove users (38 weeks (SD = 8.2) compared to control groups 36.5 weeks (SD = 9.6) with statistically significant difference at 0.91 weeks (95% CI: 0.52 to 1.30 weeks, p < 0.001). The corresponding difference in risk ratio for preterm birth is 0.94 (95% CI:0.92 to 0.97; p < 0.001). The percentages for maternal complications, stillbirth, and miscarriage in the intervention group were not statistically different from the control group. CONCLUSIONS While the increase in average birth weight among babies born to mothers using improved stoves was not statistically significant, babies had a longer gestational age on average, offering valuable health benefits. However, the study didn't find a significant impact on other pregnancy outcomes like stillbirth, miscarriage, or maternal complications. TRIAL REGISTRATION The study was registered at the Pan African Clinical Trial Registry website under the code PACTR202111534227089, ( https://pactr.samrc.ac.za/ (Identifier). The first trial registration date was (11/11/2021).
Collapse
Affiliation(s)
- Habtamu Demelash Enyew
- College of Health Sciences, Department of Public Health, Debre Tabor University, Debre Tabor, Ethiopia.
- Institution of Health, Department of Environmental Health Science and Technology, Jimma University, Jimma, Ethiopia.
| | - Abebe Beyene Hailu
- Institution of Health, Department of Environmental Health Science and Technology, Jimma University, Jimma, Ethiopia
| | - Seid Tiku Mereta
- Institution of Health, Department of Environmental Health Science and Technology, Jimma University, Jimma, Ethiopia
| |
Collapse
|
11
|
Mazumder H, Rimu FH, Shimul MH, Das J, Gain EP, Liaw W, Hossain MM. Maternal health outcomes associated with ambient air pollution: An umbrella review of systematic reviews and meta-analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169792. [PMID: 38199356 DOI: 10.1016/j.scitotenv.2023.169792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
A growing body of literature demonstrated an association between exposure to ambient air pollution and maternal health outcomes with mixed findings. The objective of this umbrella review was to systematically summarize the global evidence on the effects of air pollutants on maternal health outcomes. We adopted the Joanna Briggs Institute (JBI) methodology and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting standards for this umbrella review. We conducted a comprehensive search across six major electronic databases and other sources to identify relevant systematic reviews and meta-analyses (SRMAs) published from the inception of these databases up to June 30, 2023. Out of 2399 records, 20 citations matched all pre-determined eligibility criteria that include SRMAs focusing on exposure to air pollution and its impact on maternal health, reported quantitative measures or summary effects, and published in peer-reviewed journals in the English language. The risk of bias of included SRMAs was evaluated based on the JBI critical appraisal checklist. All SRMAs reported significant positive associations between ambient air pollution and several maternal health outcomes. Specifically, particulate matter (PM), SO2, and NO demonstrated positive associations with gestational diabetes mellitus (GDM). Moreover, PM and NO2 showed a consistent positive relationship with hypertensive disorder of pregnancy (HDP) and preeclampsia (PE). Although limited, available evidence highlighted a positive correlation between PM and gestational hypertension (GH) and spontaneous abortion (SAB). Only one meta-analysis reported the effects of air pollution on maternal postpartum depression (PPD) where only PM10 showed a significant positive relationship. Limited studies were identified from low- and middle-income countries (LMICs), suggesting evidence gap from the global south. This review necessitates further research on underrepresented regions and communities to strengthen evidence on this critical issue. Lastly, interdisciplinary policymaking and multilevel interventions are needed to alleviate ambient air pollution and associated maternal health disparities.
Collapse
Affiliation(s)
- Hoimonty Mazumder
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, The University of Memphis, Memphis, TN 38152, United States.
| | - Fariha Hoque Rimu
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Monir Hossain Shimul
- Department of Public Health, Daffodil International University, Dhaka, Bangladesh
| | - Jyoti Das
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Easter Protiva Gain
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, The University of Memphis, Memphis, TN 38152, United States
| | - Winston Liaw
- Department of Health Systems and Population Health Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, TX 77204, United States
| | - M Mahbub Hossain
- Department of Health Systems and Population Health Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, TX 77204, United States; Department of Decision and Information Sciences, C.T. Bauer College of Business, University of Houston, TX 77204, United States
| |
Collapse
|
12
|
Ebrahimifakhar A, Poursadegh M, Hu Y, Yuill DP, Luo Y. A systematic review and meta-analysis of field studies of portable air cleaners: Performance, user behavior, and by-product emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168786. [PMID: 38008326 DOI: 10.1016/j.scitotenv.2023.168786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Indoor air quality is important for the health of building occupants, and public interest in controlling indoor airborne pathogens increased dramatically with the COVID-19 pandemic. Pollutant concentrations can be controlled locally using portable air cleaners (sometimes called air purifiers), which allow occupants to apply air cleaning technology to meet their needs in the location and times that they find appropriate. This paper provides a systematic review of scientific literature that describes field studies of the effectiveness of portable air cleaners. Over 500 papers were considered, and 148 were reviewed in detail, to extract 35 specific research results (e.g., particulate removal performance) or characteristics (e.g., type of building). These were aggregated to provide an overview of results and approaches to this type of research, and to provide meta-analyses of the results. The review includes: descriptions of the geographical location of the research; rate of publications over time; types of buildings and occupants in the field study; types of air cleaner technology being tested; pollutants being measured; resulting pollutant removal effectiveness; patterns of usage and potential barriers to usage by occupants; and the potential for by-product emissions in some air cleaner technologies. An example result is that 83 of the 148 papers measured reductions in fine particulates (PM2.5) and found a mean reduction of 49 % with standard deviation of 20 %. The aggregated results were approximately normally distributed, ranging from finding no significant reduction up to a maximum above 90 % reduction. Sixteen of the 148 papers considered gaseous pollutants, such as volatile organic compounds, nitrogen dioxide, and ozone; 36 papers considered biological pollutants, such as bacteria, viruses, pollen, fungi, etc. An important challenge, common to several studies, is that occupants run the air cleaners for shorter periods and on low airflow rate settings, because of concerns about noise, drafts, and electricity cost, which significantly reduces air cleaning effectiveness.
Collapse
Affiliation(s)
- Amir Ebrahimifakhar
- Delos Labs, Delos, New York, NY 10014, USA; Durham School of Architectural Engineering and Construction, University of Nebraska - Lincoln, 1110 S. 67th Street, Omaha, NE 68182, USA.
| | - Mehrdad Poursadegh
- Durham School of Architectural Engineering and Construction, University of Nebraska - Lincoln, 1110 S. 67th Street, Omaha, NE 68182, USA.
| | - Yifeng Hu
- Durham School of Architectural Engineering and Construction, University of Nebraska - Lincoln, 1110 S. 67th Street, Omaha, NE 68182, USA; Buildings and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - David P Yuill
- Durham School of Architectural Engineering and Construction, University of Nebraska - Lincoln, 1110 S. 67th Street, Omaha, NE 68182, USA.
| | - Yu Luo
- Department of Applied Physics and Applied Mathematics, Columbia University, 500 W. 120th Street, New York, NY 10027, USA.
| |
Collapse
|
13
|
Faridi S, Allen RW, Brook RD, Yousefian F, Hassanvand MS, Carlsten C. An updated systematic review and meta-analysis on portable air cleaners and blood pressure: Recommendations for users and manufacturers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115227. [PMID: 37421892 DOI: 10.1016/j.ecoenv.2023.115227] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Fine particulate matter (PM2.5) air pollution is a leading contributor to the global burden of cardiovascular disease (CVD). One important underlying mechanism is an increase in blood pressure (BP). A growing number of studies have reported a beneficial effect of portable air cleaners (PACs) on systolic and diastolic BP; SBP and DBP. We conducted an updated systematic review and meta-analysis of studies using true versus sham mode filtration reporting the effects on BP. Of 214 articles identified up to February 5, 2023, seventeen (from China, USA, Canada, South Korea and Denmark) enrolling approximately 880 participants (484 female) met the inclusion criteria for meta-analyses. Aside from studies conducted in China, research on PACs and BP has been conducted in relatively low pollution settings. Mean indoor PM2.5 concentrations during the active and sham mode purification were 15.9 and 41.2 µg/m3, respectively. The mean efficiency of PACs against indoor PM2.5 was 59.8 % (ranging from 23 % to 82 %). True mode filtration was associated with a pooled mean difference of - 2.35 mmHg (95 % confidence interval [CI]: - 4.5, - 0.2) and - 0.81 mmHg (95 % CI: - 1.86, 0.24) in SBP and DBP, respectively. After removing the studies with high risk of bias, the magnitude of the pooled benefits on SBP and DBP increased to - 3.62 mmHg (95 % CI: - 6.69, - 0.56) and - 1.35 mmHg (95 % CI: - 2.29, - 0.41), respectively. However, there are several barriers to the use of PACs, specifically in low- and middle-income countries (LMICs), such as the initial purchase cost and filter replacements. There may be several avenues to help overcome these economic burdens and improve cost effectiveness, such as implementing government or other subsidized programs to distribute PACs targeting vulnerable and higher-risk individuals. We propose that environmental health researchers and healthcare providers should be better trained to educate the public regarding the use of PACs to reduce the impacts of PM2.5 on cardiometabolic diseases globally.
Collapse
Affiliation(s)
- Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Ryan W Allen
- Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Fatemeh Yousefian
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Christopher Carlsten
- Air Pollution Exposure Lab and Legacy for Airway Health, Vancouver Coastal Health Research Institute and University of British Columbia, Vancouver, Canada.
| |
Collapse
|
14
|
Näsänen-Gilmore PK, Koivu AM, Hunter PJ, Muthiani Y, Pörtfors P, Heimonen O, Kajander V, Ashorn P, Ashorn U. A modular systematic review of antenatal interventions targeting modifiable environmental exposures in improving low birth weight. Am J Clin Nutr 2023; 117 Suppl 2:S160-S169. [PMID: 37331762 DOI: 10.1016/j.ajcnut.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Low birth weight (LBW) increases the risk of short- and long-term morbidity and mortality from early life to adulthood. Despite research effort to improve birth outcomes the progress has been slow. OBJECTIVE This systematic search and review of English language scientific literature on clinical trials aimed to compare the efficacy antenatal interventions to reduce environmental exposures including a reduction of toxins exposure, and improving sanitation, hygiene, and health-seeking behaviors, which target pregnant women to improve birth outcomes. METHODS We performed eight systematic searches in MEDLINE (OvidSP), Embase (OvidSP), Cochrane Database of Systematic Reviews (Wiley Cochrane Library), Cochrane Central Register of Controlled Trials (Wiley Cochrane Library), CINAHL Complete (EbscoHOST) between 17 March 2020 and 26 May 2020. RESULTS Four documents identified describe interventions to reduce indoor air pollution: two randomised controlled trials (RCTs), one systematic review and meta-analysis (SRMA) on preventative antihelminth treatment and one RCT on antenatal counselling against unnecessary caesarean section. Based on the published literature, interventions to reduce indoor air pollution (LBW: RR: 0.90 [0.56, 1.44], PTB: OR: 2.37 [1.11, 5.07]) or preventative antihelminth treatment (LBW: RR: 1.00 [0.79, 1.27], PTB: RR: 0.88 [0.43, 1.78]) are not likely to reduce the risk of LBW or Preterm birth (PTB). Data is insufficient on antenatal counselling against caesarian-sections. For other interventions, there is lack of published research data from RCTs. CONCLUSIONS We conclude that there is a paucity of evidence from RCT on interventions that modify environmental risk factors during pregnancy to potentially improve birth outcomes. Magic bullets approach might not work and that it would be important to study the effect of the broader interventions, particularly in LMIC settings. Global interdisciplinary action to reduce harmful environmental exposures, is likely to help to reach global targets for LBW reduction and sustainably improve long-term population health.
Collapse
Affiliation(s)
- Pieta K Näsänen-Gilmore
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Finnish Institute for Health and Welfare, FI-00271, Helsinki, Finland.
| | - Annariina M Koivu
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Yvonne Muthiani
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pia Pörtfors
- Finnish Institute for Health and Welfare, FI-00271, Helsinki, Finland
| | - Otto Heimonen
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Viivi Kajander
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Per Ashorn
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Department of Paediatrics, Tampere University Hospital, Tampere, Finland
| | - Ulla Ashorn
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW This review examines the impact of climate change on the respiratory health of children, with a focus on temperature, humidity, air pollution, and extreme weather events. Climate change is considered the greatest health threat of our time, and children are especially at risk. This review is timely and relevant as it provides an overview of the current literature on the effects of climate change on children's respiratory health, and the implications of these findings for clinical practice and research. RECENT FINDINGS The findings of this review suggest that climate change has a significant impact on children's respiratory health, with temperature, humidity, air pollution, and extreme weather events being key contributory factors. Increases in extreme weather events such as heatwaves, wildfires, floods, droughts, hurricanes and dust storms all cause the health of children's respiratory system to be at increased risk. SUMMARY The findings of this review suggest that climate change has a significant impact on children's respiratory health, and that mitigation and adaptation strategies are necessary to protect children from the harmful effects of climate change and improve their respiratory health. Overall, a comprehensive and integrated approach is necessary to protect children from the increasing impacts of climate change.
Collapse
Affiliation(s)
- Olivia Kline
- Sean Parker Center for Allergy and Asthma Research, Stanford School of Medicine, Stanford, USA
| | | |
Collapse
|
16
|
Lin LZ, Chen JH, Yu YJ, Dong GH. Ambient air pollution and infant health: a narrative review. EBioMedicine 2023:104609. [PMID: 37169689 PMCID: PMC10363448 DOI: 10.1016/j.ebiom.2023.104609] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
The extensive evidence regarding the effects of ambient air pollution on child health is well documented, but limited review summarized their health effects during infancy. Symptoms or health conditions attributed to ambient air pollution in infancy could result in the progression of severe diseases during childhood. Here, we reviewed previous empirical epidemiological studies and/or reviews for evaluating the linkages between ambient air pollution and various infant outcomes including adverse birth outcomes, infant morbidity and mortality, early respiratory health, early allergic symptoms, early neurodevelopment, early infant growth and other relevant outcomes. Patterns of the associations varied by different pollutants (i.e., particles and gaseous pollutants), exposure periods (i.e., pregnancy and postpartum) and exposure lengths (i.e., long-term and short-term). Protection of infant health requires that paediatricians, researchers, and policy makers understand to what extent infants are affected by ambient air pollution, and a call for action is still necessary to reduce ambient air pollution.
Collapse
Affiliation(s)
- Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jin-Hui Chen
- School of Public Policy and Management, Tsinghua University, Beijing, 100084, China; High-Tech Research and Development Center, Ministry of Science and Technology, Beijing, 100044, China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
17
|
Ulziikhuu B, Gombojav E, Banzrai C, Batsukh S, Enkhtuya E, Boldbaatar B, Bellinger DC, Lanphear BP, McCandless LC, Nepomnaschy P, Salvante K, Weinberg J, Allen RW. Who benefits most from a prenatal HEPA filter air cleaner intervention on childhood cognitive development? The UGAAR randomized controlled trial. ENVIRONMENTAL RESEARCH 2023; 231:115991. [PMID: 37121346 DOI: 10.1016/j.envres.2023.115991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Air pollution exposure during pregnancy affects children's brain function. Maternal stress and nutrition, socioeconomic status, and the child's sex may modify this relationship. OBJECTIVE To identify characteristics of children with the largest increases in full-scale IQ (FSIQ) after their mothers used HEPA filter air cleaners during pregnancy. METHODS In this randomized controlled trial we randomly assigned women to receive 1-2 air cleaners or no air cleaners during pregnancy. We analyzed maternal hair samples for cortisol and dehydroepiandrosterone (DHEA). When the children were 48 months old, we measured FSIQ with the Wechsler Preschool and Primary Scale of Intelligence. We evaluated ten potential modifiers of the intervention-FSIQ relationship using interaction terms in separate regression models. To account for correlations between modifiers, we also used a single regression model containing main effects and intervention x modifier terms for all potential modifiers. RESULTS Among 242 mother-child dyads with complete data, the intervention was associated with a 2.3-point increase (95% CI: -1.5, 6.0 points) in mean FSIQ. The intervention improved mean FSIQ among children of mothers in the bottom (5.4 points; 95% CI: -0.8, 11.5) and top (6.1 points; 95% CI: 0.5, 11.8) cortisol tertiles, but not among those whose mothers were in the middle tertile. The largest between-group difference in the intervention's effect was a 7.5-point (95% CI: -0.7, 15.7) larger increase in mean FSIQ among children whose mothers did not take vitamins than among children whose mothers did take vitamins (interaction p-value = 0.07). We also observed larger benefits among children whose mothers did not complete university, and those with lower hair DHEA concentrations, hair cortisol concentrations outside the middle tertile, or more perceived stress. CONCLUSION The benefits of reducing air pollution during pregnancy on brain development may be greatest for children whose mothers who do not take vitamins, experience more stress, or have less education.
Collapse
Affiliation(s)
| | | | | | - Sarangerel Batsukh
- Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Enkhtuul Enkhtuya
- Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | | | | | | | | | | | | | - Joanne Weinberg
- University of British Columbia, Faculty of Medicine, Vancouver, BC, Canada
| | | |
Collapse
|
18
|
Faridi S, Krzyzanowski M, Cohen AJ, Malkawi M, Moh'd Safi HA, Yousefian F, Azimi F, Naddafi K, Momeniha F, Niazi S, Amini H, Künzli N, Shamsipour M, Mokammel A, Roostaei V, Hassanvand MS. Ambient Air Quality Standards and Policies in Eastern Mediterranean Countries: A Review. Int J Public Health 2023; 68:1605352. [PMID: 36891223 PMCID: PMC9986936 DOI: 10.3389/ijph.2023.1605352] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/23/2023] [Indexed: 02/22/2023] Open
Abstract
Objectives: National ambient air quality standards (NAAQS) are critical tools for controlling air pollution and protecting public health. We designed this study to 1) gather the NAAQS for six classical air pollutants: PM2.5, PM10, O3, NO2, SO2, and CO in the Eastern Mediterranean Region (EMR) countries, 2) compare those with the updated World Health Organizations Air Quality Guidelines (WHO AQGs 2021), 3) estimate the potential health benefits of achieving annual PM2.5 NAAQS and WHO AQGs per country, and 4) gather the information on air quality policies and action plans in the EMR countries. Methods: To gather information on the NAAQS, we searched several bibliographic databases, hand-searched the relevant papers and reports, and analysed unpublished data on NAAQS in the EMR countries reported from these countries to the WHO/Regional office of the Eastern Mediterranean/Climate Change, Health and Environment Unit (WHO/EMR/CHE). To estimate the potential health benefits of reaching the NAAQS and AQG levels for PM2.5, we used the average of ambient PM2.5 exposures in the 22 EMR countries in 2019 from the Global Burden of Disease (GBD) dataset and AirQ+ software. Results: Almost all of the EMR countries have national ambient air quality standards for the critical air pollutants except Djibouti, Somalia, and Yemen. However, the current standards for PM2.5 are up to 10 times higher than the current health-based WHO AQGs. The standards for other considered pollutants exceed AQGs as well. We estimated that the reduction of annual mean PM2.5 exposure level to the AQG level (5 μg m-3) would be associated with a decrease of all natural-cause mortality in adults (age 30+) by 16.9%-42.1% in various EMR countries. All countries would even benefit from the achievement of the Interim Target-2 (25 μg m-3) for annual mean PM2.5: it would reduce all-cause mortality by 3%-37.5%. Less than half of the countries in the Region reported having policies relevant to air quality management, in particular addressing pollution related to sand and desert storms (SDS) such as enhancing the implementation of sustainable land management practices, taking measures to prevent and control the main factors of SDS, and developing early warning systems as tools to combat SDS. Few countries conduct studies on the health effects of air pollution or on a contribution of SDS to pollution levels. Information from air quality monitoring is available for 13 out of the 22 EMR countries. Conclusion: Improvement of air quality management, including international collaboration and prioritization of SDS, supported by an update (or establishment) of NAAQSs and enhanced air quality monitoring are essential elements for reduction of air pollution and its health effects in the EMR.
Collapse
Affiliation(s)
- Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.,Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Michal Krzyzanowski
- Environmental Research Group, School of Public Health, Imperial College London, London, United Kingdom
| | - Aaron J Cohen
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, United States.,Boston University School of Public Health, Boston, MA, United States.,Health Effects Institute, Boston, MA, United States
| | - Mazen Malkawi
- World Health Organization/Regional Office of the Eastern Mediterranean/Climate Change, Health and Environment Unit (WHO/EMR/CHE), Amman, Jordan
| | - Heba Adel Moh'd Safi
- World Health Organization/Regional Office of the Eastern Mediterranean/Climate Change, Health and Environment Unit (WHO/EMR/CHE), Amman, Jordan
| | - Fatemeh Yousefian
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Faramarz Azimi
- Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.,Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Momeniha
- Center for Solid Waste Research, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Niazi
- International Laboratory for Air Quality and Health, Faculty of Science, School of Earth and Atmospheric Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Heresh Amini
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Nino Künzli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.,University of Basel, Basel, Switzerland
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Adel Mokammel
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Roostaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.,Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Sensitivity analysis for live birth bias in the Ulaanbaatar Gestation and Air Pollution Research study. Environ Epidemiol 2022; 6:e229. [DOI: 10.1097/ee9.0000000000000229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022] Open
|
20
|
Basilio E, Chen R, Fernandez AC, Padula AM, Robinson JF, Gaw SL. Wildfire Smoke Exposure during Pregnancy: A Review of Potential Mechanisms of Placental Toxicity, Impact on Obstetric Outcomes, and Strategies to Reduce Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13727. [PMID: 36360613 PMCID: PMC9657128 DOI: 10.3390/ijerph192113727] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Climate change is accelerating the intensity and frequency of wildfires globally. Understanding how wildfire smoke (WS) may lead to adverse pregnancy outcomes and alterations in placental function via biological mechanisms is critical to mitigate the harms of exposure. We aim to review the literature surrounding WS, placental biology, biological mechanisms underlying adverse pregnancy outcomes as well as interventions and strategies to avoid WS exposure in pregnancy. This review includes epidemiologic and experimental laboratory-based studies of WS, air pollution, particulate matter (PM), and other chemicals related to combustion in relation to obstetric outcomes and placental biology. We summarized the available clinical, animal, and placental studies with WS and other combustion products such as tobacco, diesel, and wood smoke. Additionally, we reviewed current recommendations for prevention of WS exposure. We found that there is limited data specific to WS; however, studies on air pollution and other combustion sources suggest a link to inflammation, oxidative stress, endocrine disruption, DNA damage, telomere shortening, epigenetic changes, as well as metabolic, vascular, and endothelial dysregulation in the maternal-fetal unit. These alterations in placental biology contribute to adverse obstetric outcomes that disproportionally affect the most vulnerable. Limiting time outdoors, wearing N95 respirator face masks and using high quality indoor air filters during wildfire events reduces exposure to related environmental exposures and may mitigate morbidities attributable to WS.
Collapse
Affiliation(s)
- Emilia Basilio
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Rebecca Chen
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | | | - Amy M. Padula
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Joshua F. Robinson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Stephanie L. Gaw
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
21
|
Faridi S, Yousefian F, Roostaei V, Harrison RM, Azimi F, Niazi S, Naddafi K, Momeniha F, Malkawi M, Moh'd Safi HA, Rad MK, Hassanvand MS. Source apportionment, identification and characterization, and emission inventory of ambient particulate matter in 22 Eastern Mediterranean Region countries: A systematic review and recommendations for good practice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119889. [PMID: 35932896 DOI: 10.1016/j.envpol.2022.119889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/16/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Little is known about the main sources of ambient particulate matter (PM) in the 22 Eastern Mediterranean Region (EMR) countries. We designed this study to systematically review all published and unpublished source apportionment (SA), identification and characterization studies as well as emission inventories in the EMR. Of 440 articles identified, 82 (11 emission inventory ones) met our inclusion criteria for final analyses. Of 22 EMR countries, Iran with 30 articles had the highest number of studies on source specific PM followed by Pakistan (n = 15 articles) and Saudi Arabia (n = 8 papers). By contrast, there were no studies in Afghanistan, Bahrain, Djibouti, Libya, Somalia, Sudan, Syria, Tunisia, United Arab Emirates and Yemen. Approximately 72% of studies (51) were published within a span of 2015-2021.48 studies identified the sources of PM2.5 and its constituents. Positive matrix factorization (PMF), principal component analysis (PCA) and chemical mass balance (CMB) were the most common approaches to identify the source contributions of ambient PM. Both secondary aerosols and dust, with 12-51% and 8-80% (33% and 30% for all EMR countries, on average) had the greatest contributions in ambient PM2.5. The remaining sources for ambient PM2.5, including mixed sources (traffic, industry and residential (TIR)), traffic, industries, biomass burning, and sea salt were in the range of approximately 4-69%, 4-49%, 1-53%, 7-25% and 3-29%, respectively. For PM10, the most dominant source was dust with 7-95% (49% for all EMR countries, on average). The limited number of SA studies in the EMR countries (one study per approximately 9.6 million people) in comparison to Europe and North America (1 study per 4.3 and 2.1 million people respectively) can be augmented by future studies that will provide a better understanding of emission sources in the urban environment.
Collapse
Affiliation(s)
- Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yousefian
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Vahid Roostaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Roy M Harrison
- School of Geography Earth and Environmental Science, University of Birmingham, Birmingham, UK; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faramarz Azimi
- Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sadegh Niazi
- International Laboratory for Air Quality and Health, School of Earth and Atmospheric Sciences, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Momeniha
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazen Malkawi
- Environmental Health Exposures Centre for Environmental Health Action (CEHA), World Health Organization (WHO), Jordan
| | - Heba Adel Moh'd Safi
- Environmental Health Exposures Centre for Environmental Health Action (CEHA), World Health Organization (WHO), Jordan
| | - Mona Khaleghy Rad
- Environmental Health Exposures Centre for Environmental Health Action (CEHA), World Health Organization (WHO), Jordan
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Enkhbat U, Gombojav E, Banzrai C, Batsukh S, Boldbaatar B, Enkhtuya E, Bellinger DC, Lanphear BP, McCandless LC, Allen RW. Portable HEPA filter air cleaner use during pregnancy and children's autistic behaviors at four years of age: The UGAAR randomized controlled trial. ENVIRONMENT INTERNATIONAL 2022; 168:107432. [PMID: 36007302 DOI: 10.1016/j.envint.2022.107432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Developmental exposure to airborne particulate matter (PM) may increase children's risk of developing autism spectrum disorder. We quantified the impact of reducing PM exposure during pregnancy on the development of autistic traits in children. We also assessed associations between indoor fine PM (PM2.5) concentrations during pregnancy and autistic traits. METHODS In this parallel-group randomized controlled trial, we randomized 540 non-smoking pregnant women to receive HEPA filter air cleaners or to a control group, which did not receive air cleaners. We administered the Social Responsiveness Scale (SRS-2) to caregivers when children were a median of 48 months (range: 48 to 51 months). Our primary outcome was the SRS-2 total T-score. We imputed missing data using multiple imputation with chained equations and our primary analysis was by intention to treat. In secondary analyses, we estimated associations between full pregnancy and trimester-specific indoor PM2.5 concentrations and T-scores. RESULTS We enrolled participants at a median of 11 weeks' gestation. Our analysis included 478 children (233 control, 245 intervention). The intervention reduced average indoor PM2.5 concentrations by 29 % (95 % CI: 21, 37 %). The mean SRS-2 total T-score was 0.5 units lower (95 % CI: -2.5, 1.5) among intervention participants, with evidence of larger benefits for children at the high end of the T-score distribution. An interquartile range (9.6 µg/m3) increase in indoor PM2.5 during pregnancy was associated with 1.8-unit (95 % CI: 0.3, 3.2) increase in mean SRS-2 total T-score. Effect estimates for PM2.5 concentrations by trimester were smaller and confidence intervals spanned no effect. CONCLUSION Reducing indoor PM during pregnancy had little impact on mean autism-related behavior scores in children. However, indoor PM2.5 concentrations during pregnancy were associated with higher scores. Exposure to particulate matter during pregnancy may influence the development of autistic traits in childhood. TRIAL REGISTRATION ClinicalTrials.gov: NCT01741051.
Collapse
Affiliation(s)
- Undarmaa Enkhbat
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia.
| | - Enkhjargal Gombojav
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia.
| | - Chimeglkham Banzrai
- Institute of Medical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia.
| | - Sarangerel Batsukh
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Buyantushig Boldbaatar
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia.
| | - Enkhtuul Enkhtuya
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - David C Bellinger
- Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | | | - Ryan W Allen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
23
|
Health burden and economic loss attributable to ambient PM 2.5 in Iran based on the ground and satellite data. Sci Rep 2022; 12:14386. [PMID: 35999246 PMCID: PMC9399101 DOI: 10.1038/s41598-022-18613-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/16/2022] [Indexed: 01/02/2023] Open
Abstract
We estimated mortality and economic loss attributable to PM2·5 air pollution exposure in 429 counties of Iran in 2018. Ambient PM2.5-related deaths were estimated using the Global Exposure Mortality Model (GEMM). According to the ground-monitored and satellite-based PM2.5 data, the annual mean population-weighted PM2·5 concentrations for Iran were 30.1 and 38.6 μg m-3, respectively. We estimated that long-term exposure to ambient PM2.5 contributed to 49,303 (95% confidence interval (CI) 40,914-57,379) deaths in adults ≥ 25 yr. from all-natural causes based on ground monitored data and 58,873 (95% CI 49,024-68,287) deaths using satellite-based models for PM2.5. The crude death rate and the age-standardized death rate per 100,000 population for age group ≥ 25 year due to ground-monitored PM2.5 data versus satellite-based exposure estimates was 97 (95% CI 81-113) versus 116 (95% CI 97-135) and 125 (95% CI 104-145) versus 149 (95% CI 124-173), respectively. For ground-monitored and satellite-based PM2.5 data, the economic loss attributable to ambient PM2.5-total mortality was approximately 10,713 (95% CI 8890-12,467) and 12,792.1 (95% CI 10,652.0-14,837.6) million USD, equivalent to nearly 3.7% (95% CI 3.06-4.29) and 4.3% (95% CI 3.6-4.5.0) of the total gross domestic product in Iran in 2018.
Collapse
|
24
|
Bui LTM, Shadbegian R, Marquez A, Klemick H, Guignet D. Does short-term, airborne lead exposure during pregnancy affect birth outcomes? Quasi-experimental evidence from NASCAR's deleading policy. ENVIRONMENT INTERNATIONAL 2022; 166:107354. [PMID: 35749996 PMCID: PMC9829110 DOI: 10.1016/j.envint.2022.107354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND There is evidence of a weak placental-fetal barrier to lead, suggesting that maternal lead exposure could affect the fetus. The health consequences for newborns from in utero lead exposure are not well understood. OBJECTIVES We estimated the effects by trimester, of short-term (<1 week), airborne lead exposure during pregnancy on birth outcomes. METHODS We use quasi-experimental variation in airborne lead exposure during pregnancy, based on NASCAR's deleading of racing fuel in 2007, in a difference-in-differences model, to estimate the effect of deleading on the birth outcomes of all live births (n = 147,673) in the Charlotte-Concord-Gastonia Metropolitan Statistical Area between 2004 and 2009. RESULTS After deleading, children born to mothers residing <4000 m of Charlotte Motor Speedway (relative to those residing >10,000 m) experienced an average increase in birthweight (BW) of 102.50 g [P < 0.001]. The probability of low birthweight (LBW) declined by 0.045 [P = 0.001], preterm (PRE) births by 0.03 [P = 0.04], and small for gestational age (SGA) by 0.04 [P = 0.002]. We find that benefits accrue primarily in preterm LBW and SGA babies, and from decreased lead exposure in the first trimester. CONCLUSIONS Short-term exposure to airborne lead during pregnancy adversely affects birth outcomes. Reducing even very brief exposure to airborne lead during pregnancy may improve birth outcomes.
Collapse
Affiliation(s)
- Linda T M Bui
- Department of Economics, MS 021, Brandeis University, 415 South Street, Waltham, MA 02453, United States.
| | - Ron Shadbegian
- Department of Economics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, United States.
| | - Alicia Marquez
- Jeb E. Brooks School of Public Policy, Martha Van Rensselaer Hall, Cornell University, Ithaca, NY 14853, United States.
| | - Heather Klemick
- US Environmental Protection Agency, National Center for Environmental Economics, 1200 Pennsylvania Ave NW (MC 1809T), Washington, DC 20460, United States.
| | - Dennis Guignet
- Department of Economics, Appalachian State University, 416 Howard Street, ASU Box 32051, Boone, NC 28608, United States.
| |
Collapse
|
25
|
Ulziikhuu B, Gombojav E, Banzrai C, Batsukh S, Enkhtuya E, Boldbaatar B, Bellinger DC, Lanphear BP, McCandless LC, Tamana SK, Allen RW. Portable HEPA Filter Air Cleaner Use during Pregnancy and Children's Cognitive Performance at Four Years of Age: The UGAAR Randomized Controlled Trial. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:67006. [PMID: 35730943 PMCID: PMC9221428 DOI: 10.1289/ehp10302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Developmental exposure to air pollution is associated with diminished cognitive abilities in observational studies, but no randomized controlled trial has examined the effect of reducing air pollution on cognition in children. OBJECTIVES We sought to quantify the impact of reducing exposure to particulate matter (PM) during pregnancy on children's cognitive performance at 4 y of age. METHODS In this single-blind, parallel-group, randomized controlled trial in Ulaanbaatar, Mongolia, we randomly assigned 540 nonsmoking pregnant women (268 intervention and 272 control) to receive 1-2 portable high-efficiency particulate air (HEPA) filter air cleaners or no air cleaners. The air cleaners were used from a median of 11 wk gestation until the end of pregnancy. The primary outcome was full-scale intelligence quotient (FSIQ) assessed using the Wechsler Preschool and Primary Scale of Intelligence, Fourth Edition (WPPSI-IV) when children were a median of 48 months old. We imputed missing outcome data using multiple imputation with chained equations, and our primary analysis was by intention to treat. RESULTS After excluding known miscarriages, stillbirths, neonatal deaths, and medical conditions that impeded cognitive testing and imputation, 475 (233 control and 242 intervention) children were included in our analyses. In an unadjusted analysis, the mean FSIQ of children who were randomly assigned to the intervention group was 2.5 points [95% confidence interval (CI): -0.4, 5.4 points] higher than that of children in the control group. After adjustment to account for an imbalance in preterm birth between groups, the effect estimate increased to 2.8 points (95% CI: -0.1, 5.7). CONCLUSIONS Reducing PM air pollution during pregnancy may improve cognitive performance in childhood. https://doi.org/10.1289/EHP10302.
Collapse
Affiliation(s)
| | | | | | - Sarangerel Batsukh
- Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Enkhtuul Enkhtuya
- Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | | | | | | | | | | | - Ryan W. Allen
- Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
26
|
Zhu Y, Song X, Wu R, Fang J, Liu L, Wang T, Liu S, Xu H, Huang W. A review on reducing indoor particulate matter concentrations from personal-level air filtration intervention under real-world exposure situations. INDOOR AIR 2021; 31:1707-1721. [PMID: 34374125 DOI: 10.1111/ina.12922] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 05/28/2023]
Abstract
Improving air quality in indoor environments where people live is of importance to protect human health. In this systematic review, we assessed the effectiveness of personal-level use of air filtration units in reducing indoor particulate matters (PM) concentrations under real-world situations following systematic review guidelines. A total of 54 articles were included in the review, in which 20 randomized controlled/crossover trials that reported the changes in indoor fine PM (PM2.5 ) concentrations were quantitatively assessed in meta-analysis. Standardized mean differences (SMDs) were calculated for changes in indoor PM concentrations following air filtration interventions. Moderate-to-large reductions of 11%-82% in indoor PM2.5 concentrations were observed with SMD of -1.19 (95% CI: -1.50, -0.88). The reductions in indoor PM concentrations varied by geographical locations, filtration technology employed, indoor environmental characteristics, and air pollution sources. Most studies were graded with low-to-moderate risk of bias; however, the overall certainty of evidence for indoor PM concentration reductions was graded at very low level. Considering the effectiveness of indoor air filtration under practical uses, socio-economic disparities across study populations, and costs of air filter replacement over time, our results highlight the importance of reducing air pollution exposure at the sources.
Collapse
Affiliation(s)
- Yutong Zhu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Rongshan Wu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jiakun Fang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Lingyan Liu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Tong Wang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Shuo Liu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Wei Huang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| |
Collapse
|
27
|
Tamana SK, Gombojav E, Kanlic A, Banzrai C, Batsukh S, Enkhtuya E, Boldbaatar B, Lanphear BP, Lear SA, McCandless LC, Venners SA, Allen RW. Portable HEPA filter air cleaner use during pregnancy and children's body mass index at two years of age: The UGAAR randomized controlled trial. ENVIRONMENT INTERNATIONAL 2021; 156:106728. [PMID: 34218184 DOI: 10.1016/j.envint.2021.106728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
IMPORTANCE Gestational exposure to particulate matter (PM) air pollution may increase the risk of childhood obesity, but the impact of reducing air pollution during pregnancy on obesity-related outcomes in childhood has not been examined. OBJECTIVE To assess the impact of reducing gestational PM exposure on body mass index (BMI) at two years of age. METHODS In this single-blind, parallel group randomized controlled trial in Ulaanbaatar Mongolia, we randomly assigned 540 pregnant women to receive 1-2 portable high efficiency particulate air (HEPA) filter air cleaners or no air cleaners. We measured height and weight when children were a mean age of 23.8 months. Our primary outcome was age- and sex-specific BMI z-score based on the World Health Organization 2007 Growth Charts. Secondary outcomes included age- and sex-specific weight z score, overweight/obesity (defined as BMI z-score > 2.00), and catch-up growth (defined using various cut-offs to identify children with relatively low birth weight for sex and gestational age and relatively high age- and sex-specific weight in childhood). We imputed missing outcome data using multiple imputation with chained equations and our primary analysis was by intention to treat (ITT). We estimated intervention effects on continuous and binary outcomes using linear and logistic regression, respectively. RESULTS After excluding known miscarriages, still births, and neonatal deaths our analysis included 480 children (235 control and 245 intervention). The mean (SD) child BMI z score was 0.79 (1.0); 9.8% of children were overweight or obese. The mean BMI z score of children who were randomly assigned to the intervention group was 0.16-units lower (95% CI: -0.35, 0.04) than children in the control group. The intervention was also associated with reductions in overweight/obesity (odds ratio = 0.59; 95% CI: 0.31, 1.12). Catch-up growth occurred less frequently in the intervention group, but effect estimates varied depending on the specific definition of catch-up growth and confidence intervals consistently spanned no effect. CONCLUSIONS We found that the use of portable air cleaners during pregnancy was associated with improvements in obesity-related outcomes, although some effect estimates lacked precision. Reducing PM exposure during pregnancy may lead to improvements in cardiometabolic health in childhood.
Collapse
Affiliation(s)
- Sukhpreet K Tamana
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Enkhjargal Gombojav
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Adriana Kanlic
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Chimeglkham Banzrai
- Institute of Medical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Sarangerel Batsukh
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Enkhtuul Enkhtuya
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Buyantushig Boldbaatar
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Scott A Lear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | - Scott A Venners
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Ryan W Allen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
28
|
Enkhbat U, Gombojav E, Banzrai C, Batsukh S, Boldbaatar B, Enkhtuya E, Ochir C, Bellinger DC, Lanphear BP, McCandless LC, Allen RW. Portable HEPA filter air cleaner use during pregnancy and children's behavior problem scores: a secondary analysis of the UGAAR randomized controlled trial. Environ Health 2021; 20:78. [PMID: 34225757 PMCID: PMC8258951 DOI: 10.1186/s12940-021-00763-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Developmental exposure to particulate matter (PM) air pollution may impair children's behaviors. Our objectives were to quantify the impact of reducing indoor PM using portable HEPA filter air cleaners during pregnancy on behavioral problems in children and to assess associations between indoor fine PM (PM2.5) concentrations during pregnancy and children's behavior. METHODS This is a secondary analysis of a single-blind parallel-group randomized controlled trial in which we randomly assigned 540 non-smoking pregnant women to receive 1 or 2 HEPA filter air cleaners or no air cleaners. We administered the Behavior Assessment System for Children (BASC-3) to caregivers when children were a mean age of 23 months, and again at a mean age of 48 months. Primary outcomes were the four BASC-3 composite scales: externalizing problems, internalizing problems, adaptive skills, and the behavioral symptoms index. We imputed missing data using multiple imputation with chained equations. The primary analysis was by intention-to-treat. In a secondary analysis, we evaluated associations between BASC-3 composite indices and modeled trimester-specific PM2.5 concentrations inside residences. RESULTS We enrolled participants at a median of 11 weeks gestation. After excluding miscarriages, still births and neonatal deaths, our analysis included 478 children (233 control and 245 intervention). We observed no differences in the mean BASC-3 scores between treatment groups. An interquartile increase (20.1 µg/m3) in first trimester PM2.5 concentration was associated with higher externalizing problem scores (2.4 units, 95% CI: 0.7, 4.1), higher internalizing problem scores (2.4 units, 95% CI: 0.7, 4.0), lower adaptive skills scores (-1.5 units, 95% CI: -3.0, 0.0), and higher behavior symptoms index scores (2.3 units, 95% CI: 0.7, 3.9). Third trimester PM2.5 concentrations were also associated with some behavioral indices at age 4, but effect estimates were smaller. No significant associations were observed with PM2.5 concentrations during the second trimester or for any of the BASC indices when children were 2 years old. CONCLUSION We found no benefit of reducing indoor particulate air pollution during pregnancy on parent-reported behaviors in children. Associations between indoor PM2.5 concentrations in the first trimester and behavioral scores among 4-year old children suggest that it may be necessary to intervene early in pregnancy to protect children, but these exploratory findings should be interpreted cautiously. TRIAL REGISTRATION ClinicalTrials.gov: NCT01741051.
Collapse
Affiliation(s)
- Undarmaa Enkhbat
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Enkhjargal Gombojav
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Chimeglkham Banzrai
- Institute of Medical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Sarangerel Batsukh
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Buyantushig Boldbaatar
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Enkhtuul Enkhtuya
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Chimedsuren Ochir
- School of Graduate Studies, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | | | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
| | | | - Ryan W. Allen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
| |
Collapse
|
29
|
Cheek E, Guercio V, Shrubsole C, Dimitroulopoulou S. Portable air purification: Review of impacts on indoor air quality and health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142585. [PMID: 33121763 DOI: 10.1016/j.scitotenv.2020.142585] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 05/22/2023]
Abstract
A systematic literature review was carried out to examine the impact of portable air purifiers (PAPs) on indoor air quality (PM2.5) and health, focussing on adults and children in indoor environments (homes, schools and offices). Analysed studies all showed reductions in PM2.5 of between 22.6 and 92.0% with the use of PAPs when compared to the control. Associations with health impacts found included those on blood pressure, respiratory parameters and pregnancy outcomes. Changes in clinical biochemical markers were also identified. However, evidence for such associations was limited and inconsistent. Health benefits from a reduction in PM2.5 would be expected as the cumulative body of scientific evidence from various cohort studies shows positive impacts of long-term reduction in PM2.5 concentrations. The current evidence demonstrates that using a PAP results in short-term reductions in PM2.5 in the indoor environment, which has the potential to offer health benefits.
Collapse
Affiliation(s)
- Emily Cheek
- Air Quality and Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, Oxfordshire, United Kingdom
| | - Valentina Guercio
- Air Quality and Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, Oxfordshire, United Kingdom
| | - Clive Shrubsole
- Air Quality and Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, Oxfordshire, United Kingdom
| | - Sani Dimitroulopoulou
- Air Quality and Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, Oxfordshire, United Kingdom.
| |
Collapse
|
30
|
Rajagopalan S, Brauer M, Bhatnagar A, Bhatt DL, Brook JR, Huang W, Münzel T, Newby D, Siegel J, Brook RD. Personal-Level Protective Actions Against Particulate Matter Air Pollution Exposure: A Scientific Statement From the American Heart Association. Circulation 2020; 142:e411-e431. [PMID: 33150789 DOI: 10.1161/cir.0000000000000931] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since the publication of the last American Heart Association scientific statement on air pollution and cardiovascular disease in 2010, unequivocal evidence of the causal role of fine particulate matter air pollution (PM2.5, or particulate matter ≤2.5 μm in diameter) in cardiovascular disease has emerged. There is a compelling case to provide the public with practical personalized approaches to reduce the health effects of PM2.5. Such interventions would be applicable not only to individuals in heavily polluted countries, high-risk or susceptible individuals living in cleaner environments, and microenvironments with higher pollution exposures, but also to those traveling to locations with high levels of PM2.5. The overarching motivation for this document is to summarize the current evidence supporting personal-level strategies to prevent the adverse cardiovascular effects of PM2.5, guide the use of the most proven/viable approaches, obviate the use of ineffective measures, and avoid unwarranted interventions. The significance of this statement relates not only to the global importance of PM2.5, but also to its focus on the most tested interventions and viable approaches directed at particulate matter air pollution. The writing group sought to provide expert consensus opinions on personal-level measures recognizing the current uncertainty and limited evidence base for many interventions. In doing so, the writing group acknowledges that its intent is to assist other agencies charged with protecting public health, without minimizing the personal choice considerations of an individual who may decide to use these interventions in the face of ongoing air pollution exposure.
Collapse
|
31
|
Allen RW, Barn P. Individual- and Household-Level Interventions to Reduce Air Pollution Exposures and Health Risks: a Review of the Recent Literature. Curr Environ Health Rep 2020; 7:424-440. [PMID: 33241434 PMCID: PMC7749091 DOI: 10.1007/s40572-020-00296-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW We reviewed recent peer-reviewed literature on three categories of individual- and household-level interventions against air pollution: air purifiers, facemasks, and behavior change. RECENT FINDINGS High-efficiency particulate air/arresting (HEPA) filter air purifier use over days to weeks can substantially reduce fine particulate matter (PM2.5) concentrations indoors and improve subclinical cardiopulmonary health. Modeling studies suggest that the population-level benefits of HEPA filter air purification would often exceed costs. Well-fitting N95 and equivalent respirators can reduce PM2.5 exposure, with several randomized crossover studies also reporting improvements in subclinical cardiovascular health. The health benefits of other types of face coverings have not been tested and their effectiveness in reducing exposure is highly variable, depends largely on fit, and is unrelated to cost. Behavior modifications may reduce exposure, but there has been little research on health impacts. There is now substantial evidence that HEPA filter air purifiers reduce indoor PM2.5 concentrations and improve subclinical health indicators. As a result, their use is being recommended by a growing number of government and public health organizations. Several studies have also reported subclinical cardiovascular health benefits from well-fitting respirators, while evidence of health benefits from other types of facemasks and behavior changes remains very limited. In situations when emissions cannot be controlled at the source, such as during forest fires, individual- or household-level interventions may be the primary option. In most cases, however, such interventions should be supplemental to emission reduction efforts that benefit entire communities.
Collapse
Affiliation(s)
- Ryan W Allen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - Prabjit Barn
- Legacy for Airway Health, Vancouver Coastal Health, Vancouver, BC, Canada
| |
Collapse
|
32
|
Marfori MT, Campbell SL, Garvey K, McKeown S, Veitch M, Wheeler AJ, Borchers-Arriagada N, Johnston FH. Public Health Messaging During Extreme Smoke Events: Are We Hitting the Mark? Front Public Health 2020; 8:465. [PMID: 32984250 PMCID: PMC7492534 DOI: 10.3389/fpubh.2020.00465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/23/2020] [Indexed: 11/26/2022] Open
Abstract
Background: Emergency services working to protect communities from harm during wildfires aim to provide regular public advisories on the hazards from fire and smoke. However, there are few studies evaluating the success of public health communications regarding the management of smoke exposure. We explored the responses to smoke-related health advisories of people living in a severely smoke-affected region during extensive wildfires in Tasmania, Australia early in 2019. We also evaluated the acceptability of portable high efficiency particle air (HEPA) cleaners used in study participant's homes during the smoky period. Methods: We conducted semi-structured interviews with 24 households in the Huon Valley region of Tasmania following a severe smoke episode. These households were initially recruited into a HEPA cleaner study. Interviews were recorded, transcribed, and analyzed for common themes using an inductive framework approach. Results: Public health messaging during the 2019 wildfire event in Tasmania was widely shared and understood, with social media playing a central role. However, some participants expressed concerns about the timeliness and effectiveness of the recommended interventions, and some would have appreciated more detailed information about the health risks from smoke. Public messages and actions to protect households from wildfire threat were, at times, contradictory or dominated in coverage over the smoke messaging, and many participants were conflicted with the multiple public messages and action relating to the more serious perceived threat from the fire. Conclusions: Public messaging about smoke and health should continue to use multiple avenues of communication, with a focus on simple messages provided through social media. Messaging about the smoke hazard should be available from a trusted central source regarding all aspects of the wildfire emergency, with links to more detailed information including local air quality data alongside interpretation of the associated health risks.
Collapse
Affiliation(s)
- M Therese Marfori
- Environmental Health Group, Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.,Public Health Services, Department of Health, Tasmanian Government, Hobart, TAS, Australia
| | - Sharon L Campbell
- Environmental Health Group, Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.,Public Health Services, Department of Health, Tasmanian Government, Hobart, TAS, Australia
| | - Kate Garvey
- Public Health Services, Department of Health, Tasmanian Government, Hobart, TAS, Australia
| | - Scott McKeown
- Public Health Services, Department of Health, Tasmanian Government, Hobart, TAS, Australia
| | - Mark Veitch
- Public Health Services, Department of Health, Tasmanian Government, Hobart, TAS, Australia
| | - Amanda J Wheeler
- Environmental Health Group, Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Nicolas Borchers-Arriagada
- Environmental Health Group, Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Fay H Johnston
- Environmental Health Group, Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.,Public Health Services, Department of Health, Tasmanian Government, Hobart, TAS, Australia
| |
Collapse
|
33
|
James C, Bernstein DI, Cox J, Ryan P, Wolfe C, Jandarov R, Newman N, Indugula R, Reponen T. HEPA filtration improves asthma control in children exposed to traffic-related airborne particles. INDOOR AIR 2020; 30:235-243. [PMID: 31743467 PMCID: PMC7895332 DOI: 10.1111/ina.12625] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/18/2019] [Accepted: 11/14/2019] [Indexed: 05/20/2023]
Abstract
Traffic-related airborne particles are associated with asthma morbidity. The aim of this study was to assess the impact of a high-efficiency particulate air (HEPA) filtration on the concentrations of traffic particles and the resultant effect on children with asthma. Forty-three children with asthma were enrolled in this double-blind, placebo-controlled crossover design. A HEPA air cleaner or a placebo "dummy" was placed in participants' homes for four weeks, interrupted by a one-month washout period, before crossing over to the other treatment arm for four weeks. Air sampling and health outcomes, including asthma control (ACQ) and quality of life (AQLQ) measures, were completed prior to and at the end of each treatment arm. Indoor concentrations of traffic particles were significantly reduced with the HEPA treatment but not with the "dummy" treatment. In participants with poorly controlled asthma and lower quality of life at baseline, ACQ and AQLQ scores were significantly improved (1.3 to 0.9, P = .003 and 4.9 to 5.5, P = .02, respectively) following the HEPA treatment. In this study, HEPA filtration is associated with improved clinical outcomes and quality of life measures in children with uncontrolled asthma.
Collapse
Affiliation(s)
- Christine James
- Division of Immunology, Rheumatology, and Allergy, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David I Bernstein
- Division of Immunology, Rheumatology, and Allergy, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jennie Cox
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Patrick Ryan
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Roman Jandarov
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Nicholas Newman
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Reshmi Indugula
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Tiina Reponen
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
34
|
Barn P, Gombojav E, Ochir C, Boldbaatar B, Beejin B, Naidan G, Galsuren J, Legtseg B, Byambaa T, Hutcheon JA, Janes C, Janssen PA, Lanphear BP, McCandless LC, Takaro TK, Venners SA, Webster GM, Palmer CD, Parsons PJ, Allen RW. Coal smoke, gestational cadmium exposure, and fetal growth. ENVIRONMENTAL RESEARCH 2019; 179:108830. [PMID: 31678728 DOI: 10.1016/j.envres.2019.108830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Gestational cadmium exposure may impair fetal growth. Coal smoke has largely been unexplored as a source of cadmium exposure. We investigated the relationship between gestational cadmium exposure and fetal growth, and assessed coal smoke as a potential source of airborne cadmium, among non-smoking pregnant women in Ulaanbaatar, Mongolia, where coal combustion in home heating stoves is a major source of outdoor and indoor air pollution. METHODS This observational study was nested within the Ulaanbaatar Gestation and Air Pollution Research (UGAAR) study, a randomized controlled trial of portable high efficiency particulate air (HEPA) filter air cleaner use during pregnancy, fetal growth, and early childhood development. We measured third trimester blood cadmium concentrations in 374 out of 465 participants who had a live birth. We used multiple linear and logistic regression to assess the relationships between log2-transformed maternal blood cadmium concentrations and birth weight, length, head circumference, ponderal index, low birth weight, small for gestational age, and preterm birth in crude and adjusted models. We also evaluated the relationships between log2-transformed blood cadmium concentrations and the density of coal-burning stoves within 5000 m of each participant's apartment as a proxy of coal smoke emissions from home heating stoves. RESULTS The median (25th,75th percentile) blood cadmium concentration was 0.20 (0.15, 0.29) μg/L. A doubling of blood cadmium was associated with a 95 g (95% CI: 34, 155 g) reduction in birth weight in adjusted models. An interquartile range increase in coal stove density (from 3.4 to 4.9 gers/hectare) surrounding participants' apartments was associated with a 12.2% (95% CI: 0.3, 25.6%) increase in blood cadmium concentrations. CONCLUSIONS Gestational cadmium exposure was associated with reduced birth weight. In settings where coal is a widely used fuel, cadmium may play a role in the putative association between air pollution and impaired fetal growth.
Collapse
Affiliation(s)
- Prabjit Barn
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Enkhjargal Gombojav
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Chimedsuren Ochir
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Buyantushig Boldbaatar
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Bolor Beejin
- Ministry of Health of Mongolia, Olympic Street-2, Government Building VIII, Sukhbaatar District, Ulaanbaatar, Mongolia
| | - Gerel Naidan
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Jargalsaikhan Galsuren
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Bayarkhuu Legtseg
- Sukhbaatar District Health Center, 11 Horoo, Tsagdaagiin Gudamj, Sukhbaatar District, Ulaanbaatar, Mongolia
| | - Tsogtbaatar Byambaa
- Ministry of Health of Mongolia, Olympic Street-2, Government Building VIII, Sukhbaatar District, Ulaanbaatar, Mongolia
| | - Jennifer A Hutcheon
- Faculty of Medicine, Department of Obstetrics & Gynaecology, University of British Columbia, 4500 Oak Street, Vancouver, V6H 2N1, Canada
| | - Craig Janes
- School of Public Health and Health Systems, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, Canada
| | - Patricia A Janssen
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, V6T 1Z3, Canada
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Lawrence C McCandless
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Tim K Takaro
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Scott A Venners
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Glenys M Webster
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Christopher D Palmer
- New York State Department of Health, Wadsworth Center, Albany, NY, PO Box 509, 12201, USA; School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY, 12144, USA
| | - Patrick J Parsons
- New York State Department of Health, Wadsworth Center, Albany, NY, PO Box 509, 12201, USA; School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY, 12144, USA
| | - Ryan W Allen
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada.
| |
Collapse
|
35
|
Li Z, Yuan X, Fu J, Zhang L, Hong L, Hu L, Liu L. Association of ambient air pollutants and birth weight in Ningbo, 2015-2017. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:629-637. [PMID: 30933760 DOI: 10.1016/j.envpol.2019.03.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Previous studies have suggested a change of birth weight linked with elevated ambient air pollutant concentrations during the pregnancy. However, investigations of the influence of higher pollutant levels on birth weight change are limited. The goal of this study is to evaluate whether the air pollution of Ningbo is associated with birth weight, and which trimester could be a window period for maternal exposure to air pollution. A total of 170,008 live births were selected in the Ningbo city of Zhejiang, China, from 2015 to 2017. We estimated the association between the decreased birth weight and the increased air pollutant concentrations in the three trimesters and full gestation. The effects of interaction among pollutants were identified using a co-pollutant adjustment model. An interquartile range increases in PM2.5 (10.55 μg/m3), SO2(4.6 μg/m3), CO (125.59 μg/m3), and O3 (14.54 μg/m3) concentrations during the entire gestation were associated with 3.65 g (95% confidence interval: -6.02 g, -1.29 g), 5.02 g (-6.89 g, -3.14 g), 2.64 g (-4.65 g, -0.63 g) and 2.9 g (-4.8 g, 1 g) decreases, respectively, in birth weight. With each interquartile range increment in NO2 concentration was associated with an 8.05 g (6.24 g, 9.85 g) increase in birth weight. In the first trimester, only the PM2.5 exposure seemed to be associated with the greatest decline in birth weight. After adjustment for co-pollutant, both PM2.5 and SO2 were still associated with birth weight, except for CO for O3 adjustment, O3 for SO2 adjustment, and O3 for NO2 adjustment. Maternal exposure to air pollution may be associated with a decrease of birth weight, but the contribution of various pollutants is necessary to verify by future research.
Collapse
Affiliation(s)
- Zhen Li
- Department of Preventative Medicine, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Xiaoqi Yuan
- Pediatric Surgery Ward, Ningbo Women and Children Hospital, Ningbo, Zhejiang Province 315012, People's Republic of China
| | - Jianfei Fu
- Department of Medical Records and Statistics, Ningbo First Hospital, Ningbo, Zhejiang Province 315010, People's Republic of China
| | - Lingyun Zhang
- Department of Preventative Medicine, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Lixia Hong
- Department of Preventative Medicine, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Lingjie Hu
- Department of Preventative Medicine, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Liya Liu
- Department of Preventative Medicine, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, People's Republic of China.
| |
Collapse
|
36
|
Modeling the Impact of an Indoor Air Filter on Air Pollution Exposure Reduction and Associated Mortality in Urban Delhi Household. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16081391. [PMID: 30999693 PMCID: PMC6518106 DOI: 10.3390/ijerph16081391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/13/2019] [Accepted: 04/14/2019] [Indexed: 11/16/2022]
Abstract
Indoor exposure to fine particulate matter (PM2.5) is a prominent health concern. However, few studies have examined the effectiveness of long-term use of indoor air filters for reduction of PM2.5 exposure and associated decrease in adverse health impacts in urban India. We conducted 20 simulations of yearlong personal exposure to PM2.5 in urban Delhi using the National Institute of Standards and Technology's CONTAM program (NIST, Gaithersburg, MD, USA). Simulation scenarios were developed to examine different air filter efficiencies, use schedules, and the influence of a smoker at home. We quantified associated mortality reductions with Household Air Pollution Intervention Tool (HAPIT, University of California, Berkeley, CA, USA). Without an air filter, we estimated an annual mean PM2.5 personal exposure of 103 µg/m3 (95% Confidence Interval (CI): 93, 112) and 137 µg/m3 (95% CI: 125, 149) for households without and with a smoker, respectively. All day use of a high-efficiency particle air (HEPA) filter would reduce personal PM2.5 exposure to 29 µg/m3 and 30 µg/m3, respectively. The reduced personal PM2.5 exposure from air filter use is associated with 8-37% reduction in mortality attributable to PM2.5 pollution in Delhi. The findings of this study indicate that air filter may provide significant improvements in indoor air quality and result in health benefits.
Collapse
|