1
|
Zhang H, Evangelopoulos D, Wood D, Chatzidiakou L, Varaden D, Quint J, de Nazelle A, Walton H, Katsouyanni K, Barratt B. Estimating exposure to pollutants generated from indoor and outdoor sources within vulnerable populations using personal air quality monitors: A London case study. ENVIRONMENT INTERNATIONAL 2025; 198:109431. [PMID: 40220694 DOI: 10.1016/j.envint.2025.109431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Personal exposure to air pollution can originate from indoor or outdoor sources, depending on location and activity. This study aimed to quantify personal exposure from each source separately, allowing comparison of the associated epidemiological estimates from each source type. We utilised 12,901 participant-day personal measurements of exposure to multiple pollutants collected from 344 London dwelling participants of four panel studies conducted between 2015 and 2019. A four-step process was applied to personal measurements incorporating 1) GPS spatial analysis including address identification and location tagging; 2) estimating outdoor home pollutant levels from matched fixed ambient monitors; 3) calculation of infiltration efficiency when participants were at home; and 4) indoor and outdoor source separation for personal exposure measurements. From the results, our participants with Chronic Obstructive Pulmonary Disease (COPD) dataset had an average (SD) personal exposure from outdoor sources of 4.0 (1.3) μg/m3 for NO2 and 5.1 (3.0) μg/m3 for PM2.5, the school children's average (SD) personal exposure to PM2.5 from outdoor sources was 5.5 (4.3) μg/m3, the professional drivers' average (SD) personal exposure to black carbon from outdoor sources was 1.7 (1.0) μg/m3, and the healthy young adults' average (SD) personal exposure to black carbon from outdoor sources was 1.2 (0.5) μg/m3. Compared to the average total personal exposures, outdoor sources accounted for 49 % of NO2 exposure, 41 % to 55 % of PM2.5, and 60 % to 85 % of black carbon, dependent on the panel study - demonstrating a strong influence from outdoor sources for personal exposures to air pollution in London. Our findings highlighted that endeavours should continue to be made towards reducing pollution from both outdoor and indoor sources. The between-panel and within-panel exposure differences, derived from our novel partitioning methodology, can contribute to the estimation of health effects from indoor and outdoor sources and inform targeted interventions for vulnerable groups.
Collapse
Affiliation(s)
- Hanbin Zhang
- Environmental Research Group, School of Public Health, Imperial College London, United Kingdom; MRC Centre for Environment and Health, Imperial College London, United Kingdom; NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, United Kingdom; European Centre for Environment and Human Health, University of Exeter, Exeter, United Kingdom.
| | - Dimitris Evangelopoulos
- Environmental Research Group, School of Public Health, Imperial College London, United Kingdom; MRC Centre for Environment and Health, Imperial College London, United Kingdom; NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - Dylan Wood
- Environmental Research Group, School of Public Health, Imperial College London, United Kingdom; MRC Centre for Environment and Health, Imperial College London, United Kingdom; NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - Lia Chatzidiakou
- Yusuf Hamied Department of Chemistry, University of Cambridge, United Kingdom
| | - Diana Varaden
- Environmental Research Group, School of Public Health, Imperial College London, United Kingdom; MRC Centre for Environment and Health, Imperial College London, United Kingdom; NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - Jennifer Quint
- School of Public Health & National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Audrey de Nazelle
- MRC Centre for Environment and Health, Imperial College London, United Kingdom
| | - Heather Walton
- Environmental Research Group, School of Public Health, Imperial College London, United Kingdom; MRC Centre for Environment and Health, Imperial College London, United Kingdom; NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - Klea Katsouyanni
- Environmental Research Group, School of Public Health, Imperial College London, United Kingdom; MRC Centre for Environment and Health, Imperial College London, United Kingdom; NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, United Kingdom; Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Benjamin Barratt
- Environmental Research Group, School of Public Health, Imperial College London, United Kingdom; MRC Centre for Environment and Health, Imperial College London, United Kingdom; NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Hwang SL, Lin YC, Lin CM, Chi MC. Effects of ambient fine particulate matter on the exacerbation of psychiatric disorders in southern Taiwan: a case-crossover study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-12. [PMID: 40103419 DOI: 10.1080/09603123.2025.2480853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/13/2025] [Indexed: 03/20/2025]
Abstract
This study investigated the impact of short-term exposures to ambient fine particulate matter 2.5 (PM2.5) on the exacerbation of psychiatric disorders (PDs) in southern Taiwan between 2014 and 2020. Data on emergency room visits (ERVs) for PDs and air pollutant levels were obtained from the Chang Gung Research Database and the Environmental Protection Administration, respectively. A time-stratified case-crossover design was adopted to estimate the risks of ERVs for PDs. At lag4 days, a 10-μg/m3 increase in PM2.5 was associated with significant increases in ERVs in both single- and multi-pollutant models, with odds ratio (OR) of 1.18 [95% confidence interval (95% CI): 1.00, 1.38] (PM2.5), 1.20 (95% CI: 1.00, 1.43) (PM2.5 + SO2), 1.23 (95% CI: 1.03, 1.46) (PM2.5 + O3), and 1.25 (95% CI: 1.03, 1.52) (PM2.5 + SO2 + O3). For cumulative lags (lag0-6), a 10-μg/m3 increase in PM2.5 was associated with significant increases in ERVs only for multi-pollutant model (PM2.5 + SO2), with OR of 1.41 (95% CI: 1.03, 1.93). Among males, significant increases in ERVs were observed at lag4 and lag0-6 days; however, no significant associations were observed in females. In conclusion, short-term exposure to PM2.5 increased the risk of PDs exacerbation, exhibiting both delayed and cumulative effects, with male patients found to be more sensitive.
Collapse
Affiliation(s)
- Su-Lun Hwang
- Department of Nursing, Chang Gung University of Science and Technology, Puzi, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan
- Division of Thoracic Oncology, Chang Gung Memorial Hospital Chiayi Branch, Puzi, Taiwan
| | - Yu-Ching Lin
- Division of Thoracic Oncology, Chang Gung Memorial Hospital Chiayi Branch, Puzi, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Taiwan
| | - Chieh-Mo Lin
- Department of Nursing, Chang Gung University of Science and Technology, Puzi, Taiwan
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Puzi, Chiayi Country, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Miao-Ching Chi
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Taiwan
| |
Collapse
|
3
|
Lu Y, Yan M, Hoque S, Tapia IE, Ma N. Towards healthy sleep environments: Ambient, indoor, and personal exposure to PM 2.5 and its implications in children's sleep health. ENVIRONMENTAL RESEARCH 2025; 269:120860. [PMID: 39818351 DOI: 10.1016/j.envres.2025.120860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
The growing impact of climate change and escalating wildfire seasons has led to heightened ambient air pollution, potentially affecting children's sleep health. However, current epidemiological research often relies on outdoor weather data to model the environmental impacts on sleep health, potentially mischaracterizing the actual bedroom environment. To address these challenges, we conducted experiments to investigate the relationships among ambient, indoor, and personal exposure to PM2.5 concentrations and obstructive sleep apnea (OSA) in children. We employed computational fluid dynamics (CFD) simulations to assess how personal exposures are influenced by factors such as air distribution design, supply air temperature (Tsa), body shape, and sleep position. Our statistical analysis revealed notable associations between OSA severity as measured by obstructive apnea-hypopnea index (OAHI) and indoor PM2.5 concentrations (β: 11.52; 95% CI: 5.07 to 17.96; p < 0.01) and personal PM2.5 exposures (β: 18.92; 95% CI: 9.80 to 28.04; p < 0.001), with personal exposure demonstrating a stronger relationship. Our findings highlighted the critical role of Tsa and body shape in exacerbating personal exposure, as they could modify the bedding microenvironment around children's breathing zone during sleep. We assessed the effect of air filtration interventions on mitigating personal PM2.5 exposure and modulating OSA severity in children. Higher air filter efficiencies such as MERV14 or above can modulate severe OSA for more than 80% of the year. However, during wildfire episodes, because air filtration interventions alone may be insufficient, comprehensive strategies, including the potential use of air cleaners and personal protective equipment (PPE), are necessary to ensure children's health. Our research demonstrated that quantifying personal exposure is a more informative predictor than solely relying on ambient or indoor measures for estimating OSA in children.
Collapse
Affiliation(s)
- Yalin Lu
- Department of Civil, Environmental, & Architectural Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Ming Yan
- Department of Civil, Environmental, & Architectural Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Simi Hoque
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, United States
| | - Ignacio E Tapia
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nan Ma
- Department of Civil, Environmental, & Architectural Engineering, Worcester Polytechnic Institute, Worcester, MA, United States.
| |
Collapse
|
4
|
Varaden D, Barratt B, Dallman MJ, Skillern A, Elmi MS, Green DC, Tremper AH, Hedges M, Hicks W, Priestman M, Barron LP, Fitzgerald SP, Walder HM, Wright SL, Mudway IS, Fisher MC, Hemmings SJ, Poortinga W, Tirotto F, Beevers S, Walton H, Vu T, Katsouyanni K, Evangelopoulos D, Young G, Wood D, Griffiths C, Kelly FJ. West London Healthy Home and Environment (WellHome) Study: Protocol for a Community-Based Study Investigating Exposures Across the Indoor-Outdoor Air Pollution Continuum in Urban Communities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:249. [PMID: 40003475 PMCID: PMC11855092 DOI: 10.3390/ijerph22020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
The relationship between indoor air quality and public health remains under-researched. WellHome is a transdisciplinary community-based study that will engage with residents to co-design feasible and acceptable research to quantify air pollution exposure in 100 homes in West London and examine its potential to exacerbate asthma symptoms in children. Sampling strategies such as using air quality monitors and passive samplers placed in kitchens, children's bedrooms, and living rooms, will be developed in collaboration with local ambassadors and participating households to measure multiple physical, chemical, microplastic, and biological contaminants. This will provide a comprehensive understanding of indoor air quality across the city's socio-economic gradient. Other data collected will include housing types and tenure, ventilation practices, occupant behaviours, time-activity, and airway symptoms. Epidemiological analysis will examine air pollution exposure impacts on children's respiratory health. The particulate mixture's relative hazard will be evaluated in toxicity studies based on source profiles and activity patterns of participants, focusing on asthma exacerbation related pathways. The study's findings will be communicated to participants through co-designed reports and inform evidence-based recommendations for reducing indoor air pollution in London and urban areas worldwide. By raising awareness and providing actionable insights, WellHome seeks to contribute to global efforts to improve the health and well-being of vulnerable communities.
Collapse
Affiliation(s)
- Diana Varaden
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| | - Benjamin Barratt
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| | | | - Adam Skillern
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| | - Munira S. Elmi
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| | - David C. Green
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| | - Anja H. Tremper
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
| | - Michael Hedges
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
| | - William Hicks
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
| | - Max Priestman
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
| | - Leon P. Barron
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
- NIHR HPRU in Chemical and Radiation Threats and Hazards, Imperial College London, London W12 0BZ, UK
| | - Shane P. Fitzgerald
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
| | - Holly M. Walder
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
- NIHR HPRU in Chemical and Radiation Threats and Hazards, Imperial College London, London W12 0BZ, UK
| | - Stephanie L. Wright
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| | - Ian S. Mudway
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| | - Matthew C. Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London W12 0BZ, UK; (M.C.F.); (S.J.H.)
| | - Samuel J. Hemmings
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London W12 0BZ, UK; (M.C.F.); (S.J.H.)
| | - Wouter Poortinga
- Centre for Climate Change and Social Transformations, School of Psychology, Cardiff University, Cardiff CF10 3AT, UK; (W.P.); (F.T.)
| | - Francesca Tirotto
- Centre for Climate Change and Social Transformations, School of Psychology, Cardiff University, Cardiff CF10 3AT, UK; (W.P.); (F.T.)
| | - Sean Beevers
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| | - Heather Walton
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| | - Tuan Vu
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| | - Klea Katsouyanni
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Dimitris Evangelopoulos
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| | - George Young
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
| | - Dylan Wood
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| | - Christopher Griffiths
- Asthma UK Centre for Applied Research, Barts Institute of Population Health Sciences, Queen Mary University of London, London E1 4NS, UK;
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, London WC2R 2LS, UK
| | - Frank J. Kelly
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK; (B.B.); (A.S.); (M.S.E.); (D.C.G.); (A.H.T.); (M.H.); (W.H.); (M.P.); (L.P.B.); (S.P.F.); (H.M.W.); (S.L.W.); (I.S.M.); (S.B.); (H.W.); (T.V.); (K.K.); (D.E.); (G.Y.); (D.W.); (F.J.K.)
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| |
Collapse
|
5
|
Evangelopoulos D, Zhang H, Chatzidiakou L, Walton H, Katsouyanni K, Jones RL, Quint JK, Barratt B. Air pollution and respiratory health in patients with COPD: should we focus on indoor or outdoor sources? Thorax 2024; 79:1116-1123. [PMID: 39375040 PMCID: PMC11671933 DOI: 10.1136/thorax-2024-221874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/21/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION While associations between ambient air pollution and respiratory health in chronic obstructive pulmonary disease (COPD) patients are well studied, little is known about individuals' personal exposure to pollution and associated health effects by source. AIM To separate measured total personal exposure into indoor-generated and outdoor-generated pollution and use these improved metrics in health models for establishing more reliable associations with exacerbations and respiratory symptoms. METHODS We enrolled a panel of 76 patients with COPD and continuously measured their personal exposure to particles and gaseous pollutants and location with portable monitors for 134 days on average. We collected daily health information related to respiratory symptoms through diary cards and peak expiratory flow (PEF). Mixed-effects models were applied to quantify the relationship between total, indoor-generated and outdoor-generated personal exposures to pollutants with exacerbation and symptoms occurrence and PEF. RESULTS Exposure to nitrogen dioxide from both indoor and outdoor sources was associated with exacerbations and respiratory symptoms. We observed an increase of 33% (22%-45%), 19% (12%-18%) and 12% (5%-20%) in the odds of exacerbation for an IQR increase in total, indoor-generated and outdoor-generated exposures. For carbon monoxide, health effects were mainly attributed to indoor-generated pollution. While no associations were observed for particulate matter2.5 with COPD exacerbations, indoor-generated particles were associated with a significant decrease in PEF. CONCLUSIONS Indoor-generated and outdoor-generated pollution can deteriorate COPD patients' health. Policy-makers, physicians and patients with COPD should note the importance of decreasing exposure equally to both source types to decrease risk of exacerbation.
Collapse
Affiliation(s)
- Dimitris Evangelopoulos
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
| | - Hanbin Zhang
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
- European Centre for Environment and Human Health, University of Exeter, Exeter, UK
| | - Lia Chatzidiakou
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Heather Walton
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
| | - Klea Katsouyanni
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Roderic L Jones
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jennifer K Quint
- National Heart and Lung Institute, Imperial College London, London, UK
- School of Public Health, Imperial College London, London, UK
| | - Benjamin Barratt
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
| |
Collapse
|
6
|
Liu Y, Yi L, Xu Y, Cabison J, Eckel SP, Mason TB, Chu D, Lurvey N, Lerner D, Johnston J, Bastain TM, Farzan SF, Breton CV, Dunton GF, Habre R. Spatial and temporal determinants of particulate matter peak exposures during pregnancy and early postpartum. ENVIRONMENTAL ADVANCES 2024; 17:100557. [PMID: 39574825 PMCID: PMC11580741 DOI: 10.1016/j.envadv.2024.100557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Background Fine particulate matter (PM2.5) exposure is an important environmental risk for maternal and children's health, with peak exposures especially those derived from primary combustion hypothesized to pose greater risk. Identifying PM2.5 peaks and their contributions to personal exposure remains challenging. This study measured personal PM2.5 exposure, characterized primary combustion peaks, and investigated their determinants during and after pregnancy and among Hispanic women in Los Angeles, CA. Methods Continuous personal PM2.5 exposure, Global Positioning System geolocation, and ecological momentary assessment surveys were collected from 63 women for 4 consecutive days in their 1st trimester, 3rd trimester and 4-6 months postpartum. Based on the shape of PM2.5 time-series, primary combustion peaks were identified, characterized (number, duration, area under the curve [AUC]), and linked with locations they occurred in. Zero-inflated generalized mixed-effect models were used to examine the spatial and temporal determinants of PM2.5 peak exposures. Results A total of 490 PM2.5 peaks were identified from 618 person-days of monitoring. Spending an additional minute at parks and open spaces was related to smaller (AUC decreased 3.1 %, 95 % CI: 1.5 %-4.6 %) and shorter (duration decreased 1.7 %, 0.5 %-2.9 %) PM2.5 peak exposure. An additional minute in vehicular trips also related to smaller and shorter peak exposure (AUC and duration decreased 2.5 %, 1.2 %-3.7 % and 1.8 %, 1.0 %-2.6 %, respectively). However, an additional minute at industrial locations was associated with greater number (3.6 %, 2.0 %-5.2 %), AUC (1.6 %, 0.1 %-3.2 %) and duration (1.0 %, 0.0 %-2.1 %) of personal PM2.5 peak exposure. Conclusions This study demonstrates the potential to statistically identify exposure to primary combustion PM2.5 peaks and understand their determinants from personal monitoring data. Results suggest that visits to parks and open spaces may minimize PM2.5 peak exposures, while visiting industrial locations may increase them in and around pregnancy.
Collapse
Affiliation(s)
- Yisi Liu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Li Yi
- Department of Population Medicine, Harvard Medical School, Boston, MA, USA
| | - Yan Xu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jane Cabison
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P. Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tyler B. Mason
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Chu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Jill Johnston
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa M. Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shohreh F. Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carrie V. Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Genevieve F. Dunton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Klompmaker JO, Hart JE, Dominici F, James P, Roscoe C, Schwartz J, Yanosky JD, Zanobetti A, Laden F. Associations of fine particulate matter with incident cardiovascular disease; comparing models using ZIP code-level and individual-level fine particulate matter and confounders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171866. [PMID: 38521279 PMCID: PMC11034806 DOI: 10.1016/j.scitotenv.2024.171866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND PM2.5 has been positively associated with cardiovascular disease (CVD) incidence. Most evidence has come from cohorts and administrative databases. Cohorts typically have extensive information on potential confounders and residential-level exposures. Administrative databases are usually more representative but typically lack information on potential confounders and often only have exposures at coarser geographies (e.g., ZIP code). The weaknesses in both types of studies have been criticized for potentially jeopardizing the validity of their findings for regulatory purposes. METHODS We followed 101,870 participants from the US-based Nurses' Health Study (2000-2016) and linked residential-level PM2.5 and individual-level confounders, and ZIP code-level PM2.5 and confounders. We used time-varying Cox proportional hazards models to examine associations with CVD incidence. We specified basic models (adjusted for individual-level age, race and calendar year), individual-level confounder models, and ZIP code-level confounder models. RESULTS Residential- and ZIP code-level PM2.5 were strongly correlated (Pearson r = 0.88). For residential-level PM2.5, the hazard ratio (HR, 95 % confidence interval) per 5 μg/m3 increase was 1.06 (1.01, 1.11) in the basic and 1.04 (0.99, 1.10) in the individual-level confounder model. For ZIP code-level PM2.5, the HR per 5 μg/m3 was 1.04 (0.99, 1.08) in the basic and 1.02 (0.97, 1.08) in the ZIP code-level confounder model. CONCLUSION We observed suggestive positive, but not statistically significant, associations between long-term PM2.5 and CVD incidence, regardless of the exposure or confounding model. Although differences were small, associations from models with individual-level confounders and residential-level PM2.5 were slightly stronger than associations from models with ZIP code-level confounders and PM2.5.
Collapse
Affiliation(s)
- Jochem O Klompmaker
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jaime E Hart
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Francesca Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Peter James
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Charlie Roscoe
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jeff D Yanosky
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Francine Laden
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
8
|
Mak J, Feary J, Amaral AFS, Marczylo E, Cullinan P, Green DC. Occupational exposure to particulate matter and staff sickness absence on the London underground. ENVIRONMENT INTERNATIONAL 2024; 185:108529. [PMID: 38484612 DOI: 10.1016/j.envint.2024.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024]
Abstract
The London Underground (LU) employs over 19,000 staff, some of whom are exposed to elevated concentrations of particulate matter (PM) within the network. This study quantified the occupational exposure of LU staff to subway PM and investigated the possible association with sickness absence (SA). A job exposure matrix to quantify subway PM2.5 staff exposure was developed by undertaking measurement campaigns across the LU network. The association between exposure and SA was evaluated using zero-inflated mixed-effects negative binomial models. Staff PM2.5 exposure varied by job grade and tasks undertaken. Drivers had the highest exposure over a work shift (mean: 261 µg/m3), but concentrations varied significantly by LU line and time the train spent subway. Office staff work in office buildings separate to the LU network and are unexposed to occupational subway PM2.5. They were found to have lower rates of all-cause and respiratory infection SA compared to non-office staff, those who work across the LU network and are occupational exposed to subway PM2.5. Train drivers on five out of eight lines showed higher rates of all-cause SA, but no dose-response relationship was seen. Only drivers from one line showed higher rates of SAs from respiratory infections (incidence rate ratio: 1.24, 95% confidence interval 1.10-1.39). Lower-grade customer service (CS) staff showed higher rates of all-cause and respiratory infection SA compared to higher grade CS staff. Doctor-certified chronic respiratory and cardiovascular SAs were associated with occupational PM2.5 exposure in CS staff and drivers. While some groups with higher occupational exposure to subway PM reported higher rates of SA, no evidence suggests that subway PM is the main contributing factor to SA. This is the largest subway study on health effects of occupational PM2.5 exposure and may have wider implications for subway workers, contributing to safer working environments.
Collapse
Affiliation(s)
- Justie Mak
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, United Kingdom; National Heart and Lung Institute, Imperial College, London, United Kingdom; HPRU in Environmental Exposures and Health, Imperial College London, London, United Kingdom.
| | - Johanna Feary
- National Heart and Lung Institute, Imperial College, London, United Kingdom; Department of Occupational and Environmental Medicine, Royal Brompton Hospital, London, United Kingdom
| | - André F S Amaral
- National Heart and Lung Institute, Imperial College, London, United Kingdom; NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Emma Marczylo
- HPRU in Environmental Exposures and Health, Imperial College London, London, United Kingdom; Toxicology Department, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, United Kingdom
| | | | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, United Kingdom; HPRU in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Taj T, Chen J, Rodopoulou S, Strak M, de Hoogh K, Poulsen AH, Andersen ZJ, Bellander T, Brandt J, Zitt E, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Jørgensen JT, Katsouyanni K, Ketzel M, Lager A, Leander K, Liu S, Ljungman P, Severi G, Besson C, Magnusson PKE, Nagel G, Pershagen G, Peters A, Rizzuto D, Samoli E, Sørensen M, Stafoggia M, Tjønneland A, Weinmayr G, Wolf K, Brunekreef B, Hoek G, Raaschou-Nielsen O. Long-term exposure to ambient air pollution and risk of leukemia and lymphoma in a pooled European cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123097. [PMID: 38065336 DOI: 10.1016/j.envpol.2023.123097] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/08/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Leukemia and lymphoma are the two most common forms of hematologic malignancy, and their etiology is largely unknown. Pathophysiological mechanisms suggest a possible association with air pollution, but little empirical evidence is available. We aimed to investigate the association between long-term residential exposure to outdoor air pollution and risk of leukemia and lymphoma. We pooled data from four cohorts from three European countries as part of the "Effects of Low-level Air Pollution: a Study in Europe" (ELAPSE) collaboration. We used Europe-wide land use regression models to assess annual mean concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) at residences. We also estimated concentrations of PM2.5 elemental components: copper (Cu), iron (Fe), zinc (Zn); sulfur (S); nickel (Ni), vanadium (V), silicon (Si) and potassium (K). We applied Cox proportional hazards models to investigate the associations. Among the study population of 247,436 individuals, 760 leukemia and 1122 lymphoma cases were diagnosed during 4,656,140 person-years of follow-up. The results showed a leukemia hazard ratio (HR) of 1.13 (95% confidence intervals [CI]: 1.01-1.26) per 10 μg/m3 NO2, which was robust in two-pollutant models and consistent across the four cohorts and according to smoking status. Sex-specific analyses suggested that this association was confined to the male population. Further, the results showed increased lymphoma HRs for PM2.5 (HR = 1.16; 95% CI: 1.02-1.34) and potassium content of PM2.5, which were consistent in two-pollutant models and according to sex. Our results suggest that air pollution at the residence may be associated with adult leukemia and lymphoma.
Collapse
Affiliation(s)
- Tahir Taj
- Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark.
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | | | - Zorana J Andersen
- Section of Environment and Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden.
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria; Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria.
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom.
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service, ASL Roma 1, Rome, Italy; Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College, London, United Kingdom.
| | - John Gulliver
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom; Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom.
| | - Ole Hertel
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Germany.
| | | | - Jeanette T Jørgensen
- Section of Environment and Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom.
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford GU2 7XH, United Kingdom.
| | - Anton Lager
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden.
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Shuo Liu
- Section of Environment and Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden.
| | - Gianluca Severi
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805, Villejuif, France; Department of Statistics, Computer Science, Applications "G. Parenti" (DISIA), University of Florence, Italy.
| | - Caroline Besson
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805, Villejuif, France.
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Epidemiology, Ludwig Maximilians Universität München, Munich, Germany.
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden.
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Mette Sørensen
- Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology, Lazio Region Health Service, ASL Roma 1, Rome, Italy.
| | - Anne Tjønneland
- Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark.
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Ole Raaschou-Nielsen
- Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.
| |
Collapse
|
10
|
Hvidtfeldt UA, Chen J, Rodopoulou S, Strak M, de Hoogh K, Andersen ZJ, Bellander T, Brandt J, Forastiere F, Brynedal B, Hertel O, Hoffmann B, Katsouyanni K, Ketzel M, Leander K, Magnusson PKE, Nagel G, Pershagen G, Rizzuto D, Samoli E, So R, Stafoggia M, Tjønneland A, Weinmayr G, Wolf K, Zitt E, Brunekreef B, Hoek G, Raaschou-Nielsen O. Multiple myeloma risk in relation to long-term air pollution exposure - A pooled analysis of four European cohorts. ENVIRONMENTAL RESEARCH 2023; 239:117230. [PMID: 37806476 DOI: 10.1016/j.envres.2023.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Air pollution is a growing concern worldwide, with significant impacts on human health. Multiple myeloma is a type of blood cancer with increasing incidence. Studies have linked air pollution exposure to various types of cancer, including leukemia and lymphoma, however, the relationship with multiple myeloma incidence has not been extensively investigated. METHODS We pooled four European cohorts (N = 234,803) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), and ozone (O3) and multiple myeloma. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS During 4,415,817 person-years of follow-up (average 18.8 years), we observed 404 cases of multiple myeloma. The results of the fully adjusted linear analyses showed hazard ratios (95% confidence interval) of 0.99 (0.84, 1.16) per 10 μg/m³ NO2, 1.04 (0.82, 1.33) per 5 μg/m³ PM2.5, 0.99 (0.84, 1.18) per 0.5 10-5 m-1 BCE, and 1.11 (0.87, 1.41) per 10 μg/m³ O3. CONCLUSIONS We did not observe an association between long-term ambient air pollution exposure and incidence of multiple myeloma.
Collapse
Affiliation(s)
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; iClimate - interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy; Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College, London, UK
| | - Boel Brynedal
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Ole Hertel
- Departments of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, And Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Rina So
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Anne Tjønneland
- The Danish Cancer Institute, Copenhagen, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria; Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ole Raaschou-Nielsen
- The Danish Cancer Institute, Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
11
|
Hvidtfeldt UA, Chen J, Rodopoulou S, Strak M, de Hoogh K, Andersen ZJ, Bellander T, Brandt J, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Katsouyanni K, Ketzel M, Leander K, Magnusson PKE, Nagel G, Pershagen G, Rizzuto D, Samoli E, So R, Stafoggia M, Tjønneland A, Weinmayr G, Wolf K, Zhang J, Zitt E, Brunekreef B, Hoek G, Raaschou-Nielsen O. Long-term air pollution exposure and malignant intracranial tumours of the central nervous system: a pooled analysis of six European cohorts. Br J Cancer 2023; 129:656-664. [PMID: 37420001 PMCID: PMC10421949 DOI: 10.1038/s41416-023-02348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Risk factors for malignant tumours of the central nervous system (CNS) are largely unknown. METHODS We pooled six European cohorts (N = 302,493) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) and malignant intracranial CNS tumours defined according to the International Classification of Diseases ICD-9/ICD-10 codes 192.1/C70.0, 191.0-191.9/C71.0-C71.9, 192.0/C72.2-C72.5. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS During 5,497,514 person-years of follow-up (average 18.2 years), we observed 623 malignant CNS tumours. The results of the fully adjusted linear analyses showed a hazard ratio (95% confidence interval) of 1.07 (0.95, 1.21) per 10 μg/m³ NO2, 1.17 (0.96, 1.41) per 5 μg/m³ PM2.5, 1.10 (0.97, 1.25) per 0.5 10-5m-1 BC, and 0.99 (0.84, 1.17) per 10 μg/m³ O3. CONCLUSIONS We observed indications of an association between exposure to NO2, PM2.5, and BC and tumours of the CNS. The PM elements were not consistently associated with CNS tumour incidence.
Collapse
Affiliation(s)
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iClimate-interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
- Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College, London, London, UK
| | - John Gulliver
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
| | - Ole Hertel
- Departments of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, GU2 7XH, UK
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Rina So
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jiawei Zhang
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria
- Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
12
|
Yannatos I, Stites S, Brown RT, McMillan CT. Contributions of neighborhood social environment and air pollution exposure to Black-White disparities in epigenetic aging. PLoS One 2023; 18:e0287112. [PMID: 37405974 PMCID: PMC10321643 DOI: 10.1371/journal.pone.0287112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
Racial disparities in many aging-related health outcomes are persistent and pervasive among older Americans, reflecting accelerated biological aging for Black Americans compared to White, known as weathering. Environmental determinants that contribute to weathering are poorly understood. Having a higher biological age, measured by DNA methylation (DNAm), than chronological age is robustly associated with worse age-related outcomes and higher social adversity. We hypothesize that individual socioeconomic status (SES), neighborhood social environment, and air pollution exposures contribute to racial disparities in DNAm aging according to GrimAge and Dunedin Pace of Aging methylation (DPoAm). We perform retrospective cross-sectional analyses among 2,960 non-Hispanic participants (82% White, 18% Black) in the Health and Retirement Study whose 2016 DNAm age is linked to survey responses and geographic data. DNAm aging is defined as the residual after regressing DNAm age on chronological age. We observe Black individuals have significantly accelerated DNAm aging on average compared to White individuals according to GrimAge (239%) and DPoAm (238%). We implement multivariable linear regression models and threefold decomposition to identify exposures that contribute to this disparity. Exposure measures include individual-level SES, census-tract-level socioeconomic deprivation and air pollution (fine particulate matter, nitrogen dioxide, and ozone), and perceived neighborhood social and physical disorder. Race and gender are included as covariates. Regression and decomposition results show that individual-level SES is strongly associated with and accounts for a large portion of the disparity in both GrimAge and DPoAm aging. Higher neighborhood deprivation for Black participants significantly contributes to the disparity in GrimAge aging. Black participants are more vulnerable to fine particulate matter exposure for DPoAm, perhaps due to individual- and neighborhood-level SES, which may contribute to the disparity in DPoAm aging. DNAm aging may play a role in the environment "getting under the skin", contributing to age-related health disparities between older Black and White Americans.
Collapse
Affiliation(s)
- Isabel Yannatos
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shana Stites
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rebecca T. Brown
- Division of Geriatric Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Geriatrics and Extended Care, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, United States of America
- Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, United States of America
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Corey T. McMillan
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
13
|
Aglan A, Synn AJ, Nurhussien L, Chen K, Scheerens C, Koutrakis P, Coull B, Rice MB. Personal and community-level exposure to air pollution and daily changes in respiratory symptoms and oxygen saturation among adults with COPD. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2023; 6:100052. [PMID: 37293389 PMCID: PMC10249721 DOI: 10.1016/j.heha.2023.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Air pollution exposure is associated with hospital admissions for Chronic Obstructive Pulmonary Disease (COPD). Few studies have investigated whether daily personal exposure to air pollutants affects respiratory symptoms and oxygenation among COPD patients. Methodology We followed 30 former smokers with COPD for up to 4 non-consecutive 30-day periods in different seasons. Participants recorded worsening of respiratory symptoms (sub-categorized as breathing or bronchitis symptoms) by daily questionnaire, and oxygen saturation by pulse oximeter. Personal and community-level exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) were measured by portable air quality monitors and stationary monitors in the Boston area. We used generalized and multi-level linear mixed-effects models to estimate associations of the 24-hour average of each pollutant in the previous day with changes in respiratory symptoms and oxygen saturation. Results Higher community-level exposure to air pollutants was associated with worsening respiratory symptoms. An interquartile range (IQR) higher community-level O3 was associated with a 1.35 (95%CI: 1.07-1.70) higher odds of worsening respiratory symptoms. The corresponding ORs for community-level PM2.5 and NO2 were 1.18 (95%CI: 1.02-1.37) and 1.06 (95%CI: 0.90-1.25), respectively. Community-level NO2 was associated with worsening bronchitis symptoms (OR=1.25, 95%CI: 1.00-1.56), but not breathing symptoms. Personal PM2.5 exposure was associated with lower odds of worsening respiratory symptoms (OR=0.91; 95%CI: 0.81-1.01). Personal exposure to NO2 was associated with 0.11% lower oxygen saturation (95%CI: -0.22, 0.00) per IQR. Conclusions In this COPD population, there was a pattern of worsening respiratory symptoms associated with community-level exposure to O3 and PM2.5, and worsening oxygenation associated with personal exposure to NO2.
Collapse
Affiliation(s)
- Amro Aglan
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Andrew J. Synn
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Lina Nurhussien
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Kelly Chen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Charlotte Scheerens
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Department of Public Health and Primary Care, Faculty of Medicine, Ghent University, Ghent, Belgium
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Brent Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Mary B. Rice
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| |
Collapse
|
14
|
Wellenius GA. Assessing exposure to air pollution during pregnancy:The role of personal exposure monitoring. Paediatr Perinat Epidemiol 2023. [PMID: 37245867 DOI: 10.1111/ppe.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Affiliation(s)
- Gregory A Wellenius
- Center for Climate and Health, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Li Z, Chen Y, Tao Y, Zhao X, Wang D, Wei T, Hou Y, Xu X. Mapping the personal PM 2.5 exposure of China's population using random forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162090. [PMID: 36764537 DOI: 10.1016/j.scitotenv.2023.162090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Ambient monitoring may cause estimation errors, and wearable monitoring is expensive and labor-intensive when assessing PM2.5 personal exposure. Estimation errors have limited the development of exposure science and environmental epidemiology. Thus, we developed a scenario-based exposure (SBE) model that covered 8 outdoor exposure scenarios and 1 indoor scenario with corresponding time-activity patterns in Baoding City. The linear regression analysis of the SBE yielded an R2 value of 0.913 with satisfactory accuracy and reliability. To apply the SBE model to large-scale studies, we predicted time-activity patterns with the random forest model and atmosphere-to-scenario ratios with the linear regression model to obtain the essential parameters of the SBE model; their R2 was 0.65-0.93. The developed model would economize the study expenditure of field sampling for personal PM2.5 and deepen the understanding of the influences of indoor and outdoor factors on personal PM2.5. Using this method, we found that the personal PM2.5 exposure of Chinese residents was 10.50-347.02 μg/m3 in 2020, higher than the atmospheric PM2.5 concentration. Residents in North and Central China, especially the Beijing-Tianjin-Hebei region and the Fen-Wei Plains, had higher personal PM2.5 exposure than those in other areas.
Collapse
Affiliation(s)
- Zhenglei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yu Chen
- Chinese Society for Environmental Sciences, Beijing 100082, China
| | - Yan Tao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiuge Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Danlu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tong Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yaxuan Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaojing Xu
- Chinese Research Academy of Environmental Sciences Tianjin Branch, Tianjin 300450, China
| |
Collapse
|
16
|
Zhang X, Zhang H, Wang Y, Bai P, Zhang L, Wei Y, Tang N. Characteristics and determinants of personal exposure to typical air pollutants: A pilot study in Beijing and Baoding, China. ENVIRONMENTAL RESEARCH 2023; 218:114976. [PMID: 36460073 DOI: 10.1016/j.envres.2022.114976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Personal exposure to fine particulate matter (PM2.5), nitrogen oxides (NOx, NO2 and NO), ozone (O3) and sulfur dioxide (SO2) was repeatedly measured among fourteen office workers in Beijing and Baoding, China in summer, autumn and winter of 2019. Time-activity patterns were simultaneously recorded. Determinants of personal air pollution exposure were investigated for each pollutant via a linear mixed effect model. The personal concentrations of PM2.5, NO2, NO and O3 were higher in autumn and winter than those in summer. A decreasing trend was found in the personal PM2.5 level for a typical indoor population in Beijing, indicating that particulate pollution was effectively controlled in Beijing and its surrounding area. The personal levels of PM2.5, NO2, and O3 were weakly correlated with those monitored at ambient stations and were lower than the respective ambient levels except for PM2.5 in summer and NO2 in winter. This pilot study showed that the indoor air environment, ambient pollution, traffic-related variables and temperature were significant exposure sources for office workers. Our study highlighted the significance of controlling traffic emissions and improving the workplace air quality to protect the health of office workers. More importantly, we demonstrated the feasibility of model development for personal air pollution exposure prediction.
Collapse
Affiliation(s)
- Xuan Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hao Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yan Wang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Pengchu Bai
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Lulu Zhang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China; Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan; Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
17
|
Marsal A, Slama R, Lyon-Caen S, Borlaza LJS, Jaffrezo JL, Boudier A, Darfeuil S, Elazzouzi R, Gioria Y, Lepeule J, Chartier R, Pin I, Quentin J, Bayat S, Uzu G, Siroux V. Prenatal Exposure to PM2.5 Oxidative Potential and Lung Function in Infants and Preschool- Age Children: A Prospective Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:17004. [PMID: 36695591 PMCID: PMC9875724 DOI: 10.1289/ehp11155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Fine particulate matter (PM 2.5 ) has been found to be detrimental to respiratory health of children, but few studies have examined the effects of prenatal PM 2.5 oxidative potential (OP) on lung function in infants and preschool children. OBJECTIVES We estimated the associations of personal exposure to PM 2.5 and OP during pregnancy on offspring objective lung function parameters and compared the strengths of associations between both exposure metrics. METHODS We used data from 356 mother-child pairs from the SEPAGES cohort. PM filters collected twice during a week were analyzed for OP, using the dithiothreitol (DTT) and the ascorbic acid (AA) assays, quantifying the exposure of each pregnant woman. Lung function was assessed with tidal breathing analysis (TBFVL) and nitrogen multiple-breath washout (N 2 MBW ) test, performed at 6 wk, and airwave oscillometry (AOS) performed at 3 y. Associations of prenatal PM 2.5 mass and OP with lung function parameters were estimated using multiple linear regressions. RESULTS In neonates, an interquartile (IQR) increase in OP v DTT (0.89 nmol / min / m 3 ) was associated with a decrease in functional residual capacity (FRC) measured by N 2 MBW [β = - 2.26 mL ; 95% confidence interval (CI): - 4.68 , 0.15]. Associations with PM 2.5 showed similar patterns in comparison with OP v DTT but of smaller magnitude. Lung clearance index (LCI) and TBFVL parameters did not show any clear association with the exposures considered. At 3 y, increased frequency-dependent resistance of the lungs (Rrs 7 - 19 ) from AOS tended to be associated with higher OP v DTT (β = 0.09 hPa × s / L ; 95% CI: - 0.06 , 0.24) and OP v AA (IQR = 1.14 nmol / min / m 3 ; β = 0.12 hPa × s / L ; 95% CI: - 0.04 , 0.27) but not with PM 2.5 (IQR = 6.9 μ g / m 3 ; β = 0.02 hPa × s / L ; 95% CI: - 0.13 , 0.16). Results for FRC and Rrs 7 - 19 remained similar in OP models adjusted on PM 2.5 . DISCUSSION Prenatal exposure to OP v DTT was associated with several offspring lung function parameters over time, all related to lung volumes. https://doi.org/10.1289/EHP11155.
Collapse
Affiliation(s)
- Anouk Marsal
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
- Agence de l’environnement et de la Maîtrise de l’Energie, Angers, France
| | - Rémy Slama
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Sarah Lyon-Caen
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Lucille Joanna S. Borlaza
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Jean-Luc Jaffrezo
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Anne Boudier
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
| | - Sophie Darfeuil
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Rhabira Elazzouzi
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Yoann Gioria
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Johanna Lepeule
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Ryan Chartier
- RTI International, Research Triangle Park, North Carolina, USA
| | - Isabelle Pin
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
| | - Joane Quentin
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Inserm UA07 STOBE Laboratory, Grenoble, France
| | - Gaëlle Uzu
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Valérie Siroux
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - the SEPAGES cohort study group
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Inserm UA07 STOBE Laboratory, Grenoble, France
- RTI International, Research Triangle Park, North Carolina, USA
- Agence de l’environnement et de la Maîtrise de l’Energie, Angers, France
| |
Collapse
|
18
|
Yue D, Zhang Q, Zhang J, Liu W, Chen L, Wang M, Li R, Qin S, Song X, Ji Y. Diesel exhaust PM2.5 greatly deteriorates fibrosis process in pre-existing pulmonary fibrosis via ferroptosis. ENVIRONMENT INTERNATIONAL 2023; 171:107706. [PMID: 36565570 DOI: 10.1016/j.envint.2022.107706] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Fine particulate matter (PM2.5) has been widely reported to contribute to the pathogenesis of pulmonary diseases. The direct hazardous effect of PM2.5 on the respiratory system at high concentrations in vitro and in vivo have been well identified. However, its effect on the pre-existing respiratory diseases of patients at environment-related concentrations remains unclear. Diesel exhaust PM2.5 as a primary representative of ambient PM2.5 fine particles were used to investigated the effect of PM2.5 on the fibrosis progression of existing pulmonary fibrosis disease models. This study reported that PM2.5 could result in the enhanced sensitivity to fibrotic response, which may be ascribed to ferroptosis induced by PM2.5 in damaged lung areas. Proteomic analysis revealed that the upregulation of HO-1 as a key mechanism in the ferroptosis and exacerbation of pulmonary fibrosis induced by PM2.5. As a result, HO-1 degraded heme-containing protein and released iron in fibrotic cells, leading to generation of mitochondrial ROS and impaired mitochondrial function. Transmission electron microscopic assay verified that PM2.5 entered the mitochondria of fibrotic cells and was accompanied by significant mitochondrial morphological changes characterized by increased mitochondrial membrane density and reduced mitochondrial size. The HO-1 inhibitor zinc protoporphyrin and mitochondrion-targeted antioxidant Mito-TEMPO significantly attenuated PM2.5-induced ferroptosis and exacerbation of fibrosis. In addition, AMPK-ULK1 axis-triggered autophagy activation and NCOA4-mediated degradation of ferritin by autophagy were found to be related to the PM2.5-induced ferroptosis of fibrotic cells. As evidenced by the inhibition of autophagy with 3-methyladenine or AMPK inhibitor, NCOA4 knockdown decreased intracellular iron accumulation and lipid peroxidation, thereby relieving PM2.5-induced epithelial-mesenchymal transition and cell death in fibrotic cells. Overall, this study provided experimental support for the idea that PM2.5 greatly deteriorates fibrosis process in pre-existing pulmonary fibrosis, and HO-1-mediated mitochondrial dysfunction and NCOA4-mediated ferritinophagy are jointly required for the PM2.5-induced ferroptosis and enhanced fibrosis effects.
Collapse
Affiliation(s)
- Dayong Yue
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Jinjin Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Weili Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Libang Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Meirong Wang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Rongrong Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Song Qin
- Key Laboratory of Biology & Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Yunxia Ji
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China.
| |
Collapse
|
19
|
Xie Q, Dai Y, Zhu X, Hui F, Fu X, Zhang Q. High contribution from outdoor air to personal exposure and potential inhaled dose of PM 2.5 for indoor-active university students. ENVIRONMENTAL RESEARCH 2022; 215:114225. [PMID: 36063909 DOI: 10.1016/j.envres.2022.114225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
People spend most of their time indoors, isolated from the outdoor environment where serious air pollution usually occurs. To what extent outdoor air pollution contributes to their daily personal exposure and inhaled dose? To fill this knowledge gap, an exposure assessment study was conducted for indoor-active university students during a wintertime period of hazy and non-hazy (clear) days in Beijing. Indoor and outdoor fine particulate matter (PM2.5) samples were collected at six indoor microenvironments, and two outdoor environments representing traffic and ambient exposure in the university, respectively, to estimate the personal exposure of students. The average daily personal exposure and poteantial inhaled dose on hazy days (124.8 ± 72.3 μg m-3 and 2.74 ± 1.53 mg) were much higher than that on clear days (57.5 ± 31.9 μg m-3 and 1.26 ± 0.59 mg), indicating a significant influence from the ambient air quality. The indoor PM2.5 concentrations were significantly and positively correlated with the outdoor ones (r = 0.67-0.96) with an FINF (infiltration factor) range of 0.44-0.81 during sampling periods. The outdoor-origin air contributed 68%-95% to the total indoor PM2.5, the average of which was higher during haze events (87%) than clear periods (73%). Correspondingly, outdoor-origin PM2.5 contributed around 105.4 μg m-3 and 2.41 mg (85% and 89%) to the daily exposure and inhaled dose of college students on hazy days, respectively, compared to just 39.2 μg m-3 and 0.95 mg (68% and 75%) on clear days. Our results highlight the significant contribution of outdoor-origin PM2.5 occurred indoor to both the daily personal exposure and inhaled dose due to air pollution filtration between outdoor and indoor environments. These also suggest a continuous effort not only on ambient air quality improvements, but also on environmental friendly building for public health protection with lower exposure.
Collapse
Affiliation(s)
- Qiaorong Xie
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China; Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yuqing Dai
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Xianlei Zhu
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China; Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum, Beijing, 102249, China.
| | - Fan Hui
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China
| | - Xianqiang Fu
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China
| | - Qiangbin Zhang
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China; Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum, Beijing, 102249, China.
| |
Collapse
|
20
|
Wood D, Evangelopoulos D, Beevers S, Kitwiroon N, Katsouyanni K. Exposure to Ambient Air Pollution and the Incidence of Dementia in the Elderly of England: The ELSA Cohort. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15889. [PMID: 36497970 PMCID: PMC9736331 DOI: 10.3390/ijerph192315889] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Increasing evidence suggests an adverse association between ambient air pollution and the incidence of dementia in adult populations, although results at present are mixed and further work is required. The present study investigated the relationships between NO2, PM10, PM2.5 and ozone on dementia incidence in a cohort of English residents, aged 50 years and older, followed up between 2004 and 2017 (English Longitudinal Study of Ageing; n = 8525). Cox proportional hazards models were applied to investigate the association between time to incident dementia and exposure to pollutants at baseline. Hazard ratios (HRs) were calculated per 10 μg/m3. Models were adjusted for age, gender, physical activity, smoking status and level of education (the latter as a sensitivity analysis). A total of 389 dementia cases were identified during follow-up. An increased risk of developing dementia was suggested with increasing exposure to PM2.5 (HR: 1.10; 95% confidence interval (CI): 0.88, 1.37), whilst NO2, PM10 and ozone exhibited no discernible relationships. Hazard ratios were 0.97 (CI: 0.89, 1.05) for NO2; 0.98 (CI: 0.89, 1.08) for PM10; 1.01 (CI: 0.94, 1.09) for ozone. In the London sub-sample (39 dementia cases), a 10 μg/m3 increase in PM10 was found to be associated with increased risk of dementia by 16%, although not statistically significant (HR: 1.16; CI: 0.90, 1.48), and the magnitude of effect for PM2.5 increased, whilst NO2 and ozone exhibited similar associations as observed in the England-wide study. Further work is required to fully elucidate the potentially adverse associations between air pollution exposure and dementia incidence.
Collapse
Affiliation(s)
- Dylan Wood
- Environmental Research Group, School of Public Health, Imperial College, London W12 0BZ, UK
- MRC Centre for Environment and Health, Imperial College, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College, London W12 0BZ, UK
| | - Dimitris Evangelopoulos
- Environmental Research Group, School of Public Health, Imperial College, London W12 0BZ, UK
- MRC Centre for Environment and Health, Imperial College, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College, London W12 0BZ, UK
| | - Sean Beevers
- Environmental Research Group, School of Public Health, Imperial College, London W12 0BZ, UK
- MRC Centre for Environment and Health, Imperial College, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College, London W12 0BZ, UK
| | - Nutthida Kitwiroon
- Environmental Research Group, School of Public Health, Imperial College, London W12 0BZ, UK
- MRC Centre for Environment and Health, Imperial College, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College, London W12 0BZ, UK
| | - Klea Katsouyanni
- Environmental Research Group, School of Public Health, Imperial College, London W12 0BZ, UK
- MRC Centre for Environment and Health, Imperial College, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College, London W12 0BZ, UK
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
21
|
Chen J, Jahn HJ, Sun HZ, Ning Z, Lu W, Ho KF, Ward TJ. Validity of using ambient concentrations as surrogate exposures at the individual level for fine particle and black carbon: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120030. [PMID: 36037851 DOI: 10.1016/j.envpol.2022.120030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/13/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Exposure measurement error is an important source of bias in epidemiological studies. We assessed the validity of employing ambient (outdoor) measurements as proxies of personal exposures at individual levels focusing on fine particles (PM2.5) and black carbon (BC)/elemental carbon (EC) on a global scale. We conducted a systematic review and meta-analysis and searched databases (ISI Web of Science, Scopus, PubMed, Ovid MEDLINE®, Ovid Embase, and Ovid BIOSIS) to retrieve observational studies in English language published from 1 January 2006 until 5 May 2021. Correlation coefficients (r) between paired ambient (outdoor) concentration and personal exposure for PM2.5 or BC/EC were standardized as effect size. We used random-effects meta-analyses to pool the correlation coefficients and investigated the causes of heterogeneity and publication bias. Furthermore, we employed subgroup and meta-regression analyses to evaluate the modification of pooled estimates by potential mediators. This systematic review identified thirty-two observational studies involving 1744 subjects from ten countries, with 28 studies for PM2.5 and 11 studies for BC/EC. Personal PM2.5 exposure is more strongly correlated with ambient (outdoor) concentrations (0.63, 95% confidence interval [CI]: 0.57-0.68) than personal BC/EC exposure (0.49, 95% CI: 0.38-0.59), with significant differences in ṝ (0.14, 95% CI: 0.03-0.25; p < 0.05). The results demonstrated that the health status of participants was a significant modifier of pooled correlations. In addition, the personal to ambient (P/A) ratio for PM2.5 and average ambient BC/EC levels were potential effect moderators of the pooled ṝ. The funnel plots and Egger's regression test indicated inevident publication bias. The pooled estimates were robust through sensitivity analyses. The results support the growing consensus that the validity coefficient of proxy measures should be addressed when interpreting results from epidemiological studies to better understand how strong health outcomes are affected by different levels of PM2.5 and their components.
Collapse
Affiliation(s)
- Jiayao Chen
- Department of Real Estate and Construction, Faculty of Architecture, The University of Hong Kong, Hong Kong, China; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China.
| | - Heiko J Jahn
- Faculty of Human Sciences, University of Kassel, Kassel, Germany
| | - Haitong Zhe Sun
- Centre for Atmospheric Science, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Zhi Ning
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong, China
| | - Weisheng Lu
- Department of Real Estate and Construction, Faculty of Architecture, The University of Hong Kong, Hong Kong, China
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Tony J Ward
- School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
22
|
Mainka A, Żak M. Synergistic or Antagonistic Health Effects of Long- and Short-Term Exposure to Ambient NO 2 and PM 2.5: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14079. [PMID: 36360958 PMCID: PMC9657687 DOI: 10.3390/ijerph192114079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 05/31/2023]
Abstract
Studies on adverse health effects associated with air pollution mostly focus on individual pollutants. However, the air is a complex medium, and thus epidemiological studies face many challenges and limitations in the multipollutant approach. NO2 and PM2.5 have been selected as both originating from combustion processes and are considered to be the main pollutants associated with traffic; moreover, both elicit oxidative stress responses. An answer to the question of whether synergistic or antagonistic health effects of combined pollutants are demonstrated by pollutants monitored in ambient air is not explicit. Among the analyzed studies, only a few revealed statistical significance. Exposure to a single pollutant (PM2.5 or NO2) was mostly associated with a small increase in non-accidental mortality (HR:1.01-1.03). PM2.5 increase of <10 µg/m3 adjusted for NO2 as well as NO2 adjusted for PM2.5 resulted in a slightly lower health risk than a single pollutant. In the case of cardiovascular heart disease, mortality evoked by exposure to PM2.5 or NO2 adjusted for NO2 and PM2.5, respectively, revealed an antagonistic effect on health risk compared to the single pollutant. Both short- and long-term exposure to PM2.5 or NO2 adjusted for NO2 and PM2.5, respectively, revealed a synergistic effect appearing as higher mortality from respiratory diseases.
Collapse
Affiliation(s)
- Anna Mainka
- Department of Air Protection, Silesian University of Technology, 22B Konarskiego St., 44-100 Gliwice, Poland
| | | |
Collapse
|
23
|
Yao Y, Chen X, Yang M, Han Y, Xue T, Zhang H, Wang T, Chen W, Qiu X, Que C, Zheng M, Zhu T. Neuroendocrine stress hormones associated with short-term exposure to nitrogen dioxide and fine particulate matter in individuals with and without chronic obstructive pulmonary disease: A panel study in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119822. [PMID: 35870527 DOI: 10.1016/j.envpol.2022.119822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Air pollution is a major trigger of chronic obstructive pulmonary disease (COPD). Dysregulation of the neuroendocrine hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal medullary (SAM) axes is essential in progression of COPD. However, it is not clear whether air pollution exposure is associated with neuroendocrine responses in individuals with and without COPD. Based on a panel study of 51 stable COPD patients and 78 non-COPD participants with 384 clinical visits, we measured the morning serum levels of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), cortisol, norepinephrine, and epinephrine as indicators of stress hormones released from the HPA and SAM axes. Ambient nitrogen dioxide (NO2), fine particulate matter (PM2.5), and meteorological conditions were continuously monitored at the station from 2 weeks before the start of clinical visits. Linear mixed-effects models were used to estimate associations between differences in stress hormones following an average of 1-14-day exposures to NO2 and PM2.5. The average 1 day air pollutant levels prior to the clinical visits were 24.4 ± 14.0 ppb for NO2 and 55.6 ± 41.5 μg/m3 for PM2.5. We observed significant increases in CRH, ACTH, and norepinephrine, and decreases in cortisol and epinephrine with interquartile range increase in the average NO2 and PM2.5 concentrations in all participants. In the stratified analyses, we identified significant between-group difference in epinephrine following NO2 exposure in individuals with and without COPD. These results may suggest the susceptibility of COPD patients to the neuroendocrine responses associated with short-term air pollution exposure.
Collapse
Affiliation(s)
- Yuan Yao
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xi Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Hebei Technology Innovation Center of Human Settlement in Green Building (TCHS), Shenzhen Institute of Building Research Co., Ltd., Shenzhen, 518049, China
| | - Meigui Yang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yiqun Han
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, W12 0BZ, UK
| | - Tao Xue
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; School of Public Health, Peking University, Beijing, 100191, China
| | - Hanxiyue Zhang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Teng Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Wu Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xinghua Qiu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing, 100034, China
| | - Mei Zheng
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tong Zhu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
24
|
Iglesias-Vázquez L, Binter AC, Canals J, Hernández-Martínez C, Voltas N, Ambròs A, Fernández-Barrés S, Pérez-Crespo L, Guxens M, Arija V. Maternal exposure to air pollution during pregnancy and child's cognitive, language, and motor function: ECLIPSES study. ENVIRONMENTAL RESEARCH 2022; 212:113501. [PMID: 35640710 DOI: 10.1016/j.envres.2022.113501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Prenatal exposure to air pollution, even at low levels, has been associated with negative effects on a child's neuropsychological functioning. The present work aimed to investigate the associations between prenatal exposure to air pollution on a child's cognitive, language, and motor function at 40 days of age in a highly exposed area of Spain. From the ECLIPSES study population, the present work counted 473 mother-child pairs. Traffic-related air pollution levels at home addresses during the whole pregnancy were estimated including particulate matter (PM) with an aerodynamic diameter <2.5 μm (PM2.5), <10 μm (PM10) and 2.5-10 μm (PMcoarse), PM2.5absorbance, nitrogen dioxide (NO2), other nitrogen oxides (NOx), and ozone (O3) using land-use regression models developed within ESCAPE and ELAPSE projects. Children's cognitive, language, and motor functions were assessed using the Bayley Scales of Infant Development 3rd edition (BSID-III) at around 40 days of age. Linear regression models were adjusted for maternal biological, sociodemographic and lifestyle characteristics, area deprivation index, and amount of greenness around the home's address. All air pollutants assessed, except PM2.5 absorbance, were associated with lower motor function in children, while no association was observed between prenatal exposure to air pollution and cognitive and language functions. This finding highlights the need to continue raising awareness of the population-level impact that maternal exposure to air pollution even at low levels can have on the neuropsychological functions of children.
Collapse
Affiliation(s)
- Lucía Iglesias-Vázquez
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira I Virgili, 43204, Reus, Spain; Institut D'Investigació Sanitaria Pere Virgili (IISPV), 43204, Reus, Spain.
| | - Anne-Claire Binter
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Spain.
| | - Josefa Canals
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira I Virgili, 43204, Reus, Spain; Department of Psychology, Faculty of Education Sciences and Psychology, Universitat Rovira I Virgili, 43007, Tarragona, Spain.
| | - Carmen Hernández-Martínez
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira I Virgili, 43204, Reus, Spain; Department of Psychology, Faculty of Education Sciences and Psychology, Universitat Rovira I Virgili, 43007, Tarragona, Spain.
| | - Núria Voltas
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira I Virgili, 43204, Reus, Spain; Department of Psychology, Faculty of Education Sciences and Psychology, Universitat Rovira I Virgili, 43007, Tarragona, Spain.
| | - Albert Ambròs
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Spain.
| | - Silvia Fernández-Barrés
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Spain.
| | - Laura Pérez-Crespo
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Spain.
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Spain; Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands.
| | - Victoria Arija
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira I Virgili, 43204, Reus, Spain; Institut D'Investigació Sanitaria Pere Virgili (IISPV), 43204, Reus, Spain; Collaborative Research Group on Lifestyles, Nutrition and Smoking (CENIT). Tarragona-Reus Research Support Unit, Jordi Gol Primary Care Research Institute, 43003 Tarragona, Spain.
| |
Collapse
|
25
|
Lim S, Bassey E, Bos B, Makacha L, Varaden D, Arku RE, Baumgartner J, Brauer M, Ezzati M, Kelly FJ, Barratt B. Comparing human exposure to fine particulate matter in low and high-income countries: A systematic review of studies measuring personal PM 2.5 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155207. [PMID: 35421472 PMCID: PMC7615091 DOI: 10.1016/j.scitotenv.2022.155207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Due to the adverse health effects of air pollution, researchers have advocated for personal exposure measurements whereby individuals carry portable monitors in order to better characterise and understand the sources of people's pollution exposure. OBJECTIVES The aim of this systematic review is to assess the differences in the magnitude and sources of personal PM2.5 exposures experienced between countries at contrasting levels of income. METHODS This review summarised studies that measured participants personal exposure by carrying a PM2.5 monitor throughout their typical day. Personal PM2.5 exposures were summarised to indicate the distribution of exposures measured within each country income category (based on low (LIC), lower-middle (LMIC), upper-middle (UMIC), and high (HIC) income countries) and between different groups (i.e. gender, age, urban or rural residents). RESULTS From the 2259 search results, there were 140 studies that met our criteria. Overall, personal PM2.5 exposures in HICs were lower compared to other countries, with UMICs exposures being slightly lower than exposures measured in LMICs or LICs. 34% of measured groups in HICs reported below the ambient World Health Organisation 24-h PM2.5 guideline of 15 μg/m3, compared to only 1% of UMICs and 0% of LMICs and LICs. There was no difference between rural and urban participant exposures in HICs, but there were noticeably higher exposures recorded in rural areas compared to urban areas in non-HICs, due to significant household sources of PM2.5 in rural locations. In HICs, studies reported that secondhand smoke, ambient pollution infiltrating indoors, and traffic emissions were the dominant contributors to personal exposures. While, in non-HICs, household cooking and heating with biomass and coal were reported as the most important sources. CONCLUSION This review revealed a growing literature of personal PM2.5 exposure studies, which highlighted a large variability in exposures recorded and severe inequalities in geographical and social population subgroups.
Collapse
Affiliation(s)
- Shanon Lim
- MRC Centre for Environment and Health, Imperial College London, UK.
| | - Eridiong Bassey
- MRC Centre for Environment and Health, Imperial College London, UK
| | - Brendan Bos
- MRC Centre for Environment and Health, Imperial College London, UK
| | - Liberty Makacha
- MRC Centre for Environment and Health, Imperial College London, UK; Place Alert Labs, Department of Surveying and Geomatics, Faculty of Science and Technology, Midlands State University, Zimbabwe; Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Diana Varaden
- MRC Centre for Environment and Health, Imperial College London, UK; NIHR-HPRU Environmental Exposures and Health, School of Public Health, Imperial College London, UK
| | - Raphael E Arku
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Jill Baumgartner
- Institute for Health and Social Policy, and Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Michael Brauer
- School of Population and Public Health, The University of British Columbia, Vancouver, Canada; Institute for Health Metrics and Evaluation, University of Washington, Seattle, USA
| | - Majid Ezzati
- MRC Centre for Environment and Health, Imperial College London, UK; Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, UK; Regional Institute for Population Studies, University of Ghana, Legon, Ghana
| | - Frank J Kelly
- MRC Centre for Environment and Health, Imperial College London, UK; NIHR-HPRU Environmental Exposures and Health, School of Public Health, Imperial College London, UK
| | - Benjamin Barratt
- MRC Centre for Environment and Health, Imperial College London, UK; NIHR-HPRU Environmental Exposures and Health, School of Public Health, Imperial College London, UK
| |
Collapse
|
26
|
Katsouyanni K, Evangelopoulos D. Invited Perspective: Impact of Exposure Measurement Error on Effect Estimates-An Important and Neglected Problem in Air Pollution Epidemiology. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:71302. [PMID: 35904518 PMCID: PMC9337231 DOI: 10.1289/ehp11277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Klea Katsouyanni
- Medical Research Council Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, London, UK
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Evangelopoulos
- Medical Research Council Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, London, UK
- National Institute for Health and Care Research Health Protection Research Unit, Imperial College London, London, UK
| |
Collapse
|
27
|
Zhang R, Lai KY, Liu W, Liu Y, Lu J, Tian L, Webster C, Luo L, Sarkar C. Community-level ambient fine particulate matter and seasonal influenza among children in Guangzhou, China: A Bayesian spatiotemporal analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154135. [PMID: 35227720 DOI: 10.1016/j.scitotenv.2022.154135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Influenza is a major preventable infectious respiratory disease. However, there is little detailed long-term evidence of its associations with PM2.5 among children. We examined the community-level associations between exposure to ambient PM2.5 and incident influenza in Guangzhou, China. METHODS We used data from the city-wide influenza surveillance system collected by Guangzhou Centre for Disease Control and Prevention (GZCDC) over the period 2013 and 2019. Incident influenza was defined as daily new influenza (both clinically diagnosed and laboratory confirmed) cases as per standard diagnostic criteria. A 200-meter city-wide grid of daily ambient PM2.5 exposure was generated using a random forest model. We developed spatiotemporal Bayesian hierarchical models to examine the community-level associations between PM2.5 and the influenza adjusting for meteorological and socioeconomic variables and accounting for spatial autocorrelation. We also calculated community-wide influenza cases attributable to PM2.5 levels exceeding the China Grade 1 and World Health Organization (WHO) regulatory thresholds. RESULTS Our study comprised N = 191,846 children from Guangzhou aged ≤19 years and diagnosed with influenza between January 1, 2013 and December 31, 2019. Each 10 μg/m3 increment in community-level PM2.5 measured on the day of case confirmation (lag 0) and over a 6-day moving average (lag 0-5 days) was associated with higher risks of influenza (RR = 1.05, 95% CI: 1.05-1.06 for lag 0 and RR = 1.15, 95% CI: 1.14-1.16 for lag 05). We estimated that 8.10% (95%CI: 7.23%-8.57%) and 20.11% (95%CI: 17.64%-21.48%) influenza cases respectively were attributable to daily PM2.5 exposure exceeding the China Grade I (35 μg/m3) and the WHO limits (25 μg/m3). The risks associated with PM2.5 exposures were more pronounced among children of the age-group 10-14 compared to other age groups. CONCLUSIONS More targeted non-pharmaceutical interventions aimed at reducing PM2.5 exposures at home, school and during commutes among children may constitute additional influenza prevention and control polices.
Collapse
Affiliation(s)
- Rong Zhang
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Ka Yan Lai
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Wenhui Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Yanhui Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Jianyun Lu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Linwei Tian
- School of Public Health, The University of Hong Kong, Patrick Mason Building, Sassoon Road, Pokfulam, Hong Kong, China
| | - Chris Webster
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Lei Luo
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
| | - Chinmoy Sarkar
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
28
|
Chen T, Zou C, Yuan Y, Pan J, Zhang B, Qiao L, Li Y, Qian JY, Guo Q, Yuan Y, Ding C. Indoor air pollution from solid fuel on children pneumonia in low- and middle-income countries: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24574-24588. [PMID: 35066845 DOI: 10.1007/s11356-021-18293-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
An updated systematic review was conducted to assessing on the association between indoor air pollution caused by household energy consumption and childhood pneumonia in low- and middle-income countries. We performed a meta-analysis from the electronic databases of PubMed, Cochrane library, Web of Science, EMBASE. Studies were selected when they reported childhood pneumonia or ALRI in relation to indoor air pollution resulted from solid fuel. Studies must provide results on exposure prevalence of children aged below 5 years from Asia or Africa. We devoted ourselves to identifying randomized controlled experiments and observational epidemiological researches, which revealed the relation between household usage of solid fuel and childhood pneumonia. Among 1954 articles, 276 were reviewed thoroughly and 16 conduced to such a meta-analysis. It was found that there is a significant relationship between the solid fuel combustion and increasing risk of childhood pneumonia (OR = 1.66, 95%CI 1.36-2.02). The summary odds ratios from biomass use and mixed fuel use were, respectively, 1.86 (95%CI 1.15-3.02) and 1.58 (95%CI 1.38-1.81), with substantial between study heterogeneity (I2 = 87.2% and 29.2%, respectively). According to the subgroup analysis along with the meta-regression analysis, the risk of using solid fuel in Asian regions is higher than that in African regions. Studies based on non-hospital participates (I2 = 49.5%) may also a source of heterogeneity. We found that indoor air pollution generated by the usage of solid fuel might be a significant risk factor for pneumonia in children and suggested improving the indoor air quality by promoting cleaner fuel will be important in undeveloped countries.
Collapse
Affiliation(s)
- Tianming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, P.O.Box NO.211 Jianjun Road, Yancheng, 224051, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng, 224051, Jiangsu Province, China
| | - Chao Zou
- School of Environmental Science and Engineering, Yancheng Institute of Technology, P.O.Box NO.211 Jianjun Road, Yancheng, 224051, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng, 224051, Jiangsu Province, China
| | - Yang Yuan
- Yancheng Hospital of Traditional Chinese Medicine, Yancheng, 224001, Jiangsu, China
| | - Jingjing Pan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, P.O.Box NO.211 Jianjun Road, Yancheng, 224051, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng, 224051, Jiangsu Province, China
| | - Baoping Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, P.O.Box NO.211 Jianjun Road, Yancheng, 224051, Jiangsu Province, China
| | - Liang Qiao
- School of Environmental Science and Engineering, Yancheng Institute of Technology, P.O.Box NO.211 Jianjun Road, Yancheng, 224051, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng, 224051, Jiangsu Province, China
| | - Yanping Li
- Department of Pharmacy, Jiangsu Vocational College of Medicine, Jiangsu, 224005, China
| | - Jia-Yan Qian
- Nantong Production Quality Supervising & Inspection Institute, Jiangsu, 226005, China
| | - Qingyuan Guo
- School of Environmental Science and Engineering, Yancheng Institute of Technology, P.O.Box NO.211 Jianjun Road, Yancheng, 224051, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng, 224051, Jiangsu Province, China
| | - Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, P.O.Box NO.211 Jianjun Road, Yancheng, 224051, Jiangsu Province, China.
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng, 224051, Jiangsu Province, China.
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, P.O.Box NO.211 Jianjun Road, Yancheng, 224051, Jiangsu Province, China.
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng, 224051, Jiangsu Province, China.
| |
Collapse
|
29
|
Shin M, Kim OJ, Yang S, Choe SA, Kim SY. Different Mortality Risks of Long-Term Exposure to Particulate Matter across Different Cancer Sites. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063180. [PMID: 35328866 PMCID: PMC8951617 DOI: 10.3390/ijerph19063180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022]
Abstract
Particulate matter (PM) air pollution has challenged the global community and the International Agency for Research on Cancer (IARC) classified airborne particulate matter as carcinogenic to humans. However, while most studies of cancer examined a single cancer type using different cohorts, few studies compared the associations of PM between different cancer types. We aimed to compare the association of long-term exposure to PM (PM10 and PM2.5) and cancer mortality across 17 different types of cancer using a population-based cohort in the Seoul Metropolitan Area (SMA), South Korea; Our study population includes 87,608 subjects (mean age: 46.58 years) residing in the SMA from the National Health Insurance Services-National Sample cohort (NHIS-NSC) and followed up for 2007-2015. We used the time-dependent Cox proportional hazards model to estimate hazard ratios (HRs) and 95% confidence intervals (95% CIs) of each cancer mortality per 10 μg/m3 increase in PM concentrations, after adjusting for individual and areal characteristics. During eight years of follow-up, 1487 people died with any of 17 cancer types. Lung cancer death was the highest, followed by liver and stomach cancer. Although we did not find the association for all cancer types, possibly because of limited cancer cases, HRs of PM2.5 were relatively high for lung, stomach, pancreas, non-Hodgkin's lymphoma, prostate, esophagus, oral and pharynx, and brain cancer mortality (HRs = 1.44-7.14). High HRs for pancreas, non-Hodgkin's lymphoma, esophagus, and oral and pharynx cancer were also seen for PM10; our findings suggest PM air pollution as a potential risk factor of cancer mortality for upper digestive tracts, mouth, pancreas, and non-Hodgkin's lymphoma in a highly urbanized population with high exposure to PM for a long time.
Collapse
Affiliation(s)
- Miyoun Shin
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea;
| | - Ok-Jin Kim
- Environmental Health Research Division, Environment Health Research Department, National Institute of Environment Research, Incheon 22689, Korea;
| | - Seongwoo Yang
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Korea;
| | - Seung-Ah Choe
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul 02841, Korea;
| | - Sun-Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea;
- Correspondence:
| |
Collapse
|
30
|
Heo S, Kim H, Kim S, Choe SA, Byun G, Lee JT, Bell ML. Associations between Long-Term Air Pollution Exposure and Risk of Osteoporosis-Related Fracture in a Nationwide Cohort Study in South Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2404. [PMID: 35206592 PMCID: PMC8872590 DOI: 10.3390/ijerph19042404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023]
Abstract
Bone health is a major concern for aging populations globally. Osteoporosis and bone mineral density are associated with air pollution, but less is known about the impacts of air pollution on osteoporotic fracture. We aimed to assess the associations between long-term air pollution exposure and risk of osteoporotic fracture in seven large Korean cities. We used Cox proportional hazard models to estimate hazard rations (HRs) of time-varying moving window of past exposures of particulate matter (PM10), sulfur dioxide (SO2), carbon monoxide (CO), nitrogen dioxide (NO2), and ozone (O3) for osteoporotic fracture in Korean adults (age ≥ 50 years) in the National Health Insurance Service-National Sample Cohort data, followed 2002 to 2015. HRs were calculated for an interquartile range (IQR) increase. Comorbidity and prescription associated with osteoporosis, age, sex, body mass index, health behaviors, and income were adjusted in the models. Effect modification by age, sex, exercise, and income was examined. We assessed 56,467 participants over 535,481 person-years of follow up. Linear and positive exposure-response associations were found for SO2, while PM10 and NO2 showed nonlinear associations. SO2 was associated with osteoporosis-related fracture with marginal significance (HR for an IQR [2 ppb] increase = 1.04, 95% CI: 1.00, 1.09). The SO2 HR estimates were robust in analyses applying various moving windows of exposure (from one to three years of past exposure) and two-pollutant models. The central HR estimate of O3 implied positive associations but was not significant (HR for 0.007 ppm increase = 1.01, 95% CI: 0.97, 1.06). PM10, CO, and NO2 did not show associations. Vulnerable groups by sex, age, exercise, and income varied across air pollutants and there was no evidence of effect modifications. Long-term exposure to SO2, but not PM10, CO, NO2 and O3, was associated with increased osteoporotic fracture risks in Korean adults.
Collapse
Affiliation(s)
- Seulkee Heo
- School of the Environment, Yale University, New Haven, CT 06511, USA; (H.K.); (M.L.B.)
| | - Honghyok Kim
- School of the Environment, Yale University, New Haven, CT 06511, USA; (H.K.); (M.L.B.)
| | - Sera Kim
- Interdisciplinary Program in Precision Public Health, Department of Public Health Sciences, Graduate School of Korea University, Seoul 02841, Korea; (S.K.); (G.B.); (J.-T.L.)
| | - Seung-Ah Choe
- College of Medicine, Korea University, Seoul 02841, Korea;
| | - Garam Byun
- Interdisciplinary Program in Precision Public Health, Department of Public Health Sciences, Graduate School of Korea University, Seoul 02841, Korea; (S.K.); (G.B.); (J.-T.L.)
| | - Jong-Tae Lee
- Interdisciplinary Program in Precision Public Health, Department of Public Health Sciences, Graduate School of Korea University, Seoul 02841, Korea; (S.K.); (G.B.); (J.-T.L.)
| | - Michelle L. Bell
- School of the Environment, Yale University, New Haven, CT 06511, USA; (H.K.); (M.L.B.)
| |
Collapse
|
31
|
Duan R, Niu H, Yu T, Huang K, Cui H, Chen C, Yang T, Wang C. Adverse effects of short-term personal exposure to fine particulate matter on the lung function of patients with chronic obstructive pulmonary disease and asthma: a longitudinal panel study in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47463-47473. [PMID: 33893585 DOI: 10.1007/s11356-021-13811-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Fine particulate matter (PM2.5) is an important environmental factor affecting human health. However, most studies on PM2.5 and health have used data from fixed monitoring sites to assess PM2.5 exposure, which may have introduced misleading information on the exposure-response relationship. We aimed to assess the effect of short-term personal PM2.5 exposure on lung function in patients with chronic obstructive pulmonary disease (COPD) and asthma. To achieve this, we conducted a longitudinal panel study among 37 COPD patients and 45 asthma patients from Beijing, China. The COPD group and the asthma group completed 148 and 180 lung function tests, respectively. We found that in COPD patients, for every 10-μg/m3 increase in PM2.5 exposure at lag2, the FEV1, FVC and DLco decreased by -0.014 L (95% CI -0.025, -0.003), -0.025 L (95% CI -0.050, -0.003) and -0.089 mmol/min/kPa (95% CI -0.156, -0.023), respectively. There was also a decrease of -0.023 L/s (95% CI -0.042, -0.003) and -0.017 L/s (95% CI -0.032, -0.002) in MMEF at lag3 and lag03, respectively. In the asthma group, every 10-μg/m3 increase in PM2.5 exposure led to a reduction of -0.012 L (95% CI -0.023, -0.001), -0.042 L (95% CI -0.081, -0.003) and -0.061 L/s (95% CI -0.116, -0.004) in the FEV1, FVC and PEF at lag3, respectively. Our findings suggest that PM2.5 exposure may primarily affect both airway function and lung diffusion function in COPD patients, and airway function in asthma patients.
Collapse
Affiliation(s)
- Ruirui Duan
- Peking University China-Japan Friendship School of Clinical Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Hongtao Niu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
- National Respiratory Center, Beijing, China
| | - Tao Yu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ke Huang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
- National Respiratory Center, Beijing, China
| | - Han Cui
- National Respiratory Center, Beijing, China
| | - Chen Chen
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ting Yang
- Peking University China-Japan Friendship School of Clinical Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China.
- National Respiratory Center, Beijing, China.
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Chen Wang
- Peking University China-Japan Friendship School of Clinical Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China.
- National Respiratory Center, Beijing, China.
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
32
|
Korhonen A, Relvas H, Miranda AI, Ferreira J, Lopes D, Rafael S, Almeida SM, Faria T, Martins V, Canha N, Diapouli E, Eleftheriadis K, Chalvatzaki E, Lazaridis M, Lehtomäki H, Rumrich I, Hänninen O. Analysis of spatial factors, time-activity and infiltration on outdoor generated PM 2.5 exposures of school children in five European cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147111. [PMID: 33940420 DOI: 10.1016/j.scitotenv.2021.147111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/04/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric particles are a major environmental health risk. Assessments of air pollution related health burden are often based on outdoor concentrations estimated at residential locations, ignoring spatial mobility, time-activity patterns, and indoor exposures. The aim of this work is to quantify impacts of these factors on outdoor-originated fine particle exposures of school children. We apply nested WRF-CAMx modelling of PM2.5 concentrations, gridded population, and school location data. Infiltration and enrichment factors were collected and applied to Athens, Kuopio, Lisbon, Porto, and Treviso. Exposures of school children were calculated for residential and school outdoor and indoor, other indoor, and traffic microenvironments. Combined with time-activity patterns six exposure models were created. Model complexity was increased incrementally starting from residential and school outdoor exposures. Even though levels in traffic and outdoors were considerably higher, 80-84% of the exposure to outdoor particles occurred in indoor environments. The simplest and also commonly used approach of using residential outdoor concentrations as population exposure descriptor (model 1), led on average to 26% higher estimates (15.7 μg/m3) compared with the most complex model (# 6) including home and school outdoor and indoor, other indoor and traffic microenvironments (12.5 μg/m3). These results emphasize the importance of including spatial mobility, time-activity and infiltration to reduce bias in exposure estimates.
Collapse
Affiliation(s)
- Antti Korhonen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare (THL), 70701 Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, 70701 Kuopio, Finland.
| | - Hélder Relvas
- CESAM, Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Ana Isabel Miranda
- CESAM, Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Joana Ferreira
- CESAM, Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Diogo Lopes
- CESAM, Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Sandra Rafael
- CESAM, Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Susana Marta Almeida
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela, Portugal
| | - Tiago Faria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela, Portugal
| | - Vânia Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela, Portugal
| | - Nuno Canha
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela, Portugal
| | - Evangelia Diapouli
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. "Demokritos", Agia Paraskevi, 15310 Athens, Greece
| | - Konstantinos Eleftheriadis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. "Demokritos", Agia Paraskevi, 15310 Athens, Greece
| | - Eleftheria Chalvatzaki
- School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece
| | - Mihalis Lazaridis
- School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece
| | - Heli Lehtomäki
- Department of Public Health Solutions, Finnish Institute for Health and Welfare (THL), 70701 Kuopio, Finland; Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland (UEF), 70701 Kuopio, Finland
| | - Isabell Rumrich
- Department of Public Health Solutions, Finnish Institute for Health and Welfare (THL), 70701 Kuopio, Finland
| | - Otto Hänninen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare (THL), 70701 Kuopio, Finland
| |
Collapse
|
33
|
Evangelopoulos D, Katsouyanni K, Schwartz J, Walton H. Quantifying the short-term effects of air pollution on health in the presence of exposure measurement error: a simulation study of multi-pollutant model results. Environ Health 2021; 20:94. [PMID: 34429109 PMCID: PMC8385952 DOI: 10.1186/s12940-021-00757-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/07/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Most epidemiological studies estimate associations without considering exposure measurement error. While some studies have estimated the impact of error in single-exposure models we aimed to quantify the effect of measurement error in multi-exposure models, specifically in time-series analysis of PM2.5, NO2, and mortality using simulations, under various plausible scenarios for exposure errors. Measurement error in multi-exposure models can lead to effect transfer where the effect estimate is overestimated for the pollutant estimated with more error to the one estimated with less error. This complicates interpretation of the independent effects of different pollutants and thus the relative importance of reducing their concentrations in air pollution policy. METHODS Measurement error was defined as the difference between ambient concentrations and personal exposure from outdoor sources. Simulation inputs for error magnitude and variability were informed by the literature. Error-free exposures with their consequent health outcome and error-prone exposures of various error types (classical/Berkson) were generated. Bias was quantified as the relative difference in effect estimates of the error-free and error-prone exposures. RESULTS Mortality effect estimates were generally underestimated with greater bias observed when low ratios of the true exposure variance over the error variance were assumed (27.4% underestimation for NO2). Higher ratios resulted in smaller, but still substantial bias (up to 19% for both pollutants). Effect transfer was observed indicating that less precise measurements for one pollutant (NO2) yield more bias, while the co-pollutant (PM2.5) associations were found closer to the true. Interestingly, the sum of single-pollutant model effect estimates was found closer to the summed true associations than those from multi-pollutant models, due to cancelling out of confounding and measurement error bias. CONCLUSIONS Our simulation study indicated an underestimation of true independent health effects of multiple exposures due to measurement error. Using error parameter information in future epidemiological studies should provide more accurate concentration-response functions.
Collapse
Affiliation(s)
- Dimitris Evangelopoulos
- Environmental Research Group, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, W12 0BZ, London, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
| | - Klea Katsouyanni
- Environmental Research Group, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, W12 0BZ, London, UK
- National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Joel Schwartz
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA USA
| | - Heather Walton
- Environmental Research Group, School of Public Health, Imperial College London, Michael Uren Biomedical Engineering Hub, White City Campus, Wood Lane, W12 0BZ, London, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, UK
| |
Collapse
|
34
|
Jiang X, Han Y, Qiu X, Chai Q, Zhang H, Chen X, Cheng Z, Wang Y, Fan Y, Xue T, Li W, Gong J, Zhu T. Organic Components of Personal PM 2.5 Exposure Associated with Inflammation: Evidence from an Untargeted Exposomic Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10589-10596. [PMID: 34297563 DOI: 10.1021/acs.est.1c02023] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fine particulate matter (PM2.5) can promote chronic diseases through the fundamental mechanism of inflammation; however, systemic information is lacking on the inflammatory PM2.5 components. To decipher organic components from personal PM2.5 exposure that were associated with respiratory and circulatory inflammatory responses in older adults, we developed an exposomic approach using trace amounts of particles and applied it on 424 personal PM2.5 samples collected in a panel study in Beijing. Applying an integrated multivariate and univariate untargeted strategy, a total of 267 organic compounds were filtered and then chemically identified according to their association with exhaled nitric oxide (eNO)/interleukin (IL)-6 or serum IL-1β/IL-6, with monocyclic and polycyclic aromatic compounds (i.e., MACs and PACs) as the representatives. Indoor-derived species with medium volatility including MACs were mainly associated with systemic inflammation, while low-volatile ambient components that originate from combustion sources, such as PACs, were mostly associated with airway inflammation. Following ambient component exposure, we found an inverted U-shaped relationship on change of eNO with insulin resistance, suggesting a higher risk of cardiopulmonary dysfunction for individuals with homeostatic model assessment for insulin resistance (HOMA-IR) levels > 2.3. Overall, this study provided a practical untargeted strategy for the systemic investigation of PM2.5 components and proposed source-specific inflammatory effects.
Collapse
Affiliation(s)
- Xing Jiang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Yiqun Han
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London W2 1PG, U.K
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Qianqian Chai
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Hanxiyue Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Xi Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Zhen Cheng
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Yanwen Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Yunfei Fan
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Tao Xue
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Weiju Li
- Peking University Hospital, Peking University, Beijing 100871, P. R. China
| | - Jicheng Gong
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
35
|
Evangelopoulos D, Chatzidiakou L, Walton H, Katsouyanni K, Kelly FJ, Quint JK, Jones RL, Barratt B. Personal exposure to air pollution and respiratory health of COPD patients in London. Eur Respir J 2021; 58:13993003.03432-2020. [PMID: 33542053 PMCID: PMC8290182 DOI: 10.1183/13993003.03432-2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/12/2020] [Indexed: 11/19/2022]
Abstract
Previous studies have investigated the effects of air pollution on chronic obstructive pulmonary disease (COPD) patients using either fixed-site measurements or a limited number of personal measurements, usually for one pollutant and a short time period. These limitations may introduce bias and distort the epidemiological associations as they do not account for all the potential sources or the temporal variability of pollution. We used detailed information on individuals’ exposure to various pollutants measured at fine spatiotemporal scale to obtain more reliable effect estimates. A panel of 115 patients was followed up for an average continuous period of 128 days carrying a personal monitor specifically designed for this project that measured temperature, nitrogen dioxide (NO2), ozone (O3), nitric oxide (NO), carbon monoxide (CO), and particulate matter with aerodynamic diameter <2.5 and <10 μm at 1-min time resolution. Each patient recorded daily information on respiratory symptoms and measured peak expiratory flow (PEF). A pulmonologist combined related data to define a binary variable denoting an “exacerbation”. The exposure–response associations were assessed with mixed effects models. We found that gaseous pollutants were associated with a deterioration in patients’ health. We observed an increase of 16.4% (95% CI 8.6–24.6%), 9.4% (95% CI 5.4–13.6%) and 7.6% (95% CI 3.0–12.4%) in the odds of exacerbation for an interquartile range increase in NO2, NO and CO, respectively. Similar results were obtained for cough and sputum. O3 was found to have adverse associations with PEF and breathlessness. No association was observed between particulate matter and any outcome. Our findings suggest that, when considering total personal exposure to air pollutants, mainly the gaseous pollutants affect COPD patients’ health. Significant adverse associations were found between the respiratory health of COPD patients and their personal exposure to gaseous pollutants measured using portable sensors over 6 months. No significant associations were found for particulate pollutants.https://bit.ly/3aqMT6O
Collapse
Affiliation(s)
- Dimitris Evangelopoulos
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK.,National Institute for Health Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
| | - Lia Chatzidiakou
- Centre for Atmospheric Science, Dept of Chemistry, University of Cambridge, Cambridge, UK
| | - Heather Walton
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK.,National Institute for Health Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
| | - Klea Katsouyanni
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK.,Dept of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Frank J Kelly
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK.,National Institute for Health Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
| | - Jennifer K Quint
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Roderic L Jones
- Centre for Atmospheric Science, Dept of Chemistry, University of Cambridge, Cambridge, UK
| | - Benjamin Barratt
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK.,National Institute for Health Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
| |
Collapse
|
36
|
Li S, Lu S, Xu X, Zhao N, Li A, Xu L. How human mega-events influence urban airborne PM 2.5 pollution: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:117009. [PMID: 33813194 DOI: 10.1016/j.envpol.2021.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Air pollution caused by PM2.5 particles is a critical issue for public health that adversely affects people living in urban cities. Short-term Mega-events such as international meetings, sports tournaments, and traditional festivals can profoundly influence the local air quality. However, the extent of these influences and their role in improving or deteriorating the local air quality is still unclear. By collecting relative research from 75 publications based on more than 37 cities worldwide, we conducted a systematic review and meta-analysis. We calculated the log response ratio (RR) of the treatment (during) and control periods (before and after) of the Mega-events. The short-term policy control measures enacted during the Mega-Events consisting of meetings caused a significant decline (by -44.06%) in the ambient PM2.5 concentration. The mean daily PM2.5 concentration reduced from more than 100.00 μg/m3 before the events to 60.39 μg/m3, which is below the WHO (World Health Organization) interim target - 1 (75 μg/m3). On the contrary, setting off fireworks during the festival increased the ambient PM2.5 concentrations by 89.57% on average, with a mean daily value of 254.22 μg/m3. The variations in the effects of all event types on the air quality were primarily influenced by the background PM2.5 concentrations, with a negative correlation throughout. Moreover, the impact of events with policy control measures was also influenced by the year of the event, level of control, and location (suburban/urban) of the monitoring sites. Our findings provide evidence of the potential of human intervention on PM2.5 pollution reduction. We further highlight the crucial role of background pollution level in implementing policies during the Mega-events, which can benefit the environmental governance of developing countries.
Collapse
Affiliation(s)
- Shaoning Li
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China; Beijing Yanshan Forest Ecosystem Observation and Research Station, Beijing, 100093, China
| | - Shaowei Lu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China; Beijing Yanshan Forest Ecosystem Observation and Research Station, Beijing, 100093, China
| | - Xiaotian Xu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China; Beijing Yanshan Forest Ecosystem Observation and Research Station, Beijing, 100093, China.
| | - Na Zhao
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China; Beijing Yanshan Forest Ecosystem Observation and Research Station, Beijing, 100093, China
| | - Ai Li
- Shenyang Agricultural University, Shenyang, Liaoning, 110000, China
| | - Lan Xu
- Shenyang Agricultural University, Shenyang, Liaoning, 110000, China
| |
Collapse
|
37
|
Yao Y, Chen X, Chen W, Wang Q, Fan Y, Han Y, Wang T, Wang J, Qiu X, Zheng M, Que C, Zhu T. Susceptibility of individuals with chronic obstructive pulmonary disease to respiratory inflammation associated with short-term exposure to ambient air pollution: A panel study in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142639. [PMID: 33069482 DOI: 10.1016/j.scitotenv.2020.142639] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. There is no clear evidence of whether COPD patients are more susceptible to respiratory inflammation associated with short-term exposure to air pollutants than those without COPD. OBJECTIVES This study directly compared air pollutant-associated respiratory inflammation between COPD patients and healthy controls. METHODS This study is based on the COPDB panel study (COPD in Beijing). Fractional exhaled nitric oxide (FeNO) was repeatedly measured in 53 COPD patients and 82 healthy controls at up to four clinical visits. Concentrations of carbon monoxide (CO), nitrogen monoxide, nitrogen dioxide (NO2), sulfur dioxide (SO2), fine particulate matter (PM2.5), black carbon (BC), ultrafine particles (UFPs), and accumulated-mode particles (Acc) were monitored continuously at a fixed-site monitoring station. Linear mixed-effects models were used to compare the associations between ln-transformed FeNO and average 1-23 h concentrations of air pollutants before the clinical visits. RESULTS FeNO was positively associated with interquartile range (IQR) increases in average concentrations of CO, NO2, SO2, BC, UFPs, and Acc in all participants, with the strongest associations in different time-windows (range from 6.6% for average 1 h NO2 exposure to 32.1% for average 7 h SO2 exposure). Associations between FeNO and average 13-23 h PM2.5 exposure differed significantly according to COPD status. Increases in FeNO associated with average 1-2 h NO exposure were significant in COPD patients (range 8.9-10.2%), while the associations were nonsignificant in healthy controls. Associations between FeNO and average 1-23 h CO and SO2 exposure tended to be higher in COPD patients than in healthy controls, although the differences were not significant. UFPs-associated respiratory inflammation was robust in both subgroups. CONCLUSIONS COPD patients are more susceptible to respiratory inflammation following PM2.5, NO, CO, and SO2 exposure than individuals without COPD.
Collapse
Affiliation(s)
- Yuan Yao
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Xi Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China; GRiC, Shenzhen Institute of Building Research Co., Ltd., Shenzhen, China.
| | - Wu Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Qi Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Yunfei Fan
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Yiqun Han
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, UK.
| | - Teng Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Junxia Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Xinghua Qiu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Mei Zheng
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing, China.
| | - Tong Zhu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
38
|
Hvidtfeldt UA, Severi G, Andersen ZJ, Atkinson R, Bauwelinck M, Bellander T, Boutron-Ruault MC, Brandt J, Brunekreef B, Cesaroni G, Chen J, Concin H, Forastiere F, van Gils CH, Gulliver J, Hertel O, Hoek G, Hoffmann B, de Hoogh K, Janssen N, Jöckel KH, Jørgensen JT, Katsouyanni K, Ketzel M, Klompmaker JO, Krog NH, Lang A, Leander K, Liu S, Ljungman PLS, Magnusson PKE, Mehta AJ, Nagel G, Oftedal B, Pershagen G, Peter RS, Peters A, Renzi M, Rizzuto D, Rodopoulou S, Samoli E, Schwarze PE, Sigsgaard T, Simonsen MK, Stafoggia M, Strak M, Vienneau D, Weinmayr G, Wolf K, Raaschou-Nielsen O, Fecht D. Long-term low-level ambient air pollution exposure and risk of lung cancer - A pooled analysis of 7 European cohorts. ENVIRONMENT INTERNATIONAL 2021; 146:106249. [PMID: 33197787 DOI: 10.1016/j.envint.2020.106249] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND/AIM Ambient air pollution has been associated with lung cancer, but the shape of the exposure-response function - especially at low exposure levels - is not well described. The aim of this study was to address the relationship between long-term low-level air pollution exposure and lung cancer incidence. METHODS The "Effects of Low-level Air Pollution: a Study in Europe" (ELAPSE) collaboration pools seven cohorts from across Europe. We developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and ozone (O3) to assign exposure to cohort participants' residential addresses in 100 m by 100 m grids. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socio-economic status). We fitted linear models, linear models in subsets, Shape-Constrained Health Impact Functions (SCHIF), and natural cubic spline models to assess the shape of the association between air pollution and lung cancer at concentrations below existing standards and guidelines. RESULTS The analyses included 307,550 cohort participants. During a mean follow-up of 18.1 years, 3956 incident lung cancer cases occurred. Median (Q1, Q3) annual (2010) exposure levels of NO2, PM2.5, BC and O3 (warm season) were 24.2 µg/m3 (19.5, 29.7), 15.4 µg/m3 (12.8, 17.3), 1.6 10-5m-1 (1.3, 1.8), and 86.6 µg/m3 (78.5, 92.9), respectively. We observed a higher risk for lung cancer with higher exposure to PM2.5 (HR: 1.13, 95% CI: 1.05, 1.23 per 5 µg/m3). This association was robust to adjustment for other pollutants. The SCHIF, spline and subset analyses suggested a linear or supra-linear association with no evidence of a threshold. In subset analyses, risk estimates were clearly elevated for the subset of subjects with exposure below the EU limit value of 25 µg/m3. We did not observe associations between NO2, BC or O3 and lung cancer incidence. CONCLUSIONS Long-term ambient PM2.5 exposure is associated with lung cancer incidence even at concentrations below current EU limit values and possibly WHO Air Quality Guidelines.
Collapse
Affiliation(s)
| | - Gianluca Severi
- CESP, UMR 1018, Université Paris-Saclay, Inserm, Gustave Roussy, Villejuif, France; Department of Statistics, Computer Science and Applications "G. Parenti" (DISIA), University of Florence, Italy.
| | - Zorana Jovanovic Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1014 Copenhagen, Denmark.
| | - Richard Atkinson
- Population Health Research Institute and MRC-PHE Centre for Environment and Health, St George's, University of London, London, UK.
| | - Mariska Bauwelinck
- Interface Demography - Department of Sociology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden; Center for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden.
| | | | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, P.O.Box 358, 4000 Roskilde, Denmark; iClimate - Aarhus University Interdisciplinary Centre for Climate Change, Frederiksborgvej 399, P.O.Box 358, 4000 Roskilde, Denmark.
| | - Bert Brunekreef
- Institute of Risk Assessment Sciences (IRAS), University of Utrecht, P.O. Box 80177, NL 3508 TD Utrecht, the Netherlands
| | - Giulia Cesaroni
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, 00147 Rome, Italy.
| | - Jie Chen
- Institute of Risk Assessment Sciences (IRAS), University of Utrecht, P.O. Box 80177, NL 3508 TD Utrecht, the Netherlands.
| | - Hans Concin
- Agency for Preventive and Social Medicine, Rheinstraße 61, 6900 Bregenz, Austria.
| | - Francesco Forastiere
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, 90146 Palermo, Italy; Environmental Research Group, King's College, London SE1 9NH, UK
| | - Carla H van Gils
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA Utrecht, the Netherlands.
| | - John Gulliver
- Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, UK.
| | - Ole Hertel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, P.O.Box 358, 4000 Roskilde, Denmark.
| | - Gerard Hoek
- Institute of Risk Assessment Sciences (IRAS), University of Utrecht, P.O. Box 80177, NL 3508 TD Utrecht, the Netherlands.
| | - Barbara Hoffmann
- Institute of Occupational, Social and Environmental Medicine, Medical Faculty, Heinrich Heine University, Gurlittstraße 55, 40223 Dusseldorf, Germany.
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland; University of Basel, Petersplatz 1, Postfach, 4001 Basel, Switzerland.
| | - Nicole Janssen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University of Duisburg-Essen, Essen, Germany.
| | - Jeanette Therming Jørgensen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1014 Copenhagen, Denmark.
| | - Klea Katsouyanni
- Dept. of Hygiene, Epidemiology and Medical Statistics, National and Kapodstrian University of Athens, Medical School 75, Mikras Asias Street 115 27 Athens, Greece; NIHR HPRU Health Impact of Environmental Hazards, Environmental Research Group, School of Public Health, Imperial College, London, UK.
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, P.O.Box 358, 4000 Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, United Kingdom.
| | - Jochem O Klompmaker
- Institute of Risk Assessment Sciences (IRAS), University of Utrecht, P.O. Box 80177, NL 3508 TD Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Norun Hjertager Krog
- Section of Air Pollution and Noise, Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway.
| | - Alois Lang
- Cancer Registry Vorarlberg, Agency for Preventive and Social Medicine, Rheinstraße 61, Bregenz 6900, Austria.
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | - Shuo Liu
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1014 Copenhagen, Denmark.
| | - Petter L S Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden; Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden.
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Amar Jayant Mehta
- Statistics Denmark, Sejrøgade 11, 2100 Copenhagen, Denmark; Section of Epidemiology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1014 Copenhagen, Denmark.
| | - Gabriele Nagel
- Agency for Preventive and Social Medicine, Rheinstraße 61, 6900 Bregenz, Austria; Institute of Epidemiology and Medical Biometry, Ulm University, Helmholtzstr. 22, 89081 Ulm, Germany.
| | - Bente Oftedal
- Section of Air Pollution and Noise, Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden; Center for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden.
| | - Raphael Simon Peter
- Institute of Epidemiology and Medical Biometry, Ulm University, Helmholtzstr. 22, 89081 Ulm, Germany.
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Chair of Epidemiology, Ludwig Maximilians Universität München, Munich, Germany.
| | - Matteo Renzi
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, 00147 Rome, Italy.
| | - Debora Rizzuto
- Aging Research Center, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm 17165, Sweden; Stockholm Gerontology Research Center, Stockholm 11346, Sweden.
| | - Sophia Rodopoulou
- Dept. of Hygiene, Epidemiology and Medical Statistics, National and Kapodstrian University of Athens, Medical School 75, Mikras Asias Street 115 27 Athens, Greece.
| | - Evangelia Samoli
- Dept. of Hygiene, Epidemiology and Medical Statistics, National and Kapodstrian University of Athens, Medical School 75, Mikras Asias Street 115 27 Athens, Greece.
| | - Per Everhard Schwarze
- Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Torben Sigsgaard
- Department of Public Health, Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark.
| | | | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden; Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, 00147 Rome, Italy.
| | - Maciek Strak
- Institute of Risk Assessment Sciences (IRAS), University of Utrecht, P.O. Box 80177, NL 3508 TD Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland; University of Basel, Petersplatz 1, Postfach, 4001 Basel, Switzerland.
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Helmholtzstr. 22, 89081 Ulm, Germany.
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, P.O.Box 358, 4000 Roskilde, Denmark.
| | - Daniela Fecht
- UK Small Area Health Statistics Unit, MRC Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK.
| |
Collapse
|
39
|
Hu Y, Yao M, Liu Y, Zhao B. Personal exposure to ambient PM 2.5, PM 10, O 3, NO 2, and SO 2 for different populations in 31 Chinese provinces. ENVIRONMENT INTERNATIONAL 2020; 144:106018. [PMID: 32771828 DOI: 10.1016/j.envint.2020.106018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/04/2020] [Accepted: 07/27/2020] [Indexed: 05/06/2023]
Abstract
Most epidemiological studies usually employ ambient air pollutant concentrations as a proxy of personal exposure to air pollutants originating outdoors, which could lead to a biased estimation of health effects. Herein, we modeled infiltration and exposure factors as the modifications of personal exposure to ambient PM2.5, PM10, O3, NO2, and SO2 for all seasons, genders, and ages in 31 Chinese provinces. The annual average exposure factors of PM10, PM2.5, O3, NO2, and SO2 were 0.42 ± 0.13 (arithmetic mean ± standard deviation), 0.68 ± 0.14, 0.34 ± 0.12, 0.50 ± 0.14, and 0.40 ± 0.13, respectively. We observed significant age, gender, seasonal, and geographical differences in infiltration and exposure factors for all studied ambient air pollutants. These factors were higher in southern China than in the north, and they were the highest in summer and the lowest in winter. The exposure factor of minors (age < 18 years) was significantly lower than that of adults (age ≥ 18 years, P < 0.01). Adult males had higher exposure factors than females (P < 0.01). Epidemiological studies utilizing outdoor concentrations of air pollutants could overestimate personal exposure to these pollutants. The present study could help in reducing the bias in the estimation of the health effects of air pollutants.
Collapse
Affiliation(s)
- Ying Hu
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Mingyao Yao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Yumeng Liu
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|