1
|
Li X, Tang Q, Hou M, Pang Y, Li D, Chen Y, Fang R, Deng Y, Zhang J, Zhao C, Li J, Chen Y, Zhao Y, Guo J, Qian K. Early life imidacloprid and copper exposure affects the gut microbiome, metabolism, and learning ability of honey bees (Apis mellifera). ENVIRONMENTAL RESEARCH 2025; 273:121134. [PMID: 39993618 DOI: 10.1016/j.envres.2025.121134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
The pesticide imidacloprid and the heavy metal copper provide some degree of protection to plants, while at the same time causing varying degrees of damage to bees. However, few studies have investigated the negative effects of imidacloprid and copper exposure on newly emerged bees (young bees), especially when both are present in a mix. In this study, young bees were exposed to sterile sucrose solutions containing imidacloprid (10 μg/L, 100 μg/L), copper (10 mg/L, 50 mg/L), or a mix of both (10 μg/L + 10 mg/L) for 5 days to assess their gut system and behavior, with survival and dietary consumption recorded over 21 days. We found that imidacloprid and copper reduced honeybee survival, dietary intake, and learning ability, decreased gut microbiota diversity, and caused metabolic disruptions. Notably, the mix of imidacloprid and copper had a synergistic negative effect. Correlation analyses revealed that the honeybee gut microbiota influences bee immunity and behavior by regulating metabolic pathways related to ascorbate, tryptophan, and carbohydrates. Our results demonstrate that imidacloprid and copper, either alone or in a mix, alter young bee health through a complex mechanism of toxicity. These findings highlight imidacloprid and copper's negative effects on young honeybees, offering insights for future pesticide and heavy metal impact research.
Collapse
Affiliation(s)
- Xijie Li
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Qihe Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Mengshang Hou
- Sericulture and Apiculture Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi, 661101, China
| | - Yantao Pang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Dan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yajuan Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Richan Fang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yi Deng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jun Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chonghui Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Junjie Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yuan Chen
- Pujia Life Technology (Fuzhou) Co., LTD, Fuzhou, 350018, China
| | - Yazhou Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Kai Qian
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
2
|
Liu L, Shi M, Wu Y, Hao J, Guo J, Li S, Dai P, Gao J. Protective effects of resveratrol on honeybee health: Mitigating pesticide-induced oxidative stress and enhancing detoxification. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106403. [PMID: 40262860 DOI: 10.1016/j.pestbp.2025.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
The widespread use of pesticides poses a significant threat to honeybee health by impacting their survival, behavior, immune function, and detoxification capacity. While phytochemicals such as resveratrol (RSV) have shown potential in mitigating oxidative stress and enhancing antioxidant defenses, their role in improving honeybee tolerance to pesticide exposure remains underexplored. In this study, we investigated the effects of RSV supplementation on honeybees exposed to three pesticides: dinotefuran (DIN), tebuconazole (TEB), and deltamethrin (DEL). The results showed that RSV supplementation significantly improved survival, feed intake, mobility, and gustatory sensitivity, indicating its protective effects against pesticide toxicity. Furthermore, RSV helped normalize impaired detoxification enzyme activities, including SOD, POD, catalase, and glutathione reductase, and reduced ROS levels and lipid peroxidation. Gene expression analysis revealed that RSV modulates Toll pathway-related genes like defensin and apidaecin, alleviating immune suppression caused by pesticides. Additionally, RSV influenced the insulin/insulin-like growth factor signaling (IIS) pathway by reducing ilp1 and inr1 expression, potentially mitigating metabolic stress. These findings demonstrate that protective effects of RSV may be linked to its ability to counter oxidative stress, restore mitochondrial function, and enhance energy metabolism. Furthermore, RSV is widely available, cost-effective, and easily incorporated into bee feed, making it feasible for large-scale application. This study highlights the protective role of RSV in pesticide detoxification in honeybees, offering new perspectives for honeybee health management and environmental toxicology research. By reducing the adverse effects of pesticides on honeybees, the application of RSV not only contributes to maintaining ecological balance but also supports sustainable agricultural practices. Future research should focus on optimizing its dosage, evaluating long-term effects, and investigating its impact on colony dynamics to facilitate its practical implementation in apiculture.
Collapse
Affiliation(s)
- Linlin Liu
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Min Shi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiali Hao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junxiu Guo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 100096, China
| | - Shanshan Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Ye R, Yi R, Wang Y, Huang N, Wang Y, Chen C. Evaluating the combined toxicity of broflanilide and myclobutanil on honeybees (Apis mellifera L.): Molecular mechanisms and protective effects of curcumin. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138419. [PMID: 40311426 DOI: 10.1016/j.jhazmat.2025.138419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/08/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Pesticide toxicity to honeybees has become a pressing ecological issue, yet the effects of pesticide co-exposure are still not fully understood. This research investigates the toxicological implications of concurrent exposure to broflanilide (BFL), a novel diamide insecticide, and myclobutanil (MYC), a commonly used triazole fungicide, on honeybees (Apis mellifera L.), while exploring potential preventive strategies. Acute toxicity tests revealed a significantly lower 96-hour lethal concentration 50 (LC50) for BFL (0.34 mg a.i. L-1) compared to MYC (82.3 mg a.i. L-1), and their co-exposure resulted in pronounced synergistic toxicity. Worker bees were exposed to environmentally relevant doses of BFL and MYC for 7 days, and midgut toxicity was assessed. The co-exposure caused severe midgut damage, including G-layer deterioration, loss of columnar epithelium integrity, and downregulation of the tight junction protein ZO-2. Additionally, oxidative stress-related genes (Sod1, Catalase, SelK, GstD1) were upregulated, accompanied by higher MDA levels and increased CAT and SOD activities. Furthermore, a greater number of TUNEL-positive cells were detected, along with elevated expression of apoptosis-related genes (Caspase-3-like, Caspase-8-like, Caspase-9-like) and higher caspase enzyme activities. Curcumin (Cur) was tested for its protective effects, and it significantly alleviated midgut damage, oxidative stress, and apoptosis. This study reveals the synergistic ecotoxicological effects of pesticide combinations and suggests Cur as a potential prevention strategy for mitigating their harmful impact on honeybees.
Collapse
Affiliation(s)
- Rongyi Ye
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ran Yi
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yihan Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Nan Huang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
4
|
Morrison B, Newburn LR, Fitch G. Food as Medicine: A Review of Plant Secondary Metabolites from Pollen, Nectar, and Resin with Health Benefits for Bees. INSECTS 2025; 16:414. [PMID: 40332845 PMCID: PMC12027951 DOI: 10.3390/insects16040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025]
Abstract
Bees rely on pollen and nectar for nutrition, but floral products provide more than just macronutrients; many also contain an array of plant secondary metabolites (PSMs). These compounds are generally thought to serve primarily defensive purposes but also appear to promote longevity and immune function, protect against disease agents, and detoxify toxicants. This review presents a comprehensive overview of PSMs, as well as some fatty acids, with documented health benefits for eusocial bees at ecologically relevant exposure levels and the plant species whose floral products and/or resin are known to contain them. We find medicinal metabolites to be widespread but unevenly distributed across the plant phylogeny, with a few families containing a majority of the species known to produce PSMs with documented health benefits. We discuss the current state of knowledge and identify gaps in our understanding. The existing literature on the health benefits of metabolites, and particularly PSMs, to bees is spread across multiple fields; our hope is that this review will bring these fields closer together and encourage further investigation of the role of metabolites in promoting bee health in ecological contexts.
Collapse
Affiliation(s)
| | - Laura R. Newburn
- Centre for Bee Ecology, Evolution and Conservation, York University, Toronto, ON M3J 1P3, Canada
| | - Gordon Fitch
- Centre for Bee Ecology, Evolution and Conservation, York University, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
5
|
Giampaoli O, Messi M, Merlet T, Sciubba F, Canepari S, Spagnoli M, Astolfi ML. Landfill fire impact on bee health: beneficial effect of dietary supplementation with medicinal plants and probiotics in reducing oxidative stress and metal accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10331-10347. [PMID: 38158534 DOI: 10.1007/s11356-023-31561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
The honey bee is an important pollinator insect susceptible to environmental contaminants. We investigated the effects of a waste fire event on elemental content, oxidative stress, and metabolic response in bees fed different nutrients (probiotics, Quassia amara, and placebo). The level of the elements was also investigated in honey and beeswax. Our data show a general increase in elemental concentrations in all bee groups after the event; however, the administration of probiotics and Quassia amara help fight oxidative stress in bees. Significantly lower concentrations of Ni, S, and U for honey in the probiotic group and a general and significant decrease in elemental concentrations for beeswax in the probiotic group and Li in the Quassia amara group were observed after the fire waste event. The comparison of the metabolic profiles through pre- and post-event PCA analyses showed that bees treated with different feeds react differently to the environmental event. The greatest differences in metabolic profiles are observed between the placebo-fed bees compared to the others. This study can help to understand how some stress factors can affect the health of bees and to take measures to protect these precious insects.
Collapse
Affiliation(s)
- Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185, Rome, Italy
| | - Marcello Messi
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Thomas Merlet
- Department of Chemistry, Toulouse INP - ENSIACET, 4 Allée Emile Monso, 31030, Toulouse, France
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185, Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St, 00015, Rome, Italy
| | - Mariangela Spagnoli
- Department of Medicine, Epidemiology, Environmental and Occupational Hygiene, INAIL, via Fontana Candida 1, 00078, Monte Porzio Catone, Italy
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
6
|
Dupont YL, Balsby TJS, Greve MB, Marcussen LK, Kryger P. Spatio-temporal variation in pollen collected by honey bees (Apis mellifera) in rural-urban mosaic landscapes in Northern Europe. PLoS One 2025; 20:e0309190. [PMID: 39903708 PMCID: PMC11793741 DOI: 10.1371/journal.pone.0309190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/11/2024] [Indexed: 02/06/2025] Open
Abstract
Pollen is a source of protein, lipids, vitamins and minerals for bees and other flower-visiting insects. The composition of macro- and micronutrients of pollen vary among different plant species. Honey bees are long-distance foragers, collecting nectar and pollen from plants within several kilometers of their hive. Availability of pollen within the foraging range of honey bees is highly dynamic, changing seasonally, and across different landscapes. In the present study, the aim was to investigate the composition of pollen collected by honey bees in rural-urban landscape mosaics typical of Northern Europe. Samples of corbiculate pollen were collected 3-9 times during the growing season by citizen scientist bee keepers from a total of 25 observation apiaries across Denmark in 2014-2015. Palynological analysis was conducted identifying 500 pollen grains per sample to pollen type (mostly plant genus). Pollen diversity denoted the number of different pollen types in a sample, while relative abundance was calculated as the proportional representation of a pollen type, if found in >1% of the sample. The quantity of pollen types across study years and sites was measured as the occurrence of each pollen type (number of samples with the pollen type present) and abundance (total number of pollen grains). Pollen diversity was highly variable, with effects of season, year, and area of green urban spaces. In terms of quantity, a few key pollen types occurred repeatedly and abundantly in the samples. Only 17 pollen types were present in >15 samples. These pollen types were consistent across study years and different landscapes. Pollen diversity may impact colony health, and hence foraging decisions by honey bees, especially in late summer. However, the bulk of the pollen collected by colonies came from a limited number of pollen sources, regardless of year and landscape context in the rural-urban landscape mosaics of Denmark.
Collapse
Affiliation(s)
- Yoko L. Dupont
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
- Department of Agroecology, Aarhus University, Aarhus, Denmark
| | | | - Mette B. Greve
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Luna K. Marcussen
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
- Department of Agroecology, Aarhus University, Aarhus, Denmark
| | - Per Kryger
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| |
Collapse
|
7
|
Lakshmanan J, Jaganathan VL, Zhang B, Werner G, Allen TS, Schultz DJ, Klinge CM, Harbrecht BG. Anticancer Properties Against Select Cancer Cell Lines and Metabolomics Analysis of Tender Coconut Water. Anticancer Agents Med Chem 2025; 25:207-221. [PMID: 39411967 PMCID: PMC11965954 DOI: 10.2174/0118715206327789241008162423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 02/25/2025]
Abstract
BACKGROUND Tender Coconut Water (TCW) is a nutrient-rich dietary supplement that contains bioactive secondary metabolites and phytohormones with anti-oxidative and anti-inflammatory properties. Studies on TCW's anti-cancer properties are limited and the mechanism of its anti-cancer effects have not been defined. OBJECTIVE In the present study, we investigate TCW for its anti-cancer properties and, using untargeted metabolomics, we identify components form TCW with potential anti-cancer activity. METHODOLOGY Cell viability assay, BrdU incorporation assay, soft-agar assay, flow-cytometery, and Western blotting were used to analyze TCW's anticancer properties and to identify mechanism of action. Liquid chromatography- Tandem Mass Spectroscopy (LC-MS/MS) was used to identify TCW components. RESULTS TCW decreased the viability and anchorage-independent growth of HepG2 hepatocellular carcinoma (HCC) cells and caused S-phase cell cycle arrest. TCW inhibited AKT and ERK phosphorylation leading to reduced ZEB1 protein, increased E-cadherin, and reduced N-cadherin protein expression in HepG2 cells, thus reversing the 'epithelial-to-mesenchymal' (EMT) transition. TCW also decreased the viability of Hep3B hepatoma, HCT-15 colon, MCF-7 and T47D luminal A breast cancer (BC) and MDA-MB-231 and MDA-MB-468 triplenegative BC cells. Importantly, TCW did not inhibit the viability of MCF-10A normal breast epithelial cells. Untargeted metabolomics analysis of TCW identified 271 metabolites, primarily lipids and lipid-like molecules, phenylpropanoids and polyketides, and organic oxygen compounds. We demonstrate that three components from TCW: 3-hydroxy-1-(4-hydroxyphenyl)propan-1-one, iondole-3-carbox aldehyde and caffeic acid inhibit the growth of cancer cells. CONCLUSION TCW and its components exhibit anti-cancer effects. TCW inhibits the viability of HepG2 hepatocellular carcinoma cells by reversing the EMT process through inhibition of AKT and ERK signalling.
Collapse
Affiliation(s)
- Jaganathan Lakshmanan
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| | - Vaitheesh L. Jaganathan
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| | - Boachun Zhang
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| | - Grace Werner
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| | - Tyler S. Allen
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| | - David J. Schultz
- Department of Biology, School of Medicine, University of Louisville, Louisville, KY, 40292, United States
| | - Carolyn M. Klinge
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| | - Brian G. Harbrecht
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| |
Collapse
|
8
|
Riddick EW. Evaluating the Effects of Flavonoids on Insects: Implications for Managing Pests Without Harming Beneficials. INSECTS 2024; 15:956. [PMID: 39769558 PMCID: PMC11678172 DOI: 10.3390/insects15120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Flavonoids have multiple functions, including host-plant defense against attacks from herbivorous insects. This manuscript reviewed and analyzed the scientific literature to test the hypothesis that flavonoids can be utilized to manage pests without causing significant harm to beneficials. The methodology involved using recognized literature databases, e.g., Web of Science, Scopus, and CAB Abstracts, via the USDA-ARS, National Agricultural Library, DigiTop literature retrieval system. Data were compiled in tables and subjected to statistical analysis, when appropriate. Flavonoids were generally harmful to true bugs and true flies but harmless to honey bees. Flavonoid glycosides showed a tendency to harm true bugs (Heteroptera) and true flies (Diptera). Flavonoid glycosides were harmless to sawflies. Flavonoids and flavonoid glycosides produced a mixture of harmful and harmless outcomes to herbivorous beetles, depending on the species. Flavonoid glycosides were harmless to butterflies. In conclusion, specific flavonoids could function as feeding stimulants or deterrents, oviposition stimulants or deterrents, chemical protectants from pesticides, mating attractants, less-toxic insecticides, and other functions. Flavonoids could manage some insect pests without causing significant harm to beneficials (e.g., honey bees). Flavonoid-based insecticides could serve as environmentally benign alternatives to broad-spectrum insecticides against some pests, but field testing is necessary.
Collapse
Affiliation(s)
- Eric Wellington Riddick
- Biological Control of Pests Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, MS 38776, USA
| |
Collapse
|
9
|
Alves TRR, Trivellato MF, Freitas TAL, Kato AY, Gomes CRA, Ferraz YMM, Serafim JA, De Jong D, Prado EP, Vicente EF, Orsi RO, Pereira GT, Miranda CA, Mingatto FE, Nicodemo D. Pollen contaminated with a triple-action fungicide induced oxidative stress and reduced longevity though with less impact on lifespan in honey bees from well fed colonies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104587. [PMID: 39505060 DOI: 10.1016/j.etap.2024.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Experiments were conducted to determine the effects of a triple-action fungicide on bees and whether improved nutrition can ameliorate eventual negative impacts. In cage tests, newly-emerged bees from well fed and from nutritionally-restricted honey bee colonies were fed for five days with pollen from sunflowers that had been sprayed or not with a commercial fungicide containing bixafen, prothioconazole and trifloxystrobin. Bees from well-fed colonies were significantly larger and consumed more uncontaminated pollen. They also exhibited increased glutathione peroxidase activity and higher concentrations of pyridine nucleotides, both of which are involved in antioxidase defense. However, pollen contaminated with fungicide led to an increase in lipoperoxidation, regardless of nutritional status. Bee longevity was reduced by both fungicide contamination of the pollen diet and poor nutritional condition. The fungicide adversely affected bees fed with contaminated pollen, though nutritional supplementation of the bee colonies that reared the bees partially compensated for these effects.
Collapse
Affiliation(s)
- Thais R R Alves
- Post Graduate Program in Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Matheus F Trivellato
- Post Graduate Program in Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Tainá A L Freitas
- Post Graduate Program in Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Aline Y Kato
- Post Graduate Program in Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Cássia R A Gomes
- Post Graduate Program in Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Yara M M Ferraz
- Post Graduate Program in Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Jéssica A Serafim
- Department of Biosystems Engineering, College of Sciences and Engineering, São Paulo State University (Unesp), Tupã, SP, Brazil
| | - David De Jong
- Genetics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Evandro P Prado
- Department of Plant Production, College of Agricultural and Technology Sciences, São Paulo State University (Unesp) Dracena, SP, Brazil
| | - Eduardo F Vicente
- Department of Biosystems Engineering, College of Sciences and Engineering, São Paulo State University (Unesp), Tupã, SP, Brazil
| | - Ricardo O Orsi
- Department of Animal Production and Medicine Veterinary Preventive, College of Veterinary Medicine and Animal Sciences, São Paulo State University (Unesp) Botucatu, SP, Brazil
| | - Gener T Pereira
- Department of Exact Sciences, School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Camila A Miranda
- Department of Animal Science, College of Agricultural and Technology Sciences, São Paulo State University (Unesp), Dracena, SP, Brazil
| | - Fábio E Mingatto
- Department of Animal Science, College of Agricultural and Technology Sciences, São Paulo State University (Unesp), Dracena, SP, Brazil
| | - Daniel Nicodemo
- Department of Animal Science, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil.
| |
Collapse
|
10
|
Vasamsetti BMK, Kim J, Chon K, Kim BS, Yoon CY, Hwang S, Park KH. Molecular Impact of Sublethal Spinetoram Exposure on Honeybee ( Apis mellifera) Larval and Adult Transcriptomes. Int J Mol Sci 2024; 25:11923. [PMID: 39595991 PMCID: PMC11593601 DOI: 10.3390/ijms252211923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Pesticide toxicity is a global concern for honeybee populations, and understanding these effects at the molecular level is critical. This study analyzed the transcriptome of honeybees at larval and adult stages after chronic exposure to a sublethal dose (0.0017 µg a.i./larva) of spinetoram (SPI) during the larval phase. Four groups were used: acetone-treated honeybee larvae (ATL), acetone-treated honeybee adults (ATAs), SPI-treated honeybee larvae (STL), and SPI-treated honeybee adults (STAs). In total, 5719 differentially expressed genes (DEGs) were identified for ATL vs. ATAs, 5754 for STL vs. STAs, 273 for ATL vs. STL, and 203 for ATAs vs. STAs (FC ≤ 1.5, p < 0.05). In response to SPI, 29 unique DEGs were identified in larvae and 42 in adults, with 23 overlapping between comparisons, suggesting genes linked to SPI toxicity. Gene ontology analysis showed that SPI affected metabolism-related genes in larvae and lipid-transport-associated genes in adults. KEGG pathway analysis revealed an enrichment of pathways predominantly associated with metabolism, hormone biosynthesis, and motor proteins in STL. The transcriptomic data were validated by qPCR. These findings demonstrated that SPI disrupts essential molecular processes, potentially harming honeybee development and behavior, underscoring the need for safer agricultural practices.
Collapse
Affiliation(s)
| | | | - Kyongmi Chon
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea; (B.M.K.V.); (J.K.); (B.-S.K.); (C.-Y.Y.); (S.H.); (K.-H.P.)
| | | | | | | | | |
Collapse
|
11
|
Vidkjær NH, Laursen BB, Kryger P. Phytochemical profiles of honey bees ( Apis mellifera) and their larvae differ from the composition of their pollen diet. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231654. [PMID: 39323556 PMCID: PMC11421904 DOI: 10.1098/rsos.231654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/19/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
Pollen and nectar consumed by honey bees contain plant secondary metabolites (PSMs) with vital roles in plant-insect interactions. While PSMs can be toxic to bees, they can also be health-promoting, e.g. by improving pesticide and pathogen tolerances. As xenobiotics, PSMs undergo post-ingestion chemical modifications that can affect their bioactivity and transmission to the brood. Despite the importance of understanding honey bee PSM metabolism and distribution for elucidating bioactivity mechanisms, these aspects remain largely unexplored. In this study, we used HPLC-MS/MS to profile 47 pollen PSMs in honey bees and larvae. Both adult bees and larvae had distinct PSM profiles that differed from their diet. This is likely due to post-ingestion metabolism and compound-dependent variations in PSM transmission to the brood via nurse bee jelly. Phenolic acids and flavonoid aglycones were most abundant in bees and larvae, whereas alkaloids, cyanogenic glycosides and diterpenoids had the lowest abundance despite being consumed in higher concentrations. This study documents larval exposure to a variety of PSMs for the first time, with concentrations increasing from early to late larval instars. Our findings provide novel insights into the post-ingestion fate of PSMs in honey bees, providing a foundation for further exploration of biotransformation pathways and PSM effects on honey bee health.
Collapse
Affiliation(s)
- Nanna Hjort Vidkjær
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | - Per Kryger
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| |
Collapse
|
12
|
Bovier M, Camenzind DW, Brown AF, Jeker L, Retschnig G, Neumann P, Straub L. Colony environment and absence of brood enhance tolerance to a neonicotinoid in winter honey bee workers, Apis mellifera. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:608-621. [PMID: 38780664 PMCID: PMC11252217 DOI: 10.1007/s10646-024-02758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
In eusocial insects, worker longevity is essential to ensure colony survival in brood-free periods. Trade-offs between longevity and other traits may render long-living workers in brood-free periods more susceptible to pesticides compared to short-lived ones. Further, colony environment (e.g., adequate nutrition) may enable workers to better cope with pesticides, yet data comparing long vs. short-living workers and the role of the colony environment for pesticide tolerance are scarce. Here, we show that long-living honey bee workers, Apis mellifera, are less susceptible to the neonicotinoid thiamethoxam than short-lived workers, and that susceptibility was further reduced when workers were acclimatized under colony compared to laboratory conditions. Following an OECD protocol, freshly-emerged workers were exposed to thiamethoxam in summer and winter and either acclimatized within their colony or in the laboratory. Mortality and sucrose consumption were measured daily and revealed that winter workers were significantly less susceptible than summer workers, despite being exposed to higher thiamethoxam dosages due to increased food consumption. Disparencies in fat body activity, which is key for detoxification, may explain why winter bees were less susceptible. Furthermore, colony acclimatization significantly reduced susceptibility towards thiamethoxam in winter workers likely due to enhanced protein nutrition. Brood absence and colony environment seem to govern workers' ability to cope with pesticides, which should be considered in risk assessments. Since honey bee colony losses occur mostly over winter, long-term studies assessing the effects of pesticide exposure on winter bees are required to better understand the underlying mechanisms.
Collapse
Affiliation(s)
- Manon Bovier
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Domenic W Camenzind
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew F Brown
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- University of Freiburg, Freiburg, Switzerland
| | - Lukas Jeker
- Swiss Bee Research Centre, Agroscope, Bern, Switzerland
| | - Gina Retschnig
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong, Thailand.
- Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, UK.
| |
Collapse
|
13
|
Liao LH, Wu WY, Berenbaum MR. Variation in Pesticide Toxicity in the Western Honey Bee (Apis mellifera) Associated with Consuming Phytochemically Different Monofloral Honeys. J Chem Ecol 2024; 50:397-408. [PMID: 38760625 PMCID: PMC11399171 DOI: 10.1007/s10886-024-01495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Insecticide toxicity to insect herbivores has long been known to vary across different host plants; this phenomenon has been widely documented in both foliage-feeders and sap-feeders. Species-specific phytochemical content of hostplant tissues is assumed to determine the pattern of induction of insect enzymes that detoxify insecticides, but specific phytochemicals have rarely been linked to host plant-associated variation in pesticide toxicity. Moreover, no studies to date have examined the effects of nectar source identity and phytochemical composition on the toxicity of insecticides to pollinators. In this study, we compared LD50 values for the insecticide bifenthrin, a frequent contaminant of nectar and pollen in agroecosystems, in the western honey bee, Apis mellifera, consuming three phytochemically different monofloral honeys: Nyssa ogeche (tupelo), Robinia pseudoacacia (black locust), and Fagopyrum esculentum (buckwheat). We found that bifenthrin toxicity (LD50) values for honey bees across different honey diets is linked to their species-specific phytochemical content. The profiles of phenolic acids and flavonoids of buckwheat and locust honeys are richer than is the profile of tupelo honey, with buckwheat honey containing the highest total content of phytochemicals and associated with the highest bifenthrin LD50 in honey bees. The vector fitting in the ordination analysis revealed positive correlations between LD50 values and two honey phytochemical richness estimates, Chao1 and Abundance-based Coverage Estimator (ACE). These findings suggest unequal effects among different phytochemicals, consistent with the interpretation that certain compounds, including ones that are rare, may have a more pronounced effect in mitigating pesticide toxicity.
Collapse
Affiliation(s)
- Ling-Hsiu Liao
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Wen-Yen Wu
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - May R Berenbaum
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
14
|
Bass C, Hayward A, Troczka BJ, Haas J, Nauen R. The molecular determinants of pesticide sensitivity in bee pollinators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170174. [PMID: 38246392 DOI: 10.1016/j.scitotenv.2024.170174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Bees carry out vital ecosystem services by pollinating both wild and economically important crop plants. However, while performing this function, bee pollinators may encounter potentially harmful xenobiotics in the environment such as pesticides (fungicides, herbicides and insecticides). Understanding the key factors that influence the toxicological outcomes of bee exposure to these chemicals, in isolation or combination, is essential to safeguard their health and the ecosystem services they provide. In this regard, recent work using toxicogenomic and phylogenetic approaches has begun to identify, at the molecular level, key determinants of pesticide sensitivity in bee pollinators. These include detoxification systems that convert pesticides to less toxic forms and key residues in insecticide target-sites that underlie species-specific insecticide selectivity. Here we review this emerging body of research and summarise the state of knowledge of the molecular determinants of pesticide sensitivity in bee pollinators. We identify gaps in our knowledge for future research and examine how an understanding of the genetic basis of bee sensitivity to pesticides can be leveraged to, a) predict and avoid negative bee-pesticide interactions and facilitate the future development of pest-selective bee-safe insecticides, and b) inform traditional effect assessment approaches in bee pesticide risk assessment and address issues of ecotoxicological concern.
Collapse
Affiliation(s)
- Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom.
| | - Angela Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Bartlomiej J Troczka
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Julian Haas
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, Monheim, Germany.
| |
Collapse
|
15
|
Fischer N, Costa CP, Hur M, Kirkwood JS, Woodard SH. Impacts of neonicotinoid insecticides on bumble bee energy metabolism are revealed under nectar starvation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169388. [PMID: 38104805 DOI: 10.1016/j.scitotenv.2023.169388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Bumble bees are an important group of insects that provide essential pollination services as a consequence of their foraging behaviors. These pollination services are driven, in part, by energetic exchanges between flowering plants and individual bees. Thus, it is important to examine bumble bee energy metabolism and explore how it might be influenced by external stressors contributing to declines in global pollinator populations. Two stressors that are commonly encountered by bees are insecticides, such as the neonicotinoids, and nutritional stress, resulting from deficits in pollen and nectar availability. Our study uses a metabolomic approach to examine the effects of neonicotinoid insecticide exposure on bumble bee metabolism, both alone and in combination with nutritional stress. We hypothesized that exposure to imidacloprid disrupts bumble bee energy metabolism, leading to changes in key metabolites involved in central carbon metabolism. We tested this by exposing Bombus impatiens workers to imidacloprid according to one of three exposure paradigms designed to explore how chronic versus more acute (early or late) imidacloprid exposure influences energy metabolite levels, then also subjecting them to artificial nectar starvation. The strongest effects of imidacloprid were observed when bees also experienced nectar starvation, suggesting a combinatorial effect of neonicotinoids and nutritional stress on bumble bee energy metabolism. Overall, this study provides important insights into the mechanisms underlying the impact of neonicotinoid insecticides on pollinators, and underscores the need for further investigation into the complex interactions between environmental stressors and energy metabolism.
Collapse
Affiliation(s)
- Natalie Fischer
- Department of Entomology, University of California, Riverside, Riverside, CA, USA.
| | - Claudinéia P Costa
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Manhoi Hur
- IIGB Metabolomics Core Facility, University of California, Riverside, Riverside, CA, USA
| | - Jay S Kirkwood
- IIGB Metabolomics Core Facility, University of California, Riverside, Riverside, CA, USA
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
16
|
Schwarz JM, Knauer AC, Alaux C, Barascou L, Barraud A, Dievart V, Ghazoul J, Michez D, Albrecht M. Diverse pollen nutrition can improve the development of solitary bees but does not mitigate negative pesticide impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169494. [PMID: 38142004 DOI: 10.1016/j.scitotenv.2023.169494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Floral resource loss and pesticide exposure are major threats to bees in intensively managed agroecosystems, but interactions among these drivers remain poorly understood. Altered composition and lowered diversity of pollen nutrition may reinforce negative pesticide impacts on bees. Here we investigated the development and survival of the solitary bee Osmia bicornis provisioned with three different pollen types, as well as a mixture of these types representing a higher pollen diversity. We exposed bees of each nutritional treatment to five pesticides at different concentrations in the laboratory. Two field-realistic concentrations of three nicotinic acetylcholine receptor (nAChR) modulating insecticides (thiacloprid, sulfoxaflor and flupyradifurone), as well as of two fungicides (azoxystrobin and tebuconazole) were examined. We further measured the expression of two detoxification genes (CYP9BU1, CYP9BU2) under exposure to thiacloprid across different nutrition treatments as a potential mechanistic pathway driving pesticide-nutrition interactions. We found that more diverse pollen nutrition reduced development time, enhanced pollen efficacy (cocoon weight divided by consumed pollen weight) and pollen consumption, and increased weight of O. bicornis after larval development (cocoon weight). Contrary to fungicides, high field-realistic concentrations of all three insecticides negatively affected O. bicornis by extending development times. Moreover, sulfoxaflor and flupyradifurone also reduced pollen efficacy and cocoon weight, and sulfoxaflor reduced pollen consumption and increased mortality. The expression of detoxification genes differed across pollen nutrition types, but was not enhanced after exposure to thiacloprid. Our findings highlight that lowered diversity of pollen nutrition and high field-realistic exposure to nAChR modulating insecticides negatively affected the development of O. bicornis, but we found no mitigation of negative pesticide impacts through increased pollen diversity. These results have important implications for risk assessment for bee pollinators, indicating that negative effects of nAChR modulating insecticides to developing solitary bees are currently underestimated.
Collapse
Affiliation(s)
- Janine M Schwarz
- Agroscope, Agroecology and Environment, Zurich, Switzerland; ETH Zurich, Institute for Terrestrial Ecosystems, Ecosystem Management, Zurich, Switzerland.
| | - Anina C Knauer
- Agroscope, Agroecology and Environment, Zurich, Switzerland
| | - Cedric Alaux
- INRAE, Abeilles et Environnement, Avignon, France
| | | | - Alexandre Barraud
- Research Institute for Biosciences, Laboratory of Zoology, University of Mons, Mons, Belgium
| | | | - Jaboury Ghazoul
- ETH Zurich, Institute for Terrestrial Ecosystems, Ecosystem Management, Zurich, Switzerland
| | - Denis Michez
- Research Institute for Biosciences, Laboratory of Zoology, University of Mons, Mons, Belgium
| | | |
Collapse
|
17
|
Zhang G, Dilday S, Kuesel RW, Hopkins B. Phytochemicals, Probiotics, Recombinant Proteins: Enzymatic Remedies to Pesticide Poisonings in Bees. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:54-62. [PMID: 38127782 PMCID: PMC10785755 DOI: 10.1021/acs.est.3c07581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The ongoing global decline of bees threatens biodiversity and food safety as both wild plants and crops rely on bee pollination to produce viable progeny or high-quality products in high yields. Pesticide exposure is a major driving force for the decline, yet pesticide use remains unreconciled with bee conservation since studies demonstrate that bees continue to be heavily exposed to and threatened by pesticides in crops and natural habitats. Pharmaceutical methods, including the administration of phytochemicals, probiotics (beneficial bacteria), and recombinant proteins (enzymes) with detoxification functions, show promise as potential solutions to mitigate pesticide poisonings. We discuss how these new methods can be appropriately developed and applied in agriculture from bee biology and ecotoxicology perspectives. As countless phytochemicals, probiotics, and recombinant proteins exist, this Perspective will provide suggestive guidance to accelerate the development of new techniques by directing research and resources toward promising candidates. Furthermore, we discuss practical limitations of the new methods mentioned above in realistic field applications and propose recommendations to overcome these limitations. This Perspective builds a framework to allow researchers to use new detoxification techniques more efficiently in order to mitigate the harmful impacts of pesticides on bees.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| | - Sam Dilday
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| | - Ryan William Kuesel
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| | - Brandon Hopkins
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
18
|
Erban T, Parizkova K, Sopko B, Talacko P, Markovic M, Jarosova J, Votypka J. Imidacloprid increases the prevalence of the intestinal parasite Lotmaria passim in honey bee workers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166973. [PMID: 37699488 DOI: 10.1016/j.scitotenv.2023.166973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
A challenge in bee protection is to assess the risks of pesticide-pathogen interactions. Lotmaria passim, a ubiquitous unicellular parasite in honey bees, is considered harmful under specific conditions. Imidacloprid causes unpredictable side effects. Research indicates that both L. passim and imidacloprid may affect the physiology, behavior, immunity, microbiome and lifespan of honey bees. We designed cage experiments to test whether the infection of L. passim is affected by a sublethal dose of imidacloprid. Workers collected at the time of emergence were exposed to L. passim and 2.5 μg/L imidacloprid in the coexposure treatment group. First, samples of bees were taken from cages since they were 5 days old and 3 days postinfection, i.e., after finishing an artificial 24 h L. passim infection. Additional bees were collected every two additional days. In addition, bees frozen at the time of emergence and collected from the unexposed group were analyzed. Abdomens were analyzed using qPCR to determine parasite load, while corresponding selected heads were subjected to a label-free proteomic analysis. Our results show that bees are free of L. passim at the time of emergence. Furthermore, imidacloprid considerably increased the prevalence as well as parasite loads in individual bees. This means that imidacloprid facilitates infection, enabling faster parasite spread in a colony and potentially to surrounding colonies. The proteomic analysis of bee heads showed that imidacloprid neutralized the increased transferrin 1 expression by L. passim. Importantly, this promising marker has been previously observed to be upregulated by infections, including gut parasites. This study contributes to understanding the side effects of imidacloprid and demonstrates that a single xenobiotic/pesticide compound can interact with the gut parasite. Our methodology can be used to assess the effects of different compounds on L. passim.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne CZ-161 06, Czechia.
| | - Kamila Parizkova
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 1594/7, Prague 2 CZ-128 00, Czechia
| | - Bruno Sopko
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne CZ-161 06, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, BIOCEV, Charles University, Prumyslova 595, Vestec CZ-252 50, Czechia
| | - Martin Markovic
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne CZ-161 06, Czechia
| | - Jana Jarosova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague 6-Lysolaje CZ-165 02, Czechia
| | - Jan Votypka
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 1594/7, Prague 2 CZ-128 00, Czechia; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branisovska 1160/31, Ceske Budejovice CZ-37005, Czechia
| |
Collapse
|
19
|
Hu L, Xu T, Wang X, Qian M, Jin Y. Exposure to the fungicide prothioconazole and its metabolite prothioconazole-desthio induced hepatic metabolism disorder and oxidative stress in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105452. [PMID: 37248020 DOI: 10.1016/j.pestbp.2023.105452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023]
Abstract
Prothioconazole (PTC), as a popular triazole fungicide, with its main metabolite prothioconazole desthio (PTC-d), have attracted widespread concern due to their widely use and toxicological effects on non-target organisms. However, toxic effects of study analyzed PTC and PTC-d on the hepatic metabolism of mammalian still remains unclear. In this study, we conducted the study of the C57BL/6 mice which oral exposure to 30 mg/kg PTC and PTC-d via metabolomic analysis. In the liver, the metabolomics profile unveiled that exposure to 30 mg/kg PTC and PTC-d led to significantly altered 13 and 28 metabolites respectively, with 6 metabolites in common including significant decreased d-Fructose, Glutathione, showing the change of carbohydrate, lipid and amino acid metabolism. Via the further exploration of genes related to hepatic glycolipid metabolism and the biomarkers of oxidative stress, we found that liver was potentially damaged after exposure to 5 and 30 mg/kg PTC and PTC-d. Particularly, it was proved that PTC-d caused more adverse effect than its parent compound PTC on hepatotoxicity, and high concentration PTC or PTC-d exposure is more harmful than low concentration exposure.
Collapse
Affiliation(s)
- Lingyu Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Ting Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaofang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
20
|
Murcia-Morales M, Vejsnæs F, Brodschneider R, Hatjina F, Van der Steen JJM, Oller-Serrano JL, Fernández-Alba AR. Enhancing the environmental monitoring of pesticide residues through Apis mellifera colonies: Honey bees versus passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163847. [PMID: 37127158 DOI: 10.1016/j.scitotenv.2023.163847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
The use of apicultural matrices for the environmental monitoring of pesticides is a widely employed approach that facilitates to a great extent the sampling procedures. Honey bees are one of the most commonly employed matrices in these studies due to their abundance in the colonies and their direct contact with the beehive and the environment. However, the analysis of this matrix is associated to a lack of representativity of the contaminants accumulated within the beehive, due mainly to the limited number of honey bees that are sampled and analyzed compared to the population in a hive. This small proportion of organisms which are sampled from the colony may lead to underestimations or overestimations of the total pesticide load, depending on the specific individuals that are included in the analysis. In the present work, the passive, non-invasive APIStrip-based sampling approach is compared to active bee sampling with a total of 240 samples taken from 15 apiaries from Austria, Denmark and Greece over a two-month period in 2022. The APIStrips have been found to provide a more comprehensive image of the pesticide residues accumulated in the beehive in terms of number of identified residues and robustness of the results. A total of 74 different pesticide residues were detected: the use of APIStrips allowed to detect 66 pesticides in the three countries, compared to 38 residues in honey bees. The use of APIStrips also resulted in a higher percentage of positive samples (containing at least one pesticide residue). The results provided by the passive sampling approach were also more consistent among the replicates and over time, which reveals an increased sampling robustness.
Collapse
Affiliation(s)
- María Murcia-Morales
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | | | - Robert Brodschneider
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz 8010, Austria
| | - Fani Hatjina
- Department of Apiculture, Institute of Animal Science, Ellinikos Georgikos Organismos 'DIMITRA', Nea Moudania GR-63200, Greece
| | | | - José Luis Oller-Serrano
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | - Amadeo R Fernández-Alba
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain.
| |
Collapse
|
21
|
Lv L, Li W, Li X, Wang D, Weng H, Zhu YC, Wang Y. Mixture toxic effects of thiacloprid and cyproconazole on honey bees (Apis mellifera L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161700. [PMID: 36690094 DOI: 10.1016/j.scitotenv.2023.161700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Pesticide exposure remains one of the main factors in the population decline of insect pollinators. It is urgently necessary to assess the effects of mixtures on pollinator risk assessments because they are often exposed to numerous agrochemicals. In the present study, we explored the mixture toxic effects of thiacloprid (THI) and cyproconazole (CYP) on honey bees (Apis mellifera L.). Our findings revealed that THI possessed higher acute toxicity to A. mellifera (96-h LC50 value of 216.3 mg a.i. L-1) than CYP (96-h LC50 value of 601.4 mg a.i. L-1). It's worth noting that the mixture of THI and CYP exerted an acute synergistic effect on honey bees. At the same time, the activities of detoxification enzyme cytochrome P450s (CYP450s) and neuro target enzyme Acetylcholinesterase (AChE), as well as the expressions of seven genes (CRBXase, CYP306A1, CYP6AS14, apidaecin, defensing-2, vtg, and gp-93) associated with detoxification metabolism, immune response, development, and endoplasmic reticulum stress, were significantly altered in the combined treatment compared with the corresponding individual exposures of THI or CYP. These data indicated that a mixture of THI and CYP could disturb the physiological homeostasis of honey bees. Our study provides a theoretical basis for in-depth studies on the impacts of pesticide mixtures on the health of honey bees. Our study also provides important guidance for the rational application of pesticide mixtures to protect pollinators in agricultural production effectively.
Collapse
Affiliation(s)
- Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Wenhong Li
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, PR China
| | - Xinfang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Yu-Cheng Zhu
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China.
| |
Collapse
|
22
|
Li Z, Li M, Niu S. A Modeling Approach for Assessing Ecological Risks of Neonicotinoid Insecticides from Emission to Nontarget Organisms: A Case Study of Cotton Plant. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:928-938. [PMID: 36779656 DOI: 10.1002/etc.5583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/07/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The use of neonicotinoid insecticides in agriculture has posed threats to ecological systems, and there is a need to assess the ecological risks of neonicotinoids from emission to nontarget organisms. We introduced a modeling approach to assess the ecological risks of neonicotinoids using honeybee and earthworm as model organisms, and the simulation was flexible under different environmental conditions. Using the cotton plant as an example, the simulation results demonstrated that under current recommended application rates, the use of common neonicotinoid insecticides posed no threat to earthworms, with the simulated risk quotients (RQs) much lower than 1. However, the simulation for some neonicotinoid insecticides (e.g., acetamiprid) indicated that using these insecticides on cotton plants could threaten honeybees, with simulated RQs higher than 1. The variability analysis showed that in high-latitude regions, the unacceptable risk to honeybees posed by insecticide application can be further elevated due to cold, wet weather that results in relatively high insecticide levels in pollen and nectar. The model evaluation showed large overlaps of simulated risk intervals between the proposed and existing (BeeREX) models. Because the proposed and existing models have different simulation mechanisms, we recommend that these two models be used together to complement each other in future studies. Environ Toxicol Chem 2023;42:928-938. © 2023 SETAC.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, PR China
| | - Minmin Li
- Key Laboratory of Agroproducts Quality and Safety Control in the Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Shan Niu
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Gu S, Zhang Q, Gu J, Wang C, Chu M, Li J, Mo X. The stereoselective metabolic disruption of cypermethrin on rats by a sub-acute study based on metabolomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31130-31140. [PMID: 36441315 DOI: 10.1007/s11356-022-24359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Due to the massive application of cypermethrin (CYP) for pest control in China, the adverse effects on non-target organisms have aroused great attention. However, comparative studies between its different stereoisomers remain scarce, especially for metabolism perturbations. Herein, the rats were administered α-CYP, β-CYP, and θ-CYP by gavage at doses of 8.5, 29.2, and 25.0 mg/kg/day, respectively, for 28 consecutive days. By blood examination, significant changes in liver and renal function parameters were observed in rats exposed to all three CYPs. The stereoisomeric selectivity in metabolic disturbances was assessed based on a metabolomic strategy via multivariate analysis and pathway analysis. The results demonstrated that amino acid and glycolipid metabolism were disrupted in all CYP groups. Among them, the most significant changes in the metabolic phenotype were observed in the θ-CYP group, with 56 differential metabolites enriched in 9 differential metabolic pathways. At the same time, the endogenous metabolite trimethylamine oxide (TMAO), which is closely linked to the gut microbiota, was also significantly elevated in this group. Gender differences were found in α- and θ-CYP-exposed rats, with perturbations in amino acid and glucose metabolism of greater concern in females and lipid metabolism of greater concern in males. Overall, β-CYP exhibited a lower risk of metabolic perturbations than α-CYP or θ-CYP, which helps to screen suitable agrochemical products for green agricultural development.
Collapse
Affiliation(s)
- Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| | - Jinping Gu
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengjie Chu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Jing Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Xunjie Mo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| |
Collapse
|
24
|
Cang T, Lou Y, Zhu YC, Li W, Weng H, Lv L, Wang Y. Mixture toxicities of tetrachlorantraniliprole and tebuconazole to honey bees (Apis mellifera L.) and the potential mechanism. ENVIRONMENT INTERNATIONAL 2023; 172:107764. [PMID: 36689864 DOI: 10.1016/j.envint.2023.107764] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The extensive use of pesticides has negative effects on the health of insect pollinators. Although pollinators in the field are seldom exposed to individual pesticides, few reports have assessed the toxic impacts of pesticide combinations on them. In this work, we purposed to reveal the combined impacts of tetrachlorantraniliprole (TET) and tebuconazole (TEB) on honey bees (Apis mellifera L.). Our data exhibited that TET had greater toxicity to A. mellifera (96-h LC50 value of 298.2 mg a.i. L-1) than TEB (96-h LC50 value of 1,841 mg a.i. L-1). The mixture of TET and TEB displayed acute synergistic toxicity to the pollinators. Meanwhile, the activities of CarE, CYP450, trypsin, and sucrase, as well as the expressions of five genes (ppo, abaecin, cat, CYP4G11, and CYP6AS14) associated with immune response, oxidative stress, and detoxification metabolism, were conspicuously altered when exposed to the mixture relative to the individual exposures. These results provided an overall comprehension of honey bees upon the challenge of sublethal toxicity between neonicotinoid insecticides and triazole fungicides and could be used to assess the intricate toxic mechanisms in honey bees when exposed to pesticide mixtures. Additionally, these results might guide pesticide regulation strategies to enhance the honey bee populations.
Collapse
Affiliation(s)
- Tao Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Yancen Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Yu-Cheng Zhu
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - Wenhong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China; Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, PR China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China.
| |
Collapse
|
25
|
Zhang G, Olsson RL, Hopkins BK. Strategies and techniques to mitigate the negative impacts of pesticide exposure to honey bees. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120915. [PMID: 36563989 DOI: 10.1016/j.envpol.2022.120915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
In order to support food, fiber, and fuel production around the world, billions of kilograms of pesticides are applied to crop fields every year to suppress pests, plant diseases and weeds. These fields are often home to the most important commercial pollinators, honey bees (Apis spp.), which improve yield and quality of many agricultural products. The pesticides applied to support crop health can be detrimental to honey bee health. The conflict of pesticide use and reliance on honey bees contributes to significant honey bee colony losses across the world. Recommendations for reducing impact on honey bees are generally suggested in literature, pesticide regulations, and by crop consultants, but without a considerable discussion of the realistic limitations of protecting honey bees. New techniques in farming and beekeeping can reduce pesticide exposure through reduction in bee exposure, reduced toxicity of pesticides, and remedies that can be in response to exposure. However, lack of assessment of those new techniques under a systematical, comprehensive framework may overestimate or underestimate these techniques' potential to protect honey bees from pesticide damage. In this review, we summarize the current and arising strategies and techniques with the goal to inspire the development and adoption of pesticide mitigation practices for both agriculture and apiculture.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Entomology, Washington State University, Pullman, Washington State 99164, United State of America.
| | - Rae L Olsson
- Department of Entomology, Washington State University, Pullman, Washington State 99164, United State of America
| | - Brandon Kingsley Hopkins
- Department of Entomology, Washington State University, Pullman, Washington State 99164, United State of America
| |
Collapse
|
26
|
Barascou L, Sene D, Le Conte Y, Alaux C. Pesticide risk assessment: honeybee workers are not all equal regarding the risk posed by exposure to pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90328-90337. [PMID: 35864404 DOI: 10.1007/s11356-022-21969-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Toxicological studies in honeybees have long shown that a single pesticide dose or concentration does not necessarily induce a single response. Inter-individual differences in pesticide sensitivity and/or the level of exposure (e.g., ingestion of pesticide-contaminated matrices) may explain this variability in risk posed by a pesticide. Therefore, to better inform pesticide risk assessment for honeybees, we studied the risk posed by pesticides to two behavioral castes, nurse, and forager bees, which are largely represented within colonies and which exhibit large differences in their physiological backgrounds. For that purpose, we determined the sensitivity of nurses and foragers to azoxystrobin (fungicide) and sulfoxaflor (insecticide) upon acute or chronic exposure. Azoxystrobin was found to be weakly toxic to both types of bees. However, foragers were more sensitive to sulfoxaflor than nurses upon acute and chronic exposure. This phenomenon was not explained by better sulfoxaflor metabolization in nurses, but rather by differences in body weight (nurses being 1.6 times heavier than foragers). Foragers consistently consumed more sugar syrup than nurses, and this increased consumption was even more pronounced with pesticide-contaminated syrup (at specific concentrations). Altogether, the stronger susceptibility and exposure of foragers to sulfoxaflor contributed to increases of 2 and tenfold for the acute and chronic risk quotients, respectively, compared to nurses. In conclusion, to increase the safety margin and avoid an under-estimation of the risk posed by insecticides to honeybees, we recommend systematically including forager bees in regulatory tests.
Collapse
Affiliation(s)
| | - Deborah Sene
- INRAE, Abeilles Et Environnement, Avignon, France
| | | | - Cedric Alaux
- INRAE, Abeilles Et Environnement, Avignon, France.
| |
Collapse
|
27
|
Heneberg P, Bogusch P. Commonly used triazole fungicides accelerate the metamorphosis of digger wasps (Hymenoptera: Spheciformes). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67430-67441. [PMID: 36029446 DOI: 10.1007/s11356-022-22684-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Azole fungicides have been essential pillars of global food security since the commercialization of triadimefon. However, the potential for fungicides to induce sublethal effects on larval development and emergence from overwintering is underresearched. We hypothesized that contact exposure to field-realistic concentrations of a broad spectrum of triazole fungicides alters the pupation and metamorphosis of crabronid wasps. Therefore, triazole fungicides shape the hymenopteran communities in agrocenoses. We applied field-realistic concentrations of three triazole fungicides, difenoconazole, penconazole, and tebuconazole, to the defecated prepupae of Pemphredon fabricii (Hymenoptera: Crabronidae). We monitored their survival, pupation, and metamorphosis into adults, including the timing of these events. All three tested triazole fungicides altered the time to the metamorphosis into adults of P. fabricii prepupae compared to the vehicle-treated controls. This effect was concentration-independent within the recommended concentration ranges for foliar applications. However, the three triazole fungicides were not associated with any significant declines in overall survival. Thus, the commonly used triazole fungicides affect the synchronization of the metamorphosis into adults with the availability of food and nesting resources of the study species. The study compounds did not affect the survival, which agrees with previous studies of other azole fungicides, which revealed effects on survival only when used in combination with other compounds. Further research should address the multiplicative effects of the triazole fungicides with other agrochemicals on the timing of the metamorphosis of bees and wasps.
Collapse
Affiliation(s)
- Petr Heneberg
- Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague, Czech Republic.
| | - Petr Bogusch
- Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| |
Collapse
|
28
|
Costa CP, Leza M, Duennes MA, Fisher K, Vollaro A, Hur M, Kirkwood JS, Woodard SH. Pollen diet mediates how pesticide exposure impacts brain gene expression in nest-founding bumble bee queens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155216. [PMID: 35421476 DOI: 10.1016/j.scitotenv.2022.155216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
A primary goal in biology is to understand the effects of multiple, interacting environmental stressors on organisms. Wild and domesticated bees are exposed to a wide variety of interacting biotic and abiotic stressors, with widespread declines in floral resources and agrochemical exposure being two of the most important. In this study, we used examinations of brain gene expression to explore the sublethal consequences of neonicotinoid pesticide exposure and pollen diet composition in nest-founding bumble bee queens. We demonstrate for the first time that pollen diet composition can influence the strength of bumble bee queen responses to pesticide exposure at the molecular level. Specifically, one pollen mixture in our study appeared to buffer bumble bee queens entirely against the effects of pesticide exposure, with respect to brain gene expression. Additionally, we detected unique effects of pollen diet and sustained (versus more temporary) pesticide exposure on queen gene expression. Our findings support the hypothesis that nutritional status can help buffer animals against the harmful effects of other stressors, including pesticides, and highlight the importance of using molecular approaches to explore sublethal consequences of stressors.
Collapse
Affiliation(s)
- Claudineia P Costa
- Department of Entomology, University of California, Riverside, Riverside, CA, USA..
| | - Mar Leza
- Department of Biology (Zoology), University of the Balearic Islands, Cra, Valldemossa, Palma, Illes Balears, Spain
| | | | - Kaleigh Fisher
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Alyssa Vollaro
- IIGB Metabolomics Core Facility, University of California, Riverside, Riverside, CA, USA
| | - Manhoi Hur
- IIGB Metabolomics Core Facility, University of California, Riverside, Riverside, CA, USA
| | - Jay S Kirkwood
- IIGB Metabolomics Core Facility, University of California, Riverside, Riverside, CA, USA
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
29
|
Wintermantel D, Pereira-Peixoto MH, Warth N, Melcher K, Faller M, Feurer J, Allan MJ, Dean R, Tamburini G, Knauer AC, Schwarz JM, Albrecht M, Klein AM. Flowering resources modulate the sensitivity of bumblebees to a common fungicide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154450. [PMID: 35276144 DOI: 10.1016/j.scitotenv.2022.154450] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/12/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Bees are exposed to various stressors, including pesticides and lack of flowering resources. Despite potential interactions between these stressors, the impacts of pesticides on bees are generally assumed to be consistent across bee-attractive crops, and regulatory risk assessments of pesticides neglect interactions with flowering resources. Furthermore, impacts of fungicides on bees are rarely examined in peer-reviewed studies, although these are often the pesticides that bees are most exposed to. In a full-factorial semi-field experiment with 39 large flight cages, we assessed the single and combined impacts of the globally used azoxystrobin-based fungicide Amistar® and three types of flowering resources (Phacelia, buckwheat, and a floral mix) on Bombus terrestris colonies. Although Amistar is classified as bee-safe, Amistar exposure through Phacelia monocultures reduced adult worker body mass and colony growth (including a 55% decline in workers and an 88% decline in males), while the fungicide had no impact on colonies in buckwheat or the floral mix cages. Furthermore, buckwheat monocultures hampered survival and fecundity irrespective of fungicide exposure. This shows that bumblebees require access to complementary flowering species to gain both fitness and fungicide tolerance and that Amistar impacts are flowering resource-dependent. Our findings call for further research on how different flowering plants affect bees and their pesticide tolerance to improve guidelines for regulatory pesticide risk assessments and inform the choice of plants that are cultivated to safeguard pollinators.
Collapse
Affiliation(s)
- Dimitry Wintermantel
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany.
| | | | - Nadja Warth
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany
| | - Kristin Melcher
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany
| | - Michael Faller
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany
| | - Joachim Feurer
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany
| | | | - Robin Dean
- Red Beehive Company, Bishops Waltham, United Kingdom
| | - Giovanni Tamburini
- University of Bari, Department of Soil, Plant and Food Sciences (DiSSPA - Entomology), Bari, Italy
| | - Anina C Knauer
- Agroscope, Agroecology and Environment, Zurich, Switzerland
| | | | | | - Alexandra-Maria Klein
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany
| |
Collapse
|
30
|
Ampong I, Zimmerman KD, Nathanielsz PW, Cox LA, Olivier M. Optimization of Imputation Strategies for High-Resolution Gas Chromatography-Mass Spectrometry (HR GC-MS) Metabolomics Data. Metabolites 2022; 12:429. [PMID: 35629933 PMCID: PMC9144635 DOI: 10.3390/metabo12050429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
Gas chromatography-coupled mass spectrometry (GC-MS) has been used in biomedical research to analyze volatile, non-polar, and polar metabolites in a wide array of sample types. Despite advances in technology, missing values are still common in metabolomics datasets and must be properly handled. We evaluated the performance of ten commonly used missing value imputation methods with metabolites analyzed on an HR GC-MS instrument. By introducing missing values into the complete (i.e., data without any missing values) National Institute of Standards and Technology (NIST) plasma dataset, we demonstrate that random forest (RF), glmnet ridge regression (GRR), and Bayesian principal component analysis (BPCA) shared the lowest root mean squared error (RMSE) in technical replicate data. Further examination of these three methods in data from baboon plasma and liver samples demonstrated they all maintained high accuracy. Overall, our analysis suggests that any of the three imputation methods can be applied effectively to untargeted metabolomics datasets with high accuracy. However, it is important to note that imputation will alter the correlation structure of the dataset and bias downstream regression coefficients and p-values.
Collapse
Affiliation(s)
- Isaac Ampong
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University, Winston-Salem, NC 27157, USA; (I.A.); (K.D.Z.); (L.A.C.)
| | - Kip D. Zimmerman
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University, Winston-Salem, NC 27157, USA; (I.A.); (K.D.Z.); (L.A.C.)
| | - Peter W. Nathanielsz
- Center for the Study of Fetal Programming, University of Wyoming, Laramie, WY 82071, USA;
- Southwest National Primate Research Center, San Antonio, TX 78227, USA
| | - Laura A. Cox
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University, Winston-Salem, NC 27157, USA; (I.A.); (K.D.Z.); (L.A.C.)
- Southwest National Primate Research Center, San Antonio, TX 78227, USA
| | - Michael Olivier
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University, Winston-Salem, NC 27157, USA; (I.A.); (K.D.Z.); (L.A.C.)
| |
Collapse
|
31
|
Preparation and application of tebuconazole molecularly imprinted polymer for detection of pesticide residues in tobacco leaves. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03036-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Zhang Y, Chen D, Xu Y, Ma L, Du M, Li P, Yin Z, Xu H, Wu X. Stereoselective toxicity mechanism of neonicotinoid dinotefuran in honeybees: New perspective from a spatial metabolomics study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151116. [PMID: 34688756 DOI: 10.1016/j.scitotenv.2021.151116] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Development of stereoisomeric neonicotinoid pesticides with lower toxicity is key to preventing global population declines of honeybees, whereas little is known about the in situ metabolic regulation of honeybees in response to stereoisomeric pesticides. Herein, we demonstrate an integrated mass spectrometry imaging (MSI) and untargeted metabolomics method to disclose disturbed metabolic expression levels and spatial differentiation in honeybees (Apis cerana) associated with stereoisomeric dinotefuran. This method affords a metabolic network mapping capability regarding a wide range of metabolites involved in multiple metabolic pathways in honeybees. Metabolomics results indicate more metabolic pathways of honeybees can be significantly affected by S-(+)-dinotefuran than R-(-)-dinotefuran, such as tricarboxylic acid (TCA) cycle, glyoxylate and dicarboxylate metabolism, and various amino acid metabolisms. MSI results demonstrate the cross-regulation and spatial differentiation of crucial metabolites involved in the TCA cycle, purine, glycolysis, and amino acid metabolisms within honeybees. Taken together, the integrated MSI and metabolomics results indicated the higher toxicity of S-(+)-dinotefuran arises from metabolic pathway disturbance and its inhibitory role in the energy metabolism, resulting in significantly reduced degradation rates of detoxification mechanisms. From the view of spatial metabolomics, our findings provide novel perspectives for the development and applications of pure chiral agrochemicals.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Dong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yizhu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Lianlian Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Mingyi Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Ping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Yin
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Xinzhou Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
33
|
Chen M, Jin J, Ji X, Chang K, Li J, Zhao L. Pharmacokinetics, bioavailability and tissue distribution of chitobiose and chitotriose in rats. BIORESOUR BIOPROCESS 2022; 9:13. [PMID: 38647841 PMCID: PMC10991139 DOI: 10.1186/s40643-022-00500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/22/2022] [Indexed: 11/10/2022] Open
Abstract
Chitooligosaccharides (COSs) have various physiological activities and broad application prospects; however, their pharmacokinetics and tissue distribution remain unclear. In this study, a sensitive and selective ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method for determining chitobiose (COS 2) and chitotriose (COS 3) in rat serum and tissues was developed. This method was successfully validated based on FDA guidelines in terms of selectivity, calibration curves (lower limit of quantification was 0.002 µg/mL for COS 2 and 0.02 µg/mL for COS 3), precision (intra-day relative standard deviation of 0.04%-3.55% and inter-day relative standard deviation of 1.94%-11.63%), accuracy (intra-day relative error of - 1.81%-11.06% and inter-day relative error of - 9.41%-8.63%), matrix effects, recovery (97.10%-101.29%), stability, dilution integrity, and carry-over effects. Then, the method was successfully applied to the pharmacokinetics and tissue distribution study of COS 2 and COS 3 after intragastric and intravenous administration. After intragastric administration, COS 2 and COS 3 were rapidly absorbed, reached peak concentrations in the serum after approximately 0.45 h, and showed rapid elimination with clearances greater than 18.82 L/h/kg and half-lives lower than 6 h. The absolute oral bioavailability of COS 2 and COS 3 was 0.32%-0.52%. COS 2 and COS 3 were widely distributed in Wistar rat tissues and could penetrated the blood-brain barrier without tissue accumulation.
Collapse
Affiliation(s)
- Mai Chen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiayang Jin
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoguo Ji
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Kunlin Chang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Juan Li
- Department of Nutrition, Chang-Zheng Hospital, Naval Medical University, Shanghai, 200003, China.
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China.
| |
Collapse
|
34
|
Castle D, Alkassab AT, Bischoff G, Steffan-Dewenter I, Pistorius J. High nutritional status promotes vitality of honey bees and mitigates negative effects of pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151280. [PMID: 34755614 DOI: 10.1016/j.scitotenv.2021.151280] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Honey bee health is affected by multiple stressors, such as the exposure to plant protection products (PPPs), dietary limitation, monofloral diets and pressure of diseases and pathogens and their interactions. Here, we analysed the interacting effects of plant protection products and low nutritional pollen source on honey bee health under semi-field conditions. We established a healthy honey bee colony in each of 24 tents, planted either with monofloral maize, maize with a diverse flower strip or with monofloral Phacelia tanacetifolia. To evaluate the interaction between exposure to PPPs and nutritional status, a mixture of the insecticide thiacloprid and the fungicide prochloraz was applied. For each colony, we investigated brood capping rate as well as adult longevity, body and head weight, and enzyme activity of acetylcholinesterase and P450 reductase of newly hatched worker bees. We found a significant reduced capping rate in treated maize compared to flowering strips and Phacelia, but no interaction effect between pesticide treatment and nutritional status on capping rate. The response to treatment on the longevity of adults differed significantly between maize and Phacelia, with flower strips being intermediate, indicating interaction effects of PPP treatment and low pollen quality in maize compared to Phacelia and flowering strip treatments. Head weight of newly hatched worker bees showed significant interaction of nutritional status and treatment of PPPs. PPPs slightly increased body weight in all nutritional statuses, except for Phacelia. Enzyme activity of acetylcholinesterase and P450 reductase showed significant different responses between maize and Phacelia to PPP exposure, but not between maize and flowering strip. Our results support the hypothesis that higher pollen quality promotes development of larvae and pupae, longevity of adults and detoxification of PPPs.
Collapse
Affiliation(s)
- Denise Castle
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Messeweg 11/12, Braunschweig, Germany; University of Würzburg, Department of Animal Ecology and Tropical Biology, Biocenter, Am Hubland, Würzburg, Germany.
| | - Abdulrahim T Alkassab
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Messeweg 11/12, Braunschweig, Germany
| | - Gabriela Bischoff
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Königin-Luise-Straße 19, Berlin, Germany
| | - Ingolf Steffan-Dewenter
- University of Würzburg, Department of Animal Ecology and Tropical Biology, Biocenter, Am Hubland, Würzburg, Germany
| | - Jens Pistorius
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Messeweg 11/12, Braunschweig, Germany
| |
Collapse
|
35
|
Ganesan R, Sekaran S, Vimalraj S. Solid-state 1H NMR-based metabolomics assessment of tributylin effects in zebrafish bone. Life Sci 2022; 289:120233. [PMID: 34921865 DOI: 10.1016/j.lfs.2021.120233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
Tributyltin (TBT), an endocrine disruptor is used globally in agribusiness and industries as biocides, heat stabilizers, and in chemical catalysis. It is known for its deleterious effects on bone by negatively impacting the functions of osteoblasts, osteoclasts and mesenchymal stem cells. However, the impact of TBT on the metabolomics profile in bone is not yet studied. Here, we demonstrate alterations in chemical metabolomics profiles measured by solid state 1H nuclear magnetic resonance (1H NMR) spectroscopy in zebrafish bone following tributyltin (TBT) treatment. TBT of 0, 100, 200, 300, 400 and 500 μg/L were exposed to zebrafish. From this, zebrafish bone has subjected for further metabolomics profiling. Samples were measured via one-dimensional (1D) solvent -suppressed and T2- filtered methods with in vivo zebrafish metabolites. A dose dependent alteration in the metabolomics profile was observed and results indicated a disturbed aminoacid metabolism, TCA cycle, and glycolysis. We found a significant alteration in the levels of glutamate, glutamine, glutathione, trimethylamine N-oxide (TMAO), and other metabolites. This investigation hints us the deleterious effects of TBT on zebrafish bone enabling a comprehensive understanding of metabolomics profile and is expected to play a crucial role in understanding the deleterious effects of various endocrine disruptor on bone.
Collapse
Affiliation(s)
- Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24253, Republic of Korea; Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea.
| | - Saravanan Sekaran
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India.
| | | |
Collapse
|
36
|
Raimets R, Naudi S, Mänd M, Bartkevičs V, Smagghe G, Karise R. Translocation of Tebuconazole between Bee Matrices and Its Potential Threat on Honey Bee (Apis mellifera Linnaeus) Queens. INSECTS 2021; 13:insects13010045. [PMID: 35055888 PMCID: PMC8781852 DOI: 10.3390/insects13010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/02/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022]
Abstract
Simple Summary Numerous pesticide residues have been found in bee products. It is unclear whether and to what degree pesticides migrate between different bee matrices. Even though the use of many common insecticides is strictly regulated, fungicide residues are still ubiquitous in bee matrices and data regarding this problem are still insufficient. The aim of this work was to determine the migration of fungicide tebuconazole between bee matrices and to assess its potential risk to honey bee queens. We found that tebuconazole mixed into wax has the potential to migrate into royal jelly (RJ), but no residues were found in honey bee queen larvae and newly emerged queens. The residues of tebuconazole found in queen cell cups and RJ decreased over time and probably posed no direct lethal threat to queens. Nevertheless, sub-lethal effects of tebuconazole on honey bee queens might occur even at low concentrations. Abstract Various pesticide residues can be found in different bee colony components. The queen larvae of honey bee (Apis mellifera L.) receive non-contaminated food from nurse bees. However, there is little knowledge about how pesticide residues affect developing bees. Additionally, little is known about the migration of lipophilic pesticides between bee matrices. While wax, royal jelly (RJ), and bee larvae are chemically distinct, they all contain lipids and we expected the lipophilic fungicide tebuconazole to be absorbed by different contacting materials. Our aim was to analyze the translocation of tebuconazole residues from queen cell wax to RJ, queen larvae, and newly emerged queens and to evaluate its potential risk to queens. We demonstrated the potential for the migration of tebuconazole from wax to RJ, with a strong dilution effect from the original contamination source. No residues were detected in queen bee larvae and newly emerged queens, indicating that the migration of tebuconazole probably did not directly endanger the queen bee, but there was some risk that tebuconazole might still affect the homeostasis of developing bees.
Collapse
Affiliation(s)
- Risto Raimets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 1, 51006 Tartu, Estonia; (S.N.); (M.M.); (R.K.)
- Correspondence: or ; Tel.: +372-58453095
| | - Sigmar Naudi
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 1, 51006 Tartu, Estonia; (S.N.); (M.M.); (R.K.)
| | - Marika Mänd
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 1, 51006 Tartu, Estonia; (S.N.); (M.M.); (R.K.)
| | - Vadims Bartkevičs
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Street 3, LV-1076 Riga, Latvia;
| | - Guy Smagghe
- Department of Plants and Crops, Ghent University, B-9000 Ghent, Belgium;
| | - Reet Karise
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 1, 51006 Tartu, Estonia; (S.N.); (M.M.); (R.K.)
| |
Collapse
|
37
|
McDevitt JC, Gupta RA, Dickinson SG, Martin PL, Rieuthavorn J, Freund A, Pizzorno MC, Capaldi EA, Rovnyak D. Methodology for Single Bee and Bee Brain 1H-NMR Metabolomics. Metabolites 2021; 11:metabo11120864. [PMID: 34940622 PMCID: PMC8704342 DOI: 10.3390/metabo11120864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
The feasibility of metabolomic 1H NMR spectroscopy is demonstrated for its potential to help unravel the complex factors that are impacting honeybee health and behavior. Targeted and non-targeted 1H NMR metabolic profiles of liquid and tissue samples of organisms could provide information on the pathology of infections and on environmentally induced stresses. This work reports on establishing extraction methods for NMR metabolic characterization of Apis mellifera, the European honeybee, describes the currently assignable aqueous metabolome, and gives examples of diverse samples (brain, head, body, whole bee) and biologically meaningful metabolic variation (drone, forager, day old, deformed wing virus). Both high-field (600 MHz) and low-field (80 MHz) methods are applicable, and 1H NMR can observe a useful subset of the metabolome of single bees using accessible NMR instrumentation (600 MHz, inverse room temperature probe) in order to avoid pooling several bees. Metabolite levels and changes can be measured by NMR in the bee brain, where dysregulation of metabolic processes has been implicated in colony collapse. For a targeted study, the ability to recover 10-hydroxy-2-decenoic acid in mandibular glands is shown, as well as markers of interest in the bee brain such as GABA (4-aminobutyrate), proline, and arginine. The findings here support the growing use of 1H NMR more broadly in bees, native pollinators, and insects.
Collapse
Affiliation(s)
- Jayne C. McDevitt
- Department of Chemistry, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA; (J.C.M.); (R.A.G.); (S.G.D.); (P.L.M.)
| | - Riju A. Gupta
- Department of Chemistry, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA; (J.C.M.); (R.A.G.); (S.G.D.); (P.L.M.)
| | - Sydney G. Dickinson
- Department of Chemistry, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA; (J.C.M.); (R.A.G.); (S.G.D.); (P.L.M.)
| | - Phillip L. Martin
- Department of Chemistry, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA; (J.C.M.); (R.A.G.); (S.G.D.); (P.L.M.)
| | - Jean Rieuthavorn
- Department of Biology, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA; (J.R.); (M.C.P.); (E.A.C.)
| | - Amy Freund
- Bruker Biospin, 15 Fortune Drive, Billerica, MA 01821, USA;
| | - Marie C. Pizzorno
- Department of Biology, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA; (J.R.); (M.C.P.); (E.A.C.)
| | - Elizabeth A. Capaldi
- Department of Biology, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA; (J.R.); (M.C.P.); (E.A.C.)
- Program in Animal Behavior, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA
| | - David Rovnyak
- Department of Chemistry, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA; (J.C.M.); (R.A.G.); (S.G.D.); (P.L.M.)
- Correspondence:
| |
Collapse
|
38
|
Barascou L, Sene D, Barraud A, Michez D, Lefebvre V, Medrzycki P, Di Prisco G, Strobl V, Yañez O, Neumann P, Le Conte Y, Alaux C. Pollen nutrition fosters honeybee tolerance to pesticides. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210818. [PMID: 34540259 PMCID: PMC8437229 DOI: 10.1098/rsos.210818] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/10/2021] [Indexed: 05/11/2023]
Abstract
A reduction in floral resource abundance and diversity is generally observed in agro-ecosystems, along with widespread exposure to pesticides. Therefore, a better understanding on how the availability and quality of pollen diets can modulate honeybee sensitivity to pesticides is required. For that purpose, we evaluated the toxicity of acute exposure and chronic exposures to field realistic and higher concentrations of azoxystrobin (fungicide) and sulfoxaflor (insecticide) in honeybees provided with pollen diets of differing qualities (named S and BQ pollens). We found that pollen intake reduced the toxicity of the acute doses of pesticides. Contrary to azoxystrobin, chronic exposures to sulfoxaflor increased by 1.5- to 12-fold bee mortality, which was reduced by pollen intake. Most importantly, the risk of death upon exposure to a high concentration of sulfoxaflor was significantly lower for the S pollen diet when compared with the BQ pollen diet. This reduced pesticide toxicity was associated with a higher gene expression of vitellogenin, a glycoprotein that promotes bee longevity, a faster sulfoxaflor metabolization and a lower concentration of the phytochemical p-coumaric acid, known to upregulate detoxification enzymes. Thus, our study revealed that pollen quality can influence the ability of bees to metabolize pesticides and withstand their detrimental effects, providing another strong argument for the restoration of suitable foraging habitat.
Collapse
Affiliation(s)
| | - Deborah Sene
- INRAE, Abeilles et Environnement, Avignon, France
| | - Alexandre Barraud
- Research Institute for Biosciences, Laboratory of Zoology, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Denis Michez
- Research Institute for Biosciences, Laboratory of Zoology, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Victor Lefebvre
- Research Institute for Biosciences, Laboratory of Zoology, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Piotr Medrzycki
- Council for Agricultural Research and Economics—Agriculture and Environment Research Centre, Via di Corticella 133, 40128 Bologna, Italy
| | - Gennaro Di Prisco
- Council for Agricultural Research and Economics—Agriculture and Environment Research Centre, Via di Corticella 133, 40128 Bologna, Italy
- Institute for Sustainable Plant Protection, National Research-Council, Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
| | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Cedric Alaux
- INRAE, Abeilles et Environnement, Avignon, France
| |
Collapse
|