1
|
Zhao B, Wang Y, Wang J, Qiu Y, Zhu F, Chen Q, Zhang Y, Wang H, Fu X. Seasonal variations in nutrient changes during sludge anaerobic digestion combined with thermal hydrolysis and deep dewatering. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 201:114785. [PMID: 40222283 DOI: 10.1016/j.wasman.2025.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
The quality of sludge is significantly influenced by seasonal variations and specific treatment stages, particularly through changes in nutrient levels and organic matter composition. However, the detailed mechanisms of these effects remain poorly understood. In this study, sludge samples were collected from a large-scale wastewater treatment plant in Beijing during spring, summer, autumn and winter, across each process node of the "pre-dewatering + thermal hydrolysis + anaerobic digestion + deep dewatering". A systematic analysis of key soil nutrients (C, N, P, K, Na, Ca and Mg) was conducted on the collected sludge samples. The results demonstrated the concentration of C, N and P in sludge was higher in autumn, with TOC reaching 29.23 %, TN at 44,470.70 mg/kg and TP at 28,572.89 mg/kg. The concentrations of C, N and Na decreased by 34.9 %, 20.4 % and 12.0 % following treatment. Conversely, the concentrations of P, Ca and Mg increased by 20.4 %, 52.7 % and 39.9 %, respectively. Additionally, the reducible fraction contents of K, Na, Ca and Mg exhibited a general increase of 41.68 %, 14.01 %, 31.30 % and 27.13 %, while their oxidizable fractions increased by 101.03 %, 57.27 %, 101.68 % and 59.38 %. The sludge fertilizer quality index (SFQI) showed that the fertility of the treated sludge increased by 1.6 times This study is the first time to use SFQI to quantify sludge quality and systematically evaluate the impact of sludge management on nutrient dynamics. It provides a scientific basis for sludge land utilization and resource utilization.
Collapse
Affiliation(s)
- Bing Zhao
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Yuxin Wang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Jiawei Wang
- Beijing Engineering Technology Research Center for Municipal Sewage Reclamation, R&D Center, Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Yinquan Qiu
- Beijing Municipal Pollution Source Management Center, Beijing 100089, China
| | - Fenfen Zhu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| | - Qian Chen
- Beijing Engineering Technology Research Center for Municipal Sewage Reclamation, R&D Center, Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Yuhui Zhang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Huan Wang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Xingmin Fu
- Beijing Engineering Technology Research Center for Municipal Sewage Reclamation, R&D Center, Beijing Drainage Group Co. Ltd., Beijing 100124, China
| |
Collapse
|
2
|
Zhuo Y, Wang H, Wang X, Jing D, Zhou M, Peng D, Han Y. Performance of electroactive anaerobic granular sludge under ammonia stress: Performance, microbe and morphology. BIORESOURCE TECHNOLOGY 2025; 424:132295. [PMID: 40010542 DOI: 10.1016/j.biortech.2025.132295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/23/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Thermal hydrolysis pretreatment increases the organic loading rate by releasing organics into the liquid phase. However, high solid anaerobic digestion often faces ammonia stress, which inhibits methanogenic performance. This study explored the feasibility of direct interspecies electron transfer (DIET) in improving the performance of anaerobic granular sludge (AnGS) under ammonia stress. Furthermore, when incubated with ethanol, COD removal efficiency decreased from 95 ± 4 % under conventional ammonia nitrogen conditions to 75 ± 3 % under ammonia stress. Similarly, 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride-electron transport system activity declined by 16 % under ammonia stress. Microbial community analysis revealed a shift in DIET partners, from Geobacter - Methanothrix to unclassified genus from family Anaerolineaceae, order Bacteroidales, and family Clostridiaceae - Methanosarcina under ammonia stress. Methanothrix deficiency under ammonia stress altered the spatial structure of AnGS. Therefore, reconstructing spatial structure of AnGS by providing filamentous methanogens skeleton could improve DIET performance under ammonia stress.
Collapse
Affiliation(s)
- Yang Zhuo
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China.
| | - Hao Wang
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China.
| | - Xuena Wang
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China
| | - Dantong Jing
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China
| | - Mengyu Zhou
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China.
| | - Dangcong Peng
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China.
| | - Yun Han
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
3
|
Wen H, Wang X, Zhang X, He Y, Gu L, Zhang H, Wu P. Thermal hydrolysis-induced molecular transformations in sludge: Implications for photochemical reactivity and dissolved antibiotics photodissipation. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137985. [PMID: 40120266 DOI: 10.1016/j.jhazmat.2025.137985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Thermal hydrolysis is an effective technique for enhancing the solubilization of sewage sludge and improving the safety of biosolids for disposal or reuse. However, the release of various dissolved organic matter (DOM) at different TH temperatures, along with their properties that may influence intrinsic photochemical characteristics, remains poorly understood. This study investigates the temperature-dependent molecular evolution of sludge DOM (90-220°C) and its impact on antibiotic photodegradation. FT-ICR MS and ETC analysis were employed to explore the structural evolution, redox properties, and reactive oxygen species generation of DOM. The results reveal that 150°C represents a critical threshold for optimal photochemical activity. At this temperature, proteinaceous substances undergo decarboxylation and denitration, reducing polar functional groups and enhancing electron donor capacity (30.424 μmol e⁻ (mg C)⁻¹ ). Simultaneously, this molecular transformation facilitates the generation of excited triplet states (³DOM*) and significantly enhances the production efficiency of key reactive oxygen species (ROS), such as ¹O₂ and ·O2-. These properties significantly improved sulfamethoxazole photodegradation (kobs=0.2587 h-1). Below 150°C, limited DOM release and reduced ROS production hinder photochemical activity, whereas above 180°C, the increased aromaticity and molecular stability of humic-like substances inhibited photochemical reactivity due to light-shielding effects. This study offers a theoretical basis for optimizing sludge thermal hydrolysis conditions and links DOM molecular structures to the fate of dissolved antibiotics during photodegradation.
Collapse
Affiliation(s)
- Haifeng Wen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinchao Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yiyang He
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lin Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hanlin Zhang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Peize Wu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Yin D, Wang K, Wu C, Wang Z, Gu Y, Liu P, You S. Refluxing mature compost to replace bulking agents: A low-cost solution for suppressing antibiotic resistance genes rebound in sewage sludge composting. ENVIRONMENTAL RESEARCH 2025; 269:120811. [PMID: 39798649 DOI: 10.1016/j.envres.2025.120811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.76-32.41 times, and the MGEs rebounded by 38.60% in the cooling phase of RH composting. Conversely, MR reduced aadD, tetM, ermF and ermB concentrations by 59.49-98.58%, and reduced the total abundance of ARGs in the compost product by 49.32% compared to RH, which significantly restrained ARGs rebound. MR promoted secondary high temperature inactivation of potential host bacteria, including Ornithinibacter, Rhizobiales and Caldicoprobacter, which could harbor aadE, blaCTX-M02, and blaVEB. It also reduced the abundance of lignocellulose degrading bacteria of Firmicutes, which were potential hosts of aadD, tetX, ermF and vanHB. Moreover, MR reduced moisture and increased oxidation reduction potential (ORP) that promoted aadE, tetQ, tetW abatement. Furthermore, MR reduced 97.36% of total MGEs including Tn916/1545, IS613, Tp614 and intI3, which alleviated ARGs horizontal transfer. Overall finding proposed mature compost reflux as bulking agent was a simple method to suppress ARGs rebound and horizontal transfer, improve ARGs removal and reduce composting plant cost.
Collapse
Affiliation(s)
- Dan Yin
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chuandong Wu
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China
| | - Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yue Gu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Peng Liu
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
5
|
Xu W, Wu L, Geng M, Zhou J, Bai S, Nguyen DV, Ma R, Wu D, Qian J. Biochar@MIL-88A(Fe) accelerates direct interspecies electron transfer and hydrogen transfer in waste activated sludge anaerobic digestion: Exploring electron transfer and biomolecular mechanisms. ENVIRONMENTAL RESEARCH 2025; 268:120810. [PMID: 39793869 DOI: 10.1016/j.envres.2025.120810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025]
Abstract
Adding additives exogenously is an effective strategy to enhance methanogenic activity and improve AD stability. Corn straw-based biochar@MIL-88A(Fe) (BM) was synthesized herewith and used as an exogenous additive to boost methane (CH4) production. After adding BM at 250 mg/g WAS VS, the accumulative CH4 production and maximum CH4 yield increased by 1.2 and 1.9 times, respectively, with CH₄ comprising 88% of the biogas. BM accelerated electron transfer through its unsaturated sites and surface functional groups, while also enhancing metabolic functions for facilitating enzymatic activities and converting organic substrates. The abundance of syntrophic bacteria and methanogen were higher after BM addition. BM-mediated DIET and IHT pathways effectively oxidized propionate and butyrate, promoting methane generation. Higher expression of key genes involved in methane production correlated with shifts in microbial structure and increased CH4 yield after BM dosage. The invention of BM may provide more solutions for addressing low energy recovery during AD.
Collapse
Affiliation(s)
- Weihang Xu
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mengqi Geng
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Junmei Zhou
- Sichuan Rongshi Environmental Protection Technology Co., Ltd, Chengdu, China
| | - Sai Bai
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Duc Viet Nguyen
- Center for Environmental Energy Research, Ghent University Global Campus, Incheon, South Korea; Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Rui Ma
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Di Wu
- Center for Environmental Energy Research, Ghent University Global Campus, Incheon, South Korea; Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Jin Qian
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China.
| |
Collapse
|
6
|
Yang Y, Wang H, Dong W, Li Q, Han Q, Li C, Liu T, Zhou P. The Effects of Sewage Sludge Biochar on Rhizosphere Microbial Community, Soil Quality, and Ryegrass and Cosmos Growth in Pot Culture. PLANTS (BASEL, SWITZERLAND) 2025; 14:641. [PMID: 40094527 PMCID: PMC11902213 DOI: 10.3390/plants14050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Sewage sludge biochar (SSB) is an innovative environmental material with remediation capabilities and significant potential for soil enhancement. This study aimed to accurately assess the dual regulatory effects of SSB on plant growth and soil quality. We conducted potting experiments with ryegrass and cosmos to analyze the impacts of SSB on plant growth, soil quality, and microbial communities. The partial least squares path model (PLS-PM) analysis was employed to elucidate the intrinsic relationships between SSB application and soil environmental factors, microbial communities, and plant growth. The results indicated that the application of SSB significantly enhanced the growth of ryegrass and cosmos, improved the soil quality, and increased the quantity of soil beneficial bacteria in the inter-root soil microbial communities. The addition of 9% and 3% (w w-1) SSB resulted in the most substantial growth of ryegrass and cosmos, with aboveground biomass increasing 68.97% and 68.12%, respectively, and root biomass increasing by 49.87% and 45.14%. PLS path analysis revealed that SSB had a significant effect on the number of bacteria, which also played an important role in soil environmental factors such as pH and conductivity. This study provides a scientific basis for the utilization of sludge resources, green agriculture, and soil improvement. Additionally, it offers technical support for optimizing the application strategy of sludge biochar.
Collapse
Affiliation(s)
- Yang Yang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; (Y.Y.); (W.D.); (Q.L.); (Q.H.); (C.L.); (T.L.); (P.Z.)
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; (Y.Y.); (W.D.); (Q.L.); (Q.H.); (C.L.); (T.L.); (P.Z.)
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- Joint Laboratory of Urban High Strength Wastewater Treatment and Resources Utilization, Shenzhen 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; (Y.Y.); (W.D.); (Q.L.); (Q.H.); (C.L.); (T.L.); (P.Z.)
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- Joint Laboratory of Urban High Strength Wastewater Treatment and Resources Utilization, Shenzhen 518055, China
| | - Qitian Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; (Y.Y.); (W.D.); (Q.L.); (Q.H.); (C.L.); (T.L.); (P.Z.)
| | - Qi Han
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; (Y.Y.); (W.D.); (Q.L.); (Q.H.); (C.L.); (T.L.); (P.Z.)
| | - Chaoxiang Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; (Y.Y.); (W.D.); (Q.L.); (Q.H.); (C.L.); (T.L.); (P.Z.)
| | - Tianhao Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; (Y.Y.); (W.D.); (Q.L.); (Q.H.); (C.L.); (T.L.); (P.Z.)
| | - Pingyan Zhou
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; (Y.Y.); (W.D.); (Q.L.); (Q.H.); (C.L.); (T.L.); (P.Z.)
| |
Collapse
|
7
|
Yang Q, Li J, Ma L, Du X. Impact and mechanism of polyethylene terephthalate microplastics with different particle sizes on sludge anaerobic digestion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125494. [PMID: 39653267 DOI: 10.1016/j.envpol.2024.125494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/17/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Municipal wastewater treatment plants (WWTPs) are important sinks for microplastics, and the vast majority of microplastics entering WWTPs are trapped in residual sludge. In order to investigate the effect of microplastics on anaerobic digestion of sludge, polyethylene terephthalate (PET) microplastics with common particle size and physical aging were selected to conduct a comparative study. Regardless of aging, the addition of 300 and 500 μm PET microplastics inhibited methane production, with their cumulative methane production reduced by 11.3-24.9% compared to the control group. In contrast, when 100 μm microplastics were added, the raw PET promoted methane production, yielding 337 L CH4/kg VS, while the aged experimental group showed similar yields to the control group. For the 800 μm microplastics treatment group, aged microplastics facilitated methane production while raw microplastics inhibited it, with methane production of 91.0% and 111% of the control group, respectively. The effects were also investigated by model fitting, stage discussion, and microbial community structure analysis. The results discovered that the main rate-limiting steps of adding microplastics with smaller or larger particle sizes (100, 800 μm) to methane production were solubilization and hydrolysis, while the main rate-limiting step of microplastics with medium particle sizes (300, 500 μm) was methanogenesis. Physically aged PET microplastics with smaller or larger sizes showed a more significant effect on methane production. Furthermore, PET microplastics altered the microbial community structure, shifting methanogens from acetotrophic pathways to hydrotrophic pathways. This study offers new insights into the performance analysis of sludge anaerobic digestion in practical WWTPs.
Collapse
Affiliation(s)
- Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Jiaxin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Linlin Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Xue Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
8
|
Chen X, Li Y, Wu L, Xue J, He X, Huang M, Yang L. Mechanistic insights into activation of peracetic acid by sludge biogas residue biochar for efficient sulfamethoxazole degradation in aqueous solution. BIORESOURCE TECHNOLOGY 2025; 418:131857. [PMID: 39615762 DOI: 10.1016/j.biortech.2024.131857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 01/29/2025]
Abstract
The application of peracetic acid (PAA) in the advanced oxidation process has been demonstrated to be an effective approach for treating aqueous organic pollutants. In this study, it is the first time that biogas residue biochar (BRBC) derived from sludge anaerobic digestion plants was prepared and used as a PAA activator for sulfamethoxazole (SMX) degradation. The optimal SMX removal could achieve 92 % within 120 min under acidic conditions. The SMX degradation was slightly enhanced in the presence of Cl-, while it could be inhibited by HCO3-. Quenching experiment and EPR analysis demonstrated that both radical and non-radical processes contributed to SMX degradation. ECOSAR analysis showed a significant reduction in intermediate toxicity. Meanwhile, BRBC700 exhibited excellent reusability and stability even in real water matrices. The study presented an innovative approach for biogas residue application and provided a novel pretreatment for SMX-containing wastewater for further biological treatment method after simple acid-base regulation.
Collapse
Affiliation(s)
- Xiaolong Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yulong Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Li Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Forest System, POB 29237, Christchurch 8440, New Zealand
| | - Xiaoman He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Min Huang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
9
|
Wang H, Fu X, Huang H, Shen D, Fan D, Zhu L, Dai X, Dong B. Bioenergy recovery and carbon emissions benefits of short-term bio-thermophilic pretreatment on low organic sewage sludge anaerobic digestion: A pilot-scale study. J Environ Sci (China) 2025; 148:321-335. [PMID: 39095168 DOI: 10.1016/j.jes.2023.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 08/04/2024]
Abstract
Sewage sludge in cities of Yangzi River Belt, China, generally exhibits a lower organic content and higher silt contentdue to leakage of drainage system, which caused low bioenergy recovery and carbon emission benefits in conventional anaerobic digestion (CAD). Therefore, this paper is on a pilot scale, a bio-thermophilic pretreatment anaerobic digestion (BTPAD) for low organic sludge (volatile solids (VS) of 4%) was operated with a long-term continuous flow of 200 days. The VS degradation rate and CH4 yield of BTPAD increased by 19.93% and 53.33%, respectively, compared to those of CAD. The analysis of organic compositions in sludge revealed that BTPAD mainly improved the hydrolysis of proteins in sludge. Further analysis of microbial community proportions by high-throughput sequencing revealed that the short-term bio-thermophilic pretreatment was enriched in Clostridiales, Coprothermobacter and Gelria, was capable of hydrolyzing acidified proteins, and provided more volatile fatty acid (VFA) for the subsequent reaction. Biome combined with fluorescence quantitative polymerase chain reaction (PCR) analysis showed that the number of bacteria with high methanogenic capacity in BTPAD was much higher than that in CAD during the medium temperature digestion stage, indicating that short-term bio-thermophilic pretreatment could provide better methanogenic conditions for BTPAD. Furthermore, the greenhouse gas emission footprint analysis showed that short-term bio-thermophilic pretreatment could reduce the carbon emission of sludge anaerobic digestion system by 19.18%.
Collapse
Affiliation(s)
- Hui Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiang Fu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Haozhe Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Danni Shen
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China; Yangtze River Eco-Environmental Engineering Research Center, Shanghai Investigation, Design and Research Institute Co., LTD, Shanghai 200092, China
| | - Dongdong Fan
- China Construction Third Engineering Bureau First Engineering Co., Ltd., Wuhan 430000, China
| | - Liming Zhu
- China Construction Third Engineering Bureau First Engineering Co., Ltd., Wuhan 430000, China
| | - Xiaohu Dai
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Dong
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China.
| |
Collapse
|
10
|
Gao J, Tian H, Dong B, Xu Z. Mechanism of stabilized sludge-driven remediation in saline-alkali soil: New insights from salt-discharge capacity and microbially mediated carbon/nitrogen cycles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177588. [PMID: 39571811 DOI: 10.1016/j.scitotenv.2024.177588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Stabilized sludge products (SSP) are promising conditioners for saline-alkali soils, capable of enhancing soil physicochemical properties and stimulating microbial communities. However, there is limited knowledge regarding the effects of SSP on soil salt-discharge capacity and carbon/nitrogen cycles. Here, a six-month incubation experiment was conducted to evaluate SSP (0 % ~ 60 %) on saline-alkali soil properties, salt leaching, and microbial functions. It was found that after SSP (≥30 %) treatment, saline-alkali soils were significantly remediated (p < 0.01), with organic matter increasing by 5.3-9.8 times, nutrient levels rising to first-grade, porosity improving by 34.3 % ~ 93.3 %, and meso/macro-aggregates content increasing by 39.0 % ~ 201.3 %. The Na+ leaching rate increased from 1.1 % to 53.3 % ~ 79.3 %, indicating a substantial improvement in salt-discharge capacity. Correlation analysis revealed that SSP organics loosened pore spaces by promoting soil particle agglomeration, which in turn improved salt-discharge capacity. Further, the 30 % SSP significantly increased the microbial functions involved in nutrient cycling, such as carbon fixation (photosynthetic pathway), nitrogen fixation, dissimilatory nitrate reduction, and nitrification (p < 0.01). Contribution analysis implied that the up-regulation of gene abundance assigned to carbon/nitrogen cycle was attributed to balancing effect of SSP on dominant genera. Finally, the excellent growth of alfalfa seedlings verified the soil productivity restoration of degraded saline-alkali soils. These findings provide new insights into salt stress alleviation and nutrient cycling in degraded saline-alkali soils.
Collapse
Affiliation(s)
- Jun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Haining Tian
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
11
|
Bai S, Tang Y, Geng M, Wu D, Qian J. Self-enhancement of bioenergy recovery from anaerobically digesting WAS with novel iron-based metal-organic framework assistance: Insights into electron transfer and metabolic pathways. ENVIRONMENTAL RESEARCH 2024; 263:120167. [PMID: 39419258 DOI: 10.1016/j.envres.2024.120167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Inadequate methane production and insufficient hydrolysis-acidification activity impede the practical application of anaerobic digestion (AD) of waste activated sludge (WAS). Recently, metal-organic framework (MOF) materials attains promising capability of controlling proton/electron transfer in AD processes. This study used a typical iron-based MOF and MIL-88A(Fe) to improve the methane production via digesting WAS. These materials were prepared via a one-step hydrothermal method. The findings indicated that the addition of 150 mg MIL-88A(Fe)/g WAS VS resulted in a 57.23% increase in accumulated methane production and a 43.84% increase in daily maximum methane production. The methane production rate (Rmax) also increased from 22.25 to 29.14 mL/g VS/d. The enhanced electron transfer capacity, improved hydrolysis of WAS, boosted acetate generation, and mitigated accumulation of volatile fatty acids (VFAs) collectively contributed to the better methane yield in the MIL-88A(Fe)-added system. The significant enrichment of Methanobacterium and Methanosaeta along with the up-regulation of key methanogenesis enzyme-encoding genes jointly suggested that the CO2 reduction and methanogenesis were strengthened. Moreover, MIL-88A(Fe) stimulated the production of c-type cytochrome and e-pili, facilitating direct interspecies electron transfer (DIET) between norank-f-SC-I-84 and Methanobacterium. This study provided new solutions for improving methane production and offered insights into the mechanism of enhanced methanogenesis of AD in the presence of MIL-88A(Fe).
Collapse
Affiliation(s)
- Sai Bai
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China
| | - Yuchao Tang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Mengqi Geng
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China
| | - Di Wu
- Centre for Environmental and Engineering Research, Ghent University Global Campus, Incheon, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, and Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, 9000, Belgium
| | - Jin Qian
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China.
| |
Collapse
|
12
|
Zhang T, Yang X, Zeng Z, Li Q, Yu J, Deng H, Shi Y, Zhang H, Gerson AR, Pi K. Combined Remediation Effects of Sewage Sludge and Phosphate Fertilizer on Pb-Polluted Soil from a Pb-Acid Battery Plant. ENVIRONMENTAL MANAGEMENT 2024; 74:928-941. [PMID: 38376512 DOI: 10.1007/s00267-024-01948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
Pb soil pollution poses a serious health risk to both the environment and humans. Immobilization is the most common strategy for remediation of heavy metal polluted soil. In this study, municipal sewage sludge was used as an amendment for rehabilitation of Pb-contaminated soils, for agricultural use, near a lead-acid battery factory. The passivation effect was further improved by the addition of phosphate fertilizer. It was found that the leachable Pb content in soils was decreased from 49.6 mg kg-1 to 16.1-36.6 mg kg-1 after remediation of sludge for 45 d at applied dosage of municipal sewage sludge of 4-16 wt%, and further decreased to 14.3-34.3 mg kg-1 upon extension of the remediation period to 180 d. The addition of phosphate fertilizer greatly enhanced the Pb immobilization, with leachable Pb content decreased to 2.0-23.6 mg kg-1 with increasing dosage of phosphate fertilizer in range of 0.8-16 wt% after 180 d remediation. Plant assays showed that the bioavailability of Pb was significantly reduced by the soil remediation, with the content of absorbed Pb in mung bean roots decreased by as much as 87.0%. The decrease in mobility and biotoxicity of the soil Pb is mainly attributed to the speciation transformation of carbonate, Fe-Mn oxides and organic matter bound Pb to residue Pb under the synergism of reduction effect of sludge and acid dissolution and precipitation effect of phosphate fertilizer. This study suggests a new method for remediation of Pb-contaminated soil and utilization of municipal sewage sludge resources.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Xiong Yang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China.
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lake, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Zhijia Zeng
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Qiang Li
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Jiahai Yu
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Huiling Deng
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Yafei Shi
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lake, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Huiqin Zhang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lake, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Andrea R Gerson
- Blue Minerals Consultancy, Wattle Grove, Tasmania, 7109, TAS, Australia
| | - Kewu Pi
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, Hubei, 430068, China.
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lake, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
13
|
Yu XL, Ding J, Yang SS, Pang JW, Lu MY, Zhao X, He SS, Zhang LY, Ren NQ. Strategic carbon emission assessment in sludge treatment: A dynamic tool for low-carbon transformation. ENVIRONMENT INTERNATIONAL 2024; 193:109124. [PMID: 39531978 DOI: 10.1016/j.envint.2024.109124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The carbon-neutral target presents a significant challenge for the sewage sludge treatment and disposal (SSTD) industry, necessitating strategic planning for a low-carbon transition. However, flexible and comprehensive carbon emission analysis tools to support this goal remain lacking. This study presents a carbon emission analysis tool to evaluate the carbon emission characteristics and future mitigation potentials of SSTD. The tool integrates life cycle inventory (LCI) modeling-based analysis, sensitivity analysis, regression analysis, and scenario analysis. Carbon emissions are dynamically calculated based on sludge properties, technological level, and industry external parameters, providing a foundation for adaptable evaluation tailored to local conditions. The framework considers the potential effects of multi-parameter and multi-aspect changes in scene design, both within and outside the industry, to achieve dynamic and comprehensive simulations. A case study conducted in Wuhan, China, demonstrated the usability and application processes of the framework. The results indicated that carbon emissions from SSTD are projected to more than double from 2021 to 2060 without interventions. Among the mitigation measures, energy and chemical savings would yield the largest reduction potential, followed by the technical layout adjustment and the promotion of energy efficiency. Operational optimization in the sludge industry and outside the industry would contribute the least. With all mitigation measures applied, emissions could decrease to -82.91 kt CO2-eq in 2060, equivalent to 13.03% compensation for emissions from the sewage treatment line. Among all the processes, incineration routes are recommended due to their current and future low carbon emissions. The cooperative resource route of anaerobic digestion and land use also shows promise as it progressively demonstrates superior performance with increasing organic matter and nutrient content of sludge. Critical factors, sub-processes, and emission types for different routes were identified and can be optimized accordingly. The developed method demonstrates sufficient flexibility to be applied to other cities and larger-scale regions, thereby offering technical and strategic support for SSTD towards carbon-neutral operation.
Collapse
Affiliation(s)
- Xin-Lei Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ji-Wei Pang
- Harbin Corner Science & Technology Inc., Harbin 150023, China
| | - Mei-Yun Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xian Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan He
- Central & Southern China Municipal Engineering Design and Research Institute Co, Ltd., Wuhan 430010, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
14
|
Yu Q, Li S, Chen N. Urbanization and greenhouse gas emissions from municipal wastewater in coastal provinces of China: Spatiotemporal patterns, driving factors, and mitigation strategies. ENVIRONMENTAL RESEARCH 2024; 259:119398. [PMID: 38942253 DOI: 10.1016/j.envres.2024.119398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/30/2024]
Abstract
Coastal cities, as hubs of social and economic activity, have witnessed rapid urbanization and population growth. This study explores the transformative changes in urban municipal wastewater treatment practices and their profound implications for greenhouse gas (GHG) emissions in Chinese coastal provinces. The approach employed in this study integrates comprehensive data analysis with statistical modeling to elucidate the complex interplay between urbanization, wastewater treatment practices, and GHG emissions. Results reveal a substantial surge in GHG emissions from coastal wastewater treatment, rising from 3367.1 Gg CO2e/yr in 1990-23644.8 Gg CO2e/yr in 2019. Spatially, the top 20 cities contribute 56.0% of emissions, with hotspots in the Bohai Sea Region, Yangtze River Delta, and Pearl River Delta. Initially dominated by emissions from untreated wastewater, post-2004, GHG emissions from treatment processes became the primary source, tied to electricity use. Growing population and urbanization rates escalated wastewater discharge, intensifying GHG emissions. From 1990 to 2019, average GHG intensity ranged between 320.5 and 676.6 g CO2e/m3 wastewater, with an annual increase of 12.3 g CO2e/m3. GHG intensity variations relate to the wastewater treatment rate, impacting CH4, N2O, and CO2 emissions, underscoring the need for targeted strategies to mitigate environmental impact.
Collapse
Affiliation(s)
- Qibiao Yu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Shaobin Li
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Nengwang Chen
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
15
|
Mian MM, Ao W, Xiao L, Xiao J, Deng S. Preparation of low-cost sludge-based highly porous biochar for efficient removal of refractory pollutants from agrochemical and pharmaceutical wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135572. [PMID: 39167926 DOI: 10.1016/j.jhazmat.2024.135572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Producing a high-performance sludge biochar through a feasible method is a great challenge and is crucial for practicability. Herein, we reported a highly porous sludge biochar synthesized from agrochemical-pharmaceutical and municipal sludge blends through a novel pyrolysis-acid treatment-post pyrolysis method. The optimized biochar named ASMS91 obtained interconnected pores with a total pore volume of 0.894 cm3/g and a surface area of 691.4 m2/g through extended acid wash and subsequent post-pyrolysis, which is superior to non-activated sludge biochar. ASMS91 removed 45.3 % of wastewater COD (156 mg/L) in 24 h, which was rapid and higher performance than commercial activated carbon (1000 iodine number). This outstanding performance is due to its high adsorption ability of long-chain aliphatic compounds (e.g., 2,4-Di-tert-butylphenol, neophytadiene and eicosane) into mesopores, which accounts for 71.8 % of pore filling. ASMS91 was highly recyclable, and adsorption was reduced by only 5.3 % after the 4th cycle. It also outperformed other sludge biochar in literature in removing perfluorooctanoic acid (PFOA), 6:2 fluorotelomer sulfonate (6:2 FTS), sulfamethoxazole, methylene blue, and methylene orange. Finally, the feasibility of our proposed method was validated by a brief techno-economic analysis. This feasible approach may support future research regarding sludge valorization and low-cost chemical wastewater treatment.
Collapse
Affiliation(s)
- Md Manik Mian
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenya Ao
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lei Xiao
- United Envirotech Water Treatment (Dafeng) Co., Ltd. Yancheng, Jiangsu 224124, China
| | - Jianzhong Xiao
- United Envirotech Water Treatment (Dafeng) Co., Ltd. Yancheng, Jiangsu 224124, China
| | - Shubo Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
Luo L, Wang J, Yan A, Wang J, Wu S, Xu X, Chen W, Liu Z. Is Pyrolysis Treatment a Viable Solution to Detoxify Metal(loid)s in Sewage Sludge toward Land Application? Case Studies of Chromium and Zinc. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16186-16195. [PMID: 39189695 DOI: 10.1021/acs.est.4c04266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Metal(loid)s in sewage sludge (SS) are effectively immobilized after pyrolysis. However, the bioavailability and fate of the immobilized metal(loid)s in SS-derived biochar (SSB) following land application remain largely unknown. Here, the speciation and bioavailability evolution of SSB-borne Cr and Zn in soil were systematically investigated by combining pot and field trials and X-ray absorption spectroscopy. Results showed that approximately 58% of Cr existing as Cr(III)-humic complex in SS were transformed into Fe (hydr)oxide-bound Cr(III), while nano-ZnS in SS was transformed into stable ZnS and ferrihydrite-bound species (accounting for over 90% of Zn in SSB) during pyrolysis. All immobilized metal(loid)s, including Cr and Zn, in SSB tended to be slowly remobilized during aging in soil. This study highlighted that SSB acted as a dual role of source and sink of metal(loid)s in soil and posed potential risks by serving a greater role of a metal(loid) source than a sink when applied to uncontaminated soils. Nevertheless, SSB could impede the translocation of metal(loid)s from soil to crop compared to SS, where coexisting elements, including Fe, P, and Zn, played critical roles. These findings provide new insights for understanding the fate of SSB-borne metal(loid)s in soil and assessing the viability of pyrolyzing SS for land application.
Collapse
Affiliation(s)
- Lei Luo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jiawen Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Grassland, Resources, and Environment, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Aichu Yan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiaxiao Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Songlin Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuehui Xu
- College of Grassland, Resources, and Environment, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhengang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
17
|
Sun Y, Zuo Y, Shao Y, Wang L, Jiang LM, Hu J, Zhou C, Lu X, Huang S, Zhou Z. Carbon footprint analysis of wastewater treatment processes coupled with sludge in situ reduction. WATER RESEARCH X 2024; 24:100243. [PMID: 39188329 PMCID: PMC11345402 DOI: 10.1016/j.wroa.2024.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
The goal of this study was to assess the impacts or benefits of sludge in situ reduction (SIR) within wastewater treatment processes with relation to global warming potential in wastewater treatment plants, with a comprehensive consideration of wastewater and sludge treatment. The anaerobic side-stream reactor (ASSR) and the sludge process reduction activated sludge (SPRAS), two typical SIR technologies, were used to compare the carbon footprint analysis results with the conventional anaerobic - anoxic - oxic (AAO) process. Compared to the AAO, the ASSR with a typical sludge reduction efficiency (SRE) of 30 % increased greenhouse gas (GHG) emissions by 1.1 - 1.7 %, while the SPRAS with a SRE of 74 % reduced GHG emissions by 12.3 - 17.6 %. Electricity consumption (0.025 - 0.027 kg CO2-eq/m3), CO2 emissions (0.016 - 0.059 kg CO2-eq/m3), and N2O emissions (0.009 - 0.023 kg CO2-eq/m3) for the removal of secondary substrates released from sludge decay in the SIR processes were the major contributor to the increased GHG emissions from the wastewater treatment system. By lowering sludge production and the organic matter content in the sludge, the SIR processes significantly decreased the carbon footprints associated with sludge treatment and disposal. The threshold SREs of the ASSR for GHG reduction were 27.7 % and 34.6 % for the advanced dewatering - sanitary landfill and conventional dewatering - drying-incinerating routes, respectively. Overall, the SPRAS process could be considered as a cost-effective and sustainable low-carbon SIR technology for wastewater treatment.
Collapse
Affiliation(s)
- Yiyue Sun
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yi Zuo
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yanjun Shao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lihua Wang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Lu-Man Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiaming Hu
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Chuanting Zhou
- Shanghai Urban Construction Design and Research Institute, Shanghai 200125, China
| | - Xi Lu
- Shanghai Investigation Design and Research Institute Co., Ltd, Shanghai 200335, China
| | - Song Huang
- Shanghai Investigation Design and Research Institute Co., Ltd, Shanghai 200335, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
18
|
Zhang Q, Tang T, Cui G, Wang Z, Liu Y. Pressurized electro-osmotic dewatering treatment of sludge: focusing on the influences on nutrients for agricultural application. ENVIRONMENTAL TECHNOLOGY 2024; 45:4805-4819. [PMID: 37970842 DOI: 10.1080/09593330.2023.2283090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/09/2023] [Indexed: 11/19/2023]
Abstract
Sewage sludge requires effective dewatering and high nutrients retention before disposal for agricultural application. Pressurized electro-osmotic dewatering (PEOD) process with low energy consumption can effectively remove water from sludge, but the influences of PEOD process on nutrients for agricultural application still lacks in-depth research. In this study, the influences of PEOD process on nutrients for agricultural application were investigated, including organic matter, nitrogen, phosphorus, potassium and silicon contents. Layered experiments were conducted to investigate the layered variation of nutrients in sludge and to understand the potential change mechanisms. The experimental results showed that PEOD process caused small losses (<10%) of organic matter and total phosphorus (TP) in sludge, but caused 11.2-18.4% loss of total nitrogen (TN). PEOD process also caused 18.6-27.0% loss of total potassium (TK) and over 80% loss of available potassium in sludge, and could weaken the potential salt damage during the agricultural application of sludge. Furthermore, the available phosphorus content of sludge in the anode area increased significantly after the PEOD process, indicating that PEOD process could enhance the phosphorus bioavailability of sludge in the anode area. Besides, PEOD process caused a slight loss of silicon components in sludge, but improved the long-term silicon dissolution and release ability of sludge. This work could expand the knowledge about the influences of PEOD process on sludge nutrients and provide scientific guidance for the agricultural application of PEOD sludge.
Collapse
Affiliation(s)
- Qiming Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, People's Republic of China
| | - Tian Tang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, People's Republic of China
| | - Guodong Cui
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, People's Republic of China
| | - Zheng Wang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, People's Republic of China
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, People's Republic of China
| |
Collapse
|
19
|
Vancsik A, Szabó L, Bauer L, Pirger Z, Karlik M, Kondor AC, Jakab G, Szalai Z. Impact of land use-induced soil heterogeneity on the adsorption of fluoroquinolone antibiotics, tested on organic matter pools. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134704. [PMID: 38810576 DOI: 10.1016/j.jhazmat.2024.134704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
The effects on the adsorption of fluoroquinolone antibiotics of long-term soil heterogeneity induced by land-use were investigated. Three different land use areas with their two organic matter (OM) pools were tested for the adsorption of three antibiotics widely detected in the environment (ciprofloxacin, norfloxacin, ofloxacin). The soils were separated into two size fractions, > 63 µm fraction and < 63 µm fractions for the fast and slow OM pools, respectively. Any effect of land use on adsorption was only observed in the slow pool in the increasing order: arable land, grassland, and forest. The composition of the soil organic matter (SOM) did influence adsorption in the slow pool, but not in the bulk soilsThis was, because: 1) the ratio of the slow pool was low, as in forest, 2) the ratio of the slow pool was high but its adsorption capacity was low due to its SOM composition, as in arable land and grassland. Soils containing a large slow SOM pool fraction with aliphatic dominance were found to be more likely to adsorb micropollutants. It is our contention that the release of contaminated water, sludge, manure or compost into the environment should only be undertaken after taking this into consideration.
Collapse
Affiliation(s)
- Anna Vancsik
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, Budapest H-1121, Hungary.
| | - Lili Szabó
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, Budapest H-1121, Hungary
| | - László Bauer
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, Budapest H-1121, Hungary
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, HUN-REN, Tihany, Hungary
| | - Máté Karlik
- Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, Budapest H-1121, Hungary
| | - Attila Csaba Kondor
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, Budapest H-1121, Hungary
| | - Gergely Jakab
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, Budapest H-1121, Hungary
| | - Zoltán Szalai
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, Budapest H-1121, Hungary
| |
Collapse
|
20
|
Ji G, Huan C, Zeng Y, Lyu Q, Du Y, Liu Y, Xu L, He Y, Tian X, Yan Z. Microbiologically induced calcite precipitation (MICP) in situ remediated heavy metal contamination in sludge nutrient soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134600. [PMID: 38759409 DOI: 10.1016/j.jhazmat.2024.134600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Microbiologically induced calcite precipitation (MICP), as a newly developing bioremediation technology, could redeem heavy metal contamination in diverse scenarios. In this study, MICP bacterium Sporosarcina ureilytica ML-2 was employed to suppress the pollution of Pb, Cd and Zn in municipal sludge nutrient soil. After MICP remediation, the exchangeable Cd and Zn in sludge nutrient soil were correspondingly reduced by 31.02 % and 6.09 %, while the carbonate-bound Pb, Cd and Zn as well as the residual fractions were increased by 16.12 %, 6.63 %, 13.09 % and 6.10 %, 45.70 %, 3.86 %, respectively. In addition, the extractable Pb, Cd and Zn either by diethylenetriaminepentaacetic acid (DTPA) or toxicity characteristic leaching procedure (TCLP) in sludge nutrient soil were significantly reduced. These results demonstrated that the bio-calcite generated via MICP helped to immobilize heavy metals. Furthermore, MICP treatment improved the abundance of functional microorganisms related to urea cycle, while reduced the overall abundance of metal resistance genes (MRGs) and antibiotic resistance genes (ARGs). This work confirmed the feasibility of MICP in remediation of heavy metal in sludge nutrient soil, which expanded the application field of MICP and provided a promising way for heavy metal pollution management.
Collapse
Affiliation(s)
- Gaosheng Ji
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Chenchen Huan
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, Shanxi Province 710064, China
| | - Yong Zeng
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qingyang Lyu
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Yaling Du
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lishan Xu
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Yue He
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; College of Food and Bioengineering, Chengdu University, Chengdu 610106, China
| | - Xueping Tian
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| | - Zhiying Yan
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| |
Collapse
|
21
|
Liu S, Liu H, Zhu Y, Zhao H, Liu T, Lin Y, Shi H, Han Q, Wang X. Effect of separation pretreatment on environmental and economic performance of sludge resource utilization. BIORESOURCE TECHNOLOGY 2024; 404:130914. [PMID: 38823563 DOI: 10.1016/j.biortech.2024.130914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
As a new technology for accurate utilization of sludge resources, sludge inorganic-organic matter separation (IOMS) has attracted wide attention. This study examined the impact of this pretreatment on environmental and economic performance of sludge composting and incineration using life cycle assessment (LCA) and whole life costing (WLC). LCA results indicated that IOMS pretreatment reduced the energy conservation and emission reduction (ECER) values of composting and incineration by 56 % and 76 %, respectively. Meanwhile, WLC exhibited that IOMS pretreatment could cut the break-even year of incineration from 11 years to 4 years. The combination of organic sludge incineration/composting with inorganic sludge sintering ceramsite reveals excellent environmental and economic performance. The application optimization hypothesis analysis of these two routes in various provinces of China indicates that Jiangsu has the greatest development potential and should become a major promotion region.
Collapse
Affiliation(s)
- Shiqi Liu
- School of Environment and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Hanqiao Liu
- School of Environment and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; School of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuwen Zhu
- School of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Hailong Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Tong Liu
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yanfei Lin
- School of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Huizhen Shi
- School of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Qianlong Han
- School of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xueke Wang
- Tianjin Enew Environmental Protection Engineering Co. Ltd, Tianjin 300403, China
| |
Collapse
|
22
|
Bohm K, Taylor W, Gyawali P, Pattis I, Gutiérrez Ginés MJ. Black soldier fly-based bioconversion of biosolids: Microbial community dynamics and fate of antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172823. [PMID: 38679091 DOI: 10.1016/j.scitotenv.2024.172823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Biosolids as by-products of wastewater treatment can contain a large spectrum of pathogens and antibiotic resistance genes (ARGs). Insect-based bioconversion using black soldier fly larvae (BSFL) is an emerging technology that has shown to reduce significant amounts of biosolids quickly and produce larvae biomass containing low heavy metal concentrations. However, to the best of our knowledge, this is the first study investigating the transfer of pathogens and ARGs from biosolids into the process' end-products, BSFL and frass. We hypothesized that BSF-based bioconversion can decrease the abundance of pathogenic bacteria and ARGs in biosolids. In this study, we performed BSFL feeding trials with biosolids blended or not blended with wheat bran, and wheat bran alone as a low bioburden diet (control). We conducted 16S rRNA amplicon sequencing to monitor changes of the BSFL-associated microbial community and the fate of biosolids-associated pathogens. A diverse set of ARGs (ermB, intl1, sul1, tetA, tetQ, tetW, and blaCTX-M-32) were quantified by qPCR and were linked to changes in substrate- and BSFL-associated microbiomes. BSF-based bioconversion of biosolids-containing substrates led to a significant reduction of the microbial diversity, the abundance of several pathogenic bacteria and the investigated ARGs (< 99 %). Feeding with a high bioburden biosolid diet resulted in a higher microbial diversity, and the accumulation of pathogenic bacteria and ARGs in the BSFL. Results of this study demonstrated that BSF-based bioconversion can be a suitable waste management technology to (1) reduce significant amounts of biosolids and (2) reduce the presence of pathogens and ARGs. However, the resulting larvae biomass would need to undergo further post-treatment to reduce the pathogenic load to allow them as animal feed.
Collapse
Affiliation(s)
- Kristin Bohm
- Institute of Environmental Science and Research Ltd., Porirua 5022, New Zealand
| | - Will Taylor
- Institute of Environmental Science and Research Ltd., Christchurch 8041, New Zealand
| | - Pradip Gyawali
- Food Standards Australia New Zealand, Wellington 6011, New Zealand
| | - Isabelle Pattis
- Institute of Environmental Science and Research Ltd., Christchurch 8041, New Zealand
| | - María J Gutiérrez Ginés
- Institute of Environmental Science and Research Ltd., Christchurch 8041, New Zealand; School of Earth and Environment, University of Canterbury, Christchurch 8041, New Zealand.
| |
Collapse
|
23
|
Xiong Y, Lai J, Liu Z, Song M. Synergetic conditioning via oxalic acid enhanced Fe 2+/CaO 2 and skeleton construct to achieve deep dewatering of sewage sludge. CHEMOSPHERE 2024; 358:142115. [PMID: 38657689 DOI: 10.1016/j.chemosphere.2024.142115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/17/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Extracellular polymeric substance (EPS) with highly hydrophilic groups and sludge with high compressibility are determined sludge dewaterability. Herein, Fe2+ catalyzed calcium peroxide (CaO2) assisted by oxalic acid (OA) Fenton-like process combined with coal slime was applied to improve sludge dewaterability. Results demonstrated that the sludge treated by 0.45/1/1.1-OA/Fe2+/CaO2 mM/g DS, the water content (WC), specific resistance to filtration and capillary suction time dropped to 53.01%, 24.3 s and 1.2 × 1012 m/kg, respectively. Under coal slime ratio as 0.6, WC and compressibility were further reduced to 42.72% and 0.66, respectively. The hydroxyl radicals generated by OA/Fe2+/CaO2 under near-neutral pH layer by layer collapsed EPS, resulting in the degradation and migration of inner releasing components and the exposure of inner sludge flocs skeleton. The hydrophilic tryptophan-like protein of TB-EPS were degraded into aromatic protein of S-EPS and exposed inner hydrophobic sites. The protein secondary structures were transformed by destroying hydrophilic functional groups, which were attributed to the reducing α-helix ratio and reconstructing β-sheet. Moreover, coal slime as the skeleton builder lowered compressibility and formed more macropores to increase the filterability of pre-oxidized sludge for the higher intensity of rigid substances. This study deepened the understanding of OA enhanced Fenton-like system effects on sludge dewaterability and proposed a cost-effective and synergistic waste treatment strategy in sludge dewatering.
Collapse
Affiliation(s)
- Yun Xiong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Jiahao Lai
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zonghao Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Min Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
24
|
Zhang T, Li Q, Yang X, Zheng D, Deng H, Zeng Z, Yu J, Wang Q, Shi Y, Wang S, Pi K, Gerson AR. Pb contaminated soil from a lead-acid battery plant immobilized by municipal sludge and raw clay. ENVIRONMENTAL TECHNOLOGY 2024; 45:2796-2808. [PMID: 36862520 DOI: 10.1080/09593330.2023.2187319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Soil heavy metal pollution poses a serious threat to the eco-environment. Municipal sludge-based passivators and clay minerals have been widely applied to immobilize heavy metal contamination in soils. However, little is known about the immobilization effect and mechanisms of raw municipal sludge and clay in reducing the mobility and bioavailability of heavy metals in soils. Here, municipal sludge, raw clay and mixtures of thereof were used to remediate Pb-contaminated soil from a Pb-acid battery factory. The remediation performance was evaluated through acid leaching, sequential extraction, and plant assay. Results showed that the leachable Pb content in the soil decreased from 5.0 mg kg-1 to 4.8, 4.8 and 4.4 mg kg-1 after 30 d of remediation with MS and RC added at equal weights to give total dosage of 20, 40 wt% and 60 wt %, respectively. The leachable Pb further decreased to 1.7, 2.0 and 1.7 mg kg-1 after 180 d of remediation. Speciation analysis of the soil Pb indicated that the exchangeable and Fe-Mn oxide-bound Pb were transformed into residual Pb in the early stage of remediation, and the carbonate-bound Pb and organic matter-bound Pb were transformed into residual Pb in the later stage of remediation. As a result, Pb accumulation in mung beans decreased by 78.5%, 81.1% and 83.4% after 180 days of remediation. These results indicate that the leaching toxicity and phytotoxicity of Pb in remediated soils were significantly reduced, presenting a better and low-cost method for soil remediation.
Collapse
Affiliation(s)
- Ting Zhang
- Hubei Key Laboratory of Ecological Restoration for River - Lakes and Algal Utilization, Hubei University of Technology, Wuhan, People's Republic of China
| | - Qiang Li
- Hubei Key Laboratory of Ecological Restoration for River - Lakes and Algal Utilization, Hubei University of Technology, Wuhan, People's Republic of China
| | - Xiong Yang
- Hubei Key Laboratory of Ecological Restoration for River - Lakes and Algal Utilization, Hubei University of Technology, Wuhan, People's Republic of China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan, People's Republic of China
| | - Demin Zheng
- Hubei Key Laboratory of Ecological Restoration for River - Lakes and Algal Utilization, Hubei University of Technology, Wuhan, People's Republic of China
| | - Huiling Deng
- Hubei Key Laboratory of Ecological Restoration for River - Lakes and Algal Utilization, Hubei University of Technology, Wuhan, People's Republic of China
| | - Zhijia Zeng
- Hubei Key Laboratory of Ecological Restoration for River - Lakes and Algal Utilization, Hubei University of Technology, Wuhan, People's Republic of China
| | - Jiahai Yu
- Hubei Key Laboratory of Ecological Restoration for River - Lakes and Algal Utilization, Hubei University of Technology, Wuhan, People's Republic of China
| | - Qizhong Wang
- CCCC Second Highway Consultants Co., Ltd, Wuhan, People's Republic of China
| | - Yafei Shi
- Hubei Key Laboratory of Ecological Restoration for River - Lakes and Algal Utilization, Hubei University of Technology, Wuhan, People's Republic of China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan, People's Republic of China
| | - Sulian Wang
- Hubei Key Laboratory of Ecological Restoration for River - Lakes and Algal Utilization, Hubei University of Technology, Wuhan, People's Republic of China
- CCCC Second Highway Consultants Co., Ltd, Wuhan, People's Republic of China
| | - Kewu Pi
- Hubei Key Laboratory of Ecological Restoration for River - Lakes and Algal Utilization, Hubei University of Technology, Wuhan, People's Republic of China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan, People's Republic of China
| | | |
Collapse
|
25
|
Liu S, Liu H, Wei G, Zhu Y, Zhao H, Shi H, Lian Y. Comparative life cycle assessment of landfill sludge treatment technologies in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41208-41220. [PMID: 38849616 DOI: 10.1007/s11356-024-33862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
Reasonable treatment of large amounts of sludge excavated from landfills has gained increasing attention due to the diminishing availability of landfill space in China. In this study, five landfill sludge (LS) treatment technologies using life cycle assessment (LCA) and life cycle cost (LCC) were investigated, i.e., co-incineration in coal-fired power plants (CFPP) and waste incineration power plant (WIPP), co-processing in cement kiln, bricks production, and sintering ceramsite. The LCA results demonstrate that sintering ceramsite outperforms other technologies and LCC results indicate sintering ceramsite also provides the highest economic benefit ($869.94). To further enhance environmental and economic performances of the LS treatment, the substitution of coal with natural gas and biomass can reduce Energy Conservation and Emission Reduction (ECER) index by 74% and 98%, respectively. This substitution can increase economic returns by 24% and 26%, respectively. Furthermore, national-level economic benefit and carbon emission reduction potential of different LS treatment technology alternative scenarios were assessed. Results display that a combination of 50% CFPP, 25% bricks, and 25% ceramsite (biomass) offers the highest economic gain, which is 3.02 times that of 50% CFPP and 50% cement (original case). Conversely, the replacement of 25% brick with 25% cement in the above combination result in the lowest carbon reduction, which is 9.35 times that of the original case.
Collapse
Affiliation(s)
- Shiqi Liu
- School of Environment and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Hanqiao Liu
- School of Environment and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
- School of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Guoxia Wei
- School of Science, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yuwen Zhu
- School of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin, 300384, China.
| | - Hailong Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huizhen Shi
- School of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yi Lian
- Tianjin Urban Planning and Design Institute Co., Ltd, Tianjin, 300000, China
| |
Collapse
|
26
|
Xiang T, Shi C, Guo Y, Zhang J, Min W, Sun J, Liu J, Yan X, Liu Y, Yao L, Mao Y, Yang X, Shi J, Yan B, Qu G, Jiang G. Effect-directed analysis of androgenic compounds from sewage sludges in China. WATER RESEARCH 2024; 256:121652. [PMID: 38657313 DOI: 10.1016/j.watres.2024.121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The safety of municipal sewage sludge has raised great concerns because of the accumulation of large-scale endocrine disrupting chemicals in the sludge during wastewater treatment. The presence of contaminants in sludge can cause secondary pollution owing to inappropriate disposal mechanisms, posing potential risks to the environment and human health. Effect-directed analysis (EDA), involving an androgen receptor (AR) reporter gene bioassay, fractionation, and suspect and nontarget chemical analysis, were applied to identify causal AR agonists in sludge; 20 of the 30 sludge extracts exhibited significant androgenic activity. Among these, the extracts from Yinchuan, Kunming, and Shijiazhuang, which held the most polluted AR agonistic activities were prepared for extensive EDA, with the dihydrotestosterone (DHT)-equivalency of 2.5 - 4.5 ng DHT/g of sludge. Seven androgens, namely boldione, androstenedione, testosterone, megestrol, progesterone, and testosterone isocaproate, were identified in these strongest sludges together, along with testosterone cypionate, first reported in sludge media. These identified androgens together accounted for 55 %, 87 %, and 52 % of the effects on the sludge from Yinchuan, Shijiazhuang, and Kunming, respectively. This study elucidates the causative androgenic compounds in sewage sludge and provides a valuable reference for monitoring and managing androgens in wastewater treatment.
Collapse
Affiliation(s)
- Tongtong Xiang
- College of Sciences, Northeastern University, Shenyang 110004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Weicui Min
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jiazheng Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jifu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xiliang Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuxiang Mao
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- College of Sciences, Northeastern University, Shenyang 110004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
27
|
Liu J, Wang Z, Zhang T, Liu R, He W, Kong X, Shi Y, Xie J. Carbon performance analysis of upgraded wastewater treatment plants in key control areas of the Ziya River Basin in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121304. [PMID: 38830280 DOI: 10.1016/j.jenvman.2024.121304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
Wastewater treatment plants (WWTPs) are one of the largest sources of greenhouse gas (GHG) emissions, and they are also one of the largest energy consumption industries in urban systems. With the progression of upgrading and standard-rising, WWTPs both directly and indirectly increase carbon emissions from the increased investments in facilities and usages in electricity as well as chemical agents. Here, we collected operational data from 15 WWTPs in the key control areas of the Ziya River Basin in North China and accounted for the changes in carbon performance at different technical upgrade methods. Results showed that the average carbon emission performance increased by 0.487 kg CO2/m3 after the upgrade. Carbon emissions from electricity consumption, chemical usage, biochemical process and sludge treatment accounted for 42%, 17%, 24%, and 17% of the total improvement in carbon emission performance, respectively. Reducing energy consumption, regulating chemical use and sludge comprehensive utilization are the key to carbon emission reduction. It further proposes that the development of wastewater treatment discharge standards should fully consider the comprehensive utilization of water quality classification. Regions with favorable natural conditions should make full use of their advantages by adopting economically feasible, low-energy-consuming technologies such as constructed wetlands, which offer carbon sequestration and landscaping benefits. This study provides guidance on the selection of technological pathways for pollution reduction and carbon mitigation in the wastewater treatment industry and on achieving sustainable water resource utilization.
Collapse
Affiliation(s)
- Jiahao Liu
- School of Water Resources & Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei GEO University, Shijiazhuang, 050031, China
| | - Zhongqian Wang
- School of Water Resources & Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei GEO University, Shijiazhuang, 050031, China
| | - Tonggang Zhang
- Hebei Ecological Environment Monitoring Center, Shijiazhuang, 050031, China
| | - Rui Liu
- Hebei Ecological Environment Monitoring Center, Shijiazhuang, 050031, China
| | - Weiguang He
- Baiyangdian Basin Ecological Environment Monitoring Center, Baoding, 071000, China
| | - Xiangye Kong
- School of Water Resources & Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei GEO University, Shijiazhuang, 050031, China
| | - Yaolong Shi
- State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, China National Environmental Monitoring Centre, Beijing, 100012, China.
| | - Jianfeng Xie
- Hebei Ecological Environment Monitoring Center, Shijiazhuang, 050031, China.
| |
Collapse
|
28
|
Xiao Y, Yan T, Yao P, Xiang W, Wu Y, Li J. Co-pyrolysis of sewage sludge and phosphate tailings: Synergistically enhancing heavy metal immobilization and phosphorus availability. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 181:44-56. [PMID: 38583272 DOI: 10.1016/j.wasman.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Phosphate tailings (PT) was used to reduce the release of heavy metals (HMs) during pyrolysis and the leachable rate of residual HMs, and simultaneously improve the bioavailability of phosphorus in the sludge-based biochar. The concentration of heavy metals and the fractions determined by BCR method was used to investigate the release and the transformation of Zn, Pb, Mn, Ni and Cu during pyrolysis involved with the effects of temperature and the addition of PT. The respective pyrolysis experiments shows that the release of Zn and Pb increases with temperature for both sewage sludge (SS) and PT, and the bioavailable fractions (F1 + F2) of Mn, Ni, and Cu increases with temperature for PT. During co-pyrolysis, blended samples released lower quantities of Zn and Pb and presented lower bioavailability of HMs than the individual SS or PT. A synergistic effect of co-pyrolysis was evident for volatile Zn and Pb. The decomposition of CaMg (CO3)2 from PT produced CaO, by which the volatile ZnCl2 and PbCl2 were transformed into ZnO and PbO with less volatility and higher reactivity with SiO2 and Al2O3 than the chlorides. Then SiO2 and Al2O3 from SS acted as the final stabilizer to immobilize the oxides. The final product combined with SiO2 and Al2O3, such as ZnSiO4 and ZnAl2O4, were detected. The addition of PT also introduced more Ca and P into sludge to produce biochar with higher concentration of apatite phosphorus with higher bioavailability.
Collapse
Affiliation(s)
- Ya Xiao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Tinggui Yan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Pin Yao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Weixue Xiang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yunqi Wu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Jiang Li
- School of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
29
|
Wan C, Huang S, Li M, Zhang L, Yuan Y, Zhao X, Wu C. Towards zero excess sludge discharge with built-in ozonation for wastewater biological treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171798. [PMID: 38521252 DOI: 10.1016/j.scitotenv.2024.171798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/25/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
In this study, a biological treatment process, which used a built-in ozonation bypass to achieve sludge reduction, was built to treat the industrial antifreeze production wastewater (mainly composed of ethylene glycol). The results indicated there is a positive correlation between ozone dosage and sludge reduction. At the laboratory level, the MLSS in the system can be stably controlled at around 3400 mg MLSS L-1 under the dosage of 0.18 g O3 g-1 MLSS. Ozonation can increase the compactness of sludge flocs (fractal dimension increased from 1.89 to 1.92). Ozone destroys microbial cell membranes and alters the structure of sludge flocs through direct oxidation through electrophilic reactions. It leads to the release of intracellular polysaccharides, proteins, and other biological macromolecules in microorganisms, thereby promoting the implicit growth of microbial populations. Some bacteria such as g_Pseudomonas, g_Gemmobacter, etc. have strong ethylene glycol degradation ability and tolerance to ozonation. The removal of ethylene glycol includes the glyoxylate cycle, glycine serine carbon cycle, and the glutamate-cysteine ligase pathway of assimilation. Gene KatG and gpx may be key factors in improving microbial tolerance to ozonation. The comprehensive evaluation from the perspectives of cost and carbon emission shows that choosing ozone cracking-implicit growth in wastewater treatment systems has significant cost advantages and application value.
Collapse
Affiliation(s)
- Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| | - Shiyun Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Min Li
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lei Zhang
- School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yue Yuan
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaomeng Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Changyong Wu
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
30
|
Behnami A, Zoroufchi Benis K, Pourakbar M, Yeganeh M, Esrafili A, Gholami M. Biosolids, an important route for transporting poly- and perfluoroalkyl substances from wastewater treatment plants into the environment: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171559. [PMID: 38458438 DOI: 10.1016/j.scitotenv.2024.171559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The pervasive presence of poly- and perfluoroalkyl substances (PFAS) in diverse products has led to their introduction into wastewater systems, making wastewater treatment plants (WWTPs) significant PFAS contributors to the environment. Despite WWTPs' efforts to mitigate PFAS impact through physicochemical and biological means, concerns persist regarding PFAS retention in generated biosolids. While numerous review studies have explored the fate of these compounds within WWTPs, no study has critically reviewed their presence, transformation mechanisms, and partitioning within the sludge. Therefore, the current study has been specifically designed to investigate these aspects. Studies show variations in PFAS concentrations across WWTPs, highlighting the importance of aqueous-to-solid partitioning, with sludge from PFOS and PFOA-rich wastewater showing higher concentrations. Research suggests biological mechanisms such as cytochrome P450 monooxygenase, transamine metabolism, and beta-oxidation are involved in PFAS biotransformation, though the effects of precursor changes require further study. Carbon chain length significantly affects PFAS partitioning, with longer chains leading to greater adsorption in sludge. The wastewater's organic and inorganic content is crucial for PFAS adsorption; for instance, higher sludge protein content and divalent cations like calcium and magnesium promote adsorption, while monovalent cations like sodium impede it. In conclusion, these discoveries shed light on the complex interactions among factors affecting PFAS behavior in biosolids. They underscore the necessity for thorough considerations in managing PFAS presence and its impact on environmental systems.
Collapse
Affiliation(s)
- Ali Behnami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Khaled Zoroufchi Benis
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada
| | - Mojtaba Pourakbar
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran; Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Yeganeh
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| | - Mitra Gholami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Mushtaq S, Jamil F, Hussain M, Inayat A, Majeed K, Akhter P, Khurram MS, Shanableh A, Kim YM, Park YK. Utilizing sludge-based activated carbon for targeted leachate mitigation in wastewater treatment. ENVIRONMENTAL RESEARCH 2024; 249:118326. [PMID: 38325784 DOI: 10.1016/j.envres.2024.118326] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Activated carbon (AC) based adsorbents derived from waste sludge were utilized to remediate mixed contaminants in wastewater as an integrated waste-to-resource approach promoting a paradigm shift in management of refuse sludge and wastewater. This review specifically focuses on the remediation of constituents of landfill leachate by sludge-based activated carbon (SBAC). The adsorption effectiveness of SBAC for the exclusion of leachate characters including heavy metals, phenols, dyes, phosphates, and phosphorus were explored with regard to modifiers such as pH, temperature, properties of the adsorbent including functional groups, initial doses of absorbent and adsorbate, and duration of exposure to note the impact of each parameter on the efficiency of adsorption of the sludge adsorbent. Through the works of various researchers, it was noted that the properties of the adsorbent, pH and temperature impact the working of SBACs. The pH of the adsorbent by influencing the functional groups. Temperature was expected to have a paramount effect on the adsorption efficiency of the SBACs. The importance of the regeneration and recycling of the adsorbents as well as their leachability is highlighted. Sludge based activated carbon is recommended as a timely, resource-efficient, and sustainable approach for the remediation of wastewater.
Collapse
Affiliation(s)
- Sarah Mushtaq
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Farrukh Jamil
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan; Biomass and Bioenergy Research Group, Sustainable Energy and Power System Research Centre, Research Institute for Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates.
| | - Murid Hussain
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan.
| | - Abrar Inayat
- Biomass and Bioenergy Research Group, Sustainable Energy and Power System Research Centre, Research Institute for Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates; Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Khaliq Majeed
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Parveen Akhter
- Department of Chemistry, The University of Lahore, 1-km Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Muhammad Shahzad Khurram
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Civil and Environmental Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
32
|
Zhao W, Chen X, Ma H, Li D, Yang H, Hu T, Zhao Q, Jiang J, Wei L. Impact of co-substrate molecular weight on methane production potential, microbial community dynamics, and metabolic pathways in waste activated sludge anaerobic co-digestion. BIORESOURCE TECHNOLOGY 2024; 400:130678. [PMID: 38588784 DOI: 10.1016/j.biortech.2024.130678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
Proteins and carbohydrates are important organics in waste activated sludge, and greatly affect methane production and microbial community composition in anaerobic digestion systems. Here, a series of co-substrates with different molecular weight were applied to investigate the interactions between microbial dynamics and the molecular weight of co-substrates. Biochemical methane production assays conducted in batch co-digesters showed that feeding high molecular weight protein and carbohydrate substrates resulted in higher methane yield and production rates. Moreover, high-molecular weight co-substrates increased the microbial diversity, enriched specific microbes including Longilinea, Anaerolineaceae, Syner-01, Methanothrix, promoted acidogenic and acetoclastic methanogenic pathways. Low-molecular weight co-substrates favored the growth of JGI-0000079-D21, Armatimonadota, Methanosarcina, Methanolinea, and improved hydrogenotrophic methanogenic pathway. Besides, Methanoregulaceae and Methanolinea were indicators of methane yield. This study firstly revealed the complex interactions between co-substrate molecular weight and microbial communities, and demonstrated the feasibility of adjusting co-substrate molecular weight to improve methane production process.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinwei Chen
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haizhou Yang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
33
|
Liu J, Zhang Z, Deng Y, Chen G. Effect of extraction method on the structure and bioactivity of polysaccharides from activated sludge. WATER RESEARCH 2024; 253:121196. [PMID: 38394931 DOI: 10.1016/j.watres.2024.121196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Resource recovery is a pivotal facet of waste activated sludge treatment, particularly within the framework of carbon neutrality and the circular economy. Polysaccharides are emerging as a valuable resource from waste activated sludge, and the choice of extraction method affects the properties of the polysaccharides, which is of utmost importance for subsequent application. This investigation examined the effects of six extraction methods (i.e., acidic, alkaline, ultrasonication, hot-water, microwave, and electric treatments) on the yield, chemical composition, structural characteristics, and bioactivities of polysaccharides extracted from sludge. For each extraction method, two operational parameters, namely the treatment time and strength (e.g., the acid and alkali concentration), were initially optimized in terms of the polysaccharide yield. The polysaccharide yield varied from 1.03 ± 0.12 % to 5.34 ± 0.10 % adopting the extraction methods under optimized conditions, and the alkaline extraction method had the highest yield of polysaccharides with a treatment time of 120 min and NaOH concentration of 1 %. At least one polysaccharide fraction was successfully purified from the crude polysaccharide of each extraction method. The compositions and structures of these fractions, including carbohydrate, protein, sulfate, uronic acid contents, and monosaccharide compositions, were determined. Carbohydrate was the dominant component, with the hot-water-2 fraction having the highest carbohydrate content (77.90 % ± 2.02 %). Monosaccharides in the polysaccharides were measured, with mannose, rhamnose, glucose, and xylose being found in all fractions, whereas ribose was exclusively found in the acid-1 fraction. The molecular weights of these fractions ranged between 1.60 × 104 Da and 7.11 × 106 Da. Furthermore, the bioactivities of the polysaccharides, encompassing five anti-oxidant and three anti-coagulant properties, were assessed, with the ultrasonication-1 fraction having superior performance in seven of the assays. Finally, the association among the fractions in terms of composition and bioactivity was assessed adopting cluster analysis and regression methods. The findings underscore the effect of the extraction method on the properties of polysaccharides extracted from sludge, thereby providing valuable insights for the prospective applications of polysaccharides.
Collapse
Affiliation(s)
- Jie Liu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zi Zhang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yangfan Deng
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Wastewater Treatment Laboratory, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangzhou, China.
| |
Collapse
|
34
|
Yu B, Fu L, Chen T, Zheng G, Yang J, Cheng Y, Liu Y, Huang X. Environmental impacts of cement kiln co-incineration sewage sludge biodried products in a scale-up trial. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:24-33. [PMID: 38290345 DOI: 10.1016/j.wasman.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
The biodrying technology as a pretreatment technology can overcome the limitations of cement kilns co-incineration sewage sludge (SS) on energy consumption. But the impact of SS biodried products on cement kilns and the route carbon reduction potential of biodrying + cement kilns have not been studied. In this study, SS biodrying and cement kiln co-incineration biodried product trials were conducted to highlight the matrix combustion characteristics, and the impact of biodried products on cement kilns (clinker capacity, coal consumption, and pollutant discharge). The carbon emissions of the four scenarios were assessed based on these results. The results showed that water removal rate reached 65.5 % after 11-day biodrying, and the wet-based lower heating value of the biodried product increased by 76.0 % compared with the initial matrix. Comprehensive combustibility index of the biodried product (0.745 × 10-7 %2℃-3min-2) was better than that of SS (0.433 × 10-7 %2℃-3min-2) although a portion of the organic matter was degraded. Cement kiln co-incineration of biodried products (150 t/d) resulted in per tonne of clinker saved 5.61 kg of coal due to the heat utilization efficiency of biodried products reached to 93.7 %. However, it led to an increase in the emission concentrations of NOX and SO2. Assessment results indicated that the biodrying + cement kiln pathway reduced CO2 emissions by 385.7 kg/t SS. Biodried products have greater potential to reduce emissions as alternative fuels than as fertilizers. This study indicated the advantages of SS biodrying + cement kiln co-incineration route.
Collapse
Affiliation(s)
- Bao Yu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Lili Fu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Greentech Technology Group Co.Ltd., Beijing 100080, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Cheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Liu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Huang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Greentech Technology Group Co.Ltd., Beijing 100080, China
| |
Collapse
|
35
|
Li J, Ma H, Yu H, Feng L, Xia X, He S, Chen X, Zhao Q, Wei L. Effect and potential mechanisms of sludge-derived chromium, nickel, and lead on soil nitrification: Implications for sustainable land utilization of digested sludge. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133552. [PMID: 38246061 DOI: 10.1016/j.jhazmat.2024.133552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Increasing occurrence of heavy metals (HMs) in sewage sludge threatens its widespread land utilization in China due to its potential impact on nutrient cycling in soil, requiring a better understanding of HM-induced impacts on nitrification. Herein, lab-scale experiments were conducted over 185-day, evaluating the effect of sludge-derived chromium (Cr3+), nickel (Ni2+), and lead (Pb2+) on soil nitrification at different concentrations. Quantitative polymerase chain reaction and linear regression results revealed an inhibitory sequence of gene abundance by HMs' labile fraction: ammonia-oxidizing bacteria (AOB)-ammonia monooxygenase (amoA)> nitrite oxidoreductase subunit alpha (nxrA)> nitrite oxidoreductase subunit beta (nxrB). The toxicity of HMs' incremental labile fraction decreased in the order of Ni2+>Cr3+>Pb2+, with respective threshold values of 5.01, 24.03 and 38.42 mg·kg-1. Furthermore, extending incubation time reduced HMs inhibition on ammonia oxidation, mainly related to their fraction bound to carbonate minerals. Random Forest analysis, variation partitioning analysis, and Mantel test indicated that soil physicochemical properties primarily affected nitrification genes, especially in the test of Cr3+ on AOB-amoA, nxrA, nxrB, Ni2+ for complete ammonia-oxidizing bacteria-amoA, and Pb2+ for nxrA and nxrB. These findings underline the importance of labile HMs fractions and soil physicochemical properties to nitrification, guiding the establishment of HM control standards for sludge utilization.
Collapse
Affiliation(s)
- Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hang Yu
- Harbin Rongyi Huizhi Technology Co., Ltd., Harbin 150090, China
| | - Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinwei Chen
- Elite Engineers School, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
36
|
Vo PHN, Ky Le G, Huy LN, Zheng L, Chaiwong C, Nguyen NN, Nguyen HTM, Ralph PJ, Kuzhiumparambil U, Soroosh D, Toft S, Madsen C, Kim M, Fenstermacher J, Hai HTN, Duan H, Tscharke B. Occurrence, spatiotemporal trends, fate, and treatment technologies for microplastics and organic contaminants in biosolids: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133471. [PMID: 38266587 DOI: 10.1016/j.jhazmat.2024.133471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/26/2024]
Abstract
This review provides a comprehensive overview of the occurrence, fate, treatment and multi-criteria analysis of microplastics (MPs) and organic contaminants (OCs) in biosolids. A meta-analysis was complementarily analysed through the literature to map out the occurrence and fate of MPs and 10 different groups of OCs. The data demonstrate that MPs (54.7% occurrence rate) and linear alkylbenzene sulfonate surfactants (44.2% occurrence rate) account for the highest prevalence of contaminants in biosolids. In turn, dioxin, polychlorinated biphenyls (PCBs) and phosphorus flame retardants (PFRs) have the lowest rates (<0.01%). The occurrence of several OCs (e.g., dioxin, per- and polyfluoroalkyl substances, polycyclic aromatic hydrocarbons, pharmaceutical and personal care products, ultraviolet filters, phosphate flame retardants) in Europe appear at higher rates than in Asia and the Americas. However, MP concentrations in biosolids from Australia are reported to be 10 times higher than in America and Europe, which required more measurement data for in-depth analysis. Amongst the OC groups, brominated flame retardants exhibited exceptional sorption to biosolids with partitioning coefficients (log Kd) higher than 4. To remove these contaminants from biosolids, a wide range of technologies have been developed. Our multicriteria analysis shows that anaerobic digestion is the most mature and practical. Thermal treatment is a viable option; however, it still requires additional improvements in infrastructure, legislation, and public acceptance.
Collapse
Affiliation(s)
- Phong H N Vo
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
| | - Gia Ky Le
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Lai Nguyen Huy
- Environmental Engineering and Management, Asian Institute of Technology (AIT), Klong Luang, Pathumthani, Thailand
| | - Lei Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Chawalit Chaiwong
- Environmental Engineering and Management, Asian Institute of Technology (AIT), Klong Luang, Pathumthani, Thailand
| | - Nam Nhat Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hong T M Nguyen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Peter J Ralph
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Unnikrishnan Kuzhiumparambil
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Danaee Soroosh
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran 3353-5111, Iran
| | - Sonja Toft
- Urban Utilities, Level 10/31 Duncan St, Fortitude Valley, QLD 4006, Australia
| | - Craig Madsen
- Urban Utilities, Level 10/31 Duncan St, Fortitude Valley, QLD 4006, Australia
| | - Mikael Kim
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | | | - Ho Truong Nam Hai
- Faculty of Environment, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City 700000, Viet Nam
| | - Haoran Duan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ben Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| |
Collapse
|
37
|
Braine MF, Kearnes M, Khan SJ. Quality and risk management frameworks for biosolids: An assessment of current international practice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169953. [PMID: 38215849 DOI: 10.1016/j.scitotenv.2024.169953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Biosolids, a product of wastewater treatment, provide a valuable resource, but to optimize the use of this resource it is necessary to manage risks posed to public health and the environment. Key requirements include identifying contaminant sources and providing barriers to ensure containment and treatment while maintaining the viability and value of biosolids products. Responsibility for managing biosolids is the remit of many stakeholders but primarily it rests with private and public wastewater facilities. The global variabilities in the way biosolids resources are acknowledged, applied, and managed are substantial. For example, some countries are increasing incineration because of their ability to remove contaminants while others have experienced a proportional decrease in incineration dependent on industrial resources or regarding resource recovery costs and needs. Some jurisdictions focus on energy recovery and others on land application. A risk management framework is a tool that may provide a suitable holistic approach to biosolids management. With this focus, current instruments in practice globally to manage biosolids were assessed for the degree to which they have adopted a risk management framework. To form a basis for this assessment a set of criteria was established by concept mapping several internationally recognized standards. Guidelines for a range of developed and developing countries were then assessed against these criteria. That process enabled the identification of which current practices were holistic in terms of applying biosolids risk management principles from production to end-use. Through this process, risk management gaps and vulnerabilities were identified. The results reveal that the incorporation of risk standards into risk management frameworks around the world is variable for the presence of risk criteria and the scale of detail provided. Contaminant concentrations need perspective within the changing risk landscape for stakeholders and the environment while jointly the opportunities and contaminant challenges require solutions that balance risks.
Collapse
Affiliation(s)
- Marilyn F Braine
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia
| | - Matthew Kearnes
- School of Humanities & Language, University of New South Wales, NSW 2052, Australia
| | - Stuart J Khan
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia; School of Civil Engineering, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
38
|
Kong W, Jalalah M, Alsareii SA, Harraz FA, Almadiy AA, Thakur N, Salama ES. Occurrence, characteristics, and microbial community of microplastics in anaerobic sludge of wastewater treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123370. [PMID: 38244902 DOI: 10.1016/j.envpol.2024.123370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Wastewater treatment plants (WWTPs) usually contain microplastics (MPs) due to daily influents of domestic and municipal wastewater. Thus, the WWTPs act as a point source of MPs distribution in the environment due to their incapability to remove MPs completely. In this study, MPs occurrence and distribution in anaerobic sludge from WWTPs in different regions (Kaifeng "KHP", Jinan "JSP", and Lanzhou "LGP") were studied. Followed by MPs identification by microscopy and Fourier transform infrared (FTIR) spectrum. The microbial communities associated with anaerobic sludge and MPs were also explored. The results showed that MPs concentrations were 16.5, 38.5, and 17.2 particles/g of total solids (TS) and transparent MPs accounted for 49.1%, 58.5%, and 48.3% in KHP, JSP, and LGP samples, respectively. Fibers represented the most common shape of MPs in KHP (49.1%), JSP (56.0%), and LGP (69.0%). The FTIR spectroscopy indicated the predominance of polyethylene polymer in 1-5 mm MPs. The Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, and Planctomycetes were the abundant phyla in all anaerobic sludge. The bacterial genera in KHP and LGP were similar, in which Caldilinea (>23%), Terrimonas (>10%), and Ferruginibacter (>7%) formed the core bacterial genera. While Rhodococcus (15.3%) and Rhodoplanes (10.9%) were dominating in JSP. The archaeal genera Methanosaeta (>69%) and Methanobrevibacter (>10%) were abundant in KHP and LGP sludge. While Methanomethylovorans accounted for 90% of JSP. Acetyltransferase and hydratase were the major bacterial enzymes, while reductase was the key archaeal enzyme in all anaerobic sludge. This study provided the baseline for MPs distribution, characterization, and MPs associated microbes in WWTPs.
Collapse
Affiliation(s)
- Wenbo Kong
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Electrical Engineering, College of Engineering, Najran University, Najran, 11001, Saudi Arabia
| | - Saeed A Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Surgery, College of Medicine, Najran University, Najran, 11001, Saudi Arabia
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah, 68342, Saudi Arabia
| | - Abdulrhman A Almadiy
- Department of Biology, Faculty of Arts and Sciences, Najran University, 1988, Najran, Saudi Arabia
| | - Nandini Thakur
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| |
Collapse
|
39
|
Gu W, Bai J, Chen J. Application of thermally treated sludge residues on an e-waste contaminated soil: effects on PTE bioavailability, soil physicochemical and biological properties, and L. perenne growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21962-21972. [PMID: 38400963 DOI: 10.1007/s11356-024-32179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/21/2024] [Indexed: 02/26/2024]
Abstract
In the context of sustainable development, potentially toxic element (PTE) contamination of soil and large-scale disposal of sludge are two major environmental issues that need to be addressed urgently. It is of great significance to develop efficient and green technologies to solve these problems simultaneously. This study investigated the effects of a 5% addition of thermally treated sludge residues (fermentation and pyrolysis residues) in synergy with L. perenne on soil organic matter, mineral nutrients, PTE speciation, and PTE uptake and transport by L. perenne in an e-waste-contaminated soil through pot experiments. The results showed that the thermally treated sludge residues significantly increased soil electrical conductivity, cation exchange capacity, organic matter, available phosphorus, and exchangeable potassium contents. New PTE-containing crystalline phases were detected, and dissolved humic substances were found. Sludge fermentation residue significantly increased dissolved organic matter content, whereas sludge pyrolysis residue showed no significant effect. The combination of thermally treated sludge residues and L. perenne increased the residual fractions of Cu, Zn, Pb, and Cd. The thermally treated sludge residues promoted L. perenne growth, increasing fresh weight, plant height, and phosphorus and potassium uptake. The uptake of Cu, Zn, Pb, and Cd by L. perenne was significantly reduced. This approach has the potential for applications in the ecological restoration of e-waste-contaminated soils.
Collapse
Affiliation(s)
- Weihua Gu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Jianfeng Bai
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
40
|
Hu H, Liu H, Xiao H, Jin M, Huang Z, Yao H. Assisting role of carbonaceous skeleton in sludge thermal hydrolysis and press filtration. CHEMOSPHERE 2024; 352:141501. [PMID: 38401864 DOI: 10.1016/j.chemosphere.2024.141501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/01/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024]
Abstract
As a key step in disposal and reutilization, sludge dewatering is very difficult, since extracellular polymers substances (EPS) binds the water, and compressible organic matter deforms and causes water filtration channels to collapse. Sludge dewaterability was demonstrated to enhance by carbonaceous skeleton (CSkel)-assisted thermal hydrolysis in our previously study. This work further investigated the assisting role of different types of CSkel in EPS decomposition during sludge thermal hydrolysis stage and channels reformation during press filtration stage. Two major types of CSkel, lignocellulosic waste (waste sawdust, waste straw, processing by-product) and protein-rich waste (shrimp shells, jatropha oil cake), were selected. The experimental results showed that in the thermal hydrolysis stage, the decomposition of lignocellulosic waste would increase fatty acids production by 28%, resulting in an acidic environment that reduced the total amount of three hydrophilic amino acids, i.e., glycine, serine and threonine. These promoted the release of water from the sludge. In the press filtration stage, average pore size of sludge was reduced by approximately 87% and nanoscale holes began to appear and increase. Assisting of CSkel rebuilt the filtration channels which brought good connectivity between the pores in sludge cake. Lignocellulosic waste proved significantly more effective than protein-rich waste in achieving a water removal rate of 88.63% under 1 MPa. This study provided a basis for selecting suitable CSkel to optimize sludge dewatering for subsequent utilization.
Collapse
Affiliation(s)
- Hang Hu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huan Liu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Han Xiao
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Minghao Jin
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhaowei Huang
- Wuhan Tianyuan Environmental Protection Co., Ltd, Wuhan, 430014, China
| | - Hong Yao
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
41
|
Twagirayezu E, Fan L, Liu X, Iqbal A, Lu X, Wu X, Zan F. Comparative life cycle assessment of sewage sludge treatment in Wuhan, China: Sustainability evaluation and potential implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169686. [PMID: 38163598 DOI: 10.1016/j.scitotenv.2023.169686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Owing to the relentless growth of sewage sludge production, achieving low-carbon development in sewage sludge treatment and disposal (STD) is becoming increasingly challenging and unpredictable. However, the STD varied spatially, and city-specific analysis is deemed necessary for sustainable evaluation. Therefore, a lifecycle-based greenhouse gas (GHG), energy, and economic analysis were conducted by considering six local STD alternatives in Wuhan City, China, as a case study. The findings indicated anaerobic digestion combined with digestate utilization for urban greening (ADL) and incineration in existing power plants (INCP) exhibited the least GHG emissions at 34.073 kg CO2 eq/FU and 644.128 kg CO2 eq/FU, while INCP generated the most energy at -2594 kW.h/FU. The economic evaluation revealed that ADL and INCP were more beneficial without accounting for land acquisition. Scenario analysis showed that the energy recovery from ADL and INCP is significantly influenced by the hydrolysis yielding rate and sludge organic content. Perturbation sensitivity indicates that regional emission factor of electricity and electricity fee highly influence the overall GHG emission and cost. The results of this study could assist policymakers in identifying viable solutions to the cities experiencing the same sludge treatment burdens.
Collapse
Affiliation(s)
- Eric Twagirayezu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liezhong Fan
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoming Liu
- School of Materials & Environmental Engineering, Shenzhen Polytechnic University, Guangdong 518055, China.
| | - Asad Iqbal
- School of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong
| | - Xiejuan Lu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
42
|
Kina C. Sustainable binary/ternary blended mortars with recycled water treatment sludge using fly ash or blast slag: Characterization and environmental-economical impacts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15126-15152. [PMID: 38289557 PMCID: PMC10884113 DOI: 10.1007/s11356-024-32175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/20/2024] [Indexed: 02/24/2024]
Abstract
Water treatment sludge (WTS) is produced daily and disposed of as hazardous material. It would be advisable to use locally available waste products as supplementary cementitious materials that ensure to be disposed of without harming the environment. As a novelty, this research investigated the potential of using recycled WTS with fly ash (FA) and ground-granulated blast furnace slag (BFS) as ternary blended binders. Thus, it can provide an economical solution and alleviate the adverse environmental effects of excessive production of wastes and cement production. Within this scope, the mortars with 0-30 wt% replacement of cement with modified WTS (MWTS) were produced as binary blend, and also, they were combined with FA/BFS as ternary blended binders. Therefore, optimum utilization of waste products into the mortar in terms of rheological, mechanical, durability, microstructural properties, and environmental-economical aspects was examined. Adding 10% recycled WTS as binary caused higher strengths with lower porosity measured by the mercury intrusion porosimeter test and denser microstructure, as revealed by XRD patterns and SEM results. However, the drawbacks of using recycled WTS, in terms of rheological parameters and environmental-economical aspects, were suppressed by adding FA/BFS with comparable strength values. Specifically, cost, CO2 footprint, and embodied energy were reduced by combining 10% MWTS with FA by 8.87%, 37.88%, and 33.07%, respectively, while 90-day compressive and flexural strength were 5.1% and 5.32% lower. This study developed a feasible solution to use recycled MWTS by obtaining more eco-friendly and cost-effective cement-based materials.
Collapse
Affiliation(s)
- Ceren Kina
- Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Malatya Turgut Ozal University, Malatya, Türkiye.
| |
Collapse
|
43
|
Li X, Yuan SJ, Cai C, Li XW, Wu HB, Shen D, Dong B, Xu ZX. A 20-year shift in China's sewage sludge heavy metals and its feasibility of nutrient recovery in land use. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122907. [PMID: 37952918 DOI: 10.1016/j.envpol.2023.122907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Recycling resources from wastewater is even more important for developing a more sustainable society. Disposing sewage sludge, which accumulates most pollutants and resources in sewage, is the main challenge in wastewater pollution control and resource utilization. Heavy metals (HMs) are the greatest constraint limiting the application of sewage sludge to land as a sustainable use of this material. We conducted a meta-analysis of the concentrations of HMs in Chinese sewage sludge by combining data from studies published from 2000 to 2019 (N = 8477). Over this period, the reported concentrations of HMs in sewage sludge declined in three stages (a fluctuating stage, a slight decrease stage, and a rapid and stable decrease stage). The results revealed that economic development and environmental policy implementation were the main factors mitigating HM pollution in sewage sludge in China. Moreover, if environmental regulations were strengthened and HM pollution-mitigation strategies were made consistent, such that the proportion of sewage sludge applied to land in China could be increased from 18.6% to 48.0% (the proportion applied to land in the United States), the ecosystem services analysis showed that huge ecological-economic benefits could be realized (3.1 billion Chinese Yuan) and the use of fertilizers could be substantially reduced (the use of nitrogen fertilizers by 8.5% and the use of phosphate fertilizers by 18.1%). This review shows that China should formulate a unified policy and interdepartmental committee for sustainable application of sewage sludge to land and wastewater resource recycling management.
Collapse
Affiliation(s)
- Xin Li
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Shi-Jie Yuan
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Chen Cai
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Xiao-Wei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, PR China
| | - Hai-Bin Wu
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, PR China
| | - Danni Shen
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, PR China
| | - Bin Dong
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, PR China.
| | - Zu-Xin Xu
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
44
|
Tan Z, Dong B, Xing M, Sun X, Xi B, Dai W, He C, Luo Y, Huang Y. Electric field applications enhance the electron transfer capacity of dissolved organic matter in sludge compost. ENVIRONMENTAL TECHNOLOGY 2024; 45:283-293. [PMID: 35900008 DOI: 10.1080/09593330.2022.2107951] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matter (DOM) plays an important role in heavy metal passivation and organic pollutant degradation owing to its redox ability. The structure and composition of DOM are determinants of redox ability changes during composting. Electric field-assisted aerobic composting (EAAC) has been shown to promote the degradation and humification of organic matter in compost. However, how EAAC affects the redox ability of DOM remains unclear. Hence, electron transfer capacity (ETC) of DOM extracted from EAAC was studied using the electrochemical method. Various spectral methods, such as excitation-emission matrix and ultraviolet and visible spectrophotometry were used to study the relationship of ETC with the compositional and structural changes of DOM. Results indicated that EAAC enhanced ETC of DOM at the later stage of composting, and ETC of DOM extracted from the final EAAC product was 10.4% higher than that of the control group. Spectral and correlation analyses showed that EAAC resulted in structural and compositional changes of DOM, and humification degree, aromatic compounds, molecular weight, and fulvic- and humic-like substance contents were improved in EAAC. This conversion increased ETC of DOM. Results of this study will contribute to the understanding of the redox of DOM and in expanding the application of EAAC products.
Collapse
Affiliation(s)
- Zhihan Tan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Bin Dong
- School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Meiyan Xing
- School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Beidou Xi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Wenfeng Dai
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Chaojie He
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Yumu Luo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Yanmei Huang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| |
Collapse
|
45
|
Xu ZX, Tan Y, Ma XQ, Li B, Chen YX, Zhang B, Osman SM, Luo JY, Luque R. Valorization of sewage sludge for facile and green wood bio-adhesives production. ENVIRONMENTAL RESEARCH 2023; 239:117421. [PMID: 37852465 DOI: 10.1016/j.envres.2023.117421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/25/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
A method is presented herein for the design of wood bio-adhesives using sewage sludge extracts (SSE). SSE was extracted from SS using deep eutectic solvents and processed with glycerol triglycidyl ether (GTE) to disrupt the secondary structure of proteins. An additive was also used to improve mechanical performance. The resulting bio-adhesive (SSE/GTE@TA) had a wet shear strength of 0.93 MPa, meeting the Chinese national standard GB/T 9846-2015 (≥0.7 MPa). However, the high polysaccharide content in SSE would weaken the mechanical properties of wood bio-adhesives. The key to improve bio-adhesive quality was the formation of a strong chemical bond via Maillard reaction as well as higher temperatures (140 °C) to reduce polysaccharide content via dehydration. This approach has lower environmental impact and higher economic efficiency compared to incineration and anaerobic digestion of sewage sludge. This work provides a new perspective on the high-value utilization of SS and offers a novel approach to developing bio-adhesives for the wood industry.
Collapse
Affiliation(s)
- Zhi-Xiang Xu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yi Tan
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xue-Qin Ma
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bin Li
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yong-Xing Chen
- Zhoukou Normal University, School of Chemistry and Chemical Engineering, Wenchang Avenue, Zhoukou, Henan, China
| | - Bo Zhang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jing-Yang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., Moscow, 117198, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador.
| |
Collapse
|
46
|
Huang Y, Xie Y, Wu Y, Meng F, He C, Zou H, Wang X, Shui A, Liu S. Modeling Indirect Greenhouse Gas Emissions Sources from Urban Wastewater Treatment Plants: Integrating Machine Learning Models to Compensate for Sparse Parameters with Abundant Observations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19860-19870. [PMID: 37976424 DOI: 10.1021/acs.est.3c06482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Electricity consumption and sludge yield (SY) are important indirect greenhouse gas (GHG) emission sources in wastewater treatment plants (WWTPs). Predicting these byproducts is crucial for tailoring technology-related policy decisions. However, it challenges balancing mass balance models and mechanistic models that respectively have limited intervariable nexus representation and excessive requirements on operational parameters. Herein, we propose integrating two machine learning models, namely, gradient boosting tree (GBT) and deep learning (DL), to precisely pointwise model electricity consumption intensity (ECI) and SY for WWTPs in China. Results indicate that GBT and DL are capable of mining massive data to compensate for the lack of available parameters, providing a comprehensive modeling focusing on operation conditions and designed parameters, respectively. The proposed model reveals that lower ECI and SY were associated with higher treated wastewater volumes, more lenient effluent standards, and newer equipment. Moreover, ECI and SY showed different patterns when influent biochemical oxygen demand is above or below 100 mg/L in the anaerobic-anoxic-oxic process. Therefore, managing ECI and SY requires quantifying the coupling relationships between biochemical reactions instead of isolating each variable. Furthermore, the proposed models demonstrate potential economic-related inequalities resulting from synergizing water pollution and GHG emissions management.
Collapse
Affiliation(s)
- Yujun Huang
- School of Environment, Tsinghua University, 1 Qinghuayuan, Beijing 100084, China
| | - Yifan Xie
- School of Environment, Tsinghua University, 1 Qinghuayuan, Beijing 100084, China
| | - Yipeng Wu
- School of Environment, Tsinghua University, 1 Qinghuayuan, Beijing 100084, China
| | - Fanlin Meng
- School of Environment, Tsinghua University, 1 Qinghuayuan, Beijing 100084, China
| | - Chengyu He
- School of Environment, Tsinghua University, 1 Qinghuayuan, Beijing 100084, China
| | - Hao Zou
- Department of Computer Science and Technology, Tsinghua University, 1 Qinghuayuan, Beijing 100084, China
| | - Xiaoting Wang
- Intelligent Cities Research, JD Technology, 11 Kechuang Street, Beijing 100176, China
| | - Ailun Shui
- School of Environment, Tsinghua University, 1 Qinghuayuan, Beijing 100084, China
| | - Shuming Liu
- School of Environment, Tsinghua University, 1 Qinghuayuan, Beijing 100084, China
| |
Collapse
|
47
|
Wu SL, Wei W, Ngo HH, Guo W, Wang C, Wang Y, Ni BJ. In-situ production of lactate driving the biotransformation of waste activated sludge to medium-chain fatty acid. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118524. [PMID: 37423191 DOI: 10.1016/j.jenvman.2023.118524] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
Medium-chain fatty acids (MCFAs) have drawn great attention due to their high energy density and superior hydrophobicity. Waste activated sludge (WAS) has been documented as a renewable feedstock for MCFAs production via anaerobic fermentation. However, MCFAs production from WAS depends on exogenous addition of electron donor (ED, e.g., lactate) for chain elongation (CE) bioprocess, which results in increased economic cost and limited practical application. In this study, a novel biotechnology was proposed to produce MCFAs from WAS with in-situ self-formed lactate by inoculating Yoghurt starter powder containing with Lactobacillales cultures. The batch experimental results revealed that the lactate was in-situ generated from WAS and the maximum production of MCFAs increased from 1.17 to 3.99 g COD/L with the increased addition of Lactobacillales cultures from 6✕107 to 2.3✕108 CFU/mL WAS. In continuous long-term test over 97 days, average MCFA production reached up to 3.94 g COD/L with a caproate yield of 82.74% at sludge retention time (SRT) 12 days, and the average MCFA production increased to 5.87 g COD/L with 69.28% caproate and 25.18% caprylate at SRT 15 days. A comprehensive analysis of the metagenome and metatranscriptome demonstrated that the genus of Lactobacillus and Streptococcus were capable of producing lactate from WAS and upgrading to MCFAs. Moreover, another genus, i.e., Candidatus Promineofilum, was firstly revealed that it might be responsible for lactate and MCFAs production. Further investigation of related microbial pathways and enzyme expression suggested that D-lactate dehydrogenase and pyruvate ferredoxin oxidoreductase contributed to lactate and acetyl-CoA production, which were the crucial steps for MCFAs generation and were most actively expressed. This study provides a conceptual framework of MCFAs from WAS with endogenous ED, potentially enhancing the energy recovery from WAS treatment.
Collapse
Affiliation(s)
- Shu-Lin Wu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, PR China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Chen Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
48
|
Sundha P, Basak N, Rai AK, Chandra P, Bedwal S, Yadav G, Yadav RK, Sharma PC. Characterization and ecotoxicological risk assessment of sewage sludge from industrial and non-industrial cities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116567-116583. [PMID: 35779215 DOI: 10.1007/s11356-022-21648-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The present study highlights the occurrence and the temporal variations of physicochemical properties, and heavy metals in the sludge from sewage treatment plants (STPs) located in industrial (two sites) and non-industrial (one site) cities of Haryana, India. The sludge was acidic (5.59) to neutral (7.21) with a mean EC of 7.4 dS m-1. Prominent heavy metals present in the sewage sludge from industrial sites were Cd, Ni, and Cr with maximum values of 2.83, 1449.0, and 3918.5 mg kg-1, respectively. The contamination and enrichment factor better explained the buildup of Ni, Cr, and Cu in the sewage sludge from industrial sites. The pH, total carbon, phosphorus, and other water-soluble anions, viz. SO42-, Cl-, HCO3-, and PO43-, were the most important attributes of sludge controlling the binding and removal of the metals with particulate matters during the phase separation in STPs. These attributes explained about 90% of the variation in Cd, Ni, Cr, Cu, Mn, and Zn content of the sludge from different STPs. Sludge from the non-industrial site had a low potential ecological risk index of 74.0 compared to a very high-risk index of 2186.5 associated with the industrial sites. This study concludes that besides the concentration of the heavy metals, the enrichment factor coupled with geo-accumulation or ecological risk index can effectively categorize the sludge. However, these indices need to be linked with bioaccumulation, bioaccessibility, and biomass quality under different agroecologies for guiding the safer use of sewage sludge in agriculture.
Collapse
Affiliation(s)
- Parul Sundha
- ICAR-Central Soil Salinity Research Institute, Karnal, 132 001, Haryana, India
| | - Nirmalendu Basak
- ICAR-Central Soil Salinity Research Institute, Karnal, 132 001, Haryana, India.
| | - Arvind Kumar Rai
- ICAR-Central Soil Salinity Research Institute, Karnal, 132 001, Haryana, India
| | - Priyanka Chandra
- ICAR-Central Soil Salinity Research Institute, Karnal, 132 001, Haryana, India
| | - Sandeep Bedwal
- ICAR-Central Soil Salinity Research Institute, Karnal, 132 001, Haryana, India
| | - Gajender Yadav
- ICAR-Central Soil Salinity Research Institute, Karnal, 132 001, Haryana, India
| | | | | |
Collapse
|
49
|
Li M, Gan YJ, Chen ZQ, Zhang WY, Li XY, Liu HL, Wang XZ. Pollution Status and Associated Risk Assessment of Heavy Metals in Sewage Sludge in the Yangtze River Delta, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:63. [PMID: 37904061 DOI: 10.1007/s00128-023-03810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023]
Abstract
The risk assessment of heavy metals (HMs) in sewage sludge (SS) is essential before land application. Six HMs in nineteen SS collected in the Yangtze River Delta were analyzed to assess risks to environment, ecosystem, and human health. HMs concentrations were ranked in the order of Zn > Cu > Cr > Ni > Pb > Cd, with Cu, Zn, and Ni in a total of 16% of samples exceeding the legal standard. Zn showed greatest extractability according to EDTA-extractable concentrations. HMs in 16% of SS samples posed heavy contamination to the environment with Zn as the major pollutant. HMs in 26% of samples posed ecological risk to the ecosystem and Cd was the highest risky HM. The probabilistic health risk assessment revealed that HMs posed carcinogenic risks to all populations, but non-carcinogenic risks only to children. This work will provide fundamental information for land application of SS in this area.
Collapse
Affiliation(s)
- Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, P. R. China
| | - Yun-Jie Gan
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China
| | - Zi-Qi Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China
| | - Wan-Ying Zhang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, P. R. China
| | - Xin-Yu Li
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, P. R. China
| | - Hai-Long Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China.
| | - Xiao-Zhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China
| |
Collapse
|
50
|
Chen R, Dai X, Dong B. Two birds with one stone: The multiple roles of hydrothermal treatment in dewatering municipal sludge and producing value-added products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165072. [PMID: 37364842 DOI: 10.1016/j.scitotenv.2023.165072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Sludge dewatering and resource recovery are key steps in the sustainable treatment of municipal sludge (MS) owing to the high levels of moisture and nutrients. Among the treatment options available, hydrothermal treatment (HT) is promising to efficiently improve dewaterability and recover biofuels, nutrients, and materials from MS. However, hydrothermal conversion at different HT conditions generates multiple products. Integrating the characteristics of dewaterability and value-added products under different HT conditions facilitates the application of HT for the sustainable management of MS. Therefore, a comprehensive review of HT for its multiple roles in MS dewatering and value-added resource recovery is conducted. First, the impact of HT temperature on sludge dewaterability and key mechanisms are summarized. Then, this study elucidates the characteristics of biofuels produced (combustible gases, hydrochars, biocrudes, and H2-rich gases), nutrient recovery (proteins and phosphorus), and value-added materials under a wide range of HT conditions. Importantly, along with the integration and evaluation of HT product characteristics under different HT temperatures, this work proposes a conceptual sludge treatment system that integrates the different value-added products in different HT stages. Furthermore, a critical evaluation of the knowledge gaps in the HT for sludge deep dewatering, biofuels, nutrients, and materials recovery is provided along with recommendations for further research.
Collapse
Affiliation(s)
- Renjie Chen
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaohu Dai
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bin Dong
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, PR China.
| |
Collapse
|