1
|
Azeredo DBC, Sousa Anselmo DD, Falcão Veríssimo AC, Souza LLD, Lisboa PC, Soares P, Santos-Silva AP, Graceli JB, Carvalho DPD, Magliano D, Miranda-Alves L. Endocrine-disrupting chemical, methylparaben, in environmentally relevant exposure promotes hazardous effects on the hypothalamus-pituitary-thyroid axis. Mol Cell Endocrinol 2025; 598:112444. [PMID: 39725349 DOI: 10.1016/j.mce.2024.112444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Methylparaben (MP) belongs to the paraben class and is widely used as a preservative in personal care products, medicines, and some foods. MP acts as an endocrine disrupting chemical (EDC) on the hypothalamic-pituitary-thyroid (HPT) axis. However, the effects of MP have not yet been completely elucidated, as published results are scarce and controversial. The objective of this work was to evaluate the effects of subacute exposure to MP on the HPT axis of male rats. To achieve this, in this study the animals were divided into four experimental groups: control, MP3, MP30 and MP300 (3, 30 and 300 μg/kg/day, respectively). The rats were gavage for 14 days and sacrificed at the end of MP treatment. Our findings demonstrated that MP can promote important changes in thyroid morphology, including a decrease in follicular area, colloid area, epithelial area, and epithelial height, affecting the homeostasis of the HPT axis, and affecting the expression of genes related to hormonal biosynthesis. Furthermore, changes in interstitial collagen deposition were also demonstrated. Finally, we conclude that exposure to MP can be harmful to health, as it is involved in the dysregulation of the thyroid gland, affecting its morphophysiology, suggesting that even doses considered safe by current legislation can be dangerous and should be reconsidered.
Collapse
Affiliation(s)
- Damáris Barcelos Cunha Azeredo
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Denilson de Sousa Anselmo
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Ana Clara Falcão Veríssimo
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Luana Lopes de Souza
- Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Brazil
| | | | - Paula Soares
- i3S- Instituto de Investigação e Inovação em Saúde, Cell Signaling & Metabolism Group, Universidade do Porto, Portugal
| | - Ana Paula Santos-Silva
- Núcleo Multidisciplinar de Pesquisa em Biologia, Universidade Federal do Rio de Janeiro, Campus Duque de Caxias, Brazil
| | - Jones Bernardes Graceli
- Laboratório de Toxicologia e Endocrinologia Celular, Departamento de Morfologia, Universidade Federal do Espírito Santo, Brazil; Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Denise Pires de Carvalho
- Centro de Pesquisas em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Brazil
| | - D'Angelo Magliano
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Núcleo de Pesquisa em Morfologia e Metabolismo, Universidade Federal do Fluminense, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Bloom MS, Upadhyaya S, Nzegwu AW, Kuiper JR, Buckley JP, Aschner J, Barr D, Barrett ES, Bennett DH, Dabelea D, Dunlop AL, Fuller A, Karagas M, Liang D, Meeker J, Miller R, O'Connor TG, Romano ME, Sathyanarayana S, Starling AP, Stroustrup A, Watkins DJ. Racial and ethnic differences in prenatal exposure to environmental phenols and parabens in the ECHO Cohort. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025:10.1038/s41370-025-00750-w. [PMID: 39955434 DOI: 10.1038/s41370-025-00750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Research suggests racial/ethnic disparities in prenatal exposure to endocrine disrupting environmental phenols (EPs) in limited populations. However, no studies have investigated racial/ethnic disparities in prenatal EP exposure across the U.S. OBJECTIVES To estimate demographic differences in prenatal urinary EPs among participants in the Environmental influences on Child Health Outcomes (ECHO) Cohort. METHODS An analysis of 4006 pregnant ECHO participants was performed, with 7854 specimens collected from 1999-2020. Racial/ethnic identity was self-reported. Urinary levels of 2,4-dichlorophenol (2,4-DCP), 2,5-dichlorophenol (2,5-DCP), benzophenone-3 (BP-3), bisphenols A (BPA), F (BPF), and S (BPS), and methyl- (MePb), ethyl- (EtPb), propyl- (PrPb), and butyl- (BuPb) parabens were measured at one or more time points during pregnancy. Effect estimates were adjusted for age, pre-pregnancy body mass index, educational level, gestational age and season at urine collection, and ECHO cohort. RESULTS Participants were classified as Hispanic of any race (n = 1658), non-Hispanic White (n = 1478), non-Hispanic Black (n = 490), and non-Hispanic Other (n = 362), which included individuals of multiple races. Urinary 2,4-DCP and 2,5-DCP concentrations were 2- to 4-fold higher among Hispanic, non-Hispanic Black, and non-Hispanic Other participants relative to non-Hispanic White participants. MePb was ~2-fold higher among non-Hispanic Black (95% confidence interval (CI): 1.7-3.1) and non-Hispanic Other (95% CI: 1.5-2.8) participants. PrPb was similarly higher among non-Hispanic Black (95% CI: 1.7-3.7) and non-Hispanic Other (95% CI: 1.3-3.1) participants. EtPb was higher among non-Hispanic Black participants (3.1-fold; 95% CI 1.7-5.8). BP-3 was lower in Hispanic (0.7-fold; 95% CI: 0.5-0.9), non-Hispanic Black (0.4-fold; 95% CI: 0.3-0.5), and non-Hispanic Other (0.5-fold; 95% CI: 0.4-0.7) participants. Urinary BuPb, BPA, BPF, and BPS were similar across groups. IMPACT STATEMENT This multisite, observational cohort study investigated whether there are racial and ethnic differences in prenatal exposure to endocrine disrupting environmental phenols and parabens. Among 4006 participants from multiple U.S. cohorts who provided urine specimens during pregnancy, those who self-reported a racial and ethnic identity other than non-Hispanic White had higher urinary concentrations of 2,4-dichlorophenol, 2,5-dichlorophenol, methyl paraben, ethyl paraben, and propyl paraben and lower urinary concentrations of benzophenone-3 than those reporting as non-Hispanic White. These data show differences in prenatal concentrations of endocrine disrupting environmental phenols and parabens by racial and ethnic identity.
Collapse
Affiliation(s)
- Michael S Bloom
- Department of Global and Community Health, College of Public Health, George Mason University, Fairfax, VA, USA.
| | - Sudhi Upadhyaya
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Adaeze W Nzegwu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jordan R Kuiper
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Jessie P Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Judy Aschner
- Hackensack Meridian Health Center for Discovery and Innovation, Hackensack, NJ, USA
| | - Dana Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, and Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Dana Dabelea
- Department of Epidemiology, University of Colorado, Colorado School of Public Health, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alma Fuller
- School of Nursing, College of Public Health, George Mason University, Fairfax, VA, USA
| | - Margaret Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - John Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Rachel Miller
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas G O'Connor
- Departments of Psychiatry, Neuroscience, Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | - Anne P Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Annemarie Stroustrup
- Northwell Health, Cohen Children's Medical Center and the Departments of Pediatrics and Occupational Medicine, Epidemiology & Prevention, Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Leader J, Mínguez‐Alarcón L, Williams PL, Ford JB, Dadd R, Chagnon O, Bellinger DC, Oken E, Calafat AM, Hauser R, Braun JM. Paternal and maternal preconception and maternal pregnancy urinary concentrations of parabens in relation to child behavior. Andrology 2025; 13:22-33. [PMID: 38153162 PMCID: PMC11211245 DOI: 10.1111/andr.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Epidemiologic studies of the effects of parental preconception paraben exposures on child behavior are limited despite emerging evidence suggesting that such exposures may affect offspring neurodevelopment. OBJECTIVE We investigated whether maternal and paternal preconception and maternal pregnancy urinary concentrations of parabens were associated with child behavior. METHODS We analyzed data from the Preconception Environmental exposure And Childhood health Effects Study, an ongoing prospective cohort of children aged 6-13 years and their parents. We estimated covariate-adjusted associations of loge-transformed urinary methyl, propyl, and butyl paraben concentrations (individually using linear regression models and as a mixture using quantile g-computation) collected prior to conception and during pregnancy with Behavioral Assessment System for Children-3 and Behavior Rating Inventory of Executive Function T-scores (higher scores indicate more problem behaviors). RESULTS This analysis included 140 mothers, 81 fathers, and 171 children (25 sets of twins); parents were predominantly non-Hispanic white (88% for both mothers and fathers). In single paraben models, higher paternal preconception urinary propyl and methyl paraben concentrations were associated with higher Internalizing Problem T-scores (propyl parabenβ $\beta \;$ = 1.7; 95% confidence interval: 0.6, 2.8, methyl parabenβ $\beta \;$ = 2.2; 95% confidence interval: 0.5, 3.9) and higher Behavioral Symptom Index T-scores (propyl parabenβ $\beta \;$ = 1.4; 95% confidence interval: 0.3, 2.5, methyl parabenβ $\beta \;$ = 1.6; 95% confidence interval: -0.1, 3.3). Each quantile increase in the paternal mixture of three parabens was associated with a 3.4 (95% confidence interval: 0.67, 6.1) and 2.5 (95% confidence interval: 0.01, 5.0) increased internalizing problem and Behavioral Symptom Index T-scores respectively. Higher paternal preconception (β $\beta \;$ = 1.0; 95% confidence interval: 0.04, 1.9) and maternal preconception (β $\beta \;$ = 1.1 95% confidence interval: -0.1, 2.2) concentrations of propyl paraben were associated with higher Behavior Rating Inventory of Executive Function Metacognition Index T-scores in children, but the paraben mixtures was not. CONCLUSION In this cohort, paternal preconception urinary concentrations of propyl and methyl paraben were associated with worse parent-reported child behaviors.
Collapse
Affiliation(s)
- Jordana Leader
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Lidia Mínguez‐Alarcón
- Channing Division of Network MedicineHarvard Medical School and Brigham and Women's HospitalBostonMassachusettsUSA
| | - Paige L. Williams
- Departments of Biostatistics and EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Jennifer B. Ford
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Ramace Dadd
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Olivia Chagnon
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - David C. Bellinger
- Cardiac Neurodevelopment ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of Neurology and PsychologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Emily Oken
- Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMassachusettsUSA
| | - Antonia M. Calafat
- National Center for Environmental HealthCenters for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Russ Hauser
- Departments of Environmental Health and EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
- Department of ObstetricsGynecology and Reproductive BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Joseph M. Braun
- Department of EpidemiologyBrown UniversityProvidenceRhode IslandUSA
| |
Collapse
|
4
|
Fu J, Yao Y, Huang Z, Guo Z, Chen X, Tang X, Ge Y, Xiao Q, Sha Y, Lu S. Sex-Specific and Trimester-Specific Associations of Prenatal Exposure to Bisphenols, Parabens, and Triclosan with Neonatal Birth Size and Gestational Age. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13687-13696. [PMID: 39067068 DOI: 10.1021/acs.est.4c04940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Bisphenols, parabens, and triclosan (TCS) are common endocrine disrupters used in various consumer products. These chemicals have been shown to cross the placental barrier and affect intrauterine development of fetuses. In this study, we quantified serum levels of six bisphenols, five parabens, and TCS in 483 pregnant women from southern China. Quantile-based g-computation showed that combined exposure to bisphenols, parabens, and TCS was significantly (p < 0.05) and negatively associated with birth weight (β = -39.9, 95% CI: -73.8, -6.1), birth length (β = -0.19, 95% CI: -0.34, -0.04), head circumference (β = -0.13, 95% CI: -0.24, -0.02), and thoracic circumference (β = -0.16, 95% CI: -0.29, -0.04). An inverse correlation was also identified between mixture exposure and gestational age (β = -0.12, 95% CI: -0.24, -0.01). Bisphenol A (BPA), bisphenol Z (BPZ), bisphenol AP (BPAP), propylparaben (PrP), and TCS served as the dominant contributors to the overall effect. In subgroup analyses, male newborns were more susceptible to mixture exposure than females, whereas the exposure-outcome link was prominent among pregnant women in the first and second trimesters. More evidence is warranted to elucidate the impacts of exposure to mixtures on birth outcomes, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Jinfeng Fu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Yao Yao
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen 518172, People's Republic of China
| | - Zhihong Huang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Zhihui Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Xulong Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Xinxin Tang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Yujie Sha
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| |
Collapse
|
5
|
Lei X, Ao J, Li J, Gao Y, Zhang J, Tian Y. Maternal concentrations of environmental phenols during early pregnancy and behavioral problems in children aged 4 years from the Shanghai Birth Cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172985. [PMID: 38705299 DOI: 10.1016/j.scitotenv.2024.172985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Prenatal exposure to environmental phenols such as bisphenol (BPs), paraben (PBs), benzophenone (BzPs), and triclosan (TCS) is ubiquitous and occurs in mixtures. Although some of them have been suspected to impact child behavioral development, evidence is still insufficient, and their mixed effects remain unclear. OBJECTIVES To explore the association of prenatal exposure to multiple phenols with child behavioral problems. METHOD In a sample of 600 mother-child pairs from the Shanghai Birth Cohort, we quantified 18 phenols (6 PBs, 7 BPs, 4 BzPs, and TCS) in urine samples collected during early pregnancy. Parent-reported Strengths and Difficulties Questionnaires were utilized to evaluate child behavioral difficulties across four subscales, namely conduct, hyperactivity/inattention, emotion, and peer relationship problems, at 4 years of age. Multivariable linear regression was conducted to estimate the relationships between single phenolic compounds and behavioral problems. Additionally, weighted quantile sum (WQS) regression was employed to examine the overall effects of the phenol mixture. Sex-stratified analyses were also performed. RESULTS Our population was extensively exposed to 10 phenols (direction rates >50 %), with low median concentrations (1.00 × 10-3-6.89 ng/mL). Among them, single chemical analyses revealed that 2,4-dihydroxy benzophenone (BP1), TCS, and methyl 4-hydroxybenzoate (MeP) were associated with increased behavior problems, including hyperactivity/inattention (BP1: β = 0.16; 95 % confidence interval [CI]: 0.04, 0.30), emotional problems (BP1: β = 0.11; 95 % CI: 0.02, 0.20; TCS: β = 0.08; 95 % CI: 0.02, 0.14), and peer problems (MeP: β = 0.10; 95 % CI: 0.02, 0.18); however, we did not identify any significant association with conduct problems. Further phenol mixture analyses in the WQS model yielded similar results. Stratification for child sex showed stronger positive associations in boys. CONCLUSION Our findings indicated that maternal phenol levels during early pregnancy, specifically BP1, TCS, and MeP, are associated with high behavioral problem scores in 4-year-old children.
Collapse
Affiliation(s)
- Xiaoning Lei
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China.
| | - Junjie Ao
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China
| | - Jingjing Li
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China
| | - Ying Tian
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China.
| |
Collapse
|
6
|
Kek T, Geršak K, Virant-Klun I. Exposure to endocrine disrupting chemicals (bisphenols, parabens, and triclosan) and their associations with preterm birth in humans. Reprod Toxicol 2024; 125:108580. [PMID: 38522559 DOI: 10.1016/j.reprotox.2024.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Preterm birth in humans (PTB), defined as birth prior to 37 weeks of gestation, is one of the most important causes of neonatal morbidity and mortality and is associated with adverse health outcomes later in life. Attributed to many different etiological factors, estimated 15.1 million or 11.1% of births each year are preterm, which is more than 1 per 10 livebirths globally. Environmental pollution is a well-established risk factor that could influence the pathogenesis of PTB. Increasing evidence has shown an association between maternal exposure to endocrine disrupting chemicals (EDCs) and PTB. This scoping review aims to summarize current research on the association between EDC exposure and PTB in humans. Database PubMed was used to identify articles discussing the effect of selected EDCs, namely bisphenol A, bisphenol S, bisphenol F, parabens, and triclosan, found in plastics, cosmetics and other personal care products, on PTB occurrence. Regardless of some inconsistences in the findings across studies, the reviewed studies suggest a potential association between involuntary exposure to reviewed EDCs and the risk of PTB. However, further studies are needed to delineate exact correlations and mechanisms through which EDC exposure causes PTB so that efficient preventative measures could be implemented. Until then, health care providers should inform women about possible EDC exposure thus empowering them to make healthy choices and at the same time decrease the EDC negative effects.
Collapse
Affiliation(s)
- Tina Kek
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška cesta 2, Ljubljana 1000, Slovenia.
| | - Ksenija Geršak
- Medical Faculty, University of Ljubljana, Vrazov trg 2, Ljubljana 1000, Slovenia; Division of Gynaecology and Obstetrics, University Medical Centre Ljubljana, Šlajmerjeva 3, Ljubljana 1000, Slovenia
| | - Irma Virant-Klun
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška cesta 2, Ljubljana 1000, Slovenia
| |
Collapse
|
7
|
Jiang QL, Li S, Zeng Y, Zhang BT, Cao Y, Li T, Jiang J. High-dose exposure to butylparaben impairs thyroid ultrastructure and function in rats. Sci Rep 2024; 14:4550. [PMID: 38402305 PMCID: PMC10894246 DOI: 10.1038/s41598-024-55096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
Parabens (PBs) are a class of preservatives commonly used in cosmetics and pharmaceuticals. Studies have shown that these compounds may act as endocrine disruptors, affecting thyroxine levels in humans. PBs with longer chain substituents, such as butylparaben (BuP), are less prone to complete biotransformation and are therefore more likely to accumulate in the body. In this study, the effect of high-dose exposure to BuP on thyroid microstructure, ultrastructure, and function was investigated in rats. 50 mg/kg bw per day of BuP was injected subcutaneously into the neck of rats for 4 weeks. Rat thyroid weight, microstructure, and ultrastructure were determined, and the levels of thyroid sodium/iodide symporter (NIS), serum thyroid hormones, and thyroid autoantibodies were measured. The human thyroid cell line was used to study the mechanism of BuP on thyroid epithelial cells. The weight of the thyroid gland of BuP-exposed rats was increased, the structure of the thyroid follicles was irregular and damaged, the mitochondria and rough endoplasmic reticulum were swollen and damaged, and the microvilli at the tip of the epithelium were reduced and disappeared. Serum total T3, total T4, free T3, and free T4 were decreased in BuP-exposed rats, and TSH, peroxidase antibody, and thyroglobulin antibody were increased. In vitro, BuP decreased the level of NIS in thyroid epithelial cells, inhibited proliferation and viability, and induced apoptosis in a dose-dependent manner. This study demonstrated that high-dose exposure to BuP induced structural, ultrastructural, and functional impairment to the thyroid gland of rats, which may be one of the factors leading to hypothyroidism.
Collapse
Affiliation(s)
- Qi-Lan Jiang
- Department of Clinical Nutrition, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Sha Li
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yang Zeng
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Bo-Tao Zhang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yu Cao
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
8
|
Wang H, Kang G, Ma C, Lian H, Zhao K, Zhao B, Feng Y, Dong W. Inhibitory Effect of Acetaminophen on Ocular Pigmentation and its Relationship with Thyroxine in Zebrafish Embryos. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:39. [PMID: 38353786 DOI: 10.1007/s00128-024-03867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Acetaminophen (N-acetyl-p-aminophenol; APAP) is one of the most widely used analgesics. To examine the toxicity of APAP, we used zebrafish embryos as model animals to detect the effect of APAP on the thyroid system of zebrafish embryos. The zebrafish embryos were exposed to APAP from 4 h post fertilization (4 hpf) until observation. The experimental results showed that APAP caused pericardial edema and decreased pigmentation in the zebrafish embryos or larvae. The APAP treatment caused a decrease in the expression of tpo and thrβ in the zebrafish at 36 and 72 hpf. The transcriptomic analysis found that APAP affected retinol metabolism, the metabolism of xenobiotics by cytochrome P450, and the tyrosine metabolism pathway. The harmful effect of APAP on zebrafish embryos might be due to its disrupting effect on the functional regulation of the thyroid hormone system.
Collapse
Affiliation(s)
- Huan Wang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Guiying Kang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China.
- , No. 996, Xilamulun Street, Keerqin District, Tongliao, 028000, China.
| | - Chenglong Ma
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Hua Lian
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Kexin Zhao
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Yuanzhou Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China.
- , No. 996, Xilamulun Street, Keerqin District, Tongliao, 028000, China.
| |
Collapse
|
9
|
Huang PC, Chen HC, Leung SH, Lin YJ, Huang HB, Chang WT, Huang HI, Chang JW. Associations between paraben exposure, thyroid capacity, homeostasis and pituitary thyrotropic function in the general Taiwanese: Taiwan Environmental Survey for Toxicants (TEST) 2013. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1288-1303. [PMID: 38038926 DOI: 10.1007/s11356-023-31277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Several studies have suggested that some endocrine disruptors such as synthetic phenols, parabens and phthalates may disrupt thyroid hormone signaling and associated negative feed-backs with the central hypothalamic-pituitary-thyroid (HPT) axis. Therefore, we investigated urinary paraben and blood thyroid hormone levels in the Taiwanese population. Our sample comprised 264 adults (aged 18-97 years) and 75 minors (aged 7-17 years) from Taiwan Environmental Survey for Toxicants 2013. Urinary levels of methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP) were assessed. Hormones of particular interest include: thyroid-stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4). We sought integrated parameters to describe the transfer of thyroid hormones in homeostatic models. The geometric mean urinary paraben levels of the adults were higher than those of the minors (adults vs. minors; MeP: 383 vs. 62.4 ng/mL; PrP: 109 vs. 8.00 ng/mL; EtP: 39.5 vs. 2.38 ng/mL, and BuP: 6.36 vs. 2.13 ng/mL). In the male adults, we discovered that 0.253% (p = 0.032), 0.256% (p = 0.041) and 0.257% (p = 0.037) decreases in the TSH, TSH/T4 and TSH/FreeT4 ratio was associated with 1% EtP increases, respectively. In the female minors, 0.093% (p = 0.044), 0.072% (p = 0.047) and 0.156 (p = 0.004) increases in the TSH ratios were associated with a 1% MeP, EtP and BuP increase, respectively. Moreover, 0.151% (p = 0.008) and 0.177% (p = 0.001) increases in TSH/T4 and TSH/free T4 ratios were associated with a BuP 1% increase, respectively. Finally, EtP was positively associated with SPINA-GT (β: 15.66, p = 0.036) in the male adults. By contrast, EtP were positively associated with Jostel's TSH index and sTSHI (β: 0.072, p = 0.049; β: 0.107, p = 0.049) in the female minors. The Taiwanese population is commonly exposed to parabens, which can potentially lead to alteration of thyroid hormone homeostasis.
Collapse
Affiliation(s)
- Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan
| | - Hsin-Chang Chen
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Shih-Hao Leung
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Sec. 2, Beitou, Taipei, 112, Taiwan
| | - Yu-Jung Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Han-Bin Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Ting Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-I Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Jung-Wei Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Sec. 2, Beitou, Taipei, 112, Taiwan.
| |
Collapse
|
10
|
Azeredo DBC, de Sousa Anselmo D, Soares P, Graceli JB, Magliano DC, Miranda-Alves L. Environmental Endocrinology: Parabens Hazardous Effects on Hypothalamic-Pituitary-Thyroid Axis. Int J Mol Sci 2023; 24:15246. [PMID: 37894927 PMCID: PMC10607526 DOI: 10.3390/ijms242015246] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Parabens are classified as endocrine-disrupting chemicals (EDCs) capable of interfering with the normal functioning of the thyroid, affecting the proper regulation of the biosynthesis of thyroid hormones (THs), which is controlled by the hypothalamic-pituitary-thyroid axis (HPT). Given the crucial role of these hormones in health and the growing evidence of diseases related to thyroid dysfunction, this review looks at the effects of paraben exposure on the thyroid. In this study, we considered research carried out in vitro and in vivo and epidemiological studies published between 1951 and 2023, which demonstrated an association between exposure to parabens and dysfunctions of the HPT axis. In humans, exposure to parabens increases thyroid-stimulating hormone (TSH) levels, while exposure decreases TSH levels in rodents. The effects on THs levels are also poorly described, as well as peripheral metabolism. Regardless, recent studies have shown different actions between different subtypes of parabens on the HPT axis, which allows us to speculate that the mechanism of action of these parabens is different. Furthermore, studies of exposure to parabens are more evident in women than in men. Therefore, future studies are needed to clarify the effects of exposure to parabens and their mechanisms of action on this axis.
Collapse
Affiliation(s)
- Damáris Barcelos Cunha Azeredo
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.C.A.); (D.d.S.A.); (D.C.M.)
- Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Denilson de Sousa Anselmo
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.C.A.); (D.d.S.A.); (D.C.M.)
- Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Paula Soares
- Cellular Signaling and Metabolism Group, i3S—Institute for Research and Innovation in Health, University of Porto, 420-135 Porto, Portugal;
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-139 Porto, Portugal
| | - Jones Bernardes Graceli
- Laboratory of Cellular Toxicology and Endocrinology, Department of Morphology, Federal University of Espírito Santo, Vitória 29047-105, Brazil;
| | - D’Angelo Carlo Magliano
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.C.A.); (D.d.S.A.); (D.C.M.)
- Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Morphology and Metabolism Group, Federal University of Fluminense, Niteroi 24020-150, Brazil
| | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.C.A.); (D.d.S.A.); (D.C.M.)
- Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Cellular Signaling and Metabolism Group, i3S—Institute for Research and Innovation in Health, University of Porto, 420-135 Porto, Portugal;
- Postgraduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Postgraduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
11
|
Ren X, Deng Y, Liu W, Fu J, Huang Z, Zhang D, Xiao Q, Li X, Chen X, Huang X, Liu J, Lu S. Co-exposure to parabens and triclosan and associations with cognitive impairment in an elderly population from Shenzhen, China. CHEMOSPHERE 2023; 331:138699. [PMID: 37062391 DOI: 10.1016/j.chemosphere.2023.138699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/02/2023] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
Parabens and triclosan (TCS) have been extensively applied in personal care products (PCPs) as preservatives and antibacterial agents. However, their potentiality to disrupt the neurological system has induced increasing concern. The elderly population is at a higher risk of neurodegenerative disorder, although research on its association with PCP exposure remains scarce. Here, we measured the urinary levels of four parabens, TCS, and an oxidative stress marker among 540 participants from the Shenzhen aging-related disorder cohort during 2017-2018. The Mini-Mental State Examination (MMSE) was used to assess the cognitive status of participants. Their demographic, dietary, and behavioral factors were collected via questionnaire survey. Among the four paraben analogs, the median concentration of methyl parabens (MeP) was the highest (Low-risk group: 1.21 ng/mL, High-risk group: 1.64 ng/mL). TCS and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were detected in more than 90% of the samples. Weighted quantile sum regression and quantile-based g-computation showed that the combined effect of all analytes was positively associated with the level of 8-OHdG. BtP, EtP and MeP were identified as the major contributors to the joint effect. After stratification by gender, females exhibited more pronounced changes in urinary 8-OHdG level than males. However, the positive correlation between co-exposure to parabens and TCS and cognitive impairment was not significant (p > 0.05) in both models, which warrants investigation with the larger sample size.
Collapse
Affiliation(s)
- Xiaohu Ren
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yilan Deng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Wei Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jinfeng Fu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhihong Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiao Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xinfeng Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianjun Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
12
|
Mosaoa RM, Kumosani TA, Yaghmoor SS, Rihan S, Moselhy SS. Rhus tripartite methanolic extract alleviates propylparaben-induced reproductive toxicity via anti-inflammatory, antioxidant, 5-α reductase in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27802-8. [PMID: 37249771 DOI: 10.1007/s11356-023-27802-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Evidence showed that herbal medicine could be beneficial for protection against diseases that may be exist in consequence of exposure to environmental toxicants. Propylparaben (PrP) is used as preservative in food, pharmaceuticals, and cosmetics. It is classified as one of endocrine disruptive chemicals (EDCs). This study evaluated the protective effect of Rhus tripartita methanolic extract (RTME) against reproductive toxicity induced by PrP in male rats. A total of 60 Wister albino rats were divided into four groups (15 rats for each group). Group I (control): rats received the vehicle (DMSO), group II: normal rats received RTME (10 mg/kg/day), group III: rats received PrP (10 mg/kg/day), and group IV: rats received PrP (10 mg/kg/day) and RTME (10 mg/kg/day) for 4 weeks. At the end of experiment, levels of testosterone, dihydrotestosterone (DHT), and 5α-reductase were analyzed in sera. Data obtained showed a significant reduction in the levels of testosterone, dihydrotestosterone (DHT), and 5α- reductase in rats given PrP versus control (p < 0.001) and RTME treatment improved these parameters but not returned to normal. Data obtained showed a significant elevation in levels of IL-6 and TNF-α in the testis of rats given PrP versus control (p < 0.001), these inflammatory mediators were significant reduced in rats treated with RTME compared with untreated rats (p < 0.001). There was a positive correlation between level of DHT and antioxidant enzymes activities (r = 0.56). A significant elevation in the levels of MDA with reduction in the activities of GST, GSPx, SOD, and catalase (p < 0.001) in rat testicular tissues of PrP group versus control (p < 0.001) was found. Treatment with RTME significantly reduced the levels of MDA and enhanced activities of GST, GSPx, SOD, and catalase (p < 0.001) compared to untreated group (p < 0.001). In conclusion, the active ingredient components of RTME abrogate the toxicity of PrP by exhibiting antioxidative and anti-inflammatory effects, enhancing 5-α reductase with improved hormonal status against PrP- induced testicular damage. Toxicity of propylparaben, and effect of Rhus tripartita methanolic extract.
Collapse
Affiliation(s)
- Rami M Mosaoa
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Taha A Kumosani
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Production of Bioproducts for Industrial Applications Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soonham S Yaghmoor
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Production of Bioproducts for Industrial Applications Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaimaa Rihan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Said S Moselhy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
13
|
Foreman AB, van Vliet-Ostaptchouk JV, van Faassen M, Kema IP, Wolffenbuttel BH, Sauer PJJ, Bos AF, Berghuis SA. Urinary concentrations of bisphenols and parabens and their association with attention, hyperactivity and impulsivity at adolescence. Neurotoxicology 2023; 95:66-74. [PMID: 36649891 DOI: 10.1016/j.neuro.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Neurobehavioural disorder diagnoses have been increasing over the last decades, leading to heightened interest in the aetiological factors involved. Endocrine disrupting chemicals, such as parabens and bisphenols, have been suggested as one of those factors. It is unknown whether exposure during adolescence may affect neurobehavioural development. OBJECTIVE To determine whether urinary concentrations of parabens and bisphenols are associated with attention and concentration in adolescents, in general and sex-specific. METHODS We invited 188 adolescents (13-15 years old) for the follow-up birth cohort-study. Concentrations of five parabens and three bisphenols (BPA; BPF; BPS) were measured in morning urine after overnight fasting, using a validated LC-MS/MS method. Attention and concentration were assessed at the clinic with subtests of the Test of Everyday Attention in Children and the Dutch Attention Deficit Hyperactivity Disorder questionnaire (AVL), the latter being filled in by parents. Linear regression analyses were performed, adjusting for urine creatinine concentrations and potential confounding factors. RESULTS 101 (54%) adolescents participated (46 girls; 55 boys). Urinary paraben concentrations were higher in girls than in boys. Methylparaben was positively associated with attention in girls (p ≤ .05; B= -2.836; 95%CI= -5.175;-.497), ethylparaben negatively with hyperactivity (p ≤ .05; B= -1.864; 95%CI= -3.587;-.141). Butylparaben was associated with more optimal scores on parent reported attention. Propylparaben was negatively associated with scores on sustained auditory attention in girls (p ≤ .10; B=.444; 95%CI= -.009;.896). Bisphenol concentrations were not associated with scores on attention and concentration after adjusting for confounders. CONCLUSION In 13-15-year-old Dutch adolescents, urinary concentrations of methylparaben and ethylparaben were associated with better attention and less hyperactivity, whereas a trend toward significance was found between higher urinary propylparaben concentrations and poorer attention. Bisphenol concentrations were not associated with attention and concentration after adjusting for confounders.
Collapse
Affiliation(s)
- Anne B Foreman
- Division of Neonatology, Department of Paediatrics, Beatrix Children's hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Jana V van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands.
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Bruce Hr Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands.
| | - Pieter J J Sauer
- Division of Neonatology, Department of Paediatrics, Beatrix Children's hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Arend F Bos
- Division of Neonatology, Department of Paediatrics, Beatrix Children's hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Sietske A Berghuis
- Division of Neonatology, Department of Paediatrics, Beatrix Children's hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| |
Collapse
|
14
|
Oh J, Kim K, Kannan K, Parsons PJ, Mlodnicka A, Schmidt RJ, Schweitzer JB, Hertz-Picciotto I, Bennett DH. Early childhood exposure to environmental phenols and parabens, phthalates, organophosphate pesticides, and trace elements in association with attention deficit hyperactivity disorder (ADHD) symptoms in the CHARGE study. RESEARCH SQUARE 2023:rs.3.rs-2565914. [PMID: 36798220 PMCID: PMC9934759 DOI: 10.21203/rs.3.rs-2565914/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Background Agrowing body of literature investigated childhood exposure to environmental chemicals in association with attention deficit hyperactivity disorder (ADHD) symptoms, but limited studies considered urinary mixtures of multiple chemical classes. This study examined associations of concurrent exposure to non-persistent chemicals with ADHD symptoms in children diagnosed with autism spectrum disorder (ASD), developmental delay, and typical development. Methods A total of 574 children aged 2-5 years from the Childhood Autism Risks from Genetics and Environment (CHARGE) case-control study was administered the Aberrant Behavior Checklist (ABC). This study focused on the Hyperactivity subscale and its two subdomains (hyperactivity/impulsivity, inattention). Sixty-two chemicals from four classes (phenols/parabens, phthalates, organophosphate pesticides, trace elements) were quantified in child urine samples, and 43 chemicals detected in >70% samples were used in statistical analyses. Weighted quantile sum regression for negative binomial outcomes with repeated holdout validation was performed to investigate covariate-adjusted associations between mixtures and ABC scores in 574 children. The mixture analyses were further restricted to 232 children with ASD. Results Phthalate metabolite mixtures, weighted for mono-n-butylphthalate (MNBP), mono-2-heptyl phthalate, and mono-carboxy isononyl phthalate, were associated with the Hyperactivity subscale (mean incidence rate ratio [mIRR] = 1.11; 2.5th, 97.5th percentile: 1.00, 1.23), especially the hyperactivity/impulsivity subdomain (mIRR = 1.14; 2.5th, 97.5th percentile: 1.06, 1.26). These associations remained similar after restricting to children with ASD. The inattention subdomain was associated with a phenols/parabens mixture, weighted for several parabens and bisphenols (mIRR = 1.13; 2.5th, 97.5th percentile: 1.00, 1.28) and a total mixture, weighted for 3,4-dihydroxy benzoic acid, MNBR and mono-(2-ethyl-5-carboxypentyl) phthalate (mIRR = 1.11; 2.5th, 97.5th percentile: 1.01,1.25) only among children with ASD. Conclusions Concurrent exposure to phthalate mixtures was associated with hyperactivity in early childhood. Though causal inference cannot be made based on our cross-sectional findings, this study warrants further research on mixtures of larger number of chemicals from multiple classes in association with ADHD-related behaviors in young children.
Collapse
|
15
|
Li C, Chen X. Parabens in indoor dust from houses, university dormitories, and cosmetics stores in Nanjing, China: occurrence and human exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26929-26937. [PMID: 36376645 DOI: 10.1007/s11356-022-24137-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Parabens are extensively used as preservatives in consumer products. The widespread exposure of human to parabens has been associated with adverse health effects. In this study, six parabens were measured in 100 indoor dust collected from homes, university dormitories, and cosmetics stores in Nanjing, China. Concentrations of sum of six parabens (∑6parabens) in dust from homes, university dormitories, and cosmetics stores ranged from 13.1 to 4.22 × 103, 102 to 3.03 × 103, and 7.02 × 103 to 3.41 × 104 ng/g, respectively. The median concentrations of ∑6parabens in dust from cosmetics stores (1.5 × 104 ng/g) were 1-2 orders of magnitude higher than those found in dust from homes (166 ng/g) and university dormitories (1.23 × 103 ng/g) (p < 0.01). Methyl-, ethyl-, and propyl-parabens were the predominant compounds found in dust samples, and the sum concentrations of three compounds accounted for 71.9-99.6%, 93.1-99.6%, and 94.7-99.6% of ∑6parabens in dust from homes, university dormitories, and cosmetics stores, respectively. Significant positive correlations were found between methyl- and propyl-parabens concentrations in three types of dust (r = 0.789-0.909), indicating their coexistence in many consumer products. The estimated daily intake (EDI) of ∑6parabens for adults via dust ingestion was highest for employees in cosmetics stores (median: 4.6 ng/kg bw/day), followed by university students (0.56-0.64 ng/kg bw/day), and adults in homes (0.075-0.087 ng/kg bw/day). The result provides a better understanding of human exposure to parabens in different indoor environments, and more studies are needed to further investigate the occurrence and potential health risks of parabens in dust from various microenvironments.
Collapse
Affiliation(s)
- Chao Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
- School of Geography, Nanjing Normal University, Nanjing, 210023, China.
| | - Xianxian Chen
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
16
|
Hu L, Mei H, Cai X, Hu X, Duan Z, Liu J, Tan Y, Yang P, Xiao H, Zhou A. Maternal paraben exposure and intra-pair thyroid-stimulating hormone difference in twin neonates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114502. [PMID: 36603489 DOI: 10.1016/j.ecoenv.2023.114502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Thyroid hormones are essential for fetal growth and neurodevelopment. The recent frequent use of parabens has raised concerns about their endocrine-disrupting potential. However, the effects of maternal paraben exposure on neonatal thyroid hormone levels are still largely unknown. In our study, a co-twin control design was employed to analyze the relationships between maternal paraben exposure and neonatal thyroid-stimulating hormone (TSH) difference. We collected information from 252 mother-twin pairs from a twin birth cohort in Wuhan, China. Concentrations of six parabens were measured in maternal urine samples collected at < 16, 16-28, and > 28 weeks of gestation. Data of neonatal TSH levels were retrieved from medical records. Multiple informant models were applied to explore the time-specific relationships between paraben exposure and intra-twin TSH difference and to determine the susceptible window of exposure. We found that maternal urinary methyl paraben (MeP) during early pregnancy was positively associated with intra-twin TSH difference (%change = 5.96 %; 95 % confidant interval (CI): 0.04 %, 12.2 %). However, no significant differences were observed for exposure to ethyl paraben (EtP) and propyl paraben (PrP), and the associations between parabens and intra-twin TSH difference did not differ materially across pregnancy. Further, a stratified analysis based on twin zygosity and chorionicity and sex types indicated that the positive association between early pregnancy MeP exposure and intra-twin TSH difference was significant in monochorionic diamniotic (MCDA) twins of female-female fetuses and dichorionic diamniotic (DCDA) twins of opposite-sex. The prospective twin study provides first evidence that MeP exposure in early pregnancy was associated with an increased TSH difference in twin neonates, especially in female fetuses.
Collapse
Affiliation(s)
- Liqin Hu
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hong Mei
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiaonan Cai
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xijiang Hu
- Eugenic Genetics Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhengrong Duan
- Maternal Health Care Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jiuying Liu
- Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yafei Tan
- Child Healthcare Department for Community, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Aifen Zhou
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
17
|
Shah SWH, Hameed F, Ali Z, Muntha ST, Bibi I. Degradation of cosmetic ingredient methylparaben by zinc oxide nanoparticles, aided by sonication, light or a combination of sonication and light. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2131992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Syed W. H. Shah
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| | - Fateeha Hameed
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| | - Zarshad Ali
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| | | | - Iram Bibi
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| |
Collapse
|
18
|
Strømmen K, Lyche JL, Moltu SJ, Müller MHB, Blakstad EW, Brække K, Sakhi AK, Thomsen C, Nakstad B, Rønnestad AE, Drevon CA, Iversen PO. Estimated daily intake of phthalates, parabens, and bisphenol A in hospitalised very low birth weight infants. CHEMOSPHERE 2022; 309:136687. [PMID: 36206919 DOI: 10.1016/j.chemosphere.2022.136687] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Very low birth weight infants (VLBW, birth weight (BW) < 1500 g) are exposed to phthalates, parabens and bisphenol A (BPA) early in life. We estimated daily intake (EDI) of these excipients in 40 VLBW infants the first and fifth week of life while hospitalised. Based on urinary samples collected in 2010, EDI was calculated and compared to the tolerable daily intake (TDI) with hazard quotients (HQs) evaluated. A HQ > 1 indicates that EDI exceeded TDI with increased risk of adverse health effects. EDI was higher in VLBW infants compared to term-born infants and older children. VLBW infants born at earlier gestational age (GA), or with lower BW, had higher EDI than infants born at later GA or with higher BW. First week median EDI for BPA was higher than TDI in 100% of infants, in 75% for di(2-ethylhexyl) phthalate (DEHP), 90% for the sum of butyl benzyl phthalate (BBzP), di-n-butyl phthalate (DnBP), DEHP and di-iso-nonyl phthalate (DiNP) = ∑BBzP+DnBP+DEHP+DiNP, and in 50% of infants for propylparaben (PrPa), indicating increased risk of adverse effects. Fifth week EDI remained higher than TDI in all infants for BPA, in 75% for DEHP and ∑BBzP+DnBP+DEHP+DiNP, and 25% of infants for PrPa, indicating prolonged risk. Maximum EDI for di-iso-butyl phthalate was higher than TDI suggesting risk of adverse effects at maximum exposure. VLBW infants born earlier than 28 weeks GA had higher EDI, above TDI, for PrPa compared to infants born later than 28 weeks GA. Infants with late-onset septicaemia (LOS) had higher EDI for DEHP, ∑BBzP+DnBP+DEHP+DiNP and BPA, above TDI, compared to infants without LOS. More 75% of the infants' EDI for DEHP and ∑BBzP+DnBP+DEHP+DiNP, 25% for PrPa, and 100% of infants' EDI for BPA, were above TDI resulting in HQs > 1, indicating increased risk of adverse health effects.
Collapse
Affiliation(s)
- Kenneth Strømmen
- Division of Paediatric and Adolescent Medicine, Department of Neonatal Intensive Care, Rikshospitalet, Oslo University Hospital, Norway.
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Science, Oslo, Norway
| | - Sissel Jennifer Moltu
- Division of Paediatric and Adolescent Medicine, Department of Neonatal Intensive Care, Ullevål, Oslo University Hospital, Norway
| | - Mette H B Müller
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Science, Oslo, Norway
| | - Elin Wahl Blakstad
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital and Institute for Clinical Medicine, Campus Ahus, University of Oslo, Nordbyhagen, Norway
| | - Kristin Brække
- Division of Paediatric and Adolescent Medicine, Department of Neonatal Intensive Care, Ullevål, Oslo University Hospital, Norway
| | | | | | - Britt Nakstad
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital and Institute for Clinical Medicine, Campus Ahus, University of Oslo, Nordbyhagen, Norway; Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Arild Erlend Rønnestad
- Division of Paediatric and Adolescent Medicine, Department of Neonatal Intensive Care, Rikshospitalet, Oslo University Hospital, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Per Ole Iversen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; Department of Haematology, Oslo University Hospital, Norway
| |
Collapse
|
19
|
Wu NX, Deng LJ, Xiong F, Xie JY, Li XJ, Zeng Q, Sun JC, Chen D, Yang P. Risk of thyroid cancer and benign nodules associated with exposure to parabens among Chinese adults in Wuhan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70125-70134. [PMID: 35581467 DOI: 10.1007/s11356-022-20741-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Parabens are widely used as preservatives, which have been found to affect thyroid function in toxicological studies. However, population studies on whether they are associated with thyroid tumors remain unclear. This study aims to investigate the relationship between environmental paraben exposure and thyroid cancer and benign nodules. We recruited participants from the Department of Thyroid and Breast Surgery at Wuhan Central Hospital, Wuhan, China. The detectable percentages of methyl paraben, ethyl paraben, and propyl paraben in the urinary samples of 425 study subjects were 99.1%, 95.3%, and 92.0%, respectively. All uncorrected and creatinine-corrected parabens were moderately correlated with one another. After adjusting for possible confounders, all three parabens were associated with an increased risk of thyroid cancer. Furthermore, the mixture pollutant analysis of parabens found positive associations with risk of thyroid cancer (OR = 0.24, 95% CI: 0.18, 0.31) and benign nodules (OR = 1.33, 95% CI: 0.86, 1.80). We observed that individual exposure to paraben mixtures may be associated with the risk of thyroid cancer and benign nodules.
Collapse
Affiliation(s)
- Nan-Xin Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lang-Jing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Feng Xiong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jin-Ying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiao-Jie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Jia-Chen Sun
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
20
|
Harris SM, Colacino J, Buxton M, Croxton L, Nguyen V, Loch-Caruso R, Bakulski KM. A Data Mining Approach Reveals Chemicals Detected at Higher Levels in Non-Hispanic Black Women Target Preterm Birth Genes and Pathways. Reprod Sci 2022; 29:2001-2012. [PMID: 35107823 PMCID: PMC9288534 DOI: 10.1007/s43032-022-00870-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
Abstract
Preterm birth occurs disproportionately in the USA non-Hispanic Black population. Black women also face disproportionate exposure to certain environmental chemicals. The goal of this study was to use publicly available toxicogenomic data to identify chemical exposures that may contribute to preterm birth disparities. We tested 19 chemicals observed at higher levels in the blood or urine of non-Hispanic Black women compared to non-Hispanic White women. We obtained chemical-gene interactions from the Comparative Toxicogenomics Database and a list of genes involved in preterm birth from the Preterm Birth Database. We tested chemicals for enrichment with preterm birth genes using chi-squared tests. We then conducted pathway enrichment analysis for the preterm birth genes using DAVID software and identified chemical impacts on genes involved in these pathways. Genes annotated to all 19 chemicals were enriched with preterm birth genes (FDR-adjusted p value < 0.05). Preterm birth enriched chemicals that were detected at the highest levels in non-Hispanic Black women included methyl mercury, methylparaben, propylparaben, diethyl phthalate, dichlorodiphenyldichloroethylene, and bisphenol S. The preterm birth genes were enriched for pathways including "inflammatory response" (FDR-adjusted p value = 3 × 10-19), "aging" (FDR-adjusted p value = 4 × 10-8) and "response to estradiol" (FDR-adjusted p value = 2 × 10-4). Chemicals enriched with preterm birth genes impacted genes in all three pathways. This study adds to the body of knowledge suggesting that exposures to environmental chemicals contribute to racial disparities in preterm birth and that multiple chemicals drive these effects. These chemicals affect genes involved in biological processes relevant to preterm birth such as inflammation, aging, and estradiol pathways.
Collapse
Affiliation(s)
- Sean M Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - Justin Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Center for Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Miatta Buxton
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lauren Croxton
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Vy Nguyen
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Yan W, Li M, Guo Q, Li X, Zhou S, Dai J, Zhang J, Wu M, Tang W, Wen J, Xue L, Jin Y, Luo A, Wang S. Chronic exposure to propylparaben at the humanly relevant dose triggers ovarian aging in adult mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113432. [PMID: 35325608 DOI: 10.1016/j.ecoenv.2022.113432] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Parabens, a type of endocrine-disrupting chemicals, are widely used as antibacterial preservatives in food and cosmetics in daily life. Paraben exposure has gained particular attention in the past decades, owing to its harmful effects on reproductive function. Whether low-dose paraben exposure may cause ovarian damage has been ignored recently. Here, we investigated the effects of chronic low-dose propylparaben (PrPB) exposure on ovarian function. Female C57BL/6J mice were exposed to PrPB at a humanly relevant dose for 8 months. Our results showed that chronic exposure to PrPB at a humanly relevant dose significantly altered the estrus cycle, hormone levels, and ovarian reserve, accelerating ovarian aging in adult mice. These effects are accompanied by oxidative stress enrichment, leading to steroidogenesis dysfunction and acceleration of primordial follicle recruitment. Notably, melatonin supplementation has been shown to protect against PrPB-induced steroidogenesis dysfunction in granulosa cells. Here, we report that daily chronic PrPB exposure may contribute to ovarian aging by altering oxidative stress-mediated JNK and PI3K-AKT signaling regulation, and that melatonin may serve as a pharmaceutical candidate for PrPB-associated ovarian dysfunction.
Collapse
Affiliation(s)
- Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Milu Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Qingchun Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Xiangyi Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Jingyi Wen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Yan Jin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China.
| |
Collapse
|
22
|
Moore S, Paalanen L, Melymuk L, Katsonouri A, Kolossa-Gehring M, Tolonen H. The Association between ADHD and Environmental Chemicals-A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2849. [PMID: 35270544 PMCID: PMC8910189 DOI: 10.3390/ijerph19052849] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023]
Abstract
The role of environmental chemicals in the etiology of attention deficit hyperactivity disorder (ADHD) has been of interest in recent research. This scoping review aims to summarize known or possible associations between ADHD and environmental exposures to substances selected as priority chemicals of the European Human Biomonitoring Initiative (HBM4EU). Literature searches were performed in PubMed to identify relevant publications. Only meta-analyses and review articles were included, as they provide more extensive evidence compared to individual studies. The collected evidence indicated that lead (Pb), phthalates and bisphenol A (BPA) are moderately to highly associated with ADHD. Limited evidence exists for an association between ADHD and polycyclic aromatic hydrocarbons (PAHs), flame retardants, mercury (Hg), and pesticides. The evidence of association between ADHD and cadmium (Cd) and per- and polyfluoroalkyl substances (PFASs) based on the identified reviews was low but justified further research. The methods of the individual studies included in the reviews and meta-analyses covered in the current paper varied considerably. Making precise conclusions in terms of the strength of evidence on association between certain chemicals and ADHD was not straightforward. More research is needed for stronger evidence of associations or the lack of an association between specific chemical exposures and ADHD.
Collapse
Affiliation(s)
- Sonja Moore
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (S.M.); (H.T.)
- Institute of Public Health and Clinical Nutrition, Kuopio Campus, University of Eastern Finland (UEF), 70210 Kuopio, Finland
| | - Laura Paalanen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (S.M.); (H.T.)
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | | | | | - Hanna Tolonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (S.M.); (H.T.)
| |
Collapse
|
23
|
Wang LJ, Huang YH, Chou WJ, Lee SY, Chang HY, Chen CC, Chao HR. Interrelationships among growth hormone, thyroid function, and endocrine-disrupting chemicals on the susceptibility to attention-deficit/hyperactivity disorder. Eur Child Adolesc Psychiatry 2022:10.1007/s00787-021-01886-4. [PMID: 35119524 DOI: 10.1007/s00787-021-01886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/23/2021] [Indexed: 11/03/2022]
Abstract
Abnormal growth hormones and thyroid function may be linked to pathophysiology of attention-deficit/hyperactivity disorder (ADHD). Phthalates and bisphenol-A (BPA), two endocrine-disrupting chemicals (EDCs), may affect the human endocrine system. In this study, we aimed to perform a comprehensive investigation of whether growth hormone, thyroid function, and EDCs exhibited differential levels between ADHD patients and healthy controls. In total, 144 children with ADHD and 70 healthy control subjects were enrolled. Their endocrine systems were evaluated using the serum levels of insulin-like growth factor-1 (IGF-1), IGF-binding protein-3 (IGFBP-3), thyroid-stimulating hormone (TSH), triiodothyronine (T3), thyroxine (T4), and Free T4. The urinary levels of EDCs, including monoethyl phthalate (MEP), mono-methyl phthalate (MMP), monoethylhexyl phthalate (MEHP), mono-n-butyl phthalate (MnBP), monobenzyl phthalate (MBzP), and BPA, were also examined. Patients with ADHD had lower IGF-1 levels than healthy controls (p = 0.003), but we observed no significant difference in IGFBP-3, TSH, T3, T4, or Free T4. Compared to the control group, patients with ADHD demonstrated higher MEHP levels (p = 0.043), MnBP (p = 0.033), and MBzP (p = 0.040). Furthermore, MEHP levels (p < 0.001) and BPA levels (p = 0.041) were negatively correlated with IGF-1 levels, while IGF-1 levels were negatively correlated with principal components consisting of ADHD clinical symptoms and neuropsychological performance variables. We suggest that MEHP exposure may be associated with decreased serum levels of IGF-1 and increased risk of ADHD. The mechanism underlying this association may be important for protecting children from environmental chemicals that adversely affect neurodevelopment.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Ying-Hua Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Psychiatry, College of Medicine, Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Yu Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Cheng Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - How-Ran Chao
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung County, 912, Taiwan.,Institute of Food Safety Management, College of Agriculture, National Pingtung University of Science and Technology, Pingtung County, 912, Taiwan.,Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, Pingtung County, 912, Taiwan.,School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| |
Collapse
|
24
|
Liang J, Yang X, Liu QS, Sun Z, Ren Z, Wang X, Zhang Q, Ren X, Liu X, Zhou Q, Jiang G. Assessment of Thyroid Endocrine Disruption Effects of Parabens Using In Vivo, In Vitro, and In Silico Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:460-469. [PMID: 34930008 DOI: 10.1021/acs.est.1c06562] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The extensive applications of parabens in foods, drugs, and cosmetics cause inevitable exposure to humans. Revealing the developmental toxicity of parabens is of utmost importance regarding their safety evaluation. In this study, the effects of four commonly used parabens, including methyl paraben (20 ∼ 200 μM), ethyl paraben (20 ∼ 100 μM), propyl paraben (5 ∼ 20 μM), and butyl paraben (BuP, 2 ∼ 10 μM), were investigated on the early development of zebrafish embryos and larvae. The underlying mechanisms were explored from the aspect of their disturbance in the thyroid endocrine system using in vivo, in vitro, and in silico assays. Paraben exposure caused deleterious effects on the early development of zebrafish, with BuP displaying the highest toxicity among all, resulting in the exposure concentration-related mortality, decreased hatching rate, reduced body length, lowered heart rate, and the incidence of malformation. Further investigation showed that paraben exposure reduced thyroid hormone levels and disturbed the transcriptional expressions of the target genes in the hypothalamic-pituitary-thyroid axis. Molecular docking analysis combined with in vitro GH3 cell proliferation assay testified that all test parabens exhibited thyroid receptor agonistic activities. The findings confirmed the developmental toxicity of the test parabens and their thyroid endocrine disruption effects, providing substantial evidence on the safety control of paraben-based preservatives.
Collapse
Affiliation(s)
- Jiefeng Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, P. R. China
| | - Zhihua Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qing Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Xiaomin Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xiuchang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
25
|
Baker BH, Burris HH, Bloomquist TR, Boivin A, Gillet V, Larouche A, Takser L, Bellenger JP, Pasquier JC, Baccarelli AA. Association of Prenatal Acetaminophen Exposure Measured in Meconium With Adverse Birth Outcomes in a Canadian Birth Cohort. Front Pediatr 2022; 10:828089. [PMID: 35450103 PMCID: PMC9017809 DOI: 10.3389/fped.2022.828089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The small number of studies examining the association of prenatal acetaminophen with birth outcomes have all relied on maternal self-report. It remains unknown whether prenatal acetaminophen exposure measured in a biological specimen is associated with birth outcomes. OBJECTIVES To investigate the association of acetaminophen measured in meconium with birthweight, gestational age, preterm birth, size for gestational age, gestational diabetes, preeclampsia, and high blood pressure. METHODS This birth cohort from Sherbrooke, QC, Canada, included 773 live births. Mothers with no thyroid disease enrolled at their first prenatal care visit or delivery. Acetaminophen was measured in meconium for 393 children at delivery. We tested associations of prenatal acetaminophen with birthweight, preterm birth, gestational age, small and large for gestational age, gestational diabetes, preeclampsia, and high blood pressure. We imputed missing data via multiple imputation and used inverse probability weighting to account for confounding and selection bias. RESULTS Acetaminophen was detected in 222 meconium samples (56.5%). Prenatal acetaminophen exposure was associated with decreased birthweight by 136 g (β = -136; 95% CI [-229, -43]), 20% increased weekly hazard of delivery (hazard ratio = 1.20; 95% CI [1.00, 1.43]), and over 60% decreased odds of being born large for gestational age (odds ratio = 0.38; 95% CI [0.20, 0.75]). Prenatal acetaminophen was not associated with small for gestational age, preterm birth, or any pregnancy complications. CONCLUSION Prenatal acetaminophen was associated with adverse birth outcomes. Although unobserved confounding and confounding by indication are possible, these results warrant further investigation into adverse perinatal effects of prenatal acetaminophen exposure.
Collapse
Affiliation(s)
- Brennan H Baker
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Heather H Burris
- Department of Pediatrics, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Tessa R Bloomquist
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Amélie Boivin
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Virginie Gillet
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Annie Larouche
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Larissa Takser
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Département de Psychiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Bellenger
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Charles Pasquier
- Département d'Obstétrique et Gynécologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
26
|
Concentrations of urinary parabens and reproductive hormones in Iranian women: Exposure and risk assessment. Toxicol Rep 2022; 9:1894-1900. [DOI: 10.1016/j.toxrep.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/12/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
|
27
|
Quilaqueo N, Villegas JV. Endocrine disruptor chemicals. A review of their effects on male reproduction and antioxidants as a strategy to counter it. Andrologia 2021; 54:e14302. [PMID: 34761829 DOI: 10.1111/and.14302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Endocrine disruptor chemicals are exogenous molecules that generate adverse effects on human health by destabilizing the homeostasis of endocrine system and affecting directly human reproductive system by inhibiting or activating oestrogenic or androgenic receptors. Endocrine disruptor chemicals generate transgenerational epigenetic problems, besides being associated with male infertility. Epidemiological data indicate that the increase in reproductive problems in males in the last 50 years is correlated with the increase of endocrine disrupting chemicals in the environment, being associated with a decrease in semen quality and direct effects on spermatozoa, such as alterations in motility, viability and acrosomal reaction, due to the generation of oxidative stress, and have also been postulated as a possible cause of testicular dysgenesis syndrome. Diverse antioxidants, such as C and E vitamins, N-acetylcysteine, selenium and natural vegetable extracts, are among the alternatives under study to counter the effects of endocrine disruptor chemicals. In some cases, the usage of them has given positive results and the opposite in others. In this review, we summarize the recent information about the effects of endocrine disruptor chemicals on male reproduction, on sperm cells, and the results of studies that have tested antioxidants as a strategy to diminish their harmful effects.
Collapse
Affiliation(s)
- Nelson Quilaqueo
- Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), University of La Frontera, Temuco, Chile
| | - Juana V Villegas
- Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), University of La Frontera, Temuco, Chile.,Department of Internal Medicine, Faculty of Medicine, University of La Frontera, Temuco, Chile
| |
Collapse
|
28
|
Haggerty DK, Upson K, Pacyga DC, Franko JE, Braun JM, Strakovsky RS. REPRODUCTIVE TOXICOLOGY: Pregnancy exposure to endocrine disrupting chemicals: implications for women's health. Reproduction 2021; 162:F169-F180. [PMID: 34486984 PMCID: PMC8511181 DOI: 10.1530/rep-21-0051] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022]
Abstract
Women are ubiquitously exposed to non-persistent endocrine disrupting chemicals (EDCs) from food contact materials and personal care products. Understanding the impacts of exposure to these chemicals on pregnancy and long-term health outcomes in women is a critical area of research that has been largely overlooked. This brief review focuses on the epidemiologic literature exploring associations of non-persistent EDCs - including phthalates, parabens, bisphenols, and triclosan - with maternal pregnancy outcomes and long-term health outcomes in women. We focus on the challenges of this research, particularly assessing non-persistent EDC exposures, aspects of study design, and statistical approaches. We conclude by reviewing the best practices for non-persistent EDC research with regards to pregnancy and women's health. Though limited, we found some evidence indicating that exposure to non-persistent EDCs is associated with pregnancy health. However, findings from these studies have been inconsistent and require corroboration. Recent studies have also proposed that non-persistent EDC exposures in pregnancy may adversely affect postnatal maternal health. To date, only a few studies have been conducted and have only focused on postpartum weight. More research is needed in this area to inform efforts to promote optimal health across the lifespan of women.
Collapse
Affiliation(s)
- Diana K. Haggerty
- Department of Food Science and Human Nutrition, State University, East Lansing, MI, 48824, United States
| | - Kristen Upson
- Department of Epidemiology and Biostatistics, College of Human Medicine, State University, East Lansing, MI, 48824, United States
| | - Diana C. Pacyga
- Department of Food Science and Human Nutrition, State University, East Lansing, MI, 48824, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - J. Ebba Franko
- Department of Food Science and Human Nutrition, State University, East Lansing, MI, 48824, United States
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Box G-S121-2, Providence, Rhode Island 02903, United States
| | - Rita S. Strakovsky
- Department of Food Science and Human Nutrition, State University, East Lansing, MI, 48824, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| |
Collapse
|
29
|
Salazar P, Villaseca P, Cisternas P, Inestrosa NC. Neurodevelopmental impact of the offspring by thyroid hormone system-disrupting environmental chemicals during pregnancy. ENVIRONMENTAL RESEARCH 2021; 200:111345. [PMID: 34087190 DOI: 10.1016/j.envres.2021.111345] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Everyday use chemicals have been demonstrated to be endocrine disruptors. Since normal thyroid function during pregnancy is transcendental for the neurodevelopment of the offspring, knowledge of endocrine disrupting chemicals (EDC) is of main importance. The aim of our study is to recognize and describe EDC actions in pregnant women and focus on neurodevelopmental processes that can lead to neurotransmitter imbalance and cognitive impairment, and the possible clinical outcomes in the newborn and child. We searched PubMed databases for animal studies and clinical trials evaluating chemicals recognized as thyroid disruptors -perchlorate, phthalates, bisphenol A-, as well as chemicals with potential thyroid disruption activity -parabens, pesticides and persistent organic pollutants, on thyroid hormones (THs) levels and their bioavailability during pregnancy, and the outcome in newborns, infants and children. We also exhibit evidence from worldwide cohort studies to this regard. The publications reviewed show: 1) known endocrine disruptors have an association with hormonal thyroid levels, where an effect of increase or decrease in TH concentrations has been reported depending on the chemical exposed 2) associations between TH, EDCs and neurocognitive disorders have been addressed, such as ADHD, though no conclusive impact on potential related disorders as autism has been established, 3) perchlorate has demonstrated effects on thyroid levels on iodine uptake. In conclusion, detrimental risks and long-term consequences after in-utero exposure to EDCs are being reported in several cohort studies and further research must be conducted to establish a well-known cause-effect association.
Collapse
Affiliation(s)
- Paulina Salazar
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Villaseca
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
30
|
Šimková M, Vítků J, Kolátorová L, Vrbíková J, Vosátková M, Včelák J, Dušková M. Endocrine disruptors, obesity, and cytokines - how relevant are they to PCOS? Physiol Res 2021; 69:S279-S293. [PMID: 33094626 DOI: 10.33549/physiolres.934521] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As environmental and genetic components contribute to the PCOS expression, we compared levels of endocrine disruptors, steroid hormones, cytokines, and metabolic parameters in twenty healthy, nine normal-weight PCOS women, and ten obese PCOS women. Steroid hormones, bisphenols (BPA, BPS, BPF, BPAF) and parabens (methyl-, ethyl-, propyl-, butyl-, benzyl-parabens) were measured by liquid chromatography-tandem mass spectrometry. Differences between the groups were assessed using the Mann-Whitney U test. Spearman correlation coefficients were calculated for the individual parameters relationship. Significantly higher levels of BPA, anti-Müllerain hormone, lutropine, lutropine/folitropine ratio, testosterone, androstenedione, 7beta-OH-epiandrosterone, and cytokines (IL-6, VEGF, PDGF-bb), were found in normal-weight PCOS women compared to controls. Between normal-weight and obese PCOS women, there were no differences in hormonal, but in metabolic parameters. Obese PCOS women had significantly higher insulin resistance, fatty-liver index, triglycerides, cytokines (IL-2, IL-13, IFN-gamma). In healthy, but not in PCOS, women, there was a positive correlation of BPA with testosterone, SHBG with lutropine, and folitropine, while testosterone negatively correlated with SHBG. In obese women with PCOS, insulin resistance negatively correlated with SHBG and estradiol. No differences were observed in the paraben exposure. Levels of BPA were higher in PCOS women, indicating its role in the etiology. Obesity significantly worsens the symptoms.
Collapse
Affiliation(s)
- M Šimková
- Institute of Endocrinology, Prague, Czech Republic. ,
| | | | | | | | | | | | | |
Collapse
|
31
|
Nowak K, Jabłońska E, Ratajczak-Wrona W. NF-κB-An Important Player in Xenoestrogen Signaling in Immune Cells. Cells 2021; 10:1799. [PMID: 34359968 PMCID: PMC8304139 DOI: 10.3390/cells10071799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
The proper functioning of the immune system is critical for an effective defense against pathogenic factors such as bacteria and viruses. All the cellular processes taking place in an organism are strictly regulated by an intracellular network of signaling pathways. In the case of immune cells, the NF-κB pathway is considered the key signaling pathway as it regulates the expression of more than 200 genes. The transcription factor NF-κB is sensitive to exogenous factors, such as xenoestrogens (XEs), which are compounds mimicking the action of endogenous estrogens and are widely distributed in the environment. Moreover, XE-induced modulation of signaling pathways may be crucial for the proper development of the immune system. In this review, we summarize the effects of XEs on the NF-κB signaling pathway. Based on our analysis, we constructed a model of XE-induced signaling in immune cells and found that in most cases XEs activate NF-κB. Our analysis indicated that the indirect impact of XEs on NF-κB in immune cells is related to the modulation of estrogen signaling and other pathways such as MAPK and JAK/STAT. We also summarize the role of these aspects of signaling in the development and further functioning of the immune system in this paper.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (E.J.); (W.R.-W.)
| | | | | |
Collapse
|
32
|
Nowak K, Jabłońska E, Ratajczak-Wrona W. Controversy around parabens: Alternative strategies for preservative use in cosmetics and personal care products. ENVIRONMENTAL RESEARCH 2021; 198:110488. [PMID: 33221305 DOI: 10.1016/j.envres.2020.110488] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Parabens usage as preservatives in cosmetics and personal care products have been debated among scientists and consumers. Parabens are easy to production, effective and cheap, but its safety status remains controversial. Other popular cosmetics preservatives are formaldehyde, triclosan, methylisothiazolinone, methylchloroisothiazolinone, phenoxyethanol, benzyl alcohol and sodium benzoate. Although their high antimicrobial effectiveness, they also exhibit some adverse health effects. Lately, scientists have shown that natural substances such as essential oils and plant extracts present antimicrobial potential. However, their use in cosmetic is a challenge. The present review article is a comprehensive summary of the available methods to prevent microbial contamination of cosmetics and personal care products, which can allow reducing the use of parabens in these products.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Poland
| | | |
Collapse
|
33
|
Strømmen K, Lyche JL, Moltu SJ, Müller MHB, Blakstad EW, Almaas AN, Sakhi AK, Thomsen C, Nakstad B, Rønnestad AE, Drevon CA, Iversen PO. High urinary concentrations of parabens and bisphenol A in very low birth weight infants. CHEMOSPHERE 2021; 271:129570. [PMID: 33453489 DOI: 10.1016/j.chemosphere.2021.129570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Very low birth weight infants (VLBW; birth weight < 1500 g) are treated with pharmaceuticals and medical equipment containing parabens and bisphenol A (BPA). Parabens are used in pharmaceuticals, whereas BPA in medical equipment where concentrations are rarely reported in hospitalised VLBW infants. We measured urinary concentrations of parabens and BPA and hypothesised high and increasing concentrations in infants born at lower gestational ages (GAs), and among infants with bronchopulmonary dysplasia (BPD) and late-onset septicaemia (LOS) due to higher exposure from pharmaceuticals and medical equipment. Urinary samples were collected during the first (n = 38) and fifth (n = 36) week of life. Methylparaben, ethylparaben, propylparaben, butylparaben, and BPA concentrations were measured using ultra high-performance liquid chromatography coupled to tandem mass spectrometry. VLBW infants had very high urinary concentrations of parabens and BPA compared to term infants and older children. The Σ paraben concentration was higher than detected in previous studies on premature infants. Lower GA at birth was associated with higher concentrations of parabens and BPA. Infants born before 28 weeks GA had higher first week concentrations of propylparaben (38.6 vs. 9.05 ng/mL, p = 0.007), butylparaben (0.28 vs. 0.09 ng/mL, p = 0.05) and fifth week concentrations of BPA (15.1 vs. 6.02 ng/mL, p = 0.02) than infants born after 28 weeks GA. Infants with LOS and BPD had higher fifth week concentrations of BPA than infants without LOS and BPD (LOS: 14.2 vs. 6.77 ng/mL, p = 0.07; BPD: 18.6 vs. 7.62 ng/mL, p = 0.05).
Collapse
Affiliation(s)
- Kenneth Strømmen
- Department of Neonatal Intensive Care, Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Norway; Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Science, Oslo, Norway
| | - Sissel Jennifer Moltu
- Department of Neonatal Intensive Care, Division of Paediatric and Adolescent Medicine, Ullevål, Oslo University Hospital, Norway
| | - Mette H B Müller
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Science, Oslo, Norway
| | - Elin Wahl Blakstad
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital and Institute for Clinical Medicine, Campus Ahus, University of Oslo, Nordbyhagen, Norway
| | - Astrid Nylander Almaas
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital and Institute for Clinical Medicine, Campus Ahus, University of Oslo, Nordbyhagen, Norway
| | | | | | - Britt Nakstad
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital and Institute for Clinical Medicine, Campus Ahus, University of Oslo, Nordbyhagen, Norway
| | - Arild Erlend Rønnestad
- Department of Neonatal Intensive Care, Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Per Ole Iversen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; Department of Haematology, Oslo University Hospital, Norway
| |
Collapse
|
34
|
Tran TM, Tran-Lam TT, Mai HHT, Bach LHT, Nguyen HMN, Trinh HT, Dang LT, Minh TB, Quan TC, Hoang AQ. Parabens in personal care products and indoor dust from Hanoi, Vietnam: Temporal trends, emission sources, and non-dietary exposure through dust ingestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143274. [PMID: 33183808 DOI: 10.1016/j.scitotenv.2020.143274] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of seven typical parabens was investigated in several types of personal care products (PCPs) sold at supermarkets and in indoor dust samples collected from houses, laboratories, and medical stores in Hanoi, Vietnam. Parabens were frequently detected in PCPs regardless of the paraben indication in their ingredient labels. However, concentrations of parabens in labeled products (median 3280; range 1370-5610 μg/g) were much higher than those found in non-labeled products (69.4; not detected - 356 μg/g). Parabens were also measured in indoor dust samples of this study at elevated concentrations, ranging from not detected to 1650 (median 286 ng/g). Levels of parabens in the indoor dust samples collected in 2019 decreased in the order: house > medical store > laboratory dust, however, the difference was not statistically significant. Interestingly, levels of parabens in Vietnamese house dust exhibited an increasing trend over time, for example, mean/median concentrations of parabens in house dust samples collected in 2014, 2017, and 2019 were 245/205, 310/264, and 505/379 ng/g, respectively. Methylparaben was found at the highest frequency and concentrations in both PCPs and indoor dust samples. Mean exposure doses of total parabens through dust ingestion were estimated to be 2.02, 1.61, 0.968, 0.504, and 0.192 ng/kg-bw/d for infants, toddlers, children, teenagers, and adults, respectively. Further studies on the distribution, emission behavior, potential sources, and negative impacts of parabens in different environmental media in Vietnam are needed.
Collapse
Affiliation(s)
- Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam.
| | - Thanh-Thien Tran-Lam
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Viet Nam
| | - Hang Hong Thi Mai
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Lan Hong Thi Bach
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Ha My Nu Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam; Ha Tinh University, Cam Vinh Commune, Cam Xuyen District, Ha Tinh 45000, Viet Nam
| | - Hue Thi Trinh
- Institute of Theoretical and Applied Research, Duy Tan University, Hanoi 10000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 50000, Viet Nam
| | - Lieu Thi Dang
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Viet Nam
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Thuy Cam Quan
- Viet Tri University of Industry (VUI), Viet Tri, Phu Tho 35000, Viet Nam
| | - Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam; Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| |
Collapse
|
35
|
Phthalates, Para-Hydroxybenzoic Acids, Bisphenol-A, and Gonadal Hormones' Effects on Susceptibility to Attention-Deficit/Hyperactivity Disorder. TOXICS 2020; 8:toxics8030057. [PMID: 32823738 PMCID: PMC7560246 DOI: 10.3390/toxics8030057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022]
Abstract
This study aimed to examine whether endocrine-disrupting chemicals (EDCs), such as phthalates, para-hydroxybenzoic acids, and bisphenol-A (BPA), affect gonadal hormones and further link to the susceptibility to attention-deficit/hyperactivity disorder (ADHD). We recruited 98 boys with ADHD, 32 girls with ADHD, 42 boys without ADHD and any other psychiatric disorders, and 26 girls without ADHD and any other psychiatric disorders. Urine levels of EDCs, including mono-methyl phthalate (MMP), monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), monobenzyl phthalate (MBzP), monoethylhexyl phthalate (MEHP), methylparaben (MP), ethylparaben (EP), propylparaben (PP), butylparaben (BP), and bisphenol A (BPA), were examined. Endocrine systems were evaluated by using the serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, free testosterone, estradiol, progesterone, sex hormone-binding globulin (SHBG), and prolactin. We found that boys with ADHD had higher levels of MnBP and EP than control boys. There were no significant differences regarding EDCs between the females with ADHD and control groups. No significant differences in testosterone, free testosterone, FSH, LH, estradiol, progesterone, or SHBG were found between the ADHD group and controls among either boys or girls. Among boys with ADHD, urine MBzP and MEHP levels were positively correlated with serum testosterone levels. Among girls, urine MEP levels were positively correlated with serum LH, testosterone, and free testosterone levels. The findings suggest that the possibility of an adverse impact of EDCs on gonadal hormones and neurodevelopment may exist. However, the results could be subject to potential selection bias, and the findings in this study should be interpreted with caution.
Collapse
|
36
|
Association of placental concentrations of phenolic endocrine disrupting chemicals with cognitive functioning in preschool children from the Environment and Childhood (INMA) Project. Int J Hyg Environ Health 2020; 230:113597. [PMID: 32795877 DOI: 10.1016/j.ijheh.2020.113597] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 11/23/2022]
Abstract
Developmental exposure to bisphenol A (BPA) and other phenolic endocrine disrupting chemicals (EDCs) may affect child neurodevelopment, but data on the effects of prenatal exposure to phenols on cognitive function remain sparse. Our aim was to examine the association of placental concentrations of several phenolic EDCs, including BPA, parabens (PBs), and benzophenones (BzPs), with cognitive development in preschool children from the Environment and Childhood (INMA) Project in Spain. Concentrations of BPA, four PBs (methylparaben [MePB], ethylparaben [EtPB], propylparaben [PrPB], and butylparaben [BuPB]), and six BzPs (BzP-1, BzP-2, BzP-3, BzP-6, BzP-8, and 4-hydroxybenzophenone [4-OH-BzP]) were measured in 490 placenta samples randomly selected from five INMA cohorts collected between 2000 and 2008. Neuropsychological assessment of cognitive and motor function was performed with the McCarthy Scales of Children's Abilities (MSCA) at the age of 4-5 years. Associations were assessed in a sub-sample of 191 mother-child pairs using linear and logistic regression models adjusted for confounding factors. PB compounds were detected in more than 71% of placentas, BPA in 62%, 4-OH-BzP in 50%, and the remaining BzPs in <9% of the samples. Because of the low detection frequency of BzP compounds, only 4-OH-BzP was included in the exposure-outcome analyses. After adjustment for confounders, BPA was associated with greater odds of scoring lower (below the 20th percentile) in the verbal (third vs. first exposure tertile: odds ratio [OR] = 2.78, 95% confidence interval [CI] = 1.00; 5.81, p-trend = 0.05) and gross motor (detected vs. undetected: OR = 1.75, 95%CI = 1.06; 9.29) areas, and these associations were only significant for boys. Regarding PB compounds, PrPB was associated with lower scores in memory (detected vs. undetected: β = -4.96, 95%CI = -9.54; -0.31), span memory (OR = 2.50, 95%CI = 0.95; 6.92 and 2.71, 95%CI = 0.97; 6.64, respectively for second and third tertiles, p-trend = 0.03), and motor function (β = -5.15, 95%CI = -9.26; -0.01 for third vs. first exposure tertile, p-trend = 0.04). EtPB and total PBs concentrations in the second tertile were also associated with poorer visual function of posterior cortex and worse quantitative performance, respectively, but linear trends were not statistically significant. The associations of BPA and PrPB with poorer verbal, memory, and motor skills are novel observations that warrant further attention. Larger prospective studies are required to confirm whether prenatal exposure to BPA and other phenolic EDCs is associated with impaired cognitive development.
Collapse
|