1
|
Kuntic M, Kuntic I, Cleppien D, Pozzer A, Nußbaum D, Oelze M, Junglas T, Strohm L, Ubbens H, Daub S, Bayo Jimenez MT, Danckwardt S, Berkemeier T, Hahad O, Kohl M, Steven S, Stroh A, Lelieveld J, Münzel T, Daiber A. Differential inflammation, oxidative stress and cardiovascular damage markers of nano- and micro-particle exposure in mice: Implications for human disease burden. Redox Biol 2025; 83:103644. [PMID: 40319735 PMCID: PMC12124686 DOI: 10.1016/j.redox.2025.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025] Open
Abstract
Particulate matter (PM) poses a significant risk to human health; however, it remains uncertain which size fraction is especially harmful and what mechanisms are involved. We investigated the varying effects of particle size on specific organ systems using a custom mouse exposure system and synthetic PM (SPM). Whole-body exposure of mice showed that micrometer-sized fine SPM (2-4 μm) accumulated in the lungs, the primary entry organ, while nanometer-sized SPM (<250 nm) did not accumulate, suggesting a transition into circulation. Mice exposed to micro-SPM exhibited inflammation and NADPH oxidase-derived oxidative stress in the lungs. In contrast, nano-SPM-exposed mice did not display oxidative stress in the lungs but rather at the brain, heart, and vascular levels, supporting the hypothesis that they penetrate the lungs and reach the circulation. Sources of reactive oxygen species from micro-SPM in the lung are NOX1 and NOX2, driven by pulmonary inflammation, while oxidative stress from nano-SPM in the heart is mediated by protein kinase C-dependent p47phox phosphorylation, leading to NOX2 activation in infiltrated monocytes. Endothelial dysfunction and increased blood pressure were more pronounced in nano-SPM-exposed mice, also supported by elevated endothelin-1 and reduced endothelial nitric oxide synthase expression, which enhances constriction and diminishes vasodilation. Further, we estimated the cardiovascular disease burden of nano-particles in humans based on global exposure data and hazard ratios from an epidemiological cohort study. These results provide novel insights into the disease burdens of inhaled nano- and micro-particles (corresponding to fine and ultrafine categories), guiding future studies.
Collapse
Affiliation(s)
- Marin Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Ivana Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Dirk Cleppien
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Andrea Pozzer
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - David Nußbaum
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Matthias Oelze
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Tristan Junglas
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Lea Strohm
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Henning Ubbens
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Steffen Daub
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | | | - Sven Danckwardt
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; University Medical Center Ulm, Department of Clinical Chemistry, Ulm, Germany
| | - Thomas Berkemeier
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Mainz, Germany
| | - Omar Hahad
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Matthias Kohl
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Sebastian Steven
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; Division of Cardiology, Goethe University Frankfurt, University Hospital, Department of Medicine III, Frankfurt a. M., Germany
| | - Albrecht Stroh
- Leibniz Institute for Resilience Research, Mainz, Germany; University Medical Center Mainz, Institute of Pathophysiology, Mainz, Germany; Institute of Physiology I, University Hospital Muenster, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Thomas Münzel
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
2
|
Batisse E, Lloyd M, Cavanaugh A, Ganji A, Xu J, Hatzopoulou M, Baumgartner J, Weichenthal S. Examining the social distributions in neighbourhood black carbon and ultrafine particles in Montreal and Toronto, Canada. ENVIRONMENT INTERNATIONAL 2025; 198:109395. [PMID: 40132442 DOI: 10.1016/j.envint.2025.109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/17/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Socioeconomic inequities in outdoor ultrafine particles (UFP) and black carbon (BC) are understudied in Canada, where metropoles like Montreal and Toronto feature distinct sociodemographic diversity and urban characteristics compared to U.S. cities. METHODS We collected vulnerability indicators, including social, economic, household composition, and immigration status, at the dissemination area level for Montreal and Toronto using data from the 2006 and 2021 Canadian Census of Population. Areas were classified as disadvantaged, intermediate, or advantaged following K-means clustering analysis. We aggregated and calculated population-weighted average concentrations of BC and UFP, and UFP size at the dissemination area and cluster levels using high-resolution exposure surfaces, derived from year-long mobile monitoring campaigns conducted in each city during 2020-2021. Final exposure surfaces were generated by integrating predictions from land-use regression models and deep convolutional neural network models. FINDINGS We observed high within-city variations in aggregated air pollutant levels, with higher outdoor BC and UFP concentrations and smaller UFP sizes in areas near local sources such as major roads, railways, airports, and densely populated regions. Advantaged areas experienced the lowest median UFP concentrations in both Montreal (10,707 pt/cm3) and Toronto (10,988 pt/cm3), as well as the lowest BC concentrations (650 ng/m3) in Montreal. The highest median UFP concentrations were observed in intermediate areas in Montreal (15,709 pt/cm3) and disadvantaged areas in Toronto (12,228 pt/cm3). Conversely, the highest BC concentrations were observed in disadvantaged and intermediate areas in Montreal (805-811 ng/m3), and disadvantaged and advantaged areas in Toronto (1,228-1,252 ng/m3). Notably, high priority areas for the double burden of vulnerability and high BC and UFP concentrations were located near air pollutants local emission sources. INTERPRETATION Our findings highlight the importance of prioritizing exposure mitigation for populations residing near local sources and to understand contextual factors influencing inequities across cities and pollutants.
Collapse
Affiliation(s)
- Emmanuelle Batisse
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 2001 McGill College Ave, Montreal, Quebec H3A 1G1, Canada.
| | - Marshall Lloyd
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 2001 McGill College Ave, Montreal, Quebec H3A 1G1, Canada.
| | - Alicia Cavanaugh
- Scientific Consulting Group, 656 Quince Orchard Road, Suite 210, Gaithersburg, MD 20878, United States.
| | - Arman Ganji
- Department of Civil & Mineral Engineering, University of Toronto, 35 St. George St., Toronto, Ontario M5S 1A4, Canada.
| | - Junshi Xu
- Department of Civil & Mineral Engineering, University of Toronto, 35 St. George St., Toronto, Ontario M5S 1A4, Canada.
| | - Marianne Hatzopoulou
- Department of Civil & Mineral Engineering, University of Toronto, 35 St. George St., Toronto, Ontario M5S 1A4, Canada.
| | - Jill Baumgartner
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 2001 McGill College Ave, Montreal, Quebec H3A 1G1, Canada; Department of Equity, Ethics and Policy, McGill University, 2001 McGill College Avenue, Room 1200, Montreal, Qc H3A1G1, Canada.
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 2001 McGill College Ave, Montreal, Quebec H3A 1G1, Canada.
| |
Collapse
|
3
|
Chiang MC, Nicol CJB, Yang YP, Chiang T, Yen C. Protective effects of resveratrol against PM 2.5-induced damage in hNSCs and its mitigation of PM 2.5-induced mitochondrial dysfunction in a 3D scaffold system. Neuroscience 2025; 569:67-84. [PMID: 39909340 DOI: 10.1016/j.neuroscience.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Exposure to PM2.5 is associated with neurotoxicity and mitochondrial dysfunction. Resveratrol, a natural polyphenol, has demonstrated antioxidant and neuroprotective properties. Still, its efficacy in mitigating PM2.5-induced damage in human neural stem cells (hNSCs) and within a 3D scaffold system remains underexplored. OBJECTIVE This study investigated the protective effects of resveratrol against PM2.5-induced damage in hNSCs and within a 3D scaffold system. METHODS Assess cell viability using MTT and LIVE/DEAD assays and measure caspase activity by fluorescence analysis. Quantify gene and protein expression of key regulatory pathways using qPCR and Western blotting. Then, mitochondrial function was analyzed by measuring ATP production, mitochondrial mass, maximal respiratory rate, COX activity, membrane potential, TEM, and immunofluorescence staining. In addition, 3D scaffolds created by the CELLINK INKREDIBLE bioprinter were used to study the effect of resveratrol on PM2.5-induced hNSCs damage. RESULTS Resveratrol significantly improved cell viability and reduced caspase-3 and caspase-9 activities in PM2.5-treated hNSCs. Resveratrol treatment upregulated TrKBR, PI3K, AKT, CREB, PPARα, PPARγ, SIRT1 and AMPK expression. It restored mitochondrial function by increasing ATP production, mitochondrial mass, maximal respiratory rate, COX activity, and membrane potential. Using a 3D scaffold demonstrated resveratrol's potential to maintain mitochondrial function and cellular health under PM2.5 exposure. CONCLUSION Resveratrol can effectively reduce neurotoxicity and mitochondrial dysfunction caused by PM2.5 in hNSCs. Its protective effects against PM2.5-induced toxicity in hNSCs within a 3D bioprinted model highlight this study's translational potential. These findings emphasize its potential as a therapeutic agent against environmental neurotoxins and the development of neuroprotective strategies.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Christopher J B Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, and Cancer Biology and Genetics Division, Sinclair Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Yu-Ping Yang
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Tairui Chiang
- Ames Middle School, Ames, IA 50014, USA; New Taipei Municipal Jinhe High School, New Taipei City 235, Taiwan
| | - Chiahui Yen
- Department of International Business, Ming Chuan University, Taipei 111, Taiwan
| |
Collapse
|
4
|
Berrellez-Reyes F, Schiavo B, Gonzalez-Grijalva B, Angulo-Molina A, Meza-Figueroa D. Characterization of soot and crystalline atmospheric ultrafine particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125314. [PMID: 39547557 DOI: 10.1016/j.envpol.2024.125314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The extraction and characterization of atmospheric ultrafine particles (UFPs) is critical to understanding environmental health and climate dynamics. This study uses an aqueous extraction method to characterize the size distribution, shape, and composition of atmospheric UFPs. We propose a combined use of techniques rarely implemented in air quality analysis, such as atomic force microscopy (AFM), with more conventional methods, such as Transmission Electron microscopy (TEM) and Dynamic Light Scattering (DLS). DLS results indicate a hydrodynamic diameter range from 117 to 1069 nm and a polydispersity index of 0.3-0.79. The high polydispersity reflects the complexity of UFPs agglomeration processes. AFM identified NPs ranging from 10 to 25 nm; topographic images show soot and crystalline structures. High-resolution TEM analysis measured the interplanar distances of crystalline UFPs, showing the presence of calcium carbonates. TEM-EDS identified soot and crystalline particles with variable composition, from Si-enriched NPs to Ca-F-Cl-Na-Si, carbonates, chlorides, and Zn-Ti-enriched nanosilica. These findings provide valuable insights into the physicochemical properties of atmospheric dust, contributing to our knowledge and the potential implications for human health and the environment.
Collapse
Affiliation(s)
- Francisco Berrellez-Reyes
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico.
| | - Benedetto Schiavo
- Instituto de Geofísica, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Belem Gonzalez-Grijalva
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Aracely Angulo-Molina
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Diana Meza-Figueroa
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
5
|
Lloyd M, Olaniyan T, Ganji A, Xu J, Venuta A, Simon L, Zhang M, Saeedi M, Yamanouchi S, Wang A, Schmidt A, Chen H, Villeneuve P, Apte J, Lavigne E, Burnett RT, Tjepkema M, Hatzopoulou M, Weichenthal S. Airborne Nanoparticle Concentrations Are Associated with Increased Mortality Risk in Canada's Two Largest Cities. Am J Respir Crit Care Med 2024; 210:1338-1347. [PMID: 38924496 PMCID: PMC11622438 DOI: 10.1164/rccm.202311-2013oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/26/2024] [Indexed: 06/28/2024] Open
Abstract
Rationale: Outdoor fine particulate air pollution (particulate matter with an aerodynamic diameter ⩽2.5 μm; PM2.5) contributes to millions of deaths around the world each year, but much less is known about the long-term health impacts of other particulate air pollutants, including ultrafine particles (a.k.a. nanoparticles), which are in the nanometer-size range (<100 nm), widespread in urban environments, and not currently regulated. Objectives: We sought to estimate the associations between long-term exposure to outdoor ultrafine particles and mortality. Methods: Outdoor air pollution levels were linked to the residential addresses of a large, population-based cohort from 2001 to 2016. Associations between long-term exposure to outdoor ultrafine particles and nonaccidental and cause-specific mortality were estimated using Cox proportional hazards models. Measurements and Main Results: An increase in long-term exposure to outdoor ultrafine particles was associated with an increased risk of nonaccidental mortality (hazard ratio = 1.073; 95% confidence interval = 1.061-1.085) and cause-specific mortality, the strongest of which was respiratory mortality (hazard ratio = 1.174; 95% confidence interval = 1.130-1.220). We estimated the mortality burden for outdoor ultrafine particles in Montreal and Toronto, Canada, to be approximately 1,100 additional nonaccidental deaths every year. Furthermore, we observed possible confounding by particle size, which suggests that previous studies may have underestimated or missed important health risks associated with ultrafine particles. Conclusions: As outdoor ultrafine particles are not currently regulated, there is great potential for future regulatory interventions to improve population health by targeting these common outdoor air pollutants.
Collapse
Affiliation(s)
- Marshall Lloyd
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
| | | | - Arman Ganji
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Junshi Xu
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Alessya Venuta
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
| | - Leora Simon
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
| | - Mingqian Zhang
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Milad Saeedi
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Shoma Yamanouchi
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - An Wang
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Alexandra Schmidt
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
| | - Hong Chen
- Health Canada, Ottawa, Ontario, Canada
| | - Paul Villeneuve
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Joshua Apte
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California; and
| | - Eric Lavigne
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | - Marianne Hatzopoulou
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
| |
Collapse
|
6
|
López-Martín E, Sueiro-Benavides R, Leiro-Vidal JM, Rodríguez-González JA, Ares-Pena FJ. Redox cell signalling triggered by black carbon and/or radiofrequency electromagnetic fields: Influence on cell death. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176023. [PMID: 39244061 DOI: 10.1016/j.scitotenv.2024.176023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The capacity of environmental pollutants to generate oxidative stress is known to affect the development and progression of chronic diseases. This scientific review identifies previously published experimental studies using preclinical models of exposure to environmental stress agents, such as black carbon and/or RF-EMF, which produce cellular oxidative damage and can lead to different types of cell death. We summarize in vivo and in vitro studies, which are grouped according to the mechanisms and pathways of redox activation triggered by exposure to BC and/or EMF and leading to apoptosis, necrosis, necroptosis, pyroptosis, autophagy, ferroptosis and cuproptosis. The possible mechanisms are considered in relation to the organ, cell type and cellular-subcellular interaction with the oxidative toxicity caused by BC and/or EMF at the molecular level. The actions of these environmental pollutants, which affect everyday life, are considered separately and together in experimental preclinical models. However, for overall interpretation of the data, toxicological studies must first be conducted in humans, to enable possible risks to human health to be established in relation to the progression of chronic diseases. Further actions should take pollution levels into account, focusing on the most vulnerable populations and future generations.
Collapse
Affiliation(s)
- Elena López-Martín
- Department of Morphological Sciences, Santiago de Compostela, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Rosana Sueiro-Benavides
- Institute of Research in Biological and Chemical Analysis, IAQBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José M Leiro-Vidal
- Institute of Research in Biological and Chemical Analysis, IAQBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan A Rodríguez-González
- Department of Applied Physics, Santiago de Compostela School of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco J Ares-Pena
- Department of Applied Physics, Santiago de Compostela School of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
7
|
Vaze N, Calderon L, Tsiodra I, Mihalopoulos N, Serhan CN, Levy BD, Demokritou P. Assessment of the Physicochemical Properties of Ultrafine Particles (UFP) from Vehicular Emissions in a Commercial Parking Garage: Potential Health Implications. TOXICS 2024; 12:833. [PMID: 39591011 PMCID: PMC11597990 DOI: 10.3390/toxics12110833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
Vehicular emissions are a major culprit in the rise of urban air pollution. The particulate matter (PM) emitted from vehicular sources includes primarily ultrafine particles (UFPs) with aerodynamic diameters less than 0.1 µm (PM0.1) and is linked to adverse respiratory and cardiovascular health effects. Despite this knowledge, few exposure assessment studies exist that detail the physicochemical properties of PM in parking garages. In this study, airborne PM emitted by vehicles in a parking garage of a hospital in New Jersey was sampled, during winter and summer seasons, and physicochemically characterized. The results indicate that the mass concentrations of the UFPs in the garage were 2.51 µg/m3 and 3.59 µg/m3, respectively. These UFPs contained a large percentage of elemental carbon and toxic elements. They also contained polycyclic aromatic hydrocarbons (PAHs), having deleterious health effects. An inhalation particle modeling revealed that 23.61% of these UFPs are deposited in the pulmonary region of the lung, translating to a dose of 10.67 µg for winter and 15.25 µg for summer, over a typical 40 h work week. These high deposited levels of UFPs and their complex chemistry levels further warrant the need for toxicological assessment of UFPs related to vehicular emissions.
Collapse
Affiliation(s)
- Nachiket Vaze
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (N.V.); (L.C.)
| | - Leonardo Calderon
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (N.V.); (L.C.)
| | - Irini Tsiodra
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, 15236 Athens, Greece; (I.T.); (N.M.)
| | - Nikolaos Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, 15236 Athens, Greece; (I.T.); (N.M.)
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Hale Building for Transformative Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Bruce D. Levy
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (N.V.); (L.C.)
| |
Collapse
|
8
|
Tu Q, Liu G, Liu X, Zhang J, Xiao W, Lv L, Zhao B. Perspective on using non-human primates in Exposome research. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117199. [PMID: 39426107 DOI: 10.1016/j.ecoenv.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/02/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
The physiological and pathological changes in the human body caused by environmental pressures are collectively referred to as the Exposome. Human society is facing escalating environmental pollution, leading to a rising prevalence of associated diseases, including respiratory diseases, cardiovascular diseases, neurological disorders, reproductive development disorders, among others. Vulnerable populations to the pathogenic effects of environmental pollution include those in the prenatal, infancy, and elderly stages of life. Conducting Exposome mechanistic research and proposing effective health interventions are urgent in addressing the current severe environmental pollution. In this review, we address the core issues and bottlenecks faced by current Exposome research, specifically focusing on the most toxic ultrafine nanoparticles. We summarize multiple research models being used in Exposome research. Especially, we discuss the limitations of rodent animal models in mimicking human physiopathological phenotypes, and prospect advantages and necessity of non-human primates in Exposome research based on their evolutionary relatedness, anatomical and physiological similarities to human. Finally, we declare the initiation of NHPE (Non-Human Primate Exposome) project for conducting Exposome research using non-human primates and provide insights into its feasibility and key areas of focus. SYNOPSIS: Non-human primate models hold unique advantages in human Exposome research.
Collapse
Affiliation(s)
- Qiu Tu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Gaojing Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiuyun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiao Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Wenxian Xiao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Longbao Lv
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China.
| | - Bo Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
9
|
Lloyd M, Olaniyan T, Ganji A, Xu J, Simon L, Zhang M, Saeedi M, Yamanouchi S, Wang A, Burnett RT, Tjepkema M, Hatzopoulou M, Weichenthal S. Airborne ultrafine particle concentrations and brain cancer incidence in Canada's two largest cities. ENVIRONMENT INTERNATIONAL 2024; 193:109088. [PMID: 39467481 DOI: 10.1016/j.envint.2024.109088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Malignant brain tumours are rare, but are important to study because survival rates are low and few modifiable risk factors have been identified. Existing evidence suggests that outdoor ultrafine particles (UFPs; particulate matter < 100 nm; sometimes referred to as nanoparticles) can deposit in the brain and could encourage initiation and progression of cancerous tumours, but epidemiological data are limited. METHODS High-resolution estimates of outdoor UFP concentrations and size were linked to residential locations of approximately 1.5 million people in Montreal and Toronto, Canada from 2001 to 2015. Cox proportional hazards models were used to estimate associations between annual average outdoor UFPs and malignant brain tumour incidence while adjusting for potential confounding factors including other outdoor air pollutants. FINDINGS In total, 1365 incident brain tumour cases occurred during follow-up. Consistent positive associations were observed between long-term exposures to outdoor UFPs and brain tumour incidence with increased risk ranging from 10.5% (95% CI: -1.4, 24.0%) to 15.3% (95% CI: 0.4, 32.5%) per 10,000 particle/cm3 increase. Long-term exposures to oxidant gases, black carbon, or fine particulate matter (PM2.5) were not associated with increased brain tumour incidence. INTERPRETATION Our results suggest that long-term exposures to outdoor UFPs are associated with an increased risk of developing malignant brain tumours. On an absolute scale, the magnitude of this risk translates into approximately 24 additional cases per year per 10,000 particle/cm3 increase in annual average outdoor UFPs in a hypothetical city of 3-million people. FUNDING Canadian Institutes of Health Research (CIHR) Foundation Grant and The United States Health Effects Institute (HEI).
Collapse
Affiliation(s)
| | | | | | - Junshi Xu
- University of Toronto, Toronto, Canada
| | | | | | | | | | - An Wang
- University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
10
|
Turner A, Ryan PH, Ingram S, Chariter R, Wolfe C, Cho SH. Variability in personal exposure to ultrafine and fine particles by microenvironment among adolescents in Cincinnati. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173806. [PMID: 38897462 PMCID: PMC11892699 DOI: 10.1016/j.scitotenv.2024.173806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Personal exposure to air pollution is influenced by an individual's time-activity patterns, but data regarding personal exposure to air pollution among children populations is lacking. The objective of this study was to characterize personal exposure to both PM2.5 and ultrafine particles (UFPs) using two portable real-time monitors, combined with GPS logging, and describe the relationship between these exposures across time and microenvironments among adolescents with asthma. Participants completed personal exposure monitoring for seven consecutive days and PM2.5 and UFP concentrations experienced in five microenvironments were determined using GPS location and mobility data. Average UFP and PM2.5 exposure varied across microenvironments with the highest average UFP exposure concentrations observed in transit (10,910 ± 27,297 p/cc), though correlations between UFP and PM2.5 concentrations in transit were low (0.24) and did not reach statistical significance (p > 0.05). We calculated exposure time ratios for each participant. Across participants, UFP exposures within the transit environment demonstrated the highest ratio (average exposure-time ratio = 1.91) though only 3 % of overall sampling time among all participants was monitored in transit (74/2840 h). We did not observe similar trends among PM2.5 exposures. The correlations between UFP and PM2.5 exposures varied throughout the day, with an overall correlation ranging from moderate to high among participants. Identifying microenvironments and activities where high exposure to PM occurs may offer potential targets for interventions to reduce overall exposures among sensitive groups.
Collapse
Affiliation(s)
- Ashley Turner
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.
| | - Patrick H Ryan
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States of America
| | - Sherrill Ingram
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Ryan Chariter
- Technology Advancement Commercialization Division, RTI International, Research Triangle Park, NC, United States of America
| | - Chris Wolfe
- Technology Advancement Commercialization Division, RTI International, Research Triangle Park, NC, United States of America
| | - Seung-Hyun Cho
- Technology Advancement Commercialization Division, RTI International, Research Triangle Park, NC, United States of America
| |
Collapse
|
11
|
Meza-Figueroa D, Berrellez-Reyes F, Schiavo B, Morton-Bermea O, Gonzalez-Grijalva B, Inguaggiato C, Silva-Campa E. Tracking fine particles in urban and rural environments using honey bees as biosamplers in Mexico. CHEMOSPHERE 2024; 363:142881. [PMID: 39032733 DOI: 10.1016/j.chemosphere.2024.142881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
This work explores the efficiency of honey bees (Apis mellifera) as biosamplers of metal pollution. To understand this, we selected two cities with different urbanization (a medium-sized city and a megacity), and we collected urban dust and honey bees captured during flight. We sampled two villages and a university campus as control areas. The metal content in dust was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Atomic Force Microscopy (AFM) and Scanning electron microscopy (SEM) were used to investigate the shape and size distribution of the particles, and to characterize the semiquantitative chemical composition of particles adhered to honey bee's wings. Principal Component Analysis (PCA) shows a distinctive urban dust geochemical signature for each city, with component 1 defining V-Cr-Ni-Tl-Pt-Pb-Sb as characteristic of Mexico City and Ce-As-Zr for dust from Hermosillo. Particle count using SEM indicates that 69% and 63.4% of the resuspended dust from Hermosillo and Mexico City, respectively, corresponds to PM2.5. Instead, the particle count measured on the honey bee wings from Hermosillo and Mexico City is mainly PM2.5, 91.4% and 88.9%, respectively. The wings from honey bees collected in the villages and the university campus show much lower particle amounts. AFM-histograms confirmed that the particles identified in Mexico City have even smaller sizes (between 60 and 480 nm) than those in Hermosillo (between 400 and 1400 nm). Particles enriched in As, Zr, and Ce mixed with geogenic elements such as Si, Ca, Mg, K, and Na dominate honey bee' wings collected in Hermosillo. In contrast, those particles collected from Mexico City contain V, Cr, Ni, Tl, Pt, Pb, and Sb. Such results agree with the urban dust data. This work shows that honey bees are suitable biosamplers for the characterization of fine dust fractions by microscopy techniques and reflect the urban pollution of the sites.
Collapse
Affiliation(s)
- Diana Meza-Figueroa
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Rosales y Encinas, Centro, Hermosillo, 83000, Sonora, Mexico.
| | - Francisco Berrellez-Reyes
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Rosales y Encinas, Centro, Hermosillo, 83000, Sonora, Mexico
| | - Benedetto Schiavo
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Ofelia Morton-Bermea
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Belem Gonzalez-Grijalva
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Rosales y Encinas, Centro, Hermosillo, 83000, Sonora, Mexico
| | - Claudio Inguaggiato
- Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana, 3918, Ensenada, Baja California, Mexico
| | - Erika Silva-Campa
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Encinas, Centro, Hermosillo, 83000, Sonora, Mexico
| |
Collapse
|
12
|
Jafarigol F, Yousefi S, Darvishi Omrani A, Rashidi Y, Buonanno G, Stabile L, Sabanov S, Amouei Torkmahalleh M. The relative contributions of traffic and non-traffic sources in ultrafine particle formations in Tehran mega city. Sci Rep 2024; 14:10399. [PMID: 38710723 PMCID: PMC11074259 DOI: 10.1038/s41598-023-49444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 12/08/2023] [Indexed: 05/08/2024] Open
Abstract
Emissions of ultrafine particles (UFPs; diameter < 100 nm) are strongly associated with traffic-related emissions and are a growing global concern in urban environments. The aim of this study was to investigate the variations of particle number concentration (PNC) with a diameter > 10 nm at nine stations and understand the major sources of UFPs (primary vs. secondary) in Tehran megacity. The study was carried out in Tehran in 2020. NOx and PNC were reported from a total of nine urban site locations in Tehran and BC concentrations were examined at two monitoring stations. Data from all stations showed diurnal changes with peak morning and evening rush hours. The hourly PNC was correlated with NOx. PNCs in Tehran were higher compared to those of many cities reported in the literature. The highest concentrations were at District 19 station (traffic) and the lowest was at Punak station (residential) such that the average PNC varied from 8.4 × 103 to 5.7 × 104 cm-3. In Ray and Sharif stations, the average contributions of primary and secondary sources of PNC were 67 and 33%, respectively. Overall, we conclude that a decrease in primary emission leads to a decrease in the total concentration of aerosols, despite an increase in the formation of new particles by photo nucleation.
Collapse
Affiliation(s)
- Farzaneh Jafarigol
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Somayeh Yousefi
- Department of Environmental Technologies, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Yousef Rashidi
- Department of Environmental Technologies, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - Sergei Sabanov
- Department of Mining Engineering, School of Mining and Geosciences, Nazarbayev University, Astana, Kazakhstan
| | - Mehdi Amouei Torkmahalleh
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
13
|
Ridolfo S, Amato F, Querol X. Particle number size distributions and concentrations in transportation environments: a review. ENVIRONMENT INTERNATIONAL 2024; 187:108696. [PMID: 38678934 DOI: 10.1016/j.envint.2024.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Ambient air ultrafine particles (UFP, particles with a diameter <100 nm) have gained significant attention in World Health Organization (WHO) air quality guidelines and European legislation. This review explores UFP concentrations and particle number size distributions (PNC-PNSD) in various transportation hotspots, including road traffic, airports, harbors, trains, and urban commuting modes (walking, cycling, bus, tram, and subway). The results highlight the lack of information on personal exposure at harbors and railway stations, inside airplanes and trains, and during various other commuting modes. The different lower particle size limits of the reviewed measurements complicate direct comparisons between them. Emphasizing the use of instruments with detection limits ≤10 nm, this review underscores the necessity of following standardized UFP measurement protocols. Road traffic sites are shown to exhibit the highest PNC within cities, with PNC and PNSD in commuting modes driven by the proximity to road traffic and weather conditions. In closed environments, such as cars, buses, and trams, increased external air infiltration for ventilation correlates with elevated PNC and a shift in PNSD toward smaller diameters. Airports exhibit particularly elevated PNCs near runways, raising potential concerns about occupational exposure. Recommendations from this study include maintaining a substantial distance between road traffic and other commuting modes, integrating air filtration into ventilation systems, implementing low-emission zones, and advocating for a general reduction in road traffic to minimize daily UFP exposure. Our findings provide important insights for policy assessments and underscore the need for additional research to address current knowledge gaps.
Collapse
Affiliation(s)
- S Ridolfo
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - F Amato
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - X Querol
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
14
|
Yang M, Wu QZ, Zhang YT, Leskinen A, Wang XF, Komppula M, Hakkarainen H, Roponen M, Jin NX, Tan WH, Xu SL, Lin LZ, Liu RQ, Zeng XW, Dong GH, Jalava PI. Toxicological evaluation and concentration of airborne PM 0.1 in high air pollution period in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171224. [PMID: 38402960 DOI: 10.1016/j.scitotenv.2024.171224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
The emissions and exposure limits for airborne PM0.1 are lacking, with limited scientific data for toxicity. Therefore, we continuously monitored and calculated the number and mass concentrations of airborne PM0.1 in December 2017, January 2018 and March 2018 during the high pollution period in Guangzhou. We collected PM0.1 from the same period and analyzed their chemical components. A549, THP-1 and A549/THP-1 co-cultured cells were selected for exposure to PM0.1, and evaluated for toxicological responses. Our aims are to 1) measure and analyze the number and mass concentrations, and chemical components of PM0.1; 2) evaluate and compare PM0.1 toxicity to different airway cells models at different time points. Guangzhou had the highest mass concentration of PM0.1 in December 2017, while the number concentration was the lowest. Chemical components in PM0.1 vary significantly at different time periods, and the correlation between the chemical composition or source of PM0.1 and the mass and number concentration of PM0.1 was dissimilar. Exposure to PM0.1 disrupted cell membranes, impaired mitochondrial function, promoted the expression of inflammatory mediators, and interfered with DNA replication in the cell cycle. The damage caused by exposure to PM0.1 at different times exhibited variations across different types of cells. PM0.1 in March 2018 stimulated co-cultured cells to secrete more inflammatory mediators, and CMA was significantly related to the expression of them. Our study indicates that it is essential to monitor both the mass and number concentrations of PM0.1 throughout all seasons annually, as conventional toxicological experiments and the internal components of PM0.1 may not effectively reveal the health damages caused by elevated number levels of PM0.1.
Collapse
Affiliation(s)
- Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yun-Ting Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ari Leskinen
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Technical Physics, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Xin-Feng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Henri Hakkarainen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Nan-Xiang Jin
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70210 Kuopio, Finland
| | - Wei-Hong Tan
- Department of Reproductive Medicine and Genetics Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Shu-Li Xu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Pasi I Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
15
|
Park K, Lee J. Mitigating air and noise pollution through highway capping: The Bundang-Suseo Highway Cap Project case study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123620. [PMID: 38387547 DOI: 10.1016/j.envpol.2024.123620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Highways, while vital for transportation, often lead to heightened air and noise pollution, adversely affecting nearby communities. This study delves into the effectiveness of highway capping, a sustainable urban development strategy, in addressing these environmental challenges, with a specific focus on the Bundang-Suseo Highway in South Korea. This study employed a multifaceted approach, incorporating on-road monitoring, in situ measurements, and vertical assessments using UAVs. Following the cap's installation, the area experienced more stable pollutant levels, marking a notable shift from the previously fluctuating conditions heavily influenced by the highway. In-depth in situ monitoring near the cap revealed significant reductions in noise and pollutants like UFP and BC. Furthermore, UAV monitoring captured these changes in pollutant levels at different altitudes. Notably, the installation of the highway cap led to increased PM2.5, PM10, and NO2 levels at ground level, but a decrease above the cap, emphasizing the critical importance of intentional highway cap design in enhancing urban air quality and reducing exposure to harmful pollutants. This research yields invaluable insights for urban planners, health authorities, and policymakers, aiding the precise identification of pollution-prone areas and advocating for improved highway cap design to enhance urban environments.
Collapse
Affiliation(s)
- Kitae Park
- Department of Urban Design and Studies, Chung-Ang University, Seoul 06974, South Korea.
| | - Jeongwoo Lee
- Department of Urban Design and Studies, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
16
|
Badami MM, Tohidi R, Sioutas C. Los Angeles Basin's air quality transformation: a long-term investigation on the impacts of PM regulations on the trends of ultrafine particles and co-pollutants. JOURNAL OF AEROSOL SCIENCE 2024; 176:106316. [PMID: 38223364 PMCID: PMC10783618 DOI: 10.1016/j.jaerosci.2023.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
This study investigates the long-term trends of ambient ultrafine particles (UFPs) and associated airborne pollutants in the Los Angeles Basin from 2007 to 2022, focusing on the indirect effects of regulations on UFP levels. The particle number concentration (PNC) of UFPs was compiled from previous studies in the area, and associated co-pollutant data, including nitrogen oxides (NOx), carbon monoxide (CO), elemental carbon (EC), organic carbon (OC), and ozone (O3), were obtained from the chemical speciation network (CSN) database. Over the study period, a general decrease was noted in the PNC of UFPs, NOx, EC, and OC, except for CO, the concentration trends of which did not exhibit a consistent pattern. UFPs, NOx, EC, and OC were positively correlated, while O3 had a negative correlation, especially with NOx. Our analysis discerned two distinct subperiods in pollutant trends: 2007-2015 and 2016-2022. For example, there was an overall decrease in the PNC of UFPs at an annual rate of -850.09 particles/cm3/year. This rate was more pronounced during the first sub-period (2007-2015) at -1814.9 particles/cm3/year and then slowed to -227.21 particles/cm3/year in the second sub-period (2016-2023). The first sub-period (2007-2015) significantly influenced pollutant level changes, exhibiting more pronounced and statistically significant changes than the second sub-period (2016-2022). Since 2016, almost all primary pollutants have stabilized, indicating a reduced impact of current regulations, and emphasizing the need for stricter standards. In addition, the study included an analysis of Vehicle Miles Traveled (VMT) trends from 2007 to 2022 within the Los Angeles Basin. Despite the general increase in VMT, current regulations and cleaner technologies seem to have successfully mitigated the potential increase in increase in PNC. Overall, while a decline in UFPs and co-pollutant levels was observed, the apparent stabilization of these levels underscores the need for more stringent regulatory measures and advanced emission standards.
Collapse
Affiliation(s)
- Mohammad Mahdi Badami
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Ramin Tohidi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| |
Collapse
|
17
|
Monforti-Ferrario F, Crippa M, Pisoni E. Addressing the different paces of climate and air quality combustion emissions across the world. iScience 2024; 27:108686. [PMID: 38188523 PMCID: PMC10770704 DOI: 10.1016/j.isci.2023.108686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Greenhouse gases (GHG) and air pollutants (AP) share several anthropic sources but evolve differently in time across the various regions of the globe. Fossil and biological fuel combustion is by far the single process producing the highest amounts of both types of compounds. We have analyzed the paces of change of both GHG and AP emissions across the world and in some selected highly emitting regions using purposely designed indicators. We have observed that, overall, combustion processes are generally producing a lower amount of pollutants per unit of GHG emitted in 2018 than in 1970, with the noticeable exception of ammonia emissions in transport. Nevertheless, comparing countries at different development levels, evidence of possible further improvement clearly emerges, depending on the technological evolution of the most important emitting sectors and on the implementation of appropriate control measures and policies.
Collapse
Affiliation(s)
| | - Monica Crippa
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | - Enrico Pisoni
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| |
Collapse
|
18
|
Nair AA, Lin S, Luo G, Ryan I, Qi Q, Deng X, Yu F. Environmental exposure disparities in ultrafine particles and PM 2.5 by urbanicity and socio-demographics in New York state, 2013-2020. ENVIRONMENTAL RESEARCH 2023; 239:117246. [PMID: 37806474 DOI: 10.1016/j.envres.2023.117246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND The spatiotemporal and demographic disparities in exposure to ultrafine particles (UFP; number concentrations of particulate matter (PM) with diameter ≤0.1 μm), a key subcomponent of fine aerosols (PM2.5; mass concentrations of PM ≤ 2.5 μm), have not been well studied. OBJECTIVE To quantify and compare the aerosol pollutant exposure disparities for UFP and PM2.5 by socio-demographic factors in New York State (NYS). METHODS Ambient atmospheric UFP and PM2.5 were quantified using a global three-dimensional model of chemical transport with state-of-the-science aerosol microphysical processes validated extensively with observations. We matched these to U.S. census demographic data for varied spatial scales (state, county, county subdivision) and derived population-weighted aerosol exposure estimates. Aerosol exposure disparities for each demographic and socioeconomic (SES) indicator, with a focus on race-ethnicity and income, were quantified for the period 2013-2020. RESULTS The average NYS resident was exposed to 4451 #·cm-3 UFP and 7.87 μg·m-3 PM2.5 in 2013-2020, but minority race-ethnicity groups were invariably exposed to greater daily aerosol pollution (UFP: +75.0% & PM2.5: +16.2%). UFP has increased since 2017 and is temporally and seasonally out-of-phase with PM2.5. Race-ethnicity exposure disparities for PM2.5 have declined over time; by -6% from 2013 to 2017 and plateaued thereafter despite its decreasing concentrations. In contrast, these disparities have increased (+12.5-13.5%) for UFP. The aerosol pollution exposure disparities were the highest for low-income minorities and were more amplified for UFP than PM2.5. DISCUSSION: We identified large disparities in aerosol pollution exposure by urbanization level and socio-demographics in NYS residents. Jurisdictions with higher proportions of race-ethnicity minorities, low-income residents, and greater urbanization were disproportionately exposed to higher concentrations of UFP and PM2.5 than other NYS residents. These race-ethnicity exposure disparities were much larger, more disproportionate, and unabating over time for UFP compared to PM2.5 across various income strata and levels of urbanicity.
Collapse
Affiliation(s)
- Arshad Arjunan Nair
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY 12226, USA.
| | - Shao Lin
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY 12144, USA; Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Gan Luo
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY 12226, USA
| | - Ian Ryan
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Quan Qi
- Department of Economics, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Xinlei Deng
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Fangqun Yu
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY 12226, USA.
| |
Collapse
|
19
|
Lepistö T, Lintusaari H, Oudin A, Barreira LMF, Niemi JV, Karjalainen P, Salo L, Silvonen V, Markkula L, Hoivala J, Marjanen P, Martikainen S, Aurela M, Reyes FR, Oyola P, Kuuluvainen H, Manninen HE, Schins RPF, Vojtisek-Lom M, Ondracek J, Topinka J, Timonen H, Jalava P, Saarikoski S, Rönkkö T. Particle lung deposited surface area (LDSA al) size distributions in different urban environments and geographical regions: Towards understanding of the PM 2.5 dose-response. ENVIRONMENT INTERNATIONAL 2023; 180:108224. [PMID: 37757619 DOI: 10.1016/j.envint.2023.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Recent studies indicate that monitoring only fine particulate matter (PM2.5) may not be enough to understand and tackle the health risk caused by particulate pollution. Health effects per unit PM2.5 seem to increase in countries with low PM2.5, but also near local pollution sources (e.g., traffic) within cities. The aim of this study is to understand the differences in the characteristics of lung-depositing particles in different geographical regions and urban environments. Particle lung deposited surface area (LDSAal) concentrations and size distributions, along with PM2.5, were compared with ambient measurement data from Finland, Germany, Czechia, Chile, and India, covering traffic sites, residential areas, airports, shipping, and industrial sites. In Finland (low PM2.5), LDSAal size distributions depended significantly on the urban environment and were mainly attributable to ultrafine particles (<100 nm). In Central Europe (moderate PM2.5), LDSAal was also dependent on the urban environment, but furthermore heavily influenced by the regional aerosol. In Chile and India (high PM2.5), LDSAal was mostly contributed by the regional aerosol despite that the measurements were done at busy traffic sites. The results indicate that the characteristics of lung-depositing particles vary significantly both within cities and between geographical regions. In addition, ratio between LDSAal and PM2.5 depended notably on the environment and the country, suggesting that LDSAal exposure per unit PM2.5 may be multiple times higher in areas having low PM2.5 compared to areas with continuously high PM2.5. These findings may partly explain why PM2.5 seems more toxic near local pollution sources and in areas with low PM2.5. Furthermore, performance of a typical sensor based LDSAal measurement is discussed and a new LDSAal2.5 notation indicating deposition region and particle size range is introduced. Overall, the study emphasizes the need for country-specific emission mitigation strategies, and the potential of LDSAal concentration as a health-relevant pollution metric.
Collapse
Affiliation(s)
- Teemu Lepistö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland.
| | - Henna Lintusaari
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Anna Oudin
- Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Sustainable Health, Sweden; Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Luis M F Barreira
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki 00101, Finland
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority HSY, Helsinki 00066, Finland
| | - Panu Karjalainen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Laura Salo
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Ville Silvonen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Lassi Markkula
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Jussi Hoivala
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Petteri Marjanen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Sampsa Martikainen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Minna Aurela
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki 00101, Finland
| | | | | | - Heino Kuuluvainen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Hanna E Manninen
- Helsinki Region Environmental Services Authority HSY, Helsinki 00066, Finland
| | - Roel P F Schins
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Michal Vojtisek-Lom
- Centre of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague 160 00, Czechia
| | - Jakub Ondracek
- Laboratory of Aerosol Chemistry and Physics, ICPF CAS, Prague 165 00, Czechia
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, 142 20 Prague, Czechia
| | - Hilkka Timonen
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki 00101, Finland
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Sanna Saarikoski
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki 00101, Finland
| | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| |
Collapse
|
20
|
Schwarz M, Schneider A, Cyrys J, Bastian S, Breitner S, Peters A. Impact of ultrafine particles and total particle number concentration on five cause-specific hospital admission endpoints in three German cities. ENVIRONMENT INTERNATIONAL 2023; 178:108032. [PMID: 37352580 DOI: 10.1016/j.envint.2023.108032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
INTRODUCTION Numerous studies have shown associations between daily concentrations of fine particles (e.g., particulate matter with an aerodynamic diameter ≤2.5 µm; PM2.5) and morbidity. However, evidence for ultrafine particles (UFP; particles with an aerodynamic diameter of 10-100 nm) remains conflicting. Therefore, we aimed to examine the short-term associations of UFP with five cause-specific hospital admission endpoints for Leipzig, Dresden, and Augsburg, Germany. MATERIAL AND METHODS We obtained daily counts of (cause-specific) cardiorespiratory hospital admissions between 2010 and 2017. Daily average concentrations of UFP, total particle number (PNC; 10-800 nm), and black carbon (BC) were measured at six sites; PM2.5 and nitrogen dioxide (NO2) were obtained from monitoring networks. We assessed immediate (lag 0-1), delayed (lag 2-4, lag 5-7), and cumulative (lag 0-7) effects by applying station-specific confounder-adjusted Poisson regression models. We then used a novel multi-level meta-analytical method to obtain pooled risk estimates. Finally, we performed two-pollutant models to investigate interdependencies between pollutants and examined possible effect modification by age, sex, and season. RESULTS UFP showed a delayed (lag 2-4) increase in respiratory hospital admissions of 0.69% [95% confidence interval (CI): -0.28%; 1.67%]. For other hospital admission endpoints, we found only suggestive results. Larger particle size fractions, such as accumulation mode particles (particles with an aerodynamic diameter of 100-800 nm), generally showed stronger effects (respiratory hospital admissions & lag 2-4: 1.55% [95% CI: 0.86%; 2.25%]). PM2.5 showed the most consistent associations for (cardio-)respiratory hospital admissions, whereas NO2 did not show any associations. Two-pollutant models showed independent effects of PM2.5 and BC. Moreover, higher risks have been observed for children. CONCLUSIONS We observed clear associations with PM2.5 but UFP or PNC did not show a clear association across different exposure windows and cause-specific hospital admissions. Further multi-center studies are needed using harmonized UFP measurements to draw definite conclusions on the health effects of UFP.
Collapse
Affiliation(s)
- Maximilian Schwarz
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Josef Cyrys
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Susanne Bastian
- Saxon State Office for Environment, Agriculture and Geology (LfULG), Dresden, Germany
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
21
|
Olin M, Oikarinen H, Marjanen P, Mikkonen S, Karjalainen P. High Particle Number Emissions Determined with Robust Regression Plume Analysis (RRPA) from Hundreds of Vehicle Chases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8911-8920. [PMID: 37282503 PMCID: PMC10286313 DOI: 10.1021/acs.est.2c08198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
Particle number emission factors were determined for hundreds of individual diesel and gasoline vehicles in their real operation on Finnish highways and regional roads in 2020 with one-by-one chase measurements and Robust Regression Plume Analysis (RRPA). RRPA is a rapid way to analyze data from a large number of vehicle chases automatically. The particle number emission factors were determined for four ranges of particle diameters (>1.3, > 2.5, > 10, and >23 nm). The emission factors for most of the measured vehicles were observed to significantly exceed the non-volatile particle number limits used in the most recent European emission regulation levels, for both light-duty and heavy-duty vehicles. Additionally, most of the newest vehicles (covering regulation levels up to Euro 6), for which the particle number emission regulations (non-volatile >23 nm particles) apply, showed emission factors of the >23 nm particles clearly above the regulation limits. Although the experiments included measurements of real-world plume particles (mixture of non-volatile and semi-volatile particles) and not only the non-volatile regulated particles, it is important to note that the emissions of regulated particles were also estimated to exceed the limits, based on non-volatile >23 nm particle fraction from curbside studies. Moreover, the emission factors of the >1.3 nm particles were mostly about an order of magnitude higher compared to the >23 nm particles.
Collapse
Affiliation(s)
- Miska Olin
- Aerosol
Physics Laboratory, Tampere University, FI-33014 Tampere, Finland
| | - Henri Oikarinen
- Department
of Technical Physics, University of Eastern
Finland, FI-70211 Kuopio, Finland
| | - Petteri Marjanen
- Aerosol
Physics Laboratory, Tampere University, FI-33014 Tampere, Finland
| | - Santtu Mikkonen
- Department
of Technical Physics, University of Eastern
Finland, FI-70211 Kuopio, Finland
- Department
of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Panu Karjalainen
- Aerosol
Physics Laboratory, Tampere University, FI-33014 Tampere, Finland
- Institute
for Advanced Study, Tampere University, FI-33014 Tampere, Finland
| |
Collapse
|
22
|
Serafin P, Zaremba M, Sulejczak D, Kleczkowska P. Air Pollution: A Silent Key Driver of Dementia. Biomedicines 2023; 11:biomedicines11051477. [PMID: 37239148 DOI: 10.3390/biomedicines11051477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In 2017, the Lancet Commission on Dementia Prevention, Intervention, and Care included air pollution in its list of potential risk factors for dementia; in 2018, the Lancet Commission on Pollution concluded that the evidence for a causal relationship between fine particulate matter (PM) and dementia is encouraging. However, few interventions exist to delay or prevent the onset of dementia. Air quality data are becoming increasingly available, and the science underlying the associated health effects is also evolving rapidly. Recent interest in this area has led to the publication of population-based cohort studies, but these studies have used different approaches to identify cases of dementia. The purpose of this article is to review recent evidence describing the association between exposure to air pollution and dementia with special emphasis on fine particulate matter of 2.5 microns or less. We also summarize here the proposed detailed mechanisms by which air pollutants reach the brain and activate the innate immune response. In addition, the article also provides a short overview of existing limitations in the treatment of dementia.
Collapse
Affiliation(s)
- Pawel Serafin
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Malgorzata Zaremba
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research (CBP), Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| | - Patrycja Kleczkowska
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Maria Sklodowska-Curie, Medical Academy in Warsaw, Solidarnosci 12 Str., 03-411 Warsaw, Poland
| |
Collapse
|
23
|
Schwarz M, Schneider A, Cyrys J, Bastian S, Breitner S, Peters A. Impact of Ambient Ultrafine Particles on Cause-Specific Mortality in Three German Cities. Am J Respir Crit Care Med 2023; 207:1334-1344. [PMID: 36877186 PMCID: PMC10595437 DOI: 10.1164/rccm.202209-1837oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023] Open
Abstract
Rationale: Exposure to ambient air pollution has been associated with adverse effects on morbidity and mortality. However, the evidence for ultrafine particles (UFPs; 10-100 nm) based on epidemiological studies remains scarce and inconsistent. Objectives: We examined associations between short-term exposures to UFPs and total particle number concentrations (PNCs; 10-800 nm) and cause-specific mortality in three German cities: Dresden, Leipzig, and Augsburg. Methods: We obtained daily counts of natural, cardiovascular, and respiratory mortality between 2010 and 2017. UFPs and PNCs were measured at six sites, and measurements of fine particulate matter (PM2.5; ⩽2.5 μm in aerodynamic diameter) and nitrogen dioxide were collected from routine monitoring. We applied station-specific confounder-adjusted Poisson regression models. We investigated air pollutant effects at aggregated lags (0-1, 2-4, 5-7, and 0-7 d after UFP exposure) and used a novel multilevel meta-analytical method to pool the results. Additionally, we assessed interdependencies between pollutants using two-pollutant models. Measurements and Main Results: For respiratory mortality, we found a delayed increase in relative risk of 4.46% (95% confidence interval, 1.52 to 7.48%) per 3,223-particles/cm3 increment 5-7 days after UFP exposure. Effects for PNCs showed smaller but comparable estimates consistent with the observation that the smallest UFP fractions showed the largest effects. No clear associations were found for cardiovascular or natural mortality. UFP effects were independent of PM2.5 in two-pollutant models. Conclusions: We found delayed effects for respiratory mortality within 1 week after exposure to UFPs and PNCs but no associations for natural or cardiovascular mortality. This finding adds to the evidence on the independent health effects of UFPs.
Collapse
Affiliation(s)
- Maximilian Schwarz
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Josef Cyrys
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne Bastian
- Saxon State Office for Environment, Agriculture and Geology, Dresden, Germany
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Jung CR, Chen WT, Young LH, Hsiao TC. A hybrid model for estimating the number concentration of ultrafine particles based on machine learning algorithms in central Taiwan. ENVIRONMENT INTERNATIONAL 2023; 175:107937. [PMID: 37088007 DOI: 10.1016/j.envint.2023.107937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Modeling is a cost-effective measure to estimate ultrafine particle (UFP) levels. Previous UFP estimates generally relied on land-use regression with insufficient temporal resolution. We carried out in-situ measurements for UFP in central Taiwan and developed a model incorporating satellite-based measurements, meteorological variables, and land-use data to estimate daily UFP levels at a 1-km resolution. Two sampling campaigns were conducted for measuring hourly UFP concentrations at six sites between 2008-2010 and 2017-2021, respectively, using scanning mobility particle sizers. Three machine learning algorithms, namely random forest, eXtreme gradient boosting (XGBoost), and deep neural network, were used to develop UFP estimation models. The performances were evaluated with a 10-fold cross-validation, temporal, and spatial validation. A total of 1,022 effective sampling days were conducted. The XGBoost model had the best performance with a training coefficient of determination (R2) of 0.99 [normalized root mean square error (nRMSE): 6.52%] and a cross-validation R2 of 0.78 (nRMSE: 31.0%). The ten most important variables were surface pressure, distance to the nearest road, temperature, calendar year, day of the year, NO2, meridional wind, the total length of roads, PM2.5, and zonal wind. The UFP levels were elevated along the main roads across different seasons, suggesting that traffic emission is an important contributor to UFP. This hybrid model outperformed prior land use regression models and thus can provide more accurate estimates of UFP for epidemiological studies.
Collapse
Affiliation(s)
- Chau-Ren Jung
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan; Japan Environment and Children's Study Programme Office, Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan.
| | - Wei-Ting Chen
- Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
| | - Li-Hao Young
- Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
Wu J, Yang Y, Tou F, Yan X, Dai S, Hower JC, Saikia BK, Kersten M, Hochella MF. Combustion conditions and feed coals regulating the Fe- and Ti-containing nanoparticles in various coal fly ash. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130482. [PMID: 36473256 DOI: 10.1016/j.jhazmat.2022.130482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Quantitative characteristics and sizes of nanoparticles (NPs) in coal fly ash (CFA) produced in coal-fired power plants as a function of coal type and plant design will help reveal the NP emission likelihood and their environmental implications. However, little is known about how combustion conditions and types of coal regulate the NP abundance in CFAs. In this study, based on single particle (SP)-ICP-MS technology, particle number concentrations (PNCs) and sizes of Fe- and Ti-containing NPs in CFAs were determined for samples collected from power plants of different designs and burning different types of coal. The PNCs of Fe- and Ti-containing NPs in all CFAs measured were in the range of 1.3 × 107 - 3.4 × 108 and 6.8 × 106 - 2.2 × 108 particles/mg, with the average particle sizes of 111 nm and 87 nm, respectively. The highest Fe-NP PNCs likely relate to the highest contents of Fe and pyrite in the feed coal. In addition, high TOC in CFAs are associated with metal-containing NPs, resulting in elevated abundances of these NPs with relatively large sizes. Moreover, elevated PNCs of NPs were found in CFAs produced by coal-fired power plants burning low-rank coals and with small installed capacity (especially those under 100-MW units). Compared to cyclone filters, ESPs and FFs with higher removal efficiency typically retain more Fe-/Ti- containing NPs with smaller sizes. Based on a structural equation (SE) model, raw coal properties (coal rank and Fe/Ti content), boiler types, and efficiency of particulate emission control devices likely indirectly affect PNCs of Fe- and Ti-containing NPs by influencing TOC contents and their corresponding metal concentrations of CFAs. This study provides the first analytic and comprehensive information concerning the direct and indirect regulating factors on NPs in various CFAs.
Collapse
Affiliation(s)
- Jiayuan Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| | - Feiyun Tou
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoyun Yan
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China; College of Geoscience and Survey Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Shifeng Dai
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China; College of Geoscience and Survey Engineering, China University of Mining and Technology, Beijing 100083, China
| | - James C Hower
- Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511, United States; Department of Earth & Environmental Sciences, University of Kentucky, Lexington, KY 40506, United States
| | - Binoy K Saikia
- Coal & Energy Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research, Jorhat 785006, India
| | - Michael Kersten
- Geosciences Institute, Johannes Gutenberg-University, J.J. Becherweg 21, Mainz D-55099, Germany
| | - Michael F Hochella
- Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, United States; Earth Systems Science Division, Energy andEnvironment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
26
|
Pradhan B, Jayaratne R, Thompson H, Buonanno G, Mazaheri M, Nyarku M, Lin W, Pereira ML, Cyrys J, Peters A, Morawska L. Utility of outdoor central site monitoring in assessing exposure of school children to ultrafine particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160162. [PMID: 36379336 DOI: 10.1016/j.scitotenv.2022.160162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Epidemiological studies investigating the association between daily particle exposure and health effects are frequently based on a single monitoring site located in an urban background. Using a central site in epidemiological time-series studies has been established based on the premises of low spatial variability of particles within the areas of interest and hence the adequacy of the central sites to monitor the exposure. This is true to a large extent in relation to larger particles (PM2.5, PM10) that are typically monitored and regulated. However, the distribution of ultrafine particles (UFP), which in cities predominantly originate from traffic, is heterogeneous. With increasing pressure to improve the epidemiology of UFP, an important question to ask is, whether central site monitoring is representative of community exposure to this size fraction of particulate matter; addressing this question is the aim of this paper. To achieve this aim, we measured personal exposure to UFP, expressed as particle number concentration (PNC), using Philips Aerasense Nanotracers (NT) carried by the participants of the study, and condensation particle counters (CPC) or scanning mobility particle sizers (SMPS) at central fixed-site monitoring stations. The measurements were conducted at three locations in Brisbane (Australia), Cassino (Italy) and Accra (Ghana). We then used paired t-tests to compare the average personal and average fixed-site PNC measured over the same 24-h, and hourly, periods. We found that, at all three locations, the 24-h average fixed-site PNC was no different to the personal PNC, when averaged over the study period and all the participants. However, the corresponding hourly averages were significantly different at certain times of the day. These were generally times spent commuting and during cooking and eating at home. Our analysis of the data obtained in Brisbane, showed that maximum personal exposure occurred in the home microenvironment during morning breakfast and evening dinner time. The main source of PNC for personal exposure was from the home-microenvironment. We conclude that the 24-h average PNC from the central-site can be used to estimate the 24-h average personal exposure for a community. However, the hourly average PNC from the central site cannot consistently be used to estimate hourly average personal exposure, mainly because they are affected by very different sources.
Collapse
Affiliation(s)
- Basant Pradhan
- International Laboratory for Air Quality and Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Rohan Jayaratne
- International Laboratory for Air Quality and Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Helen Thompson
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - Mandana Mazaheri
- South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | - Mawutorli Nyarku
- School of Population Health, Faculty of Health Sciences, Curtin University, Western Australia, Australia
| | - Weiwei Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Marcelo Luiz Pereira
- Federal Institute of Education, Science and Technology of Santa Catarina, Department of Refrigeration and Air Conditioning, Brazil
| | - Josef Cyrys
- Institute of Epidemiology (EPI), Helmholtz Zentrum Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology (EPI), Helmholtz Zentrum Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology (QUT), Brisbane, Australia; Global Centre for Clean Air Research, Department of Civil and Environmental Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, United Kingdom.
| |
Collapse
|
27
|
Trechera P, Garcia-Marlès M, Liu X, Reche C, Pérez N, Savadkoohi M, Beddows D, Salma I, Vörösmarty M, Casans A, Casquero-Vera JA, Hueglin C, Marchand N, Chazeau B, Gille G, Kalkavouras P, Mihalopoulos N, Ondracek J, Zikova N, Niemi JV, Manninen HE, Green DC, Tremper AH, Norman M, Vratolis S, Eleftheriadis K, Gómez-Moreno FJ, Alonso-Blanco E, Gerwig H, Wiedensohler A, Weinhold K, Merkel M, Bastian S, Petit JE, Favez O, Crumeyrolle S, Ferlay N, Martins Dos Santos S, Putaud JP, Timonen H, Lampilahti J, Asbach C, Wolf C, Kaminski H, Altug H, Hoffmann B, Rich DQ, Pandolfi M, Harrison RM, Hopke PK, Petäjä T, Alastuey A, Querol X. Phenomenology of ultrafine particle concentrations and size distribution across urban Europe. ENVIRONMENT INTERNATIONAL 2023; 172:107744. [PMID: 36696793 DOI: 10.1016/j.envint.2023.107744] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The 2017-2019 hourly particle number size distributions (PNSD) from 26 sites in Europe and 1 in the US were evaluated focusing on 16 urban background (UB) and 6 traffic (TR) sites in the framework of Research Infrastructures services reinforcing air quality monitoring capacities in European URBAN & industrial areaS (RI-URBANS) project. The main objective was to describe the phenomenology of urban ultrafine particles (UFP) in Europe with a significant air quality focus. The varying lower size detection limits made it difficult to compare PN concentrations (PNC), particularly PN10-25, from different cities. PNCs follow a TR > UB > Suburban (SUB) order. PNC and Black Carbon (BC) progressively increase from Northern Europe to Southern Europe and from Western to Eastern Europe. At the UB sites, typical traffic rush hour PNC peaks are evident, many also showing midday-morning PNC peaks anti-correlated with BC. These peaks result from increased PN10-25, suggesting significant PNC contributions from nucleation, fumigation and shipping. Site types to be identified by daily and seasonal PNC and BC patterns are: (i) PNC mainly driven by traffic emissions, with marked correlations with BC on different time scales; (ii) marked midday/morning PNC peaks and a seasonal anti-correlation with PNC/BC; (iii) both traffic peaks and midday peaks without marked seasonal patterns. Groups (ii) and (iii) included cities with high insolation. PNC, especially PN25-800, was positively correlated with BC, NO2, CO and PM for several sites. The variable correlation of PNSD with different urban pollutants demonstrates that these do not reflect the variability of UFP in urban environments. Specific monitoring of PNSD is needed if nanoparticles and their associated health impacts are to be assessed. Implementation of the CEN-ACTRIS recommendations for PNSD measurements would provide comparable measurements, and measurements of <10 nm PNC are needed for full evaluation of the health effects of this size fraction.
Collapse
Affiliation(s)
- Pedro Trechera
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| | - Meritxell Garcia-Marlès
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain; Department of Applied Physics-Meteorology, University of Barcelona, Barcelona, Spain.
| | - Xiansheng Liu
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Noemí Pérez
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Marjan Savadkoohi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain; Department of Natural Resources & Environment, Industrial & TIC Engineering (EMIT-UPC), Manresa, Spain
| | - David Beddows
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Imre Salma
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Máté Vörösmarty
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Andrea Casans
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Granada, Spain
| | | | - Christoph Hueglin
- Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), Duebendorf, Switzerland
| | | | - Benjamin Chazeau
- Aix Marseille Univ., CNRS, LCE, Marseille, France; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Grégory Gille
- AtmoSud, Regional Network for Air Quality Monitoring of Provence-Alpes-Côte-d'Azur, Marseille, France
| | - Panayiotis Kalkavouras
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece; Institute for Environmental Research & Sustainable Development, National Observatory of Athens, Athens, Greece
| | - Nikos Mihalopoulos
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece; Institute for Environmental Research & Sustainable Development, National Observatory of Athens, Athens, Greece
| | - Jakub Ondracek
- Laboratory of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojova, Prague, Czech Republic
| | - Nadia Zikova
- Laboratory of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojova, Prague, Czech Republic
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority (HSY), Helsinki, Finland
| | - Hanna E Manninen
- Helsinki Region Environmental Services Authority (HSY), Helsinki, Finland
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK; NIHR HPRU in Environmental Exposures and Health, Imperial College London, UK
| | - Anja H Tremper
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK
| | - Michael Norman
- Environment and Health Administration, SLB-analys, Stockholm, Sweden
| | - Stergios Vratolis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 1Athens, Greece
| | - Konstantinos Eleftheriadis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 1Athens, Greece
| | | | | | - Holger Gerwig
- German Environment Agency (UBA), Dessau-Roßlau, Germany
| | | | - Kay Weinhold
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Maik Merkel
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Susanne Bastian
- Saxon State Office for Environment, Agriculture and Geology (LfULG), Dresden, Germany
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/Orme des Merisiers, Gif-sur-Yvette, France
| | - Olivier Favez
- Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | - Suzanne Crumeyrolle
- University Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), Lille, France
| | - Nicolas Ferlay
- University Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), Lille, France
| | | | | | - Hilkka Timonen
- Finnish Meteorological Institute, Atmospheric Composition Research, Helsinki, Finland
| | - Janne Lampilahti
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Christof Asbach
- Air Quality & Sustainable Nanotechnology to Filtration & Aerosol Research, Institute of Energy and Environmental technology e.V. (IUTA), Duisburg, Germany
| | - Carmen Wolf
- Air Quality & Sustainable Nanotechnology to Filtration & Aerosol Research, Institute of Energy and Environmental technology e.V. (IUTA), Duisburg, Germany
| | - Heinz Kaminski
- Air Quality & Sustainable Nanotechnology to Filtration & Aerosol Research, Institute of Energy and Environmental technology e.V. (IUTA), Duisburg, Germany
| | - Hicran Altug
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Marco Pandolfi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Roy M Harrison
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham, Edgbaston, Birmingham, United Kingdom; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| |
Collapse
|
28
|
Calderón-Garcidueñas L, Kulesza R, Greenough GP, García-Rojas E, Revueltas-Ficachi P, Rico-Villanueva A, Flores-Vázquez JO, Brito-Aguilar R, Ramírez-Sánchez S, Vacaseydel-Aceves N, Cortes-Flores AP, Mansour Y, Torres-Jardón R, Villarreal-Ríos R, Koseoglu E, Stommel EW, Mukherjee PS. Fall Risk, Sleep Behavior, and Sleep-Related Movement Disorders in Young Urbanites Exposed to Air Pollution. J Alzheimers Dis 2023; 91:847-862. [PMID: 36502327 DOI: 10.3233/jad-220850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Quadruple aberrant hyperphosphorylated tau, amyloid-β, α-synuclein, and TDP-43 pathology had been documented in 202/203 forensic autopsies in Metropolitan Mexico City ≤40-year-olds with high exposures to ultrafine particulate matter and engineered nanoparticles. Cognition deficits, gait, equilibrium abnormalities, and MRI frontal, temporal, caudate, and cerebellar atrophy are documented in young adults. OBJECTIVE This study aimed to identify an association between falls, probable Rapid Eye Movement Sleep Behavior Disorder (pRBD), restless leg syndrome (RLS), and insomnia in 2,466 Mexican, college-educated volunteers (32.5±12.4 years). METHODS The anonymous, online study applied the pRBD and RLS Single-Questions and self-reported night-time sleep duration, excessive daytime sleepiness, insomnia, and falls. RESULTS Fall risk was strongly associated with pRBD and RLS. Subjects who fell at least once in the last year have an OR = 1.8137 [1.5352, 2.1426] of answering yes to pRBD and/or RLS questions, documented in 29% and 24% of volunteers, respectively. Subjects fell mostly outdoors (12:01 pm to 6:00 pm), 43% complained of early wake up hours, and 35% complained of sleep onset insomnia (EOI). EOI individuals have an OR of 2.5971 [2.1408, 3.1506] of answering yes to the RLS question. CONCLUSION There is a robust association between falls, pRBD, and RLS, strongly suggesting misfolded proteinopathies involving critical brainstem arousal and motor hubs might play a crucial role. Nanoparticles are likely a significant risk for falls, sleep disorders, insomnia, and neurodegenerative lethal diseases, thus characterizing air particulate pollutants' chemical composition, emission sources, and cumulative exposure concentrations are strongly recommended.
Collapse
Affiliation(s)
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Glen P Greenough
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover NH, USA
| | | | | | | | | | | | | | | | | | - Yusra Mansour
- Department of Otolaryngology -Head and Neck Surgery, Henry Ford Macomb Hospital, Clinton Township, MI, USA
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional, Autónoma de México, México
| | | | - Emel Koseoglu
- Neurology Department, Erciyes University, Kayseri, Turkey
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover NH, USA
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
29
|
Abstract
Air pollution is a complex mixture of gases and particulate matter, with adsorbed organic and inorganic contaminants, to which exposure is lifelong. Epidemiological studies increasingly associate air pollution with multiple neurodevelopmental disorders and neurodegenerative diseases, findings supported by experimental animal models. This breadth of neurotoxicity across these central nervous system diseases and disorders likely reflects shared vulnerability of their inflammatory and oxidative stress-based mechanisms and a corresponding ability to produce brain metal dyshomeo-stasis. Future research to define the responsible contaminants of air pollution underlying this neurotoxicity is critical to understanding mechanisms of these diseases and disorders and protecting public health.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| | - Alyssa Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| |
Collapse
|
30
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y, Wang X. The pathophysiological and molecular mechanisms of atmospheric PM 2.5 affecting cardiovascular health: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114444. [PMID: 38321663 DOI: 10.1016/j.ecoenv.2022.114444] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5, with aerodynamic diameter less than 2.5 µm) is a leading environmental risk factor for global cardiovascular health concern. OBJECTIVE To provide a roadmap for those new to this field, we reviewed the new insights into the pathophysiological and cellular/molecular mechanisms of PM2.5 responsible for cardiovascular health. MAIN FINDINGS PM2.5 is able to disrupt multiple physiological barriers integrity and translocate into the systemic circulation and get access to a range of secondary target organs. An ever-growing body of epidemiological and controlled exposure studies has evidenced a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. A variety of cellular and molecular biology mechanisms responsible for the detrimental cardiovascular outcomes attributable to PM2.5 exposure have been described, including metabolic activation, oxidative stress, genotoxicity, inflammation, dysregulation of Ca2+ signaling, disturbance of autophagy, and induction of apoptosis, by which PM2.5 exposure impacts the functions and fates of multiple target cells in cardiovascular system or related organs and further alters a series of pathophysiological processes, such as cardiac autonomic nervous system imbalance, increasing blood pressure, metabolic disorder, accelerated atherosclerosis and plaque vulnerability, platelet aggregation and thrombosis, and disruption in cardiac structure and function, ultimately leading to cardiovascular events and death. Therein, oxidative stress and inflammation were suggested to play pivotal roles in those pathophysiological processes. CONCLUSION Those biology mechanisms have deepen insights into the etiology, course, prevention and treatment of this public health concern, although the underlying mechanisms have not yet been entirely clarified.
Collapse
Affiliation(s)
- Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ying Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
31
|
Calderón-Garcidueñas L, Torres-Jardón R, Greenough GP, Kulesza R, González-Maciel A, Reynoso-Robles R, García-Alonso G, Chávez-Franco DA, García-Rojas E, Brito-Aguilar R, Silva-Pereyra HG, Ayala A, Stommel EW, Mukherjee PS. Sleep matters: Neurodegeneration spectrum heterogeneity, combustion and friction ultrafine particles, industrial nanoparticle pollution, and sleep disorders-Denial is not an option. Front Neurol 2023; 14:1117695. [PMID: 36923490 PMCID: PMC10010440 DOI: 10.3389/fneur.2023.1117695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023] Open
Abstract
Sustained exposures to ubiquitous outdoor/indoor fine particulate matter (PM2.5), including combustion and friction ultrafine PM (UFPM) and industrial nanoparticles (NPs) starting in utero, are linked to early pediatric and young adulthood aberrant neural protein accumulation, including hyperphosphorylated tau (p-tau), beta-amyloid (Aβ1 - 42), α-synuclein (α syn) and TAR DNA-binding protein 43 (TDP-43), hallmarks of Alzheimer's (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). UFPM from anthropogenic and natural sources and NPs enter the brain through the nasal/olfactory pathway, lung, gastrointestinal (GI) tract, skin, and placental barriers. On a global scale, the most important sources of outdoor UFPM are motor traffic emissions. This study focuses on the neuropathology heterogeneity and overlap of AD, PD, FTLD, and ALS in older adults, their similarities with the neuropathology of young, highly exposed urbanites, and their strong link with sleep disorders. Critical information includes how this UFPM and NPs cross all biological barriers, interact with brain soluble proteins and key organelles, and result in the oxidative, endoplasmic reticulum, and mitochondrial stress, neuroinflammation, DNA damage, protein aggregation and misfolding, and faulty complex protein quality control. The brain toxicity of UFPM and NPs makes them powerful candidates for early development and progression of fatal common neurodegenerative diseases, all having sleep disturbances. A detailed residential history, proximity to high-traffic roads, occupational histories, exposures to high-emission sources (i.e., factories, burning pits, forest fires, and airports), indoor PM sources (tobacco, wood burning in winter, cooking fumes, and microplastics in house dust), and consumption of industrial NPs, along with neurocognitive and neuropsychiatric histories, are critical. Environmental pollution is a ubiquitous, early, and cumulative risk factor for neurodegeneration and sleep disorders. Prevention of deadly neurological diseases associated with air pollution should be a public health priority.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT, United States.,Universidad del Valle de México, Mexico City, Mexico
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Glen P Greenough
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Randy Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | | | | | | | | | | | | | - Héctor G Silva-Pereyra
- Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosi, Mexico
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA, United States.,Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, United States
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
32
|
Eckard ML, Marvin E, Conrad K, Oberdörster G, Sobolewski M, Cory-Slechta DA. Neonatal exposure to ultrafine iron but not combined iron and sulfur aerosols recapitulates air pollution-induced impulsivity in mice. Neurotoxicology 2023; 94:191-205. [PMID: 36509212 PMCID: PMC9839645 DOI: 10.1016/j.neuro.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Air pollution (AP) is becoming recognized as a major threat to neurological health across the lifespan with increased risk of both neurodevelopmental and neurodegenerative disorders. AP is a complex mixture of gases and particulate matter, with adsorbed contaminants including metals and trace elements, which may differentially contribute to its neurodevelopmental impacts. Iron (Fe) is one of the most abundant metals found in AP, and Fe concentrations may drive some behavioral deficits observed in children. Furthermore, brains of neonate mice exposed to concentrated ambient ultrafine particulate matter (UFP) show significant brain accumulation of Fe and sulfur (S) supporting the hypothesis that AP exposure may lead to brain metal dyshomeostasis. The current study determined the extent to which behavioral effects of UFP, namely memory deficits and impulsive-like behavior, could be recapitulated with exposure to Fe aerosols with or without concomitant SO2. Male and female neonate mice were either exposed to filtered air or spark discharge-generated ultrafine Fe particles with or without SO2 gas (n = 12/exposure/sex). Inhalation exposures occurred from postnatal day (PND) 4-7 and 10-13 for 4 hr/day, mirroring our previous UFP exposures. Mice were aged to adulthood prior to behavioral testing. While Fe or Fe + SO2 exposure did not affect gross locomotor behavior, Fe + SO2-exposed females displayed consistent thigmotaxis during locomotor testing. Neither exposure affected novel object memory. Fe or Fe + SO2 exposure produced differential outcomes on a fixed-interval reinforcement schedule with males showing higher (Fe-only) or lower (Fe + SO2) response rates and postreinforcement pauses (PRP) and females showing higher (Fe-only) PRP. Lastly, Fe-exposed, but not Fe + SO2-exposed, males showed increased impulsive-like behavior in tasks requiring response inhibition with no such effects in female mice. These findings suggest that: 1) exposure to realistic concentrations of Fe aerosols can recapitulate behavioral effects of UFP exposure, 2) the presence of SO2 can modulate behavioral effects of Fe inhalation, and 3) brain metal dyshomeostasis may be an important factor in AP neurotoxicity.
Collapse
Affiliation(s)
- M L Eckard
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA; Department of Psychology, Radford University, Radford, VA, USA.
| | - E Marvin
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - K Conrad
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - G Oberdörster
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - M Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - D A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| |
Collapse
|
33
|
Jeong CH, Hilker N, Wang JM, Debosz J, Healy RM, Sofowote U, Munoz T, Herod D, Evans GJ. Characterization of winter air pollutant gradients near a major highway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157818. [PMID: 35940272 DOI: 10.1016/j.scitotenv.2022.157818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/14/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Traffic-related air pollutants (TRAP) including nitric oxide (NO), nitrogen oxide (NOx), carbon monoxide (CO), ultrafine particles (UFP), black carbon (BC), and fine particulate matter (PM2.5) were simultaneously measured at near-road sites located at 10 m (NR10) and 150 m (NR150) from the same side of a busy highway to provide insights into the influence of winter time meteorology on exposure to TRAP near major roads. The spatial variabilities of TRAP were examined for ambient temperatures ranging from -11 °C to +19 °C under downwind, upwind, and stagnant air conditions. The downwind TRAP concentrations at NR10 were higher than the upwind concentrations by a factor of 1.4 for CO to 13 for NO. Despite steep downwind reductions of 38 % to 75 % within 150 m, the downwind concentrations at NR150 were still well above upwind concentrations. Near-road concentrations of NOx and UFP increased as ambient temperatures decreased due to elevated emissions of NOx and UFP from vehicles under colder temperatures. Traffic-related PM2.5 sources were identified using hourly PM2.5 chemical components including organic/inorganic aerosol and trace metals at both sites. The downwind concentrations of primary PM2.5 species related to tailpipe and non-tailpipe emissions at NR10 were substantially higher than the upwind concentrations by a factor of 4 and 32, respectively. Traffic-related PM2.5 sources accounted for almost half of total PM2.5 mass under downwind conditions, leading to a rapid change of PM2.5 chemical composition. Under stagnant air conditions, the concentrations of most TRAP and related PM2.5 including tailpipe emissions, secondary nitrate, and organic aerosol were comparable to, or even greater than, the downwind concentrations under windy conditions, especially at NR150. This study demonstrates that stagnant air conditions further widen the traffic-influenced area and people living near major roadways may experience increased risks from elevated exposure to traffic emissions during cold and stagnant winter conditions.
Collapse
Affiliation(s)
- Cheol-Heon Jeong
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada.
| | - Nathan Hilker
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada
| | - Jon M Wang
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada; Air Monitoring and Transboundary Air Sciences Section, Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Jerzy Debosz
- Air Monitoring and Transboundary Air Sciences Section, Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Robert M Healy
- Air Monitoring and Transboundary Air Sciences Section, Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Uwayemi Sofowote
- Air Monitoring and Transboundary Air Sciences Section, Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Tony Munoz
- Air Monitoring and Transboundary Air Sciences Section, Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Dennis Herod
- Analysis and Air Quality Section, Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Greg J Evans
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Liu J, Banerjee S, Oroumiyeh F, Shen J, Del Rosario I, Lipsitt J, Paulson S, Ritz B, Su J, Weichenthal S, Lakey P, Shiraiwa M, Zhu Y, Jerrett M. Co-kriging with a low-cost sensor network to estimate spatial variation of brake and tire-wear metals and oxidative stress potential in Southern California. ENVIRONMENT INTERNATIONAL 2022; 168:107481. [PMID: 36037546 DOI: 10.1016/j.envint.2022.107481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/22/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Due to regulations and technological advancements reducing tailpipe emissions, an increasing proportion of emissions arise from brake and tire wear particulate matter (PM). PM from these non-tailpipe sources contains heavy metals capable of generating oxidative stress in the lung. Although important, these particles remain understudied because the high cost of actively collecting filter samples. Improvements in electrical engineering, internet connectivity, and an increased public concern over air pollution have led to a proliferation of dense low-cost air sensor networks such as the PurpleAir monitors, which primarily measure unspeciated fine particulate matter (PM2.5). In this study, we model the concentrations of Ba, Zn, black carbon, reactive oxygen species concentration in the epithelial lining fluid, dithiothreitol (DTT) loss, and OH formation. We use a co-kriging approach, incorporating data from the PurpleAir network as a secondary predictor variable and a land-use regression (LUR) as an external drift. For most pollutant species, co-kriging models produced more accurate predictions than an LUR model, which did not incorporate data from the PurpleAir monitors. This finding suggests that low-cost sensors can enhance predictions of pollutants that are costly to measure extensively in the field.
Collapse
Affiliation(s)
- Jonathan Liu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, United States.
| | - Sudipto Banerjee
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, 650 Charles E Young Dr S, Los Angeles, CA 90095, United States.
| | - Farzan Oroumiyeh
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, United States.
| | - Jiaqi Shen
- Department of Atomospheric and Oceanic Sciences, University of Caifornia Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095, United States.
| | - Irish Del Rosario
- Department of Epidemiology, Jonathan and Karin Fielding School of Public Health, 650 Charles E Young Dr S, Los Angeles, CA 90095, United States.
| | - Jonah Lipsitt
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, United States.
| | - Suzanne Paulson
- Department of Atomospheric and Oceanic Sciences, University of Caifornia Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095, United States.
| | - Beate Ritz
- Department of Epidemiology, Jonathan and Karin Fielding School of Public Health, 650 Charles E Young Dr S, Los Angeles, CA 90095, United States.
| | - Jason Su
- Division of Environmental Health Sciences, School of Public Health, University of California at Berkeley, 2121 Berkeley Way, Berkeley, CA, United States.
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, Faculty of Medicine and Health Sciences, McGill Unviersity, 2001 McGill College, Suite 1200, Montreal, QC H3A 1G1, Canada.
| | - Pascale Lakey
- Deaprtment of Chemistry, University of California, Irvine, Natural Sciences II, 1102, Irvine, CA 92617, United States.
| | - Manabu Shiraiwa
- Deaprtment of Chemistry, University of California, Irvine, Natural Sciences II, 1102, Irvine, CA 92617, United States.
| | - Yifang Zhu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, United States.
| | - Michael Jerrett
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, United States.
| |
Collapse
|
35
|
Pond ZA, Saha PK, Coleman CJ, Presto AA, Robinson AL, Arden Pope Iii C. Mortality risk and long-term exposure to ultrafine particles and primary fine particle components in a national U.S. Cohort. ENVIRONMENT INTERNATIONAL 2022; 167:107439. [PMID: 35933844 DOI: 10.1016/j.envint.2022.107439] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The objective of this study was to estimate all-cause, cardiopulmonary, and cancer mortality associations for long-term exposure to ultrafine particles (UFP) and primary PM2.5 components. We utilized high-resolution, national-scale exposure estimates for UFP (measured as particle number concentration; PNC) and three primary PM2.5 components, namely black carbon (BC), traffic-emitted organic PM2.5 (hereafter, hydrocarbon-like organic aerosols; HOA), and cooking-emitted organic PM2.5 (cooking organic aerosols; COA). Two analytic cohorts were constructed from a nationally representative U.S. health survey. The larger cohort consisted of 617,997 adults with information on a broad set of individual-level risk factors; the smaller cohort was further restricted to those with information on physical activity (n = 396,470). In single-pollutant models, PNC was significantly associated with all-cause (larger cohort HR = 1.03, 95% CI [1.02, 1.04]; smaller cohort HR = 1.02, 95% CI [1.00, 1.04]) and cancer mortality (larger cohort HR = 1.05, 95% CI [1.02, 1.08]; smaller cohort HR = 1.06, 95% CI [1.02, 1.10]). In two-pollutant models, mortality associations varied based on co-pollutant adjustment; PNC mortality associations were generally robust to controlling for PM10-2.5 and SO2, but not PM2.5. In contrast, we found some evidence that the HOA and COA mortality associations are independent of total PM2.5 mass exposure. Nevertheless, PM2.5 mass was the most robust predictor of air pollution related mortality, providing some support for current regulatory policies.
Collapse
Affiliation(s)
- Zachari A Pond
- Department of Agricultural and Resource Economics, University of California Berkeley, Berkeley, CA 94720, USA; Department of Economics, Brigham Young University, Provo, UT 84602, USA
| | - Provat K Saha
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Carver J Coleman
- Department of Economics, Brigham Young University, Provo, UT 84602, USA
| | - Albert A Presto
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Allen L Robinson
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - C Arden Pope Iii
- Department of Economics, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
36
|
Turner AL, Brokamp C, Wolfe C, Reponen T, Ryan PH. Impact of Personal, Subhourly Exposure to Ultrafine Particles on Respiratory Health in Adolescents with Asthma. Ann Am Thorac Soc 2022; 19:1516-1524. [PMID: 35315743 PMCID: PMC9447389 DOI: 10.1513/annalsats.202108-947oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Rationale: Ultrafine particle (UFP; particles <0.1 μm in diameter) concentrations exhibit high spatiotemporal variability; thus, individual-level exposures and health risks are difficult to estimate. Objectives: To determine the effects of recent UFP exposures on respiratory health outcomes in children and to determine if children with asthma are at increased risk. Methods: Personal sampling of UFPs was completed by adolescents in combination with repeated personal spirometry measurements and ecological momentary assessment of respiratory symptoms (wheeze, cough, and/or shortness of breath). We assessed the association between UFP exposures every 30 minutes up to 150 minutes before measuring forced expiratory volume in 1 second (FEV1), peak expiratory flow, and respiratory symptoms using mixed-effects models and interaction with asthma diagnosis. Results: Participants (N = 105; 43% with asthma) completed an average of 11 spirometry measurements and 16 symptom responses throughout sampling. After adjustments (maternal education, physical activity, season, and distance to nearest roadway), a 10-fold increase in UFP exposure was significantly associated with a 0.04-L decrease (95% confidence interval [CI], -0.07 to -0.001) in FEV1 90 minutes later. Asthma status modified this association in which participants with asthma had significantly lower FEV1 values in response to UFP exposures 30 minutes earlier than participants without asthma. We found a significant increase in the odds of reporting a respiratory symptom 30 minutes after increased UFP exposure (odds ratio, 1.8; 95% CI, 1.00 to 3.00). Conclusions: Greater UFP exposure conferred deleterious effects on lung function and respiratory symptoms within 90 minutes of exposure and was more pronounced among participants with asthma.
Collapse
Affiliation(s)
| | - Cole Brokamp
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio; and
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Chris Wolfe
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Tiina Reponen
- Department of Environmental and Public Health Sciences and
| | - Patrick H. Ryan
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio; and
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
37
|
Zhu Y, Sulaymon ID, Xie X, Mao J, Guo S, Hu M, Hu J. Airborne particle number concentrations in China: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119470. [PMID: 35580709 DOI: 10.1016/j.envpol.2022.119470] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Particle number concentration (PNC) is an important parameter for evaluating the environmental health and climate effects of particulate matter (PM). A good understanding of PNC is essential to control atmospheric ultrafine particles (UFP) and protect public health. In this study, we reviewed the PNC studies in the literature aimed to gain a comprehensive understanding about the levels, trends, and sources of PNC in China. The PNC levels at the urban, suburban, rural, remote, and coastal sites in China were 8500-52,200, 8600-30,300, 8600-28,400, 2100-16,100, and 5700-19,600 cm-3, respectively. The wide ranges of PNC indicate significant heterogeneity in the spatial distribution of PNC, but also are partly due to the different measurement techniques deployed in different studies. In general, it still can be concluded that the PNC levels at urban > suburban > rural > coastal > remote sites. Except for Mt. Waliguan (a remote site of 3816 m a.s.l.), other cities had the highest PNC in spring or winter and the lowest in summer or autumn. Long-term changes of PNCs in Beijing and Nanjing indicated that PNCs of Nucleation and Aitken modes had substantially declined following stricter emission controls in recent years, but more frequent new particle formation (NPF) events were observed due to reduction in coagulation sink. Overall, traffic emission was the most dominant source of PNC in more than 94.4% of the selected cities around the world, while combustion2 (the energy production and industry related combustion source), background aerosol, and nucleation sources were also important contributors to PNC. This study provides insights about PNC and its sources around the world, especially in China. A few recommendations were suggested to further improve the understanding of PNC and to develop effective PNC control strategies.
Collapse
Affiliation(s)
- Yanhong Zhu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Ishaq Dimeji Sulaymon
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Xiaodong Xie
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Jianjiong Mao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China.
| |
Collapse
|
38
|
Lu H, Wang G, Guo H. Ambient acidic ultrafine particles in different land-use areas in two representative Chinese cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154774. [PMID: 35339551 DOI: 10.1016/j.scitotenv.2022.154774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/11/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The adverse effects of acidic ultrafine particles (AUFPs) have been widely recognized in scientific communities. However, a handful of studies successfully acquired the concentrations of AUFPs in the atmosphere. To explore the AUFPs pollution, six extensive measurements were for the first time conducted in the roadside, urban and rural areas in Hong Kong, and the urban area in Shanghai between 2017 and 2020. The concentrations of AUFPs and UFPs, and the proportions of AUFPs in UFPs were obtained. The concentration of UFPs was the highest at the roadside site, followed by the urban site and the rural site, while the proportion of AUFPs in UFPs showed a contrary trend. The difference, on one hand, indicated the potential transformation of AUFPs from non-acidic UFPs during the transport and aging of air masses, and on the other hand, suggested the minor contribution of anthropogenic sources to the emission of AUFPs. In addition, the urban area in Hong Kong suffered from heavier pollution of UFPs and AUFPs than that in Shanghai. As for size distribution, the proportion of AUFPs in UFPs peaked in the size range of 35-50 nm and 50-75 nm in roadside and urban area, respectively. In rural area, the peak was observed in the size range of 5-10 nm, which might indicate the stimulation of new particle formation with the AUFPs as seeds. Furthermore, in the urban areas of Hong Kong and Shanghai, no significant difference was found for the geometric mean diameters of UFPs and AUFPs (p > 0.05). At last, the sulfuric acid proxy was positively correlated with the proportions of AUFPs in UFPs but not well correlated with the AUFPs levels. The results suggested the important roles of interaction between sulfuric acid vapor and non-acidic UFPs in AUFPs formation. Due to the significant reduction of sulfur dioxide in China during the last decade, the pollution of AUFPs in urban areas was alleviated.
Collapse
Affiliation(s)
- Haoxian Lu
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Gehui Wang
- School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Hai Guo
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
39
|
Poikkimäki M, Quik JTK, Säämänen A, Dal Maso M. Local Scale Exposure and Fate of Engineered Nanomaterials. TOXICS 2022; 10:toxics10070354. [PMID: 35878259 PMCID: PMC9319542 DOI: 10.3390/toxics10070354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023]
Abstract
Nanotechnology is a growing megatrend in industrial production and innovations. Many applications utilize engineered nanomaterials (ENMs) that are potentially released into the atmospheric environment, e.g., via direct stack emissions from production facilities. Limited information exists on adverse effects such ENM releases may have on human health and the environment. Previous exposure modeling approaches have focused on large regional compartments, into which the released ENMs are evenly mixed. However, due to the localization of the ENM release and removal processes, potentially higher airborne concentrations and deposition fluxes are obtained around the production facilities. Therefore, we compare the ENM concentrations from a dispersion model to those from the uniformly mixed compartment approach. For realistic release scenarios, we based the modeling on the case study measurement data from two TiO2 nanomaterial handling facilities. In addition, we calculated the distances, at which 50% of the ENMs are deposited, serving as a physically relevant metric to separate the local scale from the regional scale, thus indicating the size of the high exposure and risk region near the facility. As a result, we suggest a local scale compartment to be implemented in the multicompartment nanomaterial exposure models. We also present a computational tool for local exposure assessment that could be included to regulatory guidance and existing risk governance networks.
Collapse
Affiliation(s)
- Mikko Poikkimäki
- Occupational Safety, Finnish Institute of Occupational Health, Työterveyslaitos, FI-33032 Tampere, Finland
- Aerosol Physics Laboratory, Physics Unit, Tampere University, FI-33014 Tampere, Finland
| | - Joris T K Quik
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Arto Säämänen
- Occupational Safety, Finnish Institute of Occupational Health, Työterveyslaitos, FI-33032 Tampere, Finland
| | - Miikka Dal Maso
- Aerosol Physics Laboratory, Physics Unit, Tampere University, FI-33014 Tampere, Finland
| |
Collapse
|
40
|
Turner AL, Brokamp C, Wolfe C, Reponen T, Brunst KJ, Ryan PH. Mental and Physical Stress Responses to Personal Ultrafine Particle Exposure in Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127509. [PMID: 35742759 PMCID: PMC9223710 DOI: 10.3390/ijerph19127509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023]
Abstract
Incidence rates of mental health disorders among adolescents is increasing, indicating a strong need for effective prevention efforts at a population level. The etiology of mental health disorders includes genetic, social, and environmental factors. Ultrafine particles (UFPs; particles less than 0.1 μm in diameter) have been shown to exert neurotoxic effects on the brain; however, epidemiologic evidence on the relationship between UFPs and childhood mental health outcomes is unclear. The objective of this study was to determine if exposure to UFPs was associated with symptoms of mental health in adolescents. Adolescents completed personal UFP monitoring for one week as well as a series of validated Patient-Reported Outcomes Measurement Information System (PROMIS) assessments to measure five domains of mental and physical stress symptoms. Multivariable linear regression models were used to estimate the association between PROMIS domain T-scores and median weekly personal UFP exposure with the inclusion of interactions to explore sex differences. We observed that median weekly UFP exposure was significantly associated with physical stress symptoms (β: 5.92 per 10-fold increase in UFPs, 95% CI [0.72, 11.13]) but no other measured domains. Further, we did not find effect modification by sex on any of the PROMIS outcomes. The results of this study indicate UFPs are associated with physical symptoms of stress response among adolescents, potentially contributing to mental health disorders in this population.
Collapse
Affiliation(s)
- Ashley L. Turner
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (C.B.); (C.W.); (P.H.R.)
- Correspondence: ; Tel.: +1-630-306-2259
| | - Cole Brokamp
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (C.B.); (C.W.); (P.H.R.)
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Chris Wolfe
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (C.B.); (C.W.); (P.H.R.)
| | - Tiina Reponen
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA; (T.R.); (K.J.B.)
| | - Kelly J. Brunst
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA; (T.R.); (K.J.B.)
| | - Patrick H. Ryan
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (C.B.); (C.W.); (P.H.R.)
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
41
|
Air Quality Sensor Networks for Evidence-Based Policy Making: Best Practices for Actionable Insights. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(1) Background: This work evaluated the usability of commercial “low-cost” air quality sensor systems to substantiate evidence-based policy making. (2) Methods: Two commercially available sensor systems (Airly, Kunak) were benchmarked at a regulatory air quality monitoring station (AQMS) and subsequently deployed in Kampenhout and Sint-Niklaas (Belgium) to address real-world policy concerns: (a) what is the pollution contribution from road traffic near a school and at a central city square and (b) do local traffic interventions result in quantifiable air quality impacts? (3) Results: The considered sensor systems performed well in terms of data capture, correlation and intra-sensor uncertainty. Their accuracy was improved via local re-calibration, up to data quality levels for indicative measurements as set in the Air Quality Directive (Uexp < 50% for PM and <25% for NO2). A methodological setup was proposed using local background and source locations, allowing for quantification of the (3.1) maximum potential impact of local policy interventions and (3.2) air quality impacts from different traffic interventions with local contribution reductions of up to 89% for NO2 and 60% for NO throughout the considered 3 month monitoring period; (4) Conclusions: Our results indicate that commercial air quality sensor systems are able to accurately quantify air quality impacts from (even short-lived) local traffic measures and contribute to evidence-based policy making under the condition of a proper methodological setup (background normalization) and data quality (recurrent calibration) procedure. The applied methodology and learnings were distilled in a blueprint for air quality sensor networks for replication actions in other cities.
Collapse
|
42
|
Carbon and Trace Element Compositions of Total Suspended Particles (TSP) and Nanoparticles (PM0.1) in Ambient Air of Southern Thailand and Characterization of Their Sources. ATMOSPHERE 2022. [DOI: 10.3390/atmos13040626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The concentration of total suspended particles (TSP) and nanoparticles (PM0.1) over Hat Yai city, Songkhla province, southern Thailand was measured in 2019. Organic carbon (OC) and elemental carbon (EC) were evaluated by carbon aerosol analyzer (IMPROVE-TOR) method. Thirteen trace elements including Al, Ba, K, Cu, Cr, Fe, Mg, Mn, Na, Ni, Ti, Pb, and Zn were evaluated by ICP-OES. Annual average TSP and PM0.1 mass concentrations were determined to be 58.3 ± 7.8 and 10.4 ± 1.2 µg/m3, respectively. The highest levels of PM occurred in the wet season with the corresponding values for the dry seasons being lower. The averaged OC/EC ratio ranged from 3.8–4.2 (TSP) and 2.5–2.7 (PM0.1). The char to soot ratios were constantly less than 1.0 for both TSP and PM0.1, indicating that land transportation is the main emission source. A principal component analysis (PCA) revealed that road transportation, industry, and biomass burning are the key sources of these particles. However, PM arising from Indonesian peatland fires causes an increase in the carbon and trace element concentrations in southern Thailand. The findings make useful information for air quality management and strategies for controlling this problem, based on a source apportionment analysis.
Collapse
|
43
|
Environmentally Toxic Solid Nanoparticles in Noradrenergic and Dopaminergic Nuclei and Cerebellum of Metropolitan Mexico City Children and Young Adults with Neural Quadruple Misfolded Protein Pathologies and High Exposures to Nano Particulate Matter. TOXICS 2022; 10:toxics10040164. [PMID: 35448425 PMCID: PMC9028025 DOI: 10.3390/toxics10040164] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Quadruple aberrant hyperphosphorylated tau, beta-amyloid, α-synuclein and TDP-43 neuropathology and metal solid nanoparticles (NPs) are documented in the brains of children and young adults exposed to Metropolitan Mexico City (MMC) pollution. We investigated environmental NPs reaching noradrenergic and dopaminergic nuclei and the cerebellum and their associated ultrastructural alterations. Here, we identify NPs in the locus coeruleus (LC), substantia nigrae (SN) and cerebellum by transmission electron microscopy (TEM) and energy-dispersive X-ray spectrometry (EDX) in 197 samples from 179 MMC residents, aged 25.9 ± 9.2 years and seven older adults aged 63 ± 14.5 years. Fe, Ti, Hg, W, Al and Zn spherical and acicular NPs were identified in the SN, LC and cerebellar neural and vascular mitochondria, endoplasmic reticulum, Golgi, neuromelanin, heterochromatin and nuclear pore complexes (NPCs) along with early and progressive neurovascular damage and cerebellar endothelial erythrophagocytosis. Strikingly, FeNPs 4 ± 1 nm and Hg NPs 8 ± 2 nm were seen predominantly in the LC and SN. Nanoparticles could serve as a common denominator for misfolded proteins and could play a role in altering and obstructing NPCs. The NPs/carbon monoxide correlation is potentially useful for evaluating early neurodegeneration risk in urbanites. Early life NP exposures pose high risk to brains for development of lethal neurologic outcomes. NP emissions sources ought to be clearly recognized, regulated, and monitored; future generations are at stake.
Collapse
|
44
|
Blanco-Alegre C, Calvo AI, Alonso-Blanco E, Castro A, Oduber F, Fraile R. Evolution of size-segregated aerosol concentration in NW Spain: A two-step classification to identify new particle formation events. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114232. [PMID: 34933267 DOI: 10.1016/j.jenvman.2021.114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Real-time measurements of particles in the 15-736 nm range have been obtained by a Scanning Mobility Particle Sizer to characterize the evolution of particle size distribution and new particle formation (NPF) events in an urban background area. The annual, weekly and diurnal variations of the modal (nucleation (Nnuc), Aitken (NAit) and accumulation (Nacc)) particle concentrations were characterised. The NAit and Nacc registered their maximums in cold months during rush hours, in the morning (0600-0900 UTC) and in the afternoon (1700-2000 UTC), while the maximums for Nnuc were reached in warm months during midday hours. NAit, Nacc and Ntotal showed a significant negative correlation with wind speed and a different relationship with the planetary boundary layer (PBL) height by periods. In the warm period, a positive significant correlation between PBL and Nnuc was registered, indicating that the higher dispersion promoted by a high PBL causes favourable conditions for the occurrence of NPF events (a low polluted atmosphere). NPF processes are one of the main sources of ultrafine particles (<100 nm) in the warm period. After a visual-based classification, 45 NPF events of type Ia (strong and with a good confidence level) were identified and analysed, occurring primarily between 1100 and 1500 UTC, mainly in spring and summer. In addition, a two-step method was developed for identifying NPF events: cluster analysis followed by discriminant analysis. The application of discriminant analysis to one of the clusters, grouping 93 days, enabled us to identify 55 of the 56 NPF events days included in the cluster. This method is a valuable tool for identifying NPF events quickly and effectively.
Collapse
Affiliation(s)
- C Blanco-Alegre
- Department of Physics, IMARENAB University of León, 24071, León, Spain.
| | - A I Calvo
- Department of Physics, IMARENAB University of León, 24071, León, Spain.
| | - E Alonso-Blanco
- Centre for Energy, Environment and Technology Research (CIEMAT), Environment Department, Madrid, Spain.
| | - A Castro
- Department of Physics, IMARENAB University of León, 24071, León, Spain.
| | - F Oduber
- Department of Physics, IMARENAB University of León, 24071, León, Spain.
| | - R Fraile
- Department of Physics, IMARENAB University of León, 24071, León, Spain.
| |
Collapse
|
45
|
Targino AC, Oliveira MVB, Krecl P. Ubiquity of hazardous airborne substances on passenger ferries. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127133. [PMID: 34530274 DOI: 10.1016/j.jhazmat.2021.127133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The ferry service of the city of Rio de Janeiro (Brazil) is one of the busiest in the world. However, a disadvantage of this mass transportation is the large emissions of hazardous substances from diesel combustion. We measured fine particulate matter (PM2.5), equivalent black carbon (eBC), particle number (PN) and total volatile organic compounds (TVOCs) while commuting by double-decker ferries. The particulate concentrations were larger in the lower than in the upper decks, attributed to the infiltration of smoke when ferries were docked and leakage through openings around the door frames during cruising. Boarding/alighting were the most polluted phases (eBC, PM2.5 and PN were 3.3-, 1.4- and 2.7-fold larger than during cruising), due to the high engine load to keep the ferries locked in position, while TVOCs showed no statistically significant differences. Particulate concentrations on naturally ventilated vessels were between 2.5- and 3.5-fold larger than on the air-conditioned ones, but TVOCs were 150-fold higher in the latter, attributed to emissions from furniture and cleaning products. Mean eBC and PM2.5 concentrations on-board the ferries surpassed those at the kerbside. Modernising or retrofitting the vessels could diminish the emissions of hazardous substances, while jet bridges could reduce the commuters' exposure during boarding.
Collapse
Affiliation(s)
- Admir Créso Targino
- Federal University of Technology, Graduate Program in Environmental Engineering, Londrina, Brazil.
| | | | - Patricia Krecl
- Federal University of Technology, Graduate Program in Environmental Engineering, Londrina, Brazil
| |
Collapse
|
46
|
Morsi AA, Fouad H, Alasmari WA, Faruk EM. The biomechanistic aspects of renal cortical injury induced by diesel exhaust particles in rats and the renoprotective contribution of quercetin pretreatment: Histological and biochemical study. ENVIRONMENTAL TOXICOLOGY 2022; 37:310-321. [PMID: 34751495 DOI: 10.1002/tox.23399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/27/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Although several studies have reported a toxic effect of diesel exhaust particles (DEP) exposure on the kidney tissues, the involvement of autophagy/NF-kB signaling as encountered mechanisms and the protective effects of a natural flavonoid, quercetin on DEP remains unclear. Thirty-two albino rats were divided as control, quercetin-treated (60 mg/kg, oral), DEP-exposed (0.5 mg/kg, intra-tracheal), and quercetin/DEP-exposed groups. Specimens of the renal cortex were subjected to histo-biochemical study and immunohistochemical analysis using anti-NF-kB, and anti-LC3β antibodies followed by morphometric and statistical analyses. The expression level of autophagy genes was quantitatively evaluated using RT-PCR, as well. The DEP-exposed rats showed an elevation in the renal tissue levels of MDA and a decrease in the catalase and superoxide dismutase (p < .05). Histologically, there were cytoplasmic vacuolar changes in the lining cells of the renal tubules, glomerular atrophy, and vascular congestion. In addition, renal inflammation was evident as confirmed by the increased NF-kB immunoexpression. Moreover, the gene expression of Becn1, ATG5, and LC3β increased (p <. 0) due to DEP exposure. Conversely, quercetin pretreatment improved these renal histo-biochemical alterations (p < .05) and regulated autophagy/NF-kB pathways. Overall, the study proved the renal toxicity mediated by DEP exposure via precipitating renal inflammation, autophagy activation, and oxidative stress. Quercetin pretreatment could antagonize such machinery to protect the kidney against DEP.
Collapse
Affiliation(s)
- Ahmed A Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Hanan Fouad
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Galala University, Faculty of Medicine, Suez Governorate, Egypt
| | | | - Eman Mohamed Faruk
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
- Department of Histology and Cytology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
47
|
Revisiting Total Particle Number Measurements for Vehicle Exhaust Regulations. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Road transport significantly contributes to air pollution in cities. Emission regulations have led to significantly reduced emissions in modern vehicles. Particle emissions are controlled by a particulate matter (PM) mass and a solid particle number (SPN) limit. There are concerns that the SPN limit does not effectively control all relevant particulate species and there are instances of semi-volatile particle emissions that are order of magnitudes higher than the SPN emission levels. This overview discusses whether a new metric (total particles, i.e., solids and volatiles) should be introduced for the effective regulation of vehicle emissions. Initially, it summarizes recent findings on the contribution of road transport to particle number concentration levels in cities. Then, both solid and total particle emission levels from modern vehicles are presented and the adverse health effects of solid and volatile particles are briefly discussed. Finally, the open issues regarding an appropriate methodology (sampling and instrumentation) in order to achieve representative and reproducible results are summarized. The main finding of this overview is that, even though total particle sampling and quantification is feasible, details for its realization in a regulatory context are lacking. It is important to define the methodology details (sampling and dilution, measurement instrumentation, relevant sizes, etc.) and conduct inter-laboratory exercises to determine the reproducibility of a proposed method. It is also necessary to monitor the vehicle emissions according to the new method to understand current and possible future levels. With better understanding of the instances of formation of nucleation mode particles it will be possible to identify its culprits (e.g., fuel, lubricant, combustion, or aftertreatment operation). Then the appropriate solutions can be enforced and the right decisions can be taken on the need for new regulatory initiatives, for example the addition of total particles in the tailpipe, decrease of specific organic precursors, better control of inorganic precursors (e.g., NH3, SOx), or revision of fuel and lubricant specifications.
Collapse
|
48
|
Zhang M, Wang C, Zhang X, Song H, Li Y. Association between exposure to air pollutants and attention-deficit hyperactivity disorder (ADHD) in children: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:207-219. [PMID: 32248699 DOI: 10.1080/09603123.2020.1745764] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Recent studies have reached mixed conclusions regarding the association between exposure to air pollutants and attention-deficit hyperactivity disorder (ADHD). We performed systematic review and meta-analysis to determine whether air pollutants were risk factors for the development of ADHD in children. We systematically searched databases for all relevant studies up to 2 July 2019. Together, the studies indicated that exposure to PAHs (risk ratio (RR): 0.98, 95% confidence interval (CI): 0.82-1.17), NOx (RR: 1.04, 95% CI: 0.94-1.15), and PM (RR: 1.11, 95% CI: 0.93-1.33) did not have any material relationship with an increased risk of ADHD. Heterogeneity of study data was low (I2: 2.7%, P = 0.409) for studies examining PAHs, but was substantial for NOx and PM (I2: 68.4%, P = 0.007 and I2: 60.1%, P = 0.014, respectively). However, these results should be interpreted with caution since the number of epidemiological studies investigating this issue were limited.
Collapse
Affiliation(s)
- Mengjie Zhang
- Department of Children, Adolescents and Women Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhong Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinxin Zhang
- Department of Children, Adolescents and Women Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huiling Song
- Department of Children, Adolescents and Women Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Li
- Department of Children, Adolescents and Women Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
49
|
City Scale Modeling of Ultrafine Particles in Urban Areas with Special Focus on Passenger Ferryboat Emission Impact. TOXICS 2021; 10:toxics10010003. [PMID: 35051045 PMCID: PMC8779367 DOI: 10.3390/toxics10010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022]
Abstract
Air pollution by aerosol particles is mainly monitored as mass concentrations of particulate matter, such as PM10 and PM2.5. However, mass-based measurements are hardly representative for ultrafine particles (UFP), which can only be monitored adequately by particle number (PN) concentrations and are considered particularly harmful to human health. This study examines the dispersion of UFP in Hamburg city center and, in particular, the impact of passenger ferryboats by modeling PN concentrations and compares concentrations to measured values. To this end, emissions inventories and emission size spectra for different emission sectors influencing concentrations in the city center were created, explicitly considering passenger ferryboat traffic as an additional emission source. The city-scale chemical transport model EPISODE-CityChem is applied for the first time to simulate PN concentrations and additionally, observations of total particle number counts are taken at four different sampling sites in the city. Modeled UFP concentrations are in the range of 1.5–3 × 104 cm−3 at ferryboat piers and at the road traffic locations with particle sizes predominantly below 50 nm. Urban background concentrations are at 0.4–1.2 × 104 cm−3 with a predominant particle size in the range 50–100 nm. Ferryboat traffic is a significant source of emissions near the shore along the regular ferry routes. Modeled concentrations show slight differences to measured data, but the model is capable of reproducing the observed spatial variation of UFP concentrations. UFP show strong variations in both space and time, with day-to-day variations mainly controlled by differences in air temperature, wind speed and wind direction. Further model simulations should focus on longer periods of time to better understand the influence of meteorological conditions on UFP dynamics.
Collapse
|
50
|
Abstract
Vehicle emissions are a significant source of air pollution in cities. Particulate matter (PM) is a pollutant with adverse health effects. Regulations worldwide determine the PM exhaust emissions of vehicles by gravimetric quantification of the mass deposited on a filter over a test cycle. The introduction of particulate filters as vehicle exhaust gas aftertreatment devices led to low PM emissions. A particle number methodology (counting solid particles > 23 nm), complementary to the PM mass measurement, was developed by the PMP (Particle Measurement Programme) group of the GRPE (Working Party on Pollution and Energy) of the UNECE (United Nations Economic Commission for Europe) during the first decade of the 21st century. The methodology was then introduced in the EU (European Union) regulations for light-duty (2011), heavy-duty (2013), and non-road mobile machinery (2019). In parallel, during the last 15 years, UN (United Nations) regulations and GTRs (Global Technical Regulations) including this methodology were also developed. To address the on-road emissions, the EU introduced RDE (real-driving emissions) testing with PEMS (portable emissions measurement systems) in 2017. Other countries (e.g., China, India) have also started adopting the number methodology. The PMP group recently improved the current laboratory and on-board methodologies and also extended them to a lower particle size (counting solid particles > 10 nm). Due to the rapid evolution of the vehicle exhaust particle number regulations and the lack of a summary in the literature, this paper gives an overview of current and near future regulations. Emphasis is given on the technical specifications and the changes that have taken place over the years.
Collapse
|