1
|
Dolling S, Reis‐Santos P, Williams M, Gillanders BM. Pharmaceuticals, Pesticides, and PFAS: Quantifying Endocrine Disrupting Compounds in Plastics and Fish Tissues Using Solvent Extraction and LC-MS/MS. J Sep Sci 2025; 48:e70084. [PMID: 39899462 PMCID: PMC11790066 DOI: 10.1002/jssc.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/05/2025]
Abstract
The rise of plastic pollution in marine environments has been heavily documented, with particular focus on the physical impacts the plastics can have on biota. But, plastics also sorb a range of hydrophobic chemical pollutants, acting as vectors for the transportation of these compounds throughout marine environments. Therefore, an analytical method that can target both marine biota and plastic matrices will be key to advance our understanding of the link between chemicals in the environment, plastic pollution, and effects on biota. Here, an efficient method for the detection and quantification of a broad suite of compounds in marine samples was developed. Five extraction methods were trialed for the analysis of 21 pesticides, PFAS, and pharmaceuticals in biota and plastics. This included three ultrasonic extraction methods and two QuEChERS methods. Ultrasonic extraction in acetonitrile with a microcentrifuge step then concentration by Bond Elut Carbon SPE resulted in best recovery across most compounds. Of the 21 compounds trialed, 16 were efficiently quantified. Method limits of quantification and detection were between 0.02 and 4.81 ppb (mLODs) and between 0.06 and 14.60 ppb (mLOQs). This method is widely applicable to a range of marine environments and supports routine evaluations of environmental safety and monitoring protocols.
Collapse
Affiliation(s)
- Sophie Dolling
- Southern Seas Ecology LaboratorySchool of Biological Sciences and Environment InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Patrick Reis‐Santos
- Southern Seas Ecology LaboratorySchool of Biological Sciences and Environment InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Mike Williams
- EnvironmentCSIRO EnvironmentWaite CampusAdelaideSouth AustraliaAustralia
| | - Bronwyn M. Gillanders
- Southern Seas Ecology LaboratorySchool of Biological Sciences and Environment InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
2
|
Hatzonikolakis Y, Raitsos DE, Sailley SF, Digka N, Theodorou I, Tsiaras K, Tsangaris C, Skia G, Ntzouvaras A, Triantafyllou G. Assessing the physiological effects of microplastics on cultured mussels in the Mediterranean Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125052. [PMID: 39369867 DOI: 10.1016/j.envpol.2024.125052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Microplastics (MPs) pollution has gained attention due to its ecological threats and potential economic impacts. Yet significant knowledge gaps remain in understanding MPs effects on marine organisms' physiology. This study quantifies the physiological impacts of MPs on farmed mussels (Mytilus galloprovincialis) across various locations in the Mediterranean Sea by combining a laboratory experiment with a Dynamic Energy Budget (DEB) model. Mussels' clearance rates (CR) were measured under different conditions of microplastics and suspended sediment. The DEB model, driven by satellite data and an MPs distribution model, was validated with literature growth and CR data, supporting further the data extracted from the conducted experiment. Results indicate that while the physiological impacts are minimal in most areas, important reductions in CR (8-25%) were estimated in regions like the Gulf of Napoli, leading to reduced growth (6-16%) and reduced reproductive output (7-19%). In addition to microplastic concentrations, seasonal and spatial variations of food availability and suspended inorganic matter importantly control the impacts, with mussels in oligotrophic environments (such as the Gulf of Napoli) showing higher vulnerability to MPs compared to those in more eutrophic locations. This study underscores the utility of bioenergetics models, such as DEB, in evaluating the ecological risks of microplastics and suggests their broader application in MPs research.
Collapse
Affiliation(s)
- Yannis Hatzonikolakis
- Department of Biology, National and Kapodistrian University of Athens, 15772, Greece; Hellenic Centre for Marine Research, 19013, Anavyssos, Greece.
| | - Dionysios E Raitsos
- Department of Biology, National and Kapodistrian University of Athens, 15772, Greece
| | - Sevrine F Sailley
- Plymouth Marine Laboratory, The Hoe, PL1 3DH, Plymouth, United Kingdom
| | - Nikoletta Digka
- Hellenic Centre for Marine Research, 19013, Anavyssos, Greece
| | - Iason Theodorou
- Department of Biology, National and Kapodistrian University of Athens, 15772, Greece
| | - Kostas Tsiaras
- Hellenic Centre for Marine Research, 19013, Anavyssos, Greece
| | | | - Georgina Skia
- Department of Biology, National and Kapodistrian University of Athens, 15772, Greece
| | - Alexandros Ntzouvaras
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - George Triantafyllou
- Hellenic Centre for Marine Research, 19013, Anavyssos, Greece; MINDS (Marine Innovation, Depollution and Services), 195 00, Lavrion, Greece.
| |
Collapse
|
3
|
Teiba II, El-Bilawy EH, Abouelsaad IA, Shehata AI, Alhoshy M, Habib YJ, Abu-Elala NM, El-Khateeb N, Belal EB, Hussain WAM. The role of marine bacteria in modulating the environmental impact of heavy metals, microplastics, and pesticides: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64419-64452. [PMID: 39547992 DOI: 10.1007/s11356-024-35520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024]
Abstract
Bacteria assume a pivotal role in mitigating environmental issues associated with heavy metals, microplastics, and pesticides. Within the domain of heavy metals, bacteria exhibit a wide range of processes for bioremediation, encompassing biosorption, bioaccumulation, and biotransformation. Toxigenic metal ions can be effectively sequestered, transformed, and immobilized, hence reducing their adverse environmental effects. Furthermore, bacteria are increasingly recognized as significant contributors to the process of biodegradation of microplastics, which are becoming increasingly prevalent as contaminants in marine environments. These microbial communities play a crucial role in the colonization, depolymerization, and assimilation processes of microplastic polymers, hence contributing to their eventual mineralization. In the realm of pesticides, bacteria play a significant role in the advancement of environmentally sustainable biopesticides and the biodegradation of synthetic pesticides, thereby mitigating their environmentally persistent nature and associated detrimental effects. Gaining a comprehensive understanding of the intricate dynamics between bacteria and anthropogenic contaminants is of paramount importance in the pursuit of technologically advanced and environmentally sustainable management approaches.
Collapse
Affiliation(s)
- Islam I Teiba
- Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt.
| | - Emad H El-Bilawy
- King Salman International University, South Sinai City, 46618, Egypt
| | | | - Akram Ismael Shehata
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Mayada Alhoshy
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yusuf Jibril Habib
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Nermeen M Abu-Elala
- King Salman International University, South Sinai City, 46618, Egypt
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Nagwa El-Khateeb
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Elsayed B Belal
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Warda A M Hussain
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
4
|
Brawn C, Hamilton BM, Savoca MS, Mallory ML, Provencher JF. Examining ingested microplastics in fish: Considerations on filter pore size, analysis time, and material costs to design cost-effective projects. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106785. [PMID: 39423475 DOI: 10.1016/j.marenvres.2024.106785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/12/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
In recent years the microplastics research community has called for methods harmonization and standardized metrics of reporting microplastic attributes. While alignment of research practices is essential in obtaining robust microplastic data, resource managers need to balance how the cost and effort of methodologies compare to data output. The intention of this study is to compare two recommended methods for isolating anthropogenic microparticles in fish gastrointestinal tracts. Using Icelandic capelin (Mallotus villosus) as a study species, with potassium hydroxide (KOH) digestion, we compared a 1.2 μm filtration and 45 μm sieving protocols for isolating ingested anthropogenic microparticles. We compared methods based on the amount of time they took to conduct, the cost of the materials and equipment required, levels of procedural contamination, and data output. We found no significant differences in the materials costs or procedural contamination between the two methods. However, the two protocols resulted in anthropogenic microparticles with significantly different characteristics (i.e. colour, length, morphology), and the 45 μm sieving protocol took longer to conduct per sample. Our results contribute towards a more holistic understanding of microplastic research methods, their relative costs, and how they contribute to data outputs and development of large-scale monitoring programs.
Collapse
Affiliation(s)
- Caitlin Brawn
- University Centre of the Westfjords, Ísafjörður, 400, Iceland
| | - Bonnie M Hamilton
- University of Toronto, Dept. Ecology and Evolutionary Biology, Toronto, ON, Canada, M5S 3B2
| | - Matthew S Savoca
- Hopkins Marine Station, Department of Oceans, Stanford University, Pacific Grove, CA, USA
| | - Mark L Mallory
- Biology, Acadia University, 15 University Drive, Wolfville, NS, Canada, B4P 2R6
| | - Jennifer F Provencher
- Environment Climate Change Canada, Science and Technology Branch, Ottawa, ON, Canada, K1S 5B6.
| |
Collapse
|
5
|
Zhou T, Min R, Yang S, Zhang H, Zhang J, Song S, Zhang G. Distribution of microplastics in Lanzhou section of the Yellow River: Characteristics, ecological risk assessment, and factors analysis. MARINE POLLUTION BULLETIN 2024; 207:116900. [PMID: 39241367 DOI: 10.1016/j.marpolbul.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Abstract
Microplastic (MP) is an emerging pollutant that has attracted attention in the environmental field, and the research of MPs in freshwater systems needs to be strengthened. To characterize the MPs in surface water and sediments of the western urban river network, water and sediment samples were collected. The results showed that the abundance of MPs in the water body of the river network ranged from 7 to 172 n/L, whereas the abundance of MPs in the sediments ranged from 7 to 144 n/kg, and the average abundance in the dry season was significantly higher than that in the rainy season. The majority of MPs (83.67 %) were < 1 mm and fibrous. The most commonly identified types of MPs were PET and PP, while the color blue was frequently observed. MPs have the potential to vertically migrate in sediments, with size, shape, density, and hydrodynamic forces being the main factors that contribute to this process. Correlation analysis results revealed that anthropogenic and meteorological factors, including precipitation, atmospheric conditions, and population density, had a discernible impact on the abundance, size, and shape of MPs. The ecological risk of MPs was assessed using the Polymer Hazardous Index (PHI), Pollution Load Index (PLI), and Potential Ecological Risk Index (PERI) methods, and the results showed that the overall ecological risk of the Lanzhou section of the Yellow River was low. This study can provide a scientific basis for monitoring and risk assessment of emerging contaminants such as MPs in the river environment.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Rui Min
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Siyi Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hongwei Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiaqian Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shangjian Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
6
|
Snekkevik VK, Cole M, Gomiero A, Haave M, Khan FR, Lusher AL. Beyond the food on your plate: Investigating sources of microplastic contamination in home kitchens. Heliyon 2024; 10:e35022. [PMID: 39170486 PMCID: PMC11336334 DOI: 10.1016/j.heliyon.2024.e35022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Given that a substantial amount of time is spent in kitchens preparing food, the kitchen equipment used may be relevant in determining the composition and amount of microplastics ending up on our dinner plate. While previous research has predominantly focused on foodstuffs as a source of microplastics, we emphasise that micro- and nanoplastics are ubiquitous and likely originate from diverse sources. To address the existing knowledge gap regarding additional sources contributing to microplastics on our dinner plates, this review investigates various kitchen processes, utensils and equipment (excluding single-use items and foodstuffs) to get a better understanding of potential microplastic sources within a home kitchen. Conducting a narrative literature review using terms related to kitchenware and kitchen-affiliated equipment and processes, this study underscores that the selection of preparation tools, storage, serving, cooking, and cleaning procedures in our kitchens may have a significant impact on microplastic exposure. Mechanical, physical, and chemical processes occurring during food preparation contribute to the release of microplastic particles, challenging the assumption that exposure to microplastics in food is solely tied to food products or packaging. This review highlights diverse sources of microplastics in home kitchens, posing concerns for food safety and human health.
Collapse
Affiliation(s)
| | - Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory (PML), Plymouth, PL1 3DH, UK
| | - Alessio Gomiero
- Norwegian Research Centre (NORCE), Department of Climate & Environment, Mekjarvik 12, 4072, Randaberg, Norway
| | - Marte Haave
- SALT Lofoten AS, Pb. 91, Fiskergata 23, 8301, Svolvær, Norway
- Norwegian Research Centre (NORCE), Department of Climate & Environment, Nygårdsgt 112, 5008, Bergen, Norway
| | - Farhan R. Khan
- Norwegian Research Centre (NORCE), Department of Climate & Environment, Nygårdsgt 112, 5008, Bergen, Norway
| | - Amy L. Lusher
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| |
Collapse
|
7
|
Wootton N, Gillanders BM, Leterme S, Noble W, Wilson SP, Blewitt M, Swearer SE, Reis-Santos P. Research priorities on microplastics in marine and coastal environments: An Australian perspective to advance global action. MARINE POLLUTION BULLETIN 2024; 205:116660. [PMID: 38981192 DOI: 10.1016/j.marpolbul.2024.116660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Plastic and microplastic contamination in the environment receive global attention, with calls for the synthesis of scientific evidence to inform actionable strategies and policy-relevant practices. We provide a systematic literature review on microplastic research across Australian coastal environments in water, sediment and biota, highlighting the main research foci and gaps in information. At the same time, we conducted surveys and workshops to gather expert opinions from multiple stakeholders (including researchers, industry, and government) to identify critical research directions to meet stakeholder needs across sectors. Through this consultation and engagement process, we created a platform for knowledge exchange and identified three major priorities to support evidence-based policy, regulation, and management. These include a need for (i) method harmonisation in microplastic assessments, (ii) information on the presence, sources, and pathways of plastic pollution, and (iii) advancing our understanding of the risk of harm to individuals and ecosystems.
Collapse
Affiliation(s)
- Nina Wootton
- School of Biological Sciences and the Environment Institute, University of Adelaide, South Australia 5005, Australia.
| | - Bronwyn M Gillanders
- School of Biological Sciences and the Environment Institute, University of Adelaide, South Australia 5005, Australia
| | - Sophie Leterme
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia; Institute for Nanoscale Science and Technology, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Warwick Noble
- Water Quality, Environment Protection Authority, GPO Box 2607, Adelaide, South Australia 5001, Australia
| | - Scott P Wilson
- AUSMAP, Total Environment Centre, PO Box K61, Haymarket, New South Wales 1240, Australia; School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Michelle Blewitt
- AUSMAP, Total Environment Centre, PO Box K61, Haymarket, New South Wales 1240, Australia
| | - Stephen E Swearer
- Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Patrick Reis-Santos
- School of Biological Sciences and the Environment Institute, University of Adelaide, South Australia 5005, Australia
| |
Collapse
|
8
|
Xiong Z, Zhang Y, Chen X, Sha A, Xiao W, Luo Y, Han J, Li Q. Soil Microplastic Pollution and Microbial Breeding Techniques for Green Degradation: A Review. Microorganisms 2024; 12:1147. [PMID: 38930528 PMCID: PMC11205638 DOI: 10.3390/microorganisms12061147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Microplastics (MPs), found in many places around the world, are thought to be more detrimental than other forms of plastics. At present, physical, chemical, and biological methods are being used to break down MPs. Compared with physical and chemical methods, biodegradation methods have been extensively studied by scholars because of their advantages of greenness and sustainability. There have been numerous reports in recent years summarizing the microorganisms capable of degrading MPs. However, there is a noticeable absence of a systematic summary on the technology for breeding strains that can degrade MPs. This paper summarizes the strain-breeding technology of MP-degrading strains for the first time in a systematic way, which provides a new idea for the breeding of efficient MP-degrading strains. Meanwhile, potential techniques for breeding bacteria that can degrade MPs are proposed, providing a new direction for selecting and breeding MP-degrading bacteria in the future. In addition, this paper reviews the sources and pollution status of soil MPs, discusses the current challenges related to the biodegradation of MPs, and emphasizes the safety of MP biodegradation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jialiang Han
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, No. 2025, Chengluo Avenue, Longquanyi District, Chengdu 610106, China; (Z.X.); (Y.Z.); (X.C.); (A.S.); (W.X.); (Y.L.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, No. 2025, Chengluo Avenue, Longquanyi District, Chengdu 610106, China; (Z.X.); (Y.Z.); (X.C.); (A.S.); (W.X.); (Y.L.)
| |
Collapse
|
9
|
De Boever S, Devisscher L, Vinken M. Unraveling the micro- and nanoplastic predicament: A human-centric insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170262. [PMID: 38253106 DOI: 10.1016/j.scitotenv.2024.170262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Micro- and nanoplastics are vast anthropogenic pollutants in our direct surroundings with a robust environmental stability and a potential for a long-lasting and increasing global circulation. This has raised concerns among the public and policy makers for human health upon exposure to these particles. The micro- and nanoplastic burden on humans is currently under debate, along with criticism on the experimental approaches used in hazard assessment. The present review presents an overview of the human-relevant aspects associated with the current micro-and nanoplastic burden. We focus on environmental circulation and the estimation of exposure quantities to humans, along with a state-of-the-art overview of particle accumulation in over 15 human organs and other specimen. Additionally, data regarding particle characteristics used in toxicity testing was extracted from 91 studies and discussed considering their environmental and human relevance.
Collapse
Affiliation(s)
- Sybren De Boever
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Centre Ghent, Faculty of Medicine and Health Sciences, Universiteit Gent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
10
|
Jiao H, Ali SS, Alsharbaty MHM, Elsamahy T, Abdelkarim E, Schagerl M, Al-Tohamy R, Sun J. A critical review on plastic waste life cycle assessment and management: Challenges, research gaps, and future perspectives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115942. [PMID: 38218104 DOI: 10.1016/j.ecoenv.2024.115942] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
The global production and consumption of plastics, as well as their deposition in the environment, are experiencing exponential growth. In addition, mismanaged plastic waste (PW) losses into drainage channels are a growing source of microplastic (MP) pollution concern. However, the complete understanding of their environmental implications throughout their life cycle is yet to be fully understood. Determining the potential extent to which MPs contribute to overall ecotoxicity is possible through the monitoring of PW release and MP removal during remediation. Life cycle assessments (LCAs) have been extensively utilized in many comparative analyses, such as comparing petroleum-based plastics with biomass and single-use plastics with multi-use alternatives. These assessments typically yield unexpected or paradoxical results. Nevertheless, there is still a paucity of reliable data and tools for conducting LCAs on plastics. On the other hand, the release and impact of MP have so far not been considered in LCA studies. This is due to the absence of inventory-related data regarding MP releases and the characterization factors necessary to quantify the effects of MP. Therefore, this review paper conducts a comprehensive literature review in order to assess the current state of knowledge and data regarding the environmental impacts that occur throughout the life cycle of plastics, along with strategies for plastic management through LCA.
Collapse
Affiliation(s)
- Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Mohammed Husssein M Alsharbaty
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq; Branch of Prosthodontics, College of Dentistry, University of Al-Ameed, Karbala, Iraq.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Esraa Abdelkarim
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, Vienna A-1030, Austria.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
11
|
Pop V, Ozunu A, Petrescu DC, Stan AD, Petrescu-Mag RM. The influence of media narratives on microplastics risk perception. PeerJ 2023; 11:e16338. [PMID: 37933256 PMCID: PMC10625762 DOI: 10.7717/peerj.16338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/02/2023] [Indexed: 11/08/2023] Open
Abstract
Background Media are the interface between scientists and citizens, communicating and interpreting the risk message and powerfully influencing individual awareness, public debate, and, hence, people's behavior. Pollution by microplastics (MPs), a threat to public health and terrestrial and marine ecosystems, has received research, media, and public interest. However, how MPs environmental and health risks are reflected in the media and assessed in the scientific literature does not find consensus over time. To date, few studies have examined social aspects around MPs, such as, for example, factors that influence awareness and perception of the risk of MPs. In this context, the objective of this study is twofold. First, we determined if media narratives influenced Romanians' awareness of MPs, and second, we investigated if media narratives influenced Romanians' perceptions of MPs health and environmental risk. Method An online survey was conducted among 417 Romanian respondents. The questionnaire had 21 questions. The questions were related to the awareness of MPs, the perceived health risk of MPs, the perceived environmental risk of MPs, the intensity of exposure to media narratives about the MPs impact on health and the environment, and the demographics. Binary logistic regression was run to identify what media narratives influenced MPs awareness and risk perception. In recent times, mass media has shaped perceptions of health and environmental risks, driven by events like COVID-19 and global climate change. Our study relies on media narratives as its foundation. Results Binary logistic regression showed that the awareness of MPs is influenced by the media narrative "Microplastics in the sea threaten fish stocks" (p = 0.001). When the frequency of exposure to this media narrative increases, the probability of reporting awareness of MPs increases. Likewise, an increase in age represents a higher probability of reporting awareness of MPs. The perceived health risk of MPs, with the highest weighting, was related to the dependent variable "Leakage of harmful chemicals from MPs affects the soil" (p = 0.014). Conclusions Media narratives about plastic and MPs pollution have increased over time, influencing the perception of this risk. The study argues the need for accurate and balanced media reporting on MPs to prevent the spread of misinformation and ensure that people clearly understand MPs risks. Furthermore, a closer examination of people's perceptions supports the design of appropriate interventions to reduce plastic consumption, thereby decreasing the risks of MPs pollution with benefits for human health and the environment.
Collapse
Affiliation(s)
- Valeria Pop
- Research Institute for Sustainability and Disaster Management Based on High-Performance Computing, Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Alexandru Ozunu
- Research Institute for Sustainability and Disaster Management Based on High-Performance Computing, Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
- Disaster Management Training and Education Centre for Africa (DiMTEC), University of the Free State, Bloemfontein, South Africa
| | - Dacinia Crina Petrescu
- Department of Hospitality Services, Faculty of Business, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
- Department of Economy and Rural Development, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Adrian-Daniel Stan
- Department of International Studies and Contemporary History, Faculty of History and Philosophy, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Ruxandra Malina Petrescu-Mag
- Research Institute for Sustainability and Disaster Management Based on High-Performance Computing, Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
- Department of Economy and Rural Development, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Doctoral School “International Relations and Security Studies”, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Liu F, Rasmussen LA, Klemmensen NDR, Zhao G, Nielsen R, Vianello A, Rist S, Vollertsen J. Shapes of Hyperspectral Imaged Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12431-12441. [PMID: 37561646 PMCID: PMC10448723 DOI: 10.1021/acs.est.3c03517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023]
Abstract
Shape matters for microplastics, but its definition, particularly for hyperspectral imaged microplastics, remains ambiguous and inexplicit, leading to incomparability across data. Hyperspectral imaging is a common approach for quantification, yet no unambiguous microplastic shape classification exists. We conducted an expert-based survey and proposed a set of clear and concise shapes (fiber, rod, ellipse, oval, sphere, quadrilateral, triangle, free-form, and unidentifiable). The categories were validated on images of 11,042 microplastics from four environmental compartments (seven matrices: indoor air; wastewater influent, effluent, and sludge; marine water; stormwater; and stormwater pond sediments), by inviting five experts to score each shape. We found that the proposed shapes were well defined, representative, and distinguishable to the human eye, especially for fiber and sphere. Ellipse, oval, and rod were though less distinguishable but dominated in all water and solid matrices. Indoor air held more unidentifiable, an abstract shape that appeared mostly for particles below 30 μm. This study highlights the need for assessing the recognizability of chosen shape categories prior to reporting data. Shapes with a clear and stringent definition would increase comparability and reproducibility across data and promote harmonization in microplastic research.
Collapse
Affiliation(s)
- Fan Liu
- Department
of the Built Environment, Aalborg University, 9220 Aalborg Ø, Denmark
| | - Lasse A. Rasmussen
- Department
of the Built Environment, Aalborg University, 9220 Aalborg Ø, Denmark
| | | | - Guohan Zhao
- Research
Centre for Built Environment, Energy, Water and Climate, VIA University College, 8700 Horsens, Denmark
| | - Rasmus Nielsen
- Department
of the Built Environment, Aalborg University, 9220 Aalborg Ø, Denmark
| | - Alvise Vianello
- Department
of the Built Environment, Aalborg University, 9220 Aalborg Ø, Denmark
| | - Sinja Rist
- National
Institute of Aquatic Resources, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jes Vollertsen
- Department
of the Built Environment, Aalborg University, 9220 Aalborg Ø, Denmark
| |
Collapse
|
13
|
Vidal-Liñán L, Moscoso-Pérez C, Laranjeiro F, Muniategui-Lorenzo S, Beiras R. Filtration of biopolymer PHB particles loaded with synthetic musks does not cause significant bioaccumulation in marine mussels. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104092. [PMID: 36868485 DOI: 10.1016/j.etap.2023.104092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The role of the biopolymer polyhydroxybutyrate (PHB, <250 µm) as a vehicle of a synthetic musks mixture (celestolide, galaxolide, tonalide, musk xylene, musk moskene and musk ketone) to Mytilus galloprovincialis was investigated. For 30 days, virgin PHB, virgin PHB+musks (6.82 µg g-1) and weathered PHB+musks, were daily spiked into tanks containing mussels, followed by a 10-day depuration period. Water and tissues samples were collected to measure exposure concentrations and accumulation in tissues. Mussels were able to actively filter microplastics in suspension but the concentration of the musks found in tissues (celestolide, galaxolide, tonalide) were markedly lower than the spiked concentration. Estimated Trophic Transfer Factors suggest that PHB will only play a minor role on musks accumulation in marine mussels, even if our results suggest a slightly extended persistence in tissues of musks loaded to weathered PHB.
Collapse
Affiliation(s)
- Leticia Vidal-Liñán
- Centro de Investigación Mariña ECIMAT-CIM, Universidade de Vigo, 36331 Vigo, Spain
| | - Carmen Moscoso-Pérez
- Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), 15008 A Coruña, Spain
| | - Filipe Laranjeiro
- Centro de Investigación Mariña ECIMAT-CIM, Universidade de Vigo, 36331 Vigo, Spain.
| | - Soledad Muniategui-Lorenzo
- Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), 15008 A Coruña, Spain
| | - Ricardo Beiras
- Centro de Investigación Mariña ECIMAT-CIM, Universidade de Vigo, 36331 Vigo, Spain
| |
Collapse
|
14
|
Yao Y, Zhao J, Adyel TM, Liu Y, Liu J, Miao L. Sediment bacterial and fungal communities exhibit distinct responses to microplastic types and sizes in Taihu lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121092. [PMID: 36657516 DOI: 10.1016/j.envpol.2023.121092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are emerging contaminants in aquatic environments, yet their impact on sediment microbiota and biogeochemical processes were not well reported. Herein, microcosm experiments were performed to investigate the effects of MPs (Polystyrene, PS and Polyethylene, PE) with three size classes (ranging from 100 nm to 150-200 μm) on sediment bacterial and fungal communities over 60-day incubation from Taihu Lake. High-throughput sequencing revealed the alpha diversities of bacterial and fungal communities were reduced by MPs, dependent on MPs' size and type. Bacterial community structures were significantly altered under all MPs treatments, with clustering for the same size class for PS and PE. Fungal community structures were significantly affected for all MPs, with PS and PE exhibiting different effects. Co-occurrence network analysis suggested MPs changed bacterial and fungal network complexities. Proteobacteria and Ascomycota formed strong associations with other phyla and demonstrated tolerance to MPs exposure. Actinobacteria, Firmicutes, and Chytridiomycota were the main respondents to MPs. The enzyme concentrations were stimulated by MPs, indicating carbon and nitrogen uptakes might be increased. Therefore, PS and PE had similar impacts on the microbial community (particularly bacteria), and sizes of MPs were the main influencing factors. MPs shifted community structure and network with distinct responses from bacteria and fungi, likely leading to the alteration of microbial-involved carbon and nitrogen cycling.
Collapse
Affiliation(s)
- Yu Yao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, People's Republic of China, 210098; School of Environment, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Jiaqi Zhao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, People's Republic of China, 210098
| | - Tanveer M Adyel
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, VIC 3125, Australia
| | - Yang Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, Jiangsu, People's Republic of China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, People's Republic of China, 210098.
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, People's Republic of China, 210098
| |
Collapse
|
15
|
Bauten W, Nöth M, Kurkina T, Contreras F, Ji Y, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Plastibodies for multiplexed detection and sorting of microplastic particles in high-throughput. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160450. [PMID: 36435257 DOI: 10.1016/j.scitotenv.2022.160450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Sensitive high-throughput analytic methodologies are needed to quantify microplastic particles (MPs) and thereby enable routine monitoring of MPs to ultimately secure animal, human, and environmental health. Here we report a multiplexed analytical and flow cytometry-based high-throughput methodology to quantify MPs in aqueous suspensions. The developed analytic MPs-quantification platform provides a sensitive as well as high-throughput detection of MPs that relies on the material binding peptide Liquid Chromatography Peak I (LCI) conjugated to Alexa-fluorophores (LCIF16C-AF488, LCIF16C-AF594, and LCIF16C-AF647). These fluorescent material-binding peptides (also termed plastibodies) were used to fluorescently label polystyrene MPs, whereas Alexa-fluorophores alone exhibited a negligible background fluorescence. Mixtures of polystyrene MPs that varied in size (500 nm to 5 μm) and varied in labeled populations were analyzed and sorted into distinct populations reaching sorting efficiencies >90 % for 1 × 106 sorted events. Finally, a multiplexed quantification and sorting with up to three plastibodies was successfully achieved to validate that the combination of plastibodies and flow cytometry is a powerful and generally applicable methodology for multiplexed analysis, quantification, and sorting of microplastic particles.
Collapse
Affiliation(s)
- Wiwik Bauten
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Maximilian Nöth
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Yu Ji
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Miguel-Ángel Serra
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Douglas Gilliland
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; DWI - Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, 52056 Aachen, Germany.
| |
Collapse
|
16
|
Askham C, Pauna VH, Boulay AM, Fantke P, Jolliet O, Lavoie J, Booth AM, Coutris C, Verones F, Weber M, Vijver MG, Lusher A, Hajjar C. Generating environmental sampling and testing data for micro- and nanoplastics for use in life cycle impact assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160038. [PMID: 36395847 PMCID: PMC9760571 DOI: 10.1016/j.scitotenv.2022.160038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Ongoing efforts focus on quantifying plastic pollution and describing and estimating the related magnitude of exposure and impacts on human and environmental health. Data gathered during such work usually follows a receptor perspective. However, Life Cycle Assessment (LCA) represents an emitter perspective. This study examines existing data gathering and reporting approaches for field and laboratory studies on micro- and nanoplastics (MNPs) exposure and effects relevant to LCA data inputs. The outcomes indicate that receptor perspective approaches do not typically provide suitable or sufficiently harmonised data. Improved design is needed in the sampling, testing and recording of results using harmonised, validated and comparable methods, with more comprehensive reporting of relevant data. We propose a three-level set of requirements for data recording and reporting to increase the potential for LCA studies and models to utilise data gathered in receptor-oriented studies. We show for which purpose such data can be used as inputs to LCA, particularly in life cycle impact assessment (LCIA) methods. Implementing these requirements will facilitate proper integration of the potential environmental impacts of plastic losses from human activity (e.g. litter) into LCA. Then, the impacts of plastic emissions can eventually be connected and compared with other environmental issues related to anthropogenic activities.
Collapse
Affiliation(s)
- Cecilia Askham
- Norwegian Institute for Sustainability Research (NORSUS), Stadion 4, 1671 Kråkerøy, Norway.
| | - Valentina H Pauna
- Norwegian Institute for Sustainability Research (NORSUS), Stadion 4, 1671 Kråkerøy, Norway; International PhD Programme/UNESCO Chair "Environment, Resources and Sustainable Development", Department of Science and Technology, Parthenope University of Naples, Centro Direzionale, Isola C4, 80143 Naples, Italy
| | - Anne-Marie Boulay
- CIRAIG, Chemical Engineering Department, Polytechnique Montreal, Canada
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, Kgs. Lyngby, Denmark
| | - Olivier Jolliet
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, Kgs. Lyngby, Denmark
| | - Jérôme Lavoie
- CIRAIG, UQÀM/ISE-Institute of Environmental Sciences, Montreal, Canada
| | | | - Claire Coutris
- NIBIO Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Ås, Norway
| | - Francesca Verones
- Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Martina G Vijver
- Leiden University, Institute of Environmental Sciences, the Netherlands
| | - Amy Lusher
- Norwegian Institute of Water Research (NIVA), Oslo, Norway; Department of Biological Science, University of Bergen, Bergen, Norway
| | - Carla Hajjar
- CIRAIG, Chemical Engineering Department, Polytechnique Montreal, Canada
| |
Collapse
|
17
|
Anand U, Dey S, Bontempi E, Ducoli S, Vethaak AD, Dey A, Federici S. Biotechnological methods to remove microplastics: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1787-1810. [PMID: 36785620 PMCID: PMC9907217 DOI: 10.1007/s10311-022-01552-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/25/2022] [Indexed: 05/14/2023]
Abstract
Microplastics pollution is major threat to ecosystems and is impacting abiotic and biotic components. Microplastics are diverse and highly complex contaminants that transport other contaminants and microbes. Current methods to remove microplastics include biodegradation, incineration, landfilling, and recycling. Here we review microplastics with focus on sources, toxicity, and biodegradation. We discuss the role of algae, fungi, bacteria in the biodegradation, and we present biotechnological methods to enhance degradation, e.g., gene editing tools and bioinformatics.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000 Midreshet Ben Gurion, Israel
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, University of Calcutta, Ajodhya, Shyampur, Howrah, 711312 India
| | - Elza Bontempi
- Department of Mechanical and Industrial Engineering, INSTM Unit of Brescia, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Serena Ducoli
- Department of Mechanical and Industrial Engineering, INSTM Unit of Brescia, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - A. Dick Vethaak
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073 India
| | - Stefania Federici
- Department of Mechanical and Industrial Engineering, INSTM Unit of Brescia, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| |
Collapse
|
18
|
Gong H, Li R, Li F, Guo X, Xu L, Gan L, Yan M, Wang J. Toxicity of nanoplastics to aquatic organisms: Genotoxicity, cytotoxicity, individual level and beyond individual level. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130266. [PMID: 36327848 DOI: 10.1016/j.jhazmat.2022.130266] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Due to the small size, high mobility and large surface area, nanoplastics (NPs) showed high potential risks to aquatic organisms. This paper reviews the toxicity of NPs to aquatic organism at various trophic levels including bacteria, plankton (algae), zooplankton, benthos, and nekton (fish). The effects at individual level caused by NPs were explained and proved by cytotoxicity and genotoxicity, and the toxicity of NPs beyond individual level was also illustrated. The toxicity of NPs is determined by the size, dosage, and surface property of NPs, as well as environmental factors, the presence of co-contaminants and the sensitivity of tested organisms. Furthermore, the joint effects of NPs with other commonly detected pollutants such as organic pollutants, metals, and nanoparticles etc. were summarized. In order to reflect the toxicity of NPs in the real natural environment, studies on toxicity assessment of NPs with the coexistence of various environmental factors and contaminants, particularly under the concentrations in natural environment are suggested.
Collapse
Affiliation(s)
- Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ruixue Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Feng Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaowen Guo
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
19
|
Montoto-Martínez T, Meléndez-Díez C, Melián-Ramírez A, Hernández-Brito JJ, Gelado-Caballero MD. Comparison between the traditional Manta net and an innovative device for microplastic sampling in surface marine waters. MARINE POLLUTION BULLETIN 2022; 185:114237. [PMID: 36283151 DOI: 10.1016/j.marpolbul.2022.114237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Manta nets are commonly used for microplastics sampling although a number of limitations have emerged. In this study we compare the manta net to an innovative microplastic sampler, referred to as MuMi, registered as utility model. The results highlight the large variability that can exist in the outcomes of the different studies due to the lack of harmonization between methods and the differing factors such as sampling mesh size, representativeness or reproducibility of the sampling volumes. Control over the filtered volume is an issue to be improved in trawl sampling methods, while in the MuMi sampler the control over the sampling depth could be improved. Still, MuMi represents a highly advantageous sampling system in terms of ease of operation, lower cost, smaller microplastics target size and greater precision, all while maintaining the representativeness of the collected samples.
Collapse
Affiliation(s)
- Tania Montoto-Martínez
- Environmental Technologies, Management and Biogeochemistry Research Group, University of Las Palmas de Gran Canaria, Canary Islands, Spain.
| | - Carmen Meléndez-Díez
- FarFalle Project, Science On Board, Scientific Tourism in the Canary Islands. Spain.
| | - Abisai Melián-Ramírez
- Environmental Technologies, Management and Biogeochemistry Research Group, University of Las Palmas de Gran Canaria, Canary Islands, Spain.
| | - José Joaquín Hernández-Brito
- Environmental Technologies, Management and Biogeochemistry Research Group, University of Las Palmas de Gran Canaria, Canary Islands, Spain; Oceanic Platform of the Canary Islands, Canary Islands, Spain.
| | - Mª Dolores Gelado-Caballero
- Environmental Technologies, Management and Biogeochemistry Research Group, University of Las Palmas de Gran Canaria, Canary Islands, Spain.
| |
Collapse
|
20
|
Wang L, Xu M, Chen J, Zhang X, Wang Q, Wang Y, Cui J, Zhang S. Distinct adverse outcomes and lipid profiles of erythrocytes upon single and combined exposure to cadmium and microplastics. CHEMOSPHERE 2022; 307:135942. [PMID: 35961459 DOI: 10.1016/j.chemosphere.2022.135942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The growing accumulation of environmental microplastics (MPs) has become a global concern. MPs are capable to interact with other environmental contaminants leading to altered toxicity. Red blood cells (RBCs), are the target with highest priority for most of toxic xenobiotics after entering blood stream. Whether co-existence of MPs changes the toxicity of cadmium, a typical hemolysis inducer, in RBCs is unknown. We investigated the adverse effects of CdCl2 and Polystyrene-MPs (PS-MPs) on RBCs in mice. We found that CdCl2 induced mild microcytic hypochromic anemia while PS-MPs induced polycythemia vera, indicating distinct outcomes between them. Moreover, co-treatment of PS-MPs with CdCl2 did not change the phenotype of microcytic hypochromic anemia, indicating an antagonistic relationship between CdCl2 and PS-MPs. However, the lipid profiles were also distinct between single exposure and combined exposure to CdCl2 and PS-MPs. The significant changed lipids were mainly involved in altering the physiochemical or biological properties of RBCs, including decreased membrane components, disrupted bilayer thickness and intrinsic lipid curvature. These results indicated impaired membrane functions of RBCs. The altered lipid profiles observed in the current study may represent new and previously unrecognized harmful characteristics of cadmium and MPs on erythrocytes at low dose without apparent induction of anemia.
Collapse
Affiliation(s)
- Lixin Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China.
| | - Man Xu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China
| | - Jiamin Chen
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China
| | - Xuan Zhang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China; Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Quanshu Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Yingxue Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China
| | - Jiansheng Cui
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062, China.
| |
Collapse
|
21
|
Kallenbach EMF, Friberg N, Lusher A, Jacobsen D, Hurley RR. Anthropogenically impacted lake catchments in Denmark reveal low microplastic pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47726-47739. [PMID: 35181858 PMCID: PMC9232414 DOI: 10.1007/s11356-022-19001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/28/2022] [Indexed: 05/12/2023]
Abstract
Microplastics have been detected in lake environments globally, including in remote regions. Agricultural and populated areas are known to congregate several inputs and release pathways for microplastic. This study investigated microplastic (50-5000 µm) contamination in five Danish freshwater lakes with catchments dominated by arable land use. The concentrations in sediments (n = 3/site) and the zebra mussel, Dreissena polymorpha (n = 30/site), were calculated and compared with catchment characteristics and environmental parameters. Microplastic concentrations in sediment were relatively low (average 0.028 ± 0.017 items/g dry weight sediment) whilst only a single microplastic was found in the mussels (average 0.067 ± 0.249 items/10 individual). Hence, no relationship between the number of observed microplastics in sediment and mussels could be identified, nor could a relationship between concentration in sediment and environmental parameters. As all lakes studied received their water from moderate to heavily anthropogenically impacted catchments, it was expected that they would be sinks for microplastic with high bioavailability. Based on the results of the present study, D. polymorpha were found to not be contaminated by microplastics in the five study lakes. Thus, our results suggest that these mussels do not interact with microplastics at low concentrations. We speculate that the results on sediment and biota could be explained by several factors related to regional differences in plastic use, species characteristics, sampling size, and the fact that finding no microplastic is not always reported in the scientific literature. Thus, the paper provides insight into the dynamics between the catchment, lake, and biota in systems with low microplastic concentration.
Collapse
Affiliation(s)
- Emilie M. F. Kallenbach
- NIVA Denmark Water Research, Njalsgade 76, 2300 Copenhagen S, Denmark
- University of Copenhagen, Universitetsparken 4, Copenhagen Ø, Denmark
| | - Nikolai Friberg
- NIVA Denmark Water Research, Njalsgade 76, 2300 Copenhagen S, Denmark
- University of Copenhagen, Universitetsparken 4, Copenhagen Ø, Denmark
- NIVA, Økernveien 94, 0579 Oslo, Norway
- School of Geography, water@leeds, University of Leeds, Leeds, LS2 9JT UK
| | - Amy Lusher
- NIVA, Økernveien 94, 0579 Oslo, Norway
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| | - Dean Jacobsen
- University of Copenhagen, Universitetsparken 4, Copenhagen Ø, Denmark
| | | |
Collapse
|
22
|
Rødland ES, Samanipour S, Rauert C, Okoffo ED, Reid MJ, Heier LS, Lind OC, Thomas KV, Meland S. A novel method for the quantification of tire and polymer-modified bitumen particles in environmental samples by pyrolysis gas chromatography mass spectroscopy. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127092. [PMID: 34488093 DOI: 10.1016/j.jhazmat.2021.127092] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Tire and road wear particles may constitute the largest source of microplastic particles into the environment. Quantification of these particles are associated with large uncertainties which are in part due to inadequate analytical methods. New methodology is presented in this work to improve the analysis of tire and road wear particles using pyrolysis gas chromatography mass spectrometry. Pyrolysis gas chromatography mass spectrometry of styrene butadiene styrene, a component of polymer-modified bitumen used on road asphalt, produces pyrolysis products identical to those of styrene butadiene rubber and butadiene rubber, which are used in tires. The proposed method uses multiple marker compounds to measure the combined mass of these rubbers in samples and includes an improved step of calculating the amount of tire and road based on the measured rubber content and site-specific traffic data. The method provides good recoveries of 83-92% for a simple matrix (tire) and 88-104% for a complex matrix (road sediment). The validated method was applied to urban snow, road-side soil and gully-pot sediment samples. Concentrations of tire particles in these samples ranged from 0.1 to 17.7 mg/mL (snow) to 0.6-68.3 mg/g (soil/sediment). The concentration of polymer-modified bitumen ranged from 0.03 to 0.42 mg/mL (snow) to 1.3-18.1 mg/g (soil/sediment).
Collapse
Affiliation(s)
- Elisabeth S Rødland
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway; Norwegian University of Life Sciences, Center of Excellence in Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, 1433 Ås, Norway
| | - Saer Samanipour
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway; Faculty of Science, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park, 904 GD Amsterdam, the Netherlands; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 QLD, Australia
| | - Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 QLD, Australia
| | - Elvis D Okoffo
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 QLD, Australia
| | - Malcom J Reid
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| | - Lene S Heier
- Norwegian Public Roads Administration, Construction, Postboks 1010, N-2605 Lillehammer, Norway
| | - Ole Christian Lind
- Norwegian University of Life Sciences, Center of Excellence in Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, 1433 Ås, Norway
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 QLD, Australia
| | - Sondre Meland
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway; Norwegian University of Life Sciences, Center of Excellence in Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, 1433 Ås, Norway
| |
Collapse
|