1
|
Liu M, Jia X, Peng R, Bai Z, Yuan J, Tan L. Human Biomonitoring of Serum Polybrominated Diphenyl Ethers by Supported Liquid Extraction and Gas Chromatography Coupled With Tandem Mass Spectrometry. J Sep Sci 2024; 47:e70010. [PMID: 39494746 DOI: 10.1002/jssc.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
This study aims to develop and validate a robust analytical method for the quantification of polybrominated diphenyl ethers (PBDEs) in human serum using gas chromatography-tandem mass spectrometry. We compared procedural blanks, recoveries, and operational convenience of liquid-liquid extraction and supported liquid extraction for the determination of serum PBDEs. We evaluated different extraction solvents for their effect on PBDE recoveries. Supported liquid extraction was selected for method validation due to its operational convenience. The method demonstrated satisfactory linearity, sensitivity, and reproducibility, with the range of 0.10-5.00 µg/L for most PBDE congeners and 0.20-10.0 µg/L for PBDE-154 and PBDE-183, with limits of detection ranging from 2 to 48 ng/L, and with matrix effects ranging from 94% to 113%. Quality control assessments indicated that recoveries ranged from 85% to 110% and relative standard deviations of less than 11%. The proposed method was applied to biomonitoring of 111 healthy adults, revealing detectable levels of PBDEs in over 90% of the samples. BDE-47 and BDE-183 were the most prevalent, with mean concentrations of 4.13 and 22.1 ng/L, respectively. Detection frequencies ranged from 0.90% for BDE-17 and BDE-85 to 25.2% for BDE-47. Males had higher mean concentrations of BDE-183 than females.
Collapse
Affiliation(s)
- Miao Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Xiangyu Jia
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Rongfei Peng
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Zhijun Bai
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jun Yuan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Jagić K, Dvoršćak M, Tariba Lovaković B, Klinčić D. Polybrominated diphenyl ethers in paired dust-breast milk samples: Levels, predictors of contamination, and health risk assessment for infants and mothers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104547. [PMID: 39218329 DOI: 10.1016/j.etap.2024.104547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
An integrated study on the levels of 7 polybrominated diphenyl ethers (PBDEs) in house dust and breast milk samples from women (N = 30) living in these households was conducted. ∑PBDEs ranged from
Collapse
Affiliation(s)
- Karla Jagić
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Marija Dvoršćak
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Blanka Tariba Lovaković
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Darija Klinčić
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia.
| |
Collapse
|
3
|
Dvoršćak M, Jagić K, Jakovljević I, Smoljo I, Klinčić D. Polybrominated Diphenyl Ethers in Human Milk of Croatian First-Time Mothers: 2010 Versus 2020. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:101-111. [PMID: 38244036 DOI: 10.1007/s00244-023-01048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024]
Abstract
The presence of selected polybrominated diphenyl ethers (BDE-28, -47, -99, -100, -153, -154, and -183) was investigated in human milk samples collected from first-time mothers living in Zagreb, capital of Croatia. Samples from 2020 and 2010 were analyzed, and the first temporal comparison between the profiles and levels of these compounds in this area was obtained. A statistically significant difference between mass fractions depending on the sampling year was observed only for BDE-99, with values in 2020 higher than in 2010. BDE-153, whose median value (0.25 and 0.26 ng g-1 lipid weight (l.w.) in 2010 and 2020, respectively) did not decrease in the 10-year period, was the most frequently detected congener in samples from both years. ΣPBDEs ranged from < LOD to 3.53 ng g-1 l.w. (median 0.25 ng g-1 l.w.), and from 0.14 to 6.75 ng g-1 l.w. (median 0.55 ng g-1 l.w.) in 2010 and 2020, respectively. Maternal age and reported fish consumption had no effect on observed PBDE mass fractions, while for BDE-153, positive significant correlation (p > 0.05) was observed of its detected mass fraction with mother's body mass index (BMI) before pregnancy and after childbirth. Infants median estimated daily intake (EDI) via milk ingestion for ΣPBDE was higher in 2020 (3.221 ng kg-1 bw day-1) compared to 2010 (1.429 ng kg-1 bw day-1), but both values were well below threshold value, indicating that human milk consumption in this specific case is unlikely to raise health risks to infants.
Collapse
Affiliation(s)
- Marija Dvoršćak
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001, Zagreb, Croatia
| | - Karla Jagić
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001, Zagreb, Croatia
| | - Ivana Jakovljević
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001, Zagreb, Croatia
| | - Iva Smoljo
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001, Zagreb, Croatia
| | - Darija Klinčić
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001, Zagreb, Croatia.
| |
Collapse
|
4
|
Chbihi K, Menouni A, Hardy E, Creta M, Grova N, Van Nieuwenhuyse A, Godderis L, El Jaafari S, Duca RC. Exposure of children to brominated flame retardants and heavy metals in Morocco: Urine and blood levels in association with global cytosine and adenine methylation. ENVIRONMENT INTERNATIONAL 2024; 183:108409. [PMID: 38185044 DOI: 10.1016/j.envint.2023.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/30/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024]
Abstract
Persistent pollutants, namely brominated flame retardants (BFRs) and heavy metals, are compounds that are added to a wide range of products and materials for preventing ignition, increasing the functionality of materials or improving their performance, e.g. electric conductivity. The exposure of children might consequently be inferred, through indoor dust and hand-to-mouth or toy-chewing behaviors. The current study is aimed at assessing the exposure of Moroccan children to BFRs and heavy metal elements, and evaluating their associations with global DNA methylation. First, parents responded to a questionnaire pertaining to children's lifestyle, then blood and urine samples were collected from (n = 93) children aged between 5 and 11 years for biomonitoring and DNA methylation analysis. BFRs were detected in 54.84% of samples with a median concentration of 0.01 nmol/mL (range: 0.004-0.051 nmol/mL) while metal elements were detected in more than 90% of samples. BFRs showed no variations with global DNA methylation, unlike metal elements, which revealed significant associations with global DNA methylation markers, namely 5-mC, 5-hmC and N⁶-mA levels. Moroccan children may be exposed to flame retardants and heavy metals through several routes. Further research is required to assess the exposure and the health impacts of environmental pollutants and ultimately protect the Moroccan population by the prevention of adverse health effects.
Collapse
Affiliation(s)
- Kaoutar Chbihi
- Cluster of Competences on Health & Environment, Moulay Ismail University, Meknes 50000, Morocco; Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg.
| | - Aziza Menouni
- Cluster of Competences on Health & Environment, Moulay Ismail University, Meknes 50000, Morocco; Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium
| | - Emilie Hardy
- Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg
| | - Matteo Creta
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, Esch-Sur-Alzette L-4354, Luxembourg; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS) - University of Lorraine, B.P. 184, Nancy 54511, France
| | - An Van Nieuwenhuyse
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg
| | - Lode Godderis
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; IDEWE, External Service for Prevention and Protection at Work, Heverlee 3001, Belgium
| | - Samir El Jaafari
- Cluster of Competences on Health & Environment, Moulay Ismail University, Meknes 50000, Morocco
| | - Radu-Corneliu Duca
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg.
| |
Collapse
|
5
|
van der Schyff V, Kalina J, Abballe A, Iamiceli AL, Govarts E, Melymuk L. Has Regulatory Action Reduced Human Exposure to Flame Retardants? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19106-19124. [PMID: 37992205 PMCID: PMC10702444 DOI: 10.1021/acs.est.3c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/10/2023] [Accepted: 09/29/2023] [Indexed: 11/24/2023]
Abstract
Flame retardant (FR) exposure has been linked to several environmental and human health effects. Because of this, the production and use of several FRs are regulated globally. We reviewed the available records of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDDs) in human breast milk from literature to evaluate the efficacy of regulation to reduce the exposure of FRs to humans. Two-hundred and seven studies were used for analyses to determine the spatial and temporal trends of FR exposure. North America consistently had the highest concentrations of PBDEs, while Asia and Oceania dominated HBCDD exposure. BDE-49 and -99 indicated decreasing temporal trends in most regions. BDE-153, with a longer half-life than the aforementioned isomers, typically exhibited a plateau in breast milk levels. No conclusive trend could be established for HBCDD, and insufficient information was available to determine a temporal trend for BDE-209. Breakpoint analyses indicated a significant decrease in BDE-47 and -99 in Europe around the time that regulation has been implemented, suggesting a positive effect of regulation on FR exposure. However, very few studies have been conducted globally (specifically in North America) after 2013, during the time when the most recent regulations have been implemented. This meta-analysis provides insight into global trends in human exposure to PBDEs and HBCDD, but the remaining uncertainty highlights the need for ongoing evaluation and monitoring, even after a compound group is regulated.
Collapse
Affiliation(s)
| | - Jiří Kalina
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech
Republic
| | - Annalisa Abballe
- Department
of Environment and Health, Italian National
Institute for Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Anna Laura Iamiceli
- Department
of Environment and Health, Italian National
Institute for Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eva Govarts
- VITO
Health, Flemish Institute for Technological
Research (VITO), 2400 Mol, Belgium
| | - Lisa Melymuk
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech
Republic
| |
Collapse
|
6
|
Seewoo BJ, Goodes LM, Mofflin L, Mulders YR, Wong EV, Toshniwal P, Brunner M, Alex J, Johnston B, Elagali A, Gozt A, Lyle G, Choudhury O, Solomons T, Symeonides C, Dunlop SA. The plastic health map: A systematic evidence map of human health studies on plastic-associated chemicals. ENVIRONMENT INTERNATIONAL 2023; 181:108225. [PMID: 37948868 DOI: 10.1016/j.envint.2023.108225] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The global production and use of plastic materials has increased dramatically since the 1960s and there is increasing evidence of human health impacts related to exposure to plastic-associated chemicals. There is, however, no comprehensive, regulatory, post-market monitoring for human health effects of plastic-associated chemicals or particles and it is unclear how many of these have been investigated for effects in humans, and therefore what the knowledge gaps are. OBJECTIVE To create a systematic evidence map of peer-reviewed human studies investigating the potential effects of exposure to plastic-associated particles/chemicals on health to identify research gaps and provide recommendations for future research and regulation policy. METHODS Medline and Embase databases were used to identify peer-reviewed primary human studies published in English from Jan 1960 - Jan 2022 that investigated relationships between exposures to included plastic-associated particles/chemicals measured and detected in bio-samples and human health outcomes. Plastic-associated particles/chemicals included are: micro and nanoplastics, due to their widespread occurrence and potential for human exposure; polymers, the main building blocks of plastic; plasticizers and flame retardants, the two most common types of plastic additives with the highest concentration ranges in plastic materials; and bisphenols and per- or polyfluoroalkyl substances, two chemical classes of known health concern that are common in plastics. We extracted metadata on the population and study characteristics (country, intergenerational, sex, age, general/special exposure risk status, study design), exposure (plastic-associated particle/chemical, multiple exposures), and health outcome measures (biochemical, physiological, and/or clinical), from which we produced the interactive database 'Plastic Health Map' and a narrative summary. RESULTS We identified 100,949 unique articles, of which 3,587 met our inclusion criteria and were used to create a systematic evidence map. The Plastic Health Map with extracted metadata from included studies are freely available at https://osf.io/fhw7d/ and summary tables, plots and overall observations are included in this report. CONCLUSIONS We present the first evidence map compiling human health research on a wide range of plastic-associated chemicals from several different chemical classes, in order to provide stakeholders, including researchers, regulators, and concerned individuals, with an efficient way to access published literature on the matter and determine knowledge gaps. We also provide examples of data clusters to facilitate systematic reviews and research gaps to help direct future research efforts. Extensive gaps are identified in the breadth of populations, exposures and outcomes addressed in studies of potential human health effects of plastic-associated chemicals. No studies of the human health effects of micro and/or nanoplastics were found, and no studies were found for 26/1,202 additives included in our search that are of known hazard concern and confirmed to be in active production. Few studies have addressed recent "substitution" chemicals for restricted additives such as organophosphate flame retardants, phthalate substitutes, and bisphenol analogues. We call for a paradigm shift in chemical regulation whereby new plastic chemicals are rigorously tested for safety before being introduced in consumer products, with ongoing post-introduction biomonitoring of their levels in humans and health effects throughout individuals' life span, including in old age and across generations.
Collapse
Affiliation(s)
- Bhedita J Seewoo
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise M Goodes
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise Mofflin
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Yannick R Mulders
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Enoch Vs Wong
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Priyanka Toshniwal
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Manuel Brunner
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jennifer Alex
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Brady Johnston
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Ahmed Elagali
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Aleksandra Gozt
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Greg Lyle
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Population Health, Curtin University, Kent St, Bentley WA 6102, Australia
| | - Omrik Choudhury
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Terena Solomons
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; Health and Medical Sciences (Library), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Christos Symeonides
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Sarah A Dunlop
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
7
|
Krausová M, Braun D, Buerki-Thurnherr T, Gundacker C, Schernhammer E, Wisgrill L, Warth B. Understanding the Chemical Exposome During Fetal Development and Early Childhood: A Review. Annu Rev Pharmacol Toxicol 2023; 63:517-540. [PMID: 36202091 DOI: 10.1146/annurev-pharmtox-051922-113350] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Early human life is considered a critical window of susceptibility to external exposures. Infants are exposed to a multitude of environmental factors, collectively referred to as the exposome. The chemical exposome can be summarized as the sum of all xenobiotics that humans are exposed to throughout a lifetime. We review different exposure classes and routes that impact fetal and infant metabolism and the potential toxicological role of mixture effects. We also discuss the progress in human biomonitoring and present possiblemodels for studying maternal-fetal transfer. Data gaps on prenatal and infant exposure to xenobiotic mixtures are identified and include natural biotoxins, in addition to commonly reported synthetic toxicants, to obtain a more holistic assessment of the chemical exposome. We highlight the lack of large-scale studies covering a broad range of xenobiotics. Several recommendations to advance our understanding of the early-life chemical exposome and the subsequent impact on health outcomes are proposed.
Collapse
Affiliation(s)
- Magdaléna Krausová
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; , ,
| | - Dominik Braun
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; , ,
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles Biology Interactions, St. Gallen, Switzerland;
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; .,Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| | - Eva Schernhammer
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.,Center for Public Health, Department of Epidemiology, Medical University of Vienna, Vienna, Austria; .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Lukas Wisgrill
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.,Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria;
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; , , .,Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| |
Collapse
|
8
|
Bartalini A, Muñoz-Arnanz J, García-Álvarez N, Fernández A, Jiménez B. Global PBDE contamination in cetaceans. A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119670. [PMID: 35752394 DOI: 10.1016/j.envpol.2022.119670] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
This review summarizes the most relevant information on PBDEs' occurrence and their impacts in cetaceans at global scale, with special attention on the species with the highest reported levels and therefore the most potentially impacted by the current and continuous release of these substances. This review also emphasizes the anthropogenic and environmental factors that could increase concentrations and associated risks for these species in the next future. High PBDE concentrations above the toxicity threshold and stationary trends have been related to continuous import of PBDE-containing products in cetaceans of Brazil and Australia, where PBDEs have never been produced. Non-decreasing levels documented in cetaceans from the Northwest Pacific Ocean might be linked to the increased e-waste import and ongoing production and use of deca-BDE that is still allowed in China. Moreover, high levels of PBDEs in some endangered species such as beluga whales (Delphinapterus leucas) in St. Lawrence Estuary and Southern Resident killer whales (Orcinus Orca) are influenced by the discharge of contaminated waters deriving from wastewater treatment plants. Climate change related processes such as enhanced long-range transport, re-emissions from secondary sources and shifts in migration habits could lead to greater exposure and accumulation of PBDEs in cetaceans, above all in those species living in the Arctic. In addition, increased rainfall could carry greater amount of contaminants to the marine environment, thereby, enhancing the exposure and accumulation especially for coastal species. Synergic effects of all these factors and ongoing emissions of PBDEs, expected to continue at least until 2050, could increase the degree of exposure and menace for cetacean populations. In this regard, it is necessary to improve current regulations on PBDEs and broader the knowledge about their toxicological effects, in order to assess health risks and support regulatory protection for cetacean species.
Collapse
Affiliation(s)
- Alice Bartalini
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain; Unit of Histology and Pathology, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas, 35413 Arucas, Las Palmas de Gran Canaria, Spain
| | - Juan Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| | - Natalia García-Álvarez
- Unit of Histology and Pathology, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas, 35413 Arucas, Las Palmas de Gran Canaria, Spain
| | - Antonio Fernández
- Unit of Histology and Pathology, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas, 35413 Arucas, Las Palmas de Gran Canaria, Spain
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
9
|
Critical review of analytical methods for the determination of flame retardants in human matrices. Anal Chim Acta 2022; 1193:338828. [PMID: 35058002 DOI: 10.1016/j.aca.2021.338828] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022]
Abstract
Human biomonitoring is a powerful approach in assessing exposure to environmental pollutants. Flame retardants (FRs) are of particular concern due to their wide distribution in the environment and adverse health effects. This article reviews studies published in 2009-2020 on the chemical analysis of FRs in a variety of human samples and discusses the characteristics of the analytical methods applied to different FR biomarkers of exposure, including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), novel halogenated flame retardants (NHFRs), bromophenols, incl. tetrabromobisphenol A (TBBPA), and organophosphorous flame retardants (PFRs). Among the extraction techniques, liquid-liquid extraction (LLE) and solid phase extraction (SPE) were used most frequently due to the good efficiencies in the isolation of the majority of the FR biomarkers, but with challenges for highly lipophilic FRs. Gas chromatography-mass spectrometry (GC-MS) is mainly applied in the instrumental analysis of PBDEs and most NHFRs, with recent inclusions of GC-MS/MS and high resolution MS techniques. Liquid chromatography-MS/MS is mainly applied to HBCD, bromophenols, incl. TBBPA, and PFRs (including metabolites), however, GC-based analysis following derivatization has also been used for phenolic compounds and PFR metabolites. Developments are noticed towards more universal analytical methods, which enable widening method scopes in the human biomonitoring of FRs. Challenges exist with regard to sensitivity required for the low concentrations of FRs in the general population and limited sample material for some human matrices. A strong focus on quality assurance/quality control (QA/QC) measures is required in the analysis of FR biomarkers in human samples, related to their variety of physical-chemical properties, low levels in most human samples and the risk of contamination.
Collapse
|
10
|
Martinez G, Niu J, Takser L, Bellenger JP, Zhu J. A review on the analytical procedures of halogenated flame retardants by gas chromatography coupled with single quadrupole mass spectrometry and their levels in human samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117476. [PMID: 34082369 PMCID: PMC8355089 DOI: 10.1016/j.envpol.2021.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Halogenated flame retardants (HFRs) market is continuously evolving and have moved from the extensive use of polybrominated diphenyl ether (PBDE) to more recent introduced mixtures such as Firemaster 550, Firemaster 680, DP-25, DP-35, and DP-515. These substitutes are mainly composed of non-PBDEs HFRs such as 2-ethyl-hexyl tetrabromobenzoate (TBB), bis(2-ethylhexyl) tetrabromophthalate (TBPH), 1,2-bis-(2,4,6-tribromophenoxy) ethane (BTBPE) and decabromodiphenyl ethane (DBDPE). Other HFRs commonly being monitored include Dechlorane Plus (DP), Dechlorane 602 (Dec602), Dechlorane 603 (Dec603), Dechlorane 604 (Dec604), 5,6-dibromo-1,10, 11, 12,13,13-hexachloro- 11-tricyclo[8.2.1.02,9]tridecane (HCDBCO) and 4,5,6,7-tetrabromo-1,1,3-trimethyl-3-(2,3,4,5-tetrabromophenyl)-2,3-dihydro-1H-indene (OBTMPI). This review aims at highlighting the advances in the past decade (2010-2020) on both the analytical procedures of HFRs in human bio-specimens using gas chromatography coupled with single quadrupole mass spectrometry and synthesizing the information on the levels of these HFRs in human samples. Human specimen included in this review are blood, milk, stool/meconium, hair and nail. The review summarizes the analytical methods, including extraction and clean-up techniques, used for measuring HFRs in biological samples, which are largely adopted from those for analysing PBDEs. In addition, new challenges in the analysis to include both PBDEs and a wide range of other HFRs are also discussed in this review. Review of the levels of HFRs in human samples shows that PBDEs are still the most predominant HFRs in many cases, followed by DP. However, emerging HFRs are also being detected in human despite of the fact that both their detection frequencies and levels are lower than PBDEs and DP. It is clearly demonstrated in this review that people working in the industry or living close to the industrial areas have higher HFR levels in their bodies.
Collapse
Affiliation(s)
- Guillaume Martinez
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jianjun Niu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Larissa Takser
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-Phillipe Bellenger
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jiping Zhu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
11
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Rose M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of hexabromocyclododecanes (HBCDDs) in food. EFSA J 2021; 19:e06421. [PMID: 33732387 PMCID: PMC7938899 DOI: 10.2903/j.efsa.2021.6421] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on hexabromocyclododecanes (HBCDDs) in food. HBCDDs, predominantly mixtures of the stereoisomers α-, β- and γ-HBCDD, were widely used additive flame retardants. Concern has been raised because of the occurrence of HBCDDs in the environment, food and in humans. Main targets for toxicity are neurodevelopment, the liver, thyroid hormone homeostasis and the reproductive and immune systems. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour in mice can be considered the critical effects. Based on effects on spontaneous behaviour in mice, the Panel identified a lowest observed adverse effect level (LOAEL) of 0.9 mg/kg body weight (bw) as the Reference Point, corresponding to a body burden of 0.75 mg/kg bw. The chronic intake that would lead to the same body burden in humans was calculated to be 2.35 μg/kg bw per day. The derivation of a health-based guidance value (HBGV) was not considered appropriate. Instead, the margin of exposure (MOE) approach was applied to assess possible health concerns. Over 6,000 analytical results for HBCDDs in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary LB exposure to HBCDDs were fish meat, eggs, livestock meat and poultry. The CONTAM Panel concluded that the resulting MOE values support the conclusion that current dietary exposure to HBCDDs across European countries does not raise a health concern. An exception is breastfed infants with high milk consumption, for which the lowest MOE values may raise a health concern.
Collapse
|
12
|
Gerber PF, Gould N, McGahan E. Potential contaminants and hazards in alternative chicken bedding materials and proposed guidance levels: a review. Poult Sci 2020; 99:6664-6684. [PMID: 33248583 PMCID: PMC7705057 DOI: 10.1016/j.psj.2020.09.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Bedding material or litter is an important requirement of meat chicken production which can influence bird welfare, health, and food safety. A substantial increase in demand and cost of chicken bedding has stimulated interest in alternative bedding sources worldwide. However, risks arising from the use of alternative bedding materials for raising meat chickens are currently unknown. Organic chemicals, elemental, and biological contaminants, as well as physical and management hazards need to be managed in litter to protect the health of chickens and consequently that of human consumers. This requires access to information on the transfer of contaminants from litter to food to inform risk profiles and assessments to guide litter risk management. In this review, contaminants and hazards of known and potential concern in alternative bedding are described and compared with existing standards for feed. The contaminants considered in this review include organic chemical contaminants (e.g., pesticides), elemental contaminants (e.g., arsenic, cadmium, and lead), biological contaminants (phytotoxins, mycotoxins, and microorganisms), physical hazards, and management hazards. Reference is made to scientific literature for acceptable levels of the above contaminants in chicken feed that can be used for guidance by those involved in selecting and using bedding materials.
Collapse
Affiliation(s)
- Priscilla F Gerber
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| | - Nic Gould
- Integrity Ag and Environment, New England Highway, Highfields, QLD 4352, Australia
| | - Eugene McGahan
- Integrity Ag and Environment, New England Highway, Highfields, QLD 4352, Australia
| |
Collapse
|
13
|
Maddela NR, Venkateswarlu K, Kakarla D, Megharaj M. Inevitable human exposure to emissions of polybrominated diphenyl ethers: A perspective on potential health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115240. [PMID: 32698055 DOI: 10.1016/j.envpol.2020.115240] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 05/24/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) serve as flame retardants in many household materials such as electrical and electronic devices, furniture, textiles, plastics, and baby products. Though the use of PBDEs like penta-, octa- and deca-BDE greatly reduces the fire damage, indoor pollution by these toxic emissions is ever-growing. In fact, a boom in the global market projections of PBDEs threatens human health security. Therefore, efforts are made to minimize PBDEs pollution in USA and Europe by encouraging voluntary phasing out of the production or imposing compelled regulations through Stockholm Convention, but >500 kilotons of PBDEs still exist globally. Both 'environmental persistence' and 'bioaccumulation tendencies' are the hallmarks of PBDE toxicities; however, both these issues concerning household emissions of PBDEs have been least addressed theoretically or practically. Critical physiological functions, lipophilicity and toxicity, trophic transfer and tissue specificities are of utmost importance in the benefit/risk assessments of PBDEs. Since indoor debromination of deca-BDE often yields many products, a better understanding on their sorption propensity, environmental fate and human toxicities is critical in taking rigorous measures on the ever-growing global deca-BDE market. The data available in the literature on human toxicities of PBDEs have been validated following meta-analysis. In this direction, the intent of the present review was to provide a critical evaluation of the key aspects like compositional patterns/isomer ratios of PBDEs implicated in bioaccumulation, indoor PBDE emissions versus human exposure, secured technologies to deal with the toxic emissions, and human toxicity of PBDEs in relation to the number of bromine atoms. Finally, an emphasis has been made on the knowledge gaps and future research directions related to endurable flame retardants which could fit well into the benefit/risk strategy.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador; Facultad la Ciencias la Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Dhatri Kakarla
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
14
|
Weijs L, Covaci A, Stevenson G, Kemper C, Tomo I, Leusch F. Concentrations of some legacy pollutants have increased in South Australian bottlenose dolphins from 1989 to 2014. ENVIRONMENTAL RESEARCH 2020; 189:109834. [PMID: 32721651 DOI: 10.1016/j.envres.2020.109834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/04/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Information about pollution and its potential impact in Australian marine wildlife is scarce. To fill this knowledge gap, our study investigated concentrations of legacy pollutants as well as naturally produced methoxylated polybrominated diphenyl ethers (MeO-PBDEs) in blubber, liver, kidney and muscle of Indo-Pacific bottlenose dolphins (Tursiops aduncus) from two large inverse estuaries in South Australia from 1989 to 1995 and 2009-2014. Our results show that concentrations of most pollutant classes are relatively low compared to the literature but at the higher end of the ranges reported for marine mammals in Australia. Results for some individuals exceed toxicity thresholds indicative of immunotoxicity in marine mammals. It is important to note that concentrations of some compound classes, particularly PBDEs and polychlorinated biphenyls (PCBs), increased over a time interval of 20 years thereby placing more individuals at risk in recent years. Some of the highest concentrations of persistent organic pollutants (POPs) were measured in juveniles, which may jeopardize their development and the success of future generations. These results indicate that legacy pollutants may play a role in the long-term health of T. aduncus and should be included in biomonitoring efforts.
Collapse
Affiliation(s)
- Liesbeth Weijs
- Australian Rivers Institute (ARI), School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Gavin Stevenson
- Australian Ultra Trace Laboratory, National Measurement Institute, 105 Delhi Rd, North Ryde, New South Wales, 2113, Australia
| | - Catherine Kemper
- South Australian Museum, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Ikuko Tomo
- South Australian Museum, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Frederic Leusch
- Australian Rivers Institute (ARI), School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| |
Collapse
|
15
|
Wu Z, He C, Han W, Song J, Li H, Zhang Y, Jing X, Wu W. Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans: A review. ENVIRONMENTAL RESEARCH 2020; 187:109531. [PMID: 32454306 DOI: 10.1016/j.envres.2020.109531] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/21/2020] [Accepted: 04/12/2020] [Indexed: 05/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are extensively used as brominated flame retardants (BFRs) in different types of materials, which have been listed as Persistent Organic Pollutants (POPs) by the Stockholm Convention in 2009 and 2017. Due to their ubiquities in the environment and toxicities, PBDEs have posed great threat to both human health and ecosystems. The aim of this review is to offer a comprehensive understanding of the exposure pathways, levels and trends and associated health risks of PBDEs in human body in a global scale. We systematically reviewed and described the scientific data of PBDE researches worldwide from 2010 to March 2020, focusing on the following three areas: (1) sources and human external exposure pathways of PBDEs; (2) PBDE levels and trends in humans; (3) human data of PBDEs toxicity. Dietary intake and dust ingestion are dominant human exposure pathways. PBDEs were widely detected in human samples, especially in human serum and human milk. Data showed that PBDEs are generally declining in human samples worldwide as a result of their phasing out. Due to the common use of PBDEs, their levels in humans from the USA were generally higher than that in other countries. High concentrations of PBDEs have been detected in humans from PBDE production regions and e-waste recycling sites. BDE-47, -153 and -99 were proved to be the primary congeners in humans. Human toxicity data demonstrated that PBDEs have extensively endocrine disruption effects, developmental effects, and carcinogenic effects among different populations.
Collapse
Affiliation(s)
- Zhineng Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Chang He
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 4102, Brisbane, Australia
| | - Wei Han
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huijun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yadi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaohua Jing
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455002, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
16
|
Klinčić D, Dvoršćak M, Jagić K, Mendaš G, Herceg Romanić S. Levels and distribution of polybrominated diphenyl ethers in humans and environmental compartments: a comprehensive review of the last five years of research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5744-5758. [PMID: 31933075 DOI: 10.1007/s11356-020-07598-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants (BFRs), present in the environment, animals, and humans. Their levels, distribution, and human exposure have been studied extensively, and over the last decade, various legal measures have been taken to prohibit or minimize their production and use due to the increasing amount of evidence of their harmful effects on human and animal health.Our aim here was to make a comprehensive and up-to-date review of the levels and distribution of PBDEs in the aquatic environment, air, and soil, in indoor dust, and in humans. To fulfill this, we searched through Web of Science for literature data reported in the last five years (2015-2019) on levels of at least six key PBDE congeners in abovementioned matrices. According to our summarized data, significant PBDE mass concentrations/fractions are still being detected in various sample types across the world, which implies that PBDE contamination is an ongoing problem. Secondary sources of PBDEs like contaminated soils and landfills, especially those with electronic and electrical waste (e-waste), represent a particular risk to the future and therefore require a special attention of scientists.
Collapse
Affiliation(s)
- Darija Klinčić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia
| | - Marija Dvoršćak
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia.
| | - Karla Jagić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia
| | - Gordana Mendaš
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia
| | - Snježana Herceg Romanić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia
| |
Collapse
|
17
|
Li L, Hoang C, Arnot JA, Wania F. Clarifying Temporal Trend Variability in Human Biomonitoring of Polybrominated Diphenyl Ethers through Mechanistic Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:166-175. [PMID: 31779308 DOI: 10.1021/acs.est.9b04130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human biomonitoring data collected from individuals of the same age sampled in different years provide within-age temporal trends, which are often employed to evaluate the effectiveness of chemical regulatory policies. For polybrominated diphenyl ethers (PBDEs), this within-age temporal trend has been observed to vary between congeners and age groups. We systematically explore the mechanisms responsible for such variability through simulating human exposure via multiple exposure pathways to PBDEs released from multiple lifecycle stages. Our simulation indicates that, after new use of PBDEs is banned, emissions to the outdoor environment from use and waste disposal outlast those to the indoor environment from the indoor use phase, leading to slower decline rates in the contamination of food items sourced from the outdoor environment than that from indoors. Compared with indoor exposure pathways, the consumption of contaminated food contributes more to the exposure (i) to more hydrophobic, recalcitrant congeners, and (ii) of adults than children, which results in slower rates of decline in the within-age temporal trend of those congeners and in adults. The within-age temporal trend is influenced to a lesser extent by the elimination of PBDEs from the human body, e.g., differences in biotransformation potential of congeners, growth dilution, and pre- and postnatal exposures by children.
Collapse
Affiliation(s)
- Li Li
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Christopher Hoang
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Jon A Arnot
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- ARC Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Frank Wania
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
18
|
Tang Z, Li Y, Jiang Y, Cheng J, Xu S, Zhang J. Cellular metabolomics reveals glutamate and pyrimidine metabolism pathway alterations induced by BDE-47 in human neuroblastoma SK-N-SH cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109427. [PMID: 31302334 DOI: 10.1016/j.ecoenv.2019.109427] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/28/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) as potential neurotoxicants in environment may possess hazards to human health. Previous studies have reported that PBDEs exposure could induce oxidative stress and disturb mitochondrial functions in mammalian cells. However, the toxicological mechanism remains to be clarified. In this work, the neurotoxic effect and underlying mechanism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) was investigated by using human neuroblastoma SK-N-SH cells as an effective model. A liquid chromatography-mass spectrometry (LC-MS)-based metabolomics approach combined with cell viability assay was applied to elucidate the metabolic perturbations and relevant toxicological pathways upon BDE-47 exposure. Our results shown that the SK-N-SH cell viability decreased in a dose-dependent manner after exposure to BDE-47 at 24 h within the concentration range of 5-250 μM, and an IC50 value of 88.8 μM was obtained. Based on the dose-response curve and cell morphological observation, the 5 and 10 μM BDE-47 doses (equal to IC5 and IC10, respectively) were used for metabolomics study to capture the sensitive metabolic response following BDE-47 exposure. After BDE-47 treatment, nine metabolites were identified as potential biomarkers, and the most disturbed metabolic pathways were mainly involved in alanine, aspartate and glutamate metabolism, glutathione metabolism, tyrosine and phenylalanine metabolism, and pyrimidine metabolism, which imply that metabolic changes related to neurotransmitters, oxidative stress, and nucleotide-mediated signal transduction systems were the sensitive pathways mostly influenced. Our findings reported here may provide potential neurotoxic effect biomarkers and prompt deep understanding of the molecular and metabolic mechanisms triggered by BDE-47 exposure.
Collapse
Affiliation(s)
- Zhi Tang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunxiu Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yousheng Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Drage DS, Heffernan AL, Cunningham TK, Aylward LL, Mueller JF, Sathyapalan T, Atkin SL. Serum measures of hexabromocyclododecane (HBCDD) and polybrominated diphenyl ethers (PBDEs) in reproductive-aged women in the United Kingdom. ENVIRONMENTAL RESEARCH 2019; 177:108631. [PMID: 31404810 DOI: 10.1016/j.envres.2019.108631] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/31/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
We investigated the serum concentrations of two brominated flame retardants (BFRs) - polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD) -in 59 women aged between 23 and 42 from the United Kingdom. We also collected demographic data, including age, bodyweight and height in order to test for associations with BFR levels. Temporal and global differences were also assessed using previously published data. HBCDD was detected in 68% of samples with a mean concentration of 2.2 ng/g lipid (range = <0.3-13 ng/g lipid). The dominant stereoisomer was α-HBCDD with an average contribution of 82% (0-100%) towards ΣHBCDD, was followed by γ-HBCDD (average contribution = 17%). PBDEs were detected in 95% of samples with a mean ∑PBDE (sum of BDEs -28, -47, -99, -100, -153, -154 and -183) concentration of 2.4 ng/g lipid (range = <0.4-15 ng/g lipid). BDEs -153 and -47 were the dominant congeners, contributing an average of 40% and 37% respectively, to the average ΣPBDE congener profile. Data from this study suggests that HBCDD levels decrease with age, it also suggests a positive association between bodyweight and HBCDD levels, which likewise requires a large-scale study to confirm this. The data also show that 10 years after their European ban, PBDE body burden has begun to decrease in the UK. Whilst it is too early to draw any firm conclusions for HBCDDs, they appear to be following a similar pattern to PBDEs, with levels decreasing by a factor of >2.5 since 2010. Whilst the human body burden appear to be decreasing, both PBDEs and HBCDD are still consistently detected in human serum, despite legislative action limiting their production and use. This highlights the need to continuously assess human exposure and the effectiveness of policy aimed at reducing exposure.
Collapse
Affiliation(s)
- Daniel S Drage
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK; Queensland Alliance for Environmental Health Sciences, The University of Queensland, 39 Kessels Road, Coopers Plains, Qld, 4108, Australia.
| | - Amy L Heffernan
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 39 Kessels Road, Coopers Plains, Qld, 4108, Australia
| | - Thomas K Cunningham
- Academic Endocrinology, Diabetes and Metabolism, University of Hull/Hull and East Yorkshire Hospitals NHS Trust, Hull IVF Unit. The Women and Children's Hospital, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ, UK
| | - Lesa L Aylward
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 39 Kessels Road, Coopers Plains, Qld, 4108, Australia; Summit Toxicology, LLP, Falls Church, VA 22044, USA
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 39 Kessels Road, Coopers Plains, Qld, 4108, Australia
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, University of Hull/Hull and East Yorkshire Hospitals NHS Trust, Hull IVF Unit. The Women and Children's Hospital, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ, UK
| | - Stephen L Atkin
- Academic Endocrinology, Diabetes and Metabolism, University of Hull/Hull and East Yorkshire Hospitals NHS Trust, Hull IVF Unit. The Women and Children's Hospital, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ, UK; Royal College of Surgeons Bahrain, Manama, Bahrain
| |
Collapse
|
20
|
Per- and polyfluoroalkyl substances (PFAS) in Australia: Current levels and estimated population reference values for selected compounds. Int J Hyg Environ Health 2019; 222:387-394. [PMID: 30898527 DOI: 10.1016/j.ijheh.2019.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Increased public awareness of PFAS contamination in Australia has resulted in serum biomonitoring efforts in individuals in potentially affected communities. However, population-based reference values for assessing whether individual results exceed the typical range in the Australian general population are not currently available. OBJECTIVE Estimate population upper bound reference values based on updated serum PFAS concentrations in pooled samples from southeast Queensland, Australia and population variation observed in the US National Health and Nutrition Examination Survey (NHANES) datasets. METHODS We calculated ratios of 95th percentile to arithmetic mean (P95:AM ratios) using data from the NHANES 2013-14 and 2015-16 cycle samples for frequently detected PFASs: PFOA, linear and branched PFOS, perfluorononanoate (PFNA), perfluorodecanoate (PFDA), and perfluorohexanesulfonate (PFHxS). We estimated Australian age-specific means for PFAS using pooled serum samples collected in 2014-15 and 2016-17. We used the P95:AM ratios to estimate 95th percentile concentrations in the Australian population based on the results of the 2016-17 pooled samples. RESULTS AND CONCLUSIONS P95:AM ratios for each PFAS were similar across NHANES cycle and age group, so overall compound-specific ratios were estimated for PFOA (2.1), PFNA (2.4), PFDA (2.7), PFHxS (2.7), and linear (2.4) and summed PFOS (2.3). Australian mean PFAS concentrations continued previously reported declining trends. The estimated P95 values can be used as preliminary substitutes for more rigorous population reference values to identify samples with clearly elevated serum PFAS concentrations in Australian biomonitoring efforts. Given uncertainties and variability inherent in this evaluation, the estimated P95 values should be interpreted with caution. Mean and estimated P95 serum PFAS concentrations in Australia should continue to be monitored to document declining trends in population serum concentrations.
Collapse
|