1
|
Ma J, Wang M, Sun Y, Zheng Y, Lai S, Zhang Y, Wu Y, Jiang C, Shen F. Cockroach Microbiome Disrupts Indoor Environmental Microbial Ecology with Potential Public Health Implications. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:380-391. [PMID: 40270532 PMCID: PMC12012659 DOI: 10.1021/envhealth.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 04/25/2025]
Abstract
Cockroaches pose a significant global public health concern. However, besides the well-recognized cockroach-induced allergy, the potential impact of the cockroach microbiome on human health through various means is not yet fully elucidated. This study aimed to clarify the health impacts of cockroaches by investigating the microbial interactions among cockroaches, the indoor environment, and humans. We simultaneously collected cockroach, indoor environment (indoor air and floor dust), and human (exhaled breath condensate and skin) samples from residential areas in five cities representing distinct climate zones in China. The 16S rDNA sequencing results revealed that cockroaches harbor diverse bacterial populations that vary across different cities. The prevalence of potential pathogenic bacteria (PPB) in cockroaches ranged from 1.1% to 58.9%, with dominant resistance genes conferring resistance to tetracycline, macrolide, and beta-lactam. The relationships between the cockroach microbiome and the associated environmental and human microbiomes were explored by using fast expectation-maximization microbial source tracking (FEAST). The potential contribution of cockroach bacteria to the floor dust-borne microbiome and indoor airborne microbiome was estimated to be 5.6% and 1.3%, respectively. Similarly, the potential contribution of cockroach PPB to the floor dust-borne microbiome and indoor airborne microbiome was calculated to be 4.0% and 1.2%, respectively. In residences with cockroach infestations, the contribution of other sources to the indoor environment was slightly increased. Collectively, the role of cockroaches in the transmission of microorganisms, particularly pathogenic bacteria and antibiotic resistance genes, cannot be overlooked.
Collapse
Affiliation(s)
- Jiahui Ma
- School
of Energy and Power Engineering, Beihang
University, Beijing 100191, China
| | - Mengzhen Wang
- School
of Energy and Power Engineering, Beihang
University, Beijing 100191, China
| | - Ye Sun
- School
of Energy and Power Engineering, Beihang
University, Beijing 100191, China
| | - Yunhao Zheng
- Institute
of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Senchao Lai
- School
of Environment and Energy, South China University
of Technology, Guangzhou 510006, China
| | - Yingyi Zhang
- School
of Environment and Energy, South China University
of Technology, Guangzhou 510006, China
| | - Yan Wu
- School
of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Chao Jiang
- Life
Sciences Institute, Zhejiang University, Hangzhou 310012, China
| | - Fangxia Shen
- School
of Energy and Power Engineering, Beihang
University, Beijing 100191, China
| |
Collapse
|
2
|
Guardado-Fierros BG, Lorenzo-Santiago MA, Kirchmayr MR, Patrón-Soberano OA, Rodriguez-Campos J, Contreras-Ramos SM. Biocontrol and plant growth-promoting activities of airborne bacteria. World J Microbiol Biotechnol 2025; 41:131. [PMID: 40214847 DOI: 10.1007/s11274-025-04337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025]
Abstract
The potential of airborne bacteria as a sustainable alternative for agriculture was evaluated. Bacteria were isolated from air samples and evaluated for their plant growth-promoting (PGPB) and antifungal properties as biocontrol of phytopathogens. Results showed that diverse bacterial species, including Exiguobacterium, Rhodococcus, Kocuria, and Staphylococcus genera, exhibited PGPB activities such as phosphorus solubilization, siderophore production, and auxin production. Kocuria strains showed high auxin production. Rhodococcus sp. was observed to significantly promote root growth and the formation of beneficial biofilms on bean roots. Additionally, this bacterium opened the xylem vessels, facilitating the absorption of nutrients and water. Kocuria sp. strains exhibited high antifungal activity against Fusarium oxysporum and Phytophthora cinnamomi due to volatile organic compounds (VOCs) produced by these strains. Volatile profile revealed compounds such as dimethyl disulfide, pyrazines, and benzaldehyde derivatives associated with fungal growth inhibition. This study demonstrates the potential of airborne bacteria as both biofertilizers (producers of indole-3-acetic acid IAA, potassium, and phosphorus solubilizers, siderophore producers, and ammonium producers) and biocontrol agents (against the phytopathogenic fungus Fusarium oxysporum and Phytophthora cinnamomi).
Collapse
Affiliation(s)
- Beatriz G Guardado-Fierros
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, México
| | - Miguel A Lorenzo-Santiago
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, México
| | - Manuel R Kirchmayr
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Zapopan, Jalisco, México
| | - Olga A Patrón-Soberano
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C. (IPICYT), Camino a la Presa San José 2055, Lomas 4ª. Sección, San Luis Potosí, San Luis Potosí, 78216, México
| | | | - Silvia M Contreras-Ramos
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, México.
| |
Collapse
|
3
|
Paśmionka IB, Cheluszka P, Gospodarek J, Chmielowski K, Fries J. Isolation and assessment of antibiotic resistance of Staphylococcus aureus in the air of an underground hard coal mines. Sci Rep 2025; 15:11599. [PMID: 40185795 PMCID: PMC11971371 DOI: 10.1038/s41598-025-94630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
Mine aerosol poses a serious health threat due to its easy access to the human respiratory tract. Damage may be caused by the chemical composition of dust and the substances adsorbed on its surface, including microorganisms that potentially affect human health. Our proposed research aimed to isolate Staphylococcus aureus strains from coal mine bioaerosol and to assess its sensitivity towards selected antibiotics. Bioaerosol samples were collected in three underground hard coal mines located in Upper Silesia in southern Poland. Microbiological tests of the air samples were carried out according to standard microbiological techniques. All tested strains of Staphylococcus aureus were sensitive to oxacillin, which indicated the lack of methicillin-resistant isolates (MRSA) in the tested group. However, antibiotic resistance from macrolide and lincosamide groups was observed among certain strains. 10% of isolates were constitutive MLSB resistance, while 4% of strains were inductive MLSB resistance. Less than 1% of isolates were erythromycin-resistant and clindamycin-sensitive (MSB). Based on the Chi-square test, statistically significant differences were found in the frequency of MSB, MLSB inductive, and MLSB constitutive phenotypes. Almost 30% of the identified strains showed multi-antibiotic resistance. However, the Chi-square test did not reveal any statistically significant differences in the frequency of multidrug-resistant strains in the considered research areas. The analyses carried out constituted the first study related to the isolation and assessment of drug susceptibility of Staphylococcus aureus in the bioaerosol of hard coal mines. Identification of bioaerosol in underground coal mines is a key issue because, due to the presence of pathogens, it plays a significant role in limiting the spread of occupational diseases. For the health of miners, research into microbial communities benefits the promotion of microbiological control of mine air.
Collapse
Affiliation(s)
- Iwona Beata Paśmionka
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Mickiewicza 21 Av., 30-120, Kraków, Poland
| | - Piotr Cheluszka
- Department of Mining Mechanization and Robotisation, Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, Akademicka 2, 44-100, Gliwice, Poland.
| | - Janina Gospodarek
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Mickiewicza 21 Av., 30-120, Kraków, Poland
| | - Krzysztof Chmielowski
- Department of Natural Gas Engineering, Oil and Gas Faculty, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059, Kraków, Poland
| | - Jiří Fries
- Department of Machine and Industrial Design, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, Poruba, 708 00, Ostrava, Czech Republic
| |
Collapse
|
4
|
Zhou W, Wen Z, Zhu W, Gu J, Wei J, Xiong H, Wang W. Factors associated with clinical antimicrobial resistance in China: a nationwide analysis. Infect Dis Poverty 2025; 14:27. [PMID: 40170057 PMCID: PMC11959846 DOI: 10.1186/s40249-025-01289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/02/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) represents a critical global health threat, necessitating the identification of factors that contribute to its emergence and proliferation. We used a "One Health" perspective to evaluate the association of human and veterinary antibiotic usage, environmental factors, socio-economic factors, and health care factors with clinical AMR in China. METHODS We analyzed data from 31 provincial-level administrative divisions in China, encompassing 20,762,383 bacterial isolates sourced from the China Antimicrobial Resistance Surveillance System dataset between 2014 and 2022. A β regression model was used to explore the relationship of AMR with multiple variables. We also estimated the contribution of factors associated with AMR, and evaluated the avoidable risk of AMR under six different measures during 2019 according to available guidelines. RESULTS AMR had positive associations with human antibiotic usage, veterinary antibiotic usage, particulate matter smaller than 2.5 µm (PM2.5) level, population density, gross domestic product per capita, and length of hospital stay, and a 1 unit increase in the level of above independent variables were associated with a percentage change in the aggregate AMR of 1.8% (95% CI: 1.1, 2.5), 2.0% (95% CI: 0.6, 3.4), 0.9% (95% CI: 0.4, 1.4), 0.02% (95% CI: 0.01, 0.03), 0.5% (95% CI: 0.1, 0.8), and 8.0% (95% CI: 1.2, 15.3), respectively. AMR had negative associations with city water popularity, city greenery area per capita, and health expenditure per capita, and a 1 unit increase in the level of above independent variables were associated with a percentage change in the aggregate AMR of -4.2% (95% CI: -6.4, -1.9), -0.4% (95% CI: -0.8, -0.07), and -0.02% (95% CI: -0.04, -0.01), respectively. PM2.5 might be a major influencing factor of AMR, accounting for 13.7% of variation in aggregate AMR. During 2019, there was estimated 5.1% aggregate AMR could be attributed to PM2.5, corresponding to 25.7 thousand premature deaths, 691.8 thousand years of life lost, and 63.9 billion Chinese yuan in the whole country. Human antibiotic usage halved, veterinary antibiotic usage halved, city water popularity improved, city greenery area improved, and comprehensive measures could decrease nationwide aggregate AMR by 8.5, 0.5, 1.3, 4.4, and 17.2%, respectively. CONCLUSIONS The study highlights the complex and multi-dimensional nature of AMR in China and finds PM2.5 as a possible major influencing factor. Despite improvements in decreasing AMR, future initiatives should consider integrated strategies to control PM2.5 and other factors simultaneously to decrease AMR.
Collapse
Affiliation(s)
- Wenyong Zhou
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, 200032, China
- Department of Epidemiology, School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Zexuan Wen
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, 200032, China
- Department of Epidemiology, School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Wenlong Zhu
- Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Jiali Gu
- School of Software Engineering, University of Science and Technology of China, Hefei, 230051, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Haiyan Xiong
- Key Laboratory of Health Technology Assessment, National Health and Family Planning Commission of the People'S Republic of China, Fudan University, Shanghai, 200032, China.
- Department of Epidemiology, School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| | - Weibing Wang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Health Technology Assessment, National Health and Family Planning Commission of the People'S Republic of China, Fudan University, Shanghai, 200032, China.
- Integrated Research on Disaster Risk and International Center of Excellence (IRDR-ICoE) on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, 200032, China.
- Department of Epidemiology, School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| |
Collapse
|
5
|
Morgado-Gamero WB, Hernandez L, Medina J, De Moya I, Gallego-Cartagena E, Parody A, Agudelo-Castañeda D. Antibiotic-resistant bacteria aerosol in a Caribbean coastal city: Pre- and post- COVID-19 lockdown. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178158. [PMID: 39721525 DOI: 10.1016/j.scitotenv.2024.178158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
This study assessed the prevalence and spatial distribution of viable ultrafine and fine antibiotic-resistant bacteria aerosols (ARB) in the Metropolitan Area of Barranquilla, Colombia, pre- and post-lockdown (September 2019 to December 2020). Samples were systematically collected from urban, suburban, and rural sites using a six-stage viable cascade impactor. We employed logistic regression and Bayesian Neural Network Classifiers to analyze meteorological variables' influence on antibiotic resistance persistence. The lockdown led to a significant decrease (76 %) in overall bacterial aerosol concentrations, likely due to reduced human activity. The most significant reduction (82 %) was observed at Peace Square. Bacillus cereus was the most prevalent species, showing high concentrations at all sampling sites. Other species, like Leifsonia aquatica and Staphylococcus lentus, were linked to wastewater effluents and agricultural activities. Despite the overall decrease in bacterial aerosols, antibiotic-resistant bacteria remained high, particularly in highly impacted urban areas like the Barranquilla Riverwalk. Bacillus cereus exhibited resistance to multiple antibiotics, including commonly used ones like Ampicillin and Penicillin G. Resistance to newer antibiotics like Vancomycin was rare. Peace Square, a high-traffic urban area, showed elevated resistance rates in the deeper respiratory regions compared to other locations. Our findings indicate that while overall concentration levels decreased, the threat of antibiotic resistance in bacterial bioaerosols persists, emphasizing the need for continuous monitoring and targeted public health interventions in urban areas.
Collapse
Affiliation(s)
- Wendy B Morgado-Gamero
- Department of Exact and Natural Sciences, Universidad de la Costa, Colombia; Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Laura Hernandez
- Department of Exact and Natural Sciences, Universidad de la Costa, Colombia; Faculty of Basic Sciences, Universidad del Atlantico, Puerto Colombia, Colombia
| | - Jhorma Medina
- Department of Civil and Environmental, Universidad de la Costa, Barranquilla, Colombia
| | - Iuleder De Moya
- Department of Civil and Environmental, Universidad de la Costa, Barranquilla, Colombia
| | | | - Alexander Parody
- Engineering Faculty, Universidad Libre Barranquilla, Barranquilla, Colombia
| | - Dayana Agudelo-Castañeda
- Department of Civil and Environmental Engineering, Universidad del Norte, Barranquilla, Colombia.
| |
Collapse
|
6
|
Yabueng N, Sansupa C, Noirungsee N, Kraisitnitikul P, Chansuebsri S, Janta R, Khoomrung S, Disayathanoowat T, Chantara S. Characterization of airborne microbial communities in northern Thailand: Impacts of smoke haze versus non-haze conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125302. [PMID: 39542164 DOI: 10.1016/j.envpol.2024.125302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Data on airborne microorganisms, particularly in Southeast Asia, are more limited compared to chemical data. This study is the first to examine the community and diversity of microorganisms on PM2.5 in an urban area of Northern Thailand during both smoke haze and non-smoke haze periods of 2020. This study evaluated the composition of airborne bacteria and fungi and analyzed their association with the chemical composition of PM2.5 and meteorological variables. Significantly higher concentrations of PM2.5 and more chemical compounds were observed during the smoke haze period compared to the non-smoke haze period. Increased PM2.5 concentrations significantly altered both bacterial and fungal communities. The diversity and richness of airborne bacteria increased, whereas those of fungi decreased. The level of PM2.5 concentration (the carrier), the chemical composition of PM2.5 (the resources for survival), and the local meteorological conditions (relative humidity (RH)) were associated with the differences in bacterial and fungal populations. In addition, air originating from the west of the receptor site, influenced by both terrestrial and marine air mass routes, contributed to higher bacterial diversity and richness during the smoke haze period. In contrast, fungal diversity and richness were greater when the air came from the southwest, following a marine route. However, the primary health concern is pathogens, which were present in both periods (such as Clostridium, Aspergillus, and Cladosporium) and were especially abundant during smoke haze periods. This study highlights those airborne microorganisms, along with the particles and their chemical composition, are important components that can impact health, including that of humans, animals, and the environment.
Collapse
Affiliation(s)
- Nuttipon Yabueng
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chakriya Sansupa
- Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand; Siriraj Metabolomics and Phenomics Center (SiMPC), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Nuttapol Noirungsee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pavidarin Kraisitnitikul
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sarana Chansuebsri
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Radshadaporn Janta
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sakda Khoomrung
- Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand; Siriraj Metabolomics and Phenomics Center (SiMPC), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand; Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University Bangkok, 10700, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science Mahidol University, Bangkok, 10400, Thailand; Thailand Metabolomics Society, Thailand
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Somporn Chantara
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Chemistry Department, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
7
|
Viteri G, Rodríguez A, Aranda A, Díaz de Mera Y, Rodríguez D, Rodriguez-Fariñas N, Valiente N, Belinchón G, Seseña S. Air quality in olive mill wastewater evaporation ponds: Assessment of chemical and microbiological pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125222. [PMID: 39486675 DOI: 10.1016/j.envpol.2024.125222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Olive mill wastewater (OMW), a pollutant residue from the olive oil industry, is typically stored as sludge in evaporation ponds. This study examines the long-term emissions of OMW sludge and its impact on local air quality, analysing chemical pollutants like PM2.5, volatile organic compounds (VOCs), and trace elements (TEs), along with microbial communities (bacteria and fungi). The study also considered meteorological conditions and back-trajectories to identify sources of these elements. The ecological risk index (ERI) was found to be over 720 due to high Hg levels in the sludge (19.0 ± 0.9 ng/g) and air (0.28 ± 0.13 ng/m³), indicating a significant ecological threat. VOCs, particularly oxygenated compounds such as aldehydes and phenol, contributed to the area's strong odour. Meteorological conditions and Sahara dust intrusions influenced bioaerosol loads and seasonal bacterial diversity, whose composition is closely associated with VOC concentrations. The results could contribute to a better understanding of the environmental dynamics in the OMW sludge evaporation ponds, and they could also assist in formulating effective management strategies.
Collapse
Affiliation(s)
- G Viteri
- Faculty of Chemical Sciences and Technologies, Avenida Camilo José Cela S/n, 13071, Ciudad Real, University of Castilla-La Mancha (UCLM), Spain
| | - A Rodríguez
- Faculty of Environmental Sciences and Biochemistry, Environmental Sciences Institute (ICAM), Avda Carlos III s/n, 45071, Toledo, UCLM, Spain.
| | - A Aranda
- Faculty of Chemical Sciences and Technologies, Avenida Camilo José Cela S/n, 13071, Ciudad Real, University of Castilla-La Mancha (UCLM), Spain
| | - Y Díaz de Mera
- Faculty of Chemical Sciences and Technologies, Avenida Camilo José Cela S/n, 13071, Ciudad Real, University of Castilla-La Mancha (UCLM), Spain
| | - D Rodríguez
- Faculty of Environmental Sciences and Biochemistry, Environmental Sciences Institute (ICAM), Avda Carlos III s/n, 45071, Toledo, UCLM, Spain
| | - N Rodriguez-Fariñas
- Faculty of Environmental Sciences and Biochemistry, Environmental Sciences Institute (ICAM), Avda Carlos III s/n, 45071, Toledo, UCLM, Spain
| | - N Valiente
- Department of Science and Agroforestry Technology and Genetics, Campus Universitario s/n, 02071, Albacete, UCLM, Spain
| | - G Belinchón
- Department of Science and Agroforestry Technology and Genetics, Campus Universitario s/n, 02071, Albacete, UCLM, Spain
| | - S Seseña
- Faculty of Environmental Sciences and Biochemistry, Environmental Sciences Institute (ICAM), Avda Carlos III s/n, 45071, Toledo, UCLM, Spain
| |
Collapse
|
8
|
Zhang L, Wang B, Li K, Su Y, Wu D, Zhan M, Xie B. The dynamics and assembly patterns of airborne pathogen communities in the municipal food waste treatment system and its risk implications. ENVIRONMENT INTERNATIONAL 2024; 194:109143. [PMID: 39566443 DOI: 10.1016/j.envint.2024.109143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/16/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
While municipal solid waste (MSW) provides an ideal habitat for pathogen propagation, the dynamics and assembly of airborne pathogen communities in these environments remain largely unknown. Here, we combined amplicon and metagenomics with spatiotemporal sampling to study inhalable particulate matter-carried potential pathogenic bacteria at full-scale food waste treatment plants (FWTPs), alongside comparisons to urban air in the area. The results showed that pathogenic bacteria constituted a notable portion (64.5 % ± 20.6 %, n = 75) of the total bacterial communities in FWTPs-impacted air, with species and relative abundance 2-4 times higher than that of urban air, and contributed over 50 % of pathogens to the outdoor air. Airborne pathogen community structures were highly shaped by sampling sites (i.e. treatment units), but conserved across seasons (summer vs. winter) and particle sizes (PM2.5vs. PM10). Notably, Acinetobacter johnsonii-dominated pathogens (i.e. biofilm-related species) presented high levels of aerosolization and consistently occupied the upper-representative niches in all neutral models, highlighting their persistent exposure risk. Furthermore, pathogen community assembly was strongly driven by stochastic processes (58.8 %-96.8 %), while environmental variables explained only limited variations (3.4 %-28.7 %). In particular, the relative importance of stochastic processes clearly increased along an outdoor-to-indoor gradient (84.9 %-96.5 % vs. 71.3 %-76 %), which might be related to indoor anthropogenic activities that weaken microbial network stability and environmental filtering effects. This work enhances our knowledge of the dynamic behaviors and risk of airborne pathogen communities in MSW disposal and underscores the role of FWTPs in disseminating airborne pathogens.
Collapse
Affiliation(s)
- Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Binghan Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Kaiyi Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Min Zhan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
9
|
Geng X, Nie C, Li D, Wang M, Wu Y, Sun X, An T, Yao M, Huang J, Chen J. A potential bioaerosol source from kitchen chimneys in restaurants. ENVIRONMENT INTERNATIONAL 2024; 193:109115. [PMID: 39500121 DOI: 10.1016/j.envint.2024.109115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/09/2024] [Accepted: 10/30/2024] [Indexed: 11/25/2024]
Abstract
Bioaerosols are ubiquitous and have a substantial impact on the atmosphere and human health. Despite the identification of numerous bioaerosol emission sources, the contribution of anthropogenic sources remains inadequately understood. In kitchens, oil stains accumulated at the vent may discharge microorganisms into the environment with airflow, potentially discharging bioaerosol pollution. This putative anthropogenic source of bioaerosols has been long ignored. To investigated whether kitchen chimneys can be a potential source for bioaerosols, air samples, oil stains from in/out chimneys, and surface sand samples were collected near several commercial restaurants. PCoA showed that sampling sites significantly impacted microbiomes, whereas SourceTracker analysis led to the finding that waste grease significantly contributed to bioaerosol composition. Both findings agree with the kitchen chimney as a source of microbes in bioaerosols in the surrounding environment. Furthermore, despite the low biodiversity, a high proportion of stress-tolerant and potential pathogenic bacteria and fungi were found in residual culinary grease, which may escape into the air causing potential risks to human beings. These results led to the proposal that airborne microbiota can originate from cooking waste grease. Immediate actions should be taken into account to enhance disinfection and sterilization aimed at fume vents.
Collapse
Affiliation(s)
- Xueyun Geng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Changliang Nie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China; School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Maosheng Yao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianping Huang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China.
| |
Collapse
|
10
|
Robinson JM, Liddicoat C, Sun X, Ramesh S, Hawken S, Lee K, Brame J, Fickling NW, Kuhn E, Hayward C, Deshmukh S, Robinson K, Cando‐Dumancela C, Breed MF. The climate change-pollution-aerobiome nexus: A 'systems thinking' mini-review. Microb Biotechnol 2024; 17:e70018. [PMID: 39401032 PMCID: PMC11472731 DOI: 10.1111/1751-7915.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/07/2024] [Indexed: 10/15/2024] Open
Abstract
The interrelationship between climate change, pollution and the aerobiome (the microbiome of the air) is a complex ecological dynamic with profound implications for human and ecosystem health. This mini-review explores the multifaceted relationships among these factors. By synthesising existing research and integrating interdisciplinary perspectives, we examine the mechanisms driving interactions within the climate change-pollution-aerobiome nexus. We also explore synergistic and cascading effects and potential impacts on human health (including both communicable and non-communicable diseases) and that of wider ecosystems. Based on our mini-review results, climate change influences air pollution and, independently, air pollution affects the composition, diversity and activity of the aerobiome. However, we apply a 'systems thinking' approach and create a set of systems diagrams to show that climate change likely influences the aerobiome (including bacteria and fungi) via climate change-pollution interactions in complex ways. Due to the inherent complexity of these systems, we emphasise the importance of holistic and/or interdisciplinary approaches and collaborative efforts in understanding this nexus to safeguard planetary health in an era of rapid environmental change.
Collapse
Affiliation(s)
- Jake M. Robinson
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- The Aerobiome Innovation and Research HubFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Craig Liddicoat
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- The Aerobiome Innovation and Research HubFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Xin Sun
- The Aerobiome Innovation and Research HubFlinders UniversityBedford ParkSouth AustraliaAustralia
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Sunita Ramesh
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- The Aerobiome Innovation and Research HubFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Scott Hawken
- The Aerobiome Innovation and Research HubFlinders UniversityBedford ParkSouth AustraliaAustralia
- School of Architecture and Civil EngineeringThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Kevin Lee
- The Aerobiome Innovation and Research HubFlinders UniversityBedford ParkSouth AustraliaAustralia
- Department of Food Science and Microbiology, School of ScienceAuckland University of TechnologyEast Auckland CityNew Zealand
| | - Joel Brame
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesKensingtonNew South WalesAustralia
| | - Nicole W. Fickling
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- The Aerobiome Innovation and Research HubFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Emma Kuhn
- The Aerobiome Innovation and Research HubFlinders UniversityBedford ParkSouth AustraliaAustralia
- Environmental Health, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Claire Hayward
- The Aerobiome Innovation and Research HubFlinders UniversityBedford ParkSouth AustraliaAustralia
- Environmental Health, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Sonali Deshmukh
- The Aerobiome Innovation and Research HubFlinders UniversityBedford ParkSouth AustraliaAustralia
- Environmental Health, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Kate Robinson
- The Aerobiome Innovation and Research HubFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Christian Cando‐Dumancela
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- The Aerobiome Innovation and Research HubFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Martin F. Breed
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- The Aerobiome Innovation and Research HubFlinders UniversityBedford ParkSouth AustraliaAustralia
| |
Collapse
|
11
|
Wang Y, Wang Q, Zhang G, Li Y, Guo H, Zhou J, Wang T, Jia H, Zhu L. Masks As a New Hotspot for Antibiotic Resistance Gene Spread: Reveal the Contribution of Atmospheric Pollutants and Potential Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16100-16111. [PMID: 39137285 DOI: 10.1021/acs.est.4c03399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The consumption of disposable surgical masks (DSMs) considerably increased during the coronavirus pandemic in 2019. Herein, we explored the spread of antibiotic resistance genes (ARGs) and the potential risks of antibiotic resistant bacteria (ARB) on DSMs. At environmentally relevant concentrations, the conjugate transfer frequency (CTF) of ARGs increased by 1.34-2.37 folds by 20 μg/m3 of atmospheric water-soluble inorganic ions (WSIIs), and it increased by 2.62-2.86 folds by 80 ng/m3 of polycyclic aromatic hydrocarbons (PAHs). Total suspended particulates (TSP) further promoted the CTF in combination with WSIIs or PAHs. Under WSII and PAH exposure, gene expression levels related to oxidative stress, cell membrane, and the adenosine triphosphate (ATP) were upregulated. WSIIs predominantly induced cellular contact, while PAHs triggered ATP formation and membrane damage. Molecular dynamics simulations showed that WSIIs and PAHs reduced membrane lipid fluidity and increased membrane permeability through interactions with the phosphatidylcholine bilayer. DSM filtering performance decreased, and the CTF of ARGs increased with the wearing time. The gut simulator test showed that ARB disrupted the human gut microbial community and increased total ARG abundance but did not change the ARG abundance carried by ARB themselves. A mathematical model showed that long-term WSII and PAH exposure accelerated ARG dissemination in DSMs.
Collapse
Affiliation(s)
- Yanjie Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Qi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Yutong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
12
|
Zhang Y, Wang Y, Han Y, Zhu S, Yan X. Impact of haze on potential pathogens in surface bioaerosol in urban environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124164. [PMID: 38754692 DOI: 10.1016/j.envpol.2024.124164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Air quality considerably affects bioaerosol dynamics within the atmosphere. Frequent haze events, with their associated alterations in bioaerosol composition, may pose potential health risks. This study investigated the microbial diversity, community structure, and factors of PM2.5 within an urban environment. We further examined the impact of haze on potentially pathogenic bacteria in bioaerosols, and analyzed the sources of haze pollution. Key findings revealed that the highest levels of microbial richness and diversity were associated with lightly polluted air conditions. While the overall bacterial community structure remained relatively consistent across different air quality levels, the relative abundance of specific bacterial taxa exhibited variations. Meteorological and environmental conditions, particularly sulfur dioxide, nitrogen dioxide, and carbon monoxide, exerted a greater influence on bacterial diversity and community structure compared to the physicochemical properties of the PM2.5 particles themselves. Notably, haze events were observed to strengthen interactions among airborne pathogens. Stable carbon isotope analysis suggested that coal combustion and automobile exhaust were likely to represent the primary source of haze during winter months. These findings indicate that adoption of clean energy alternatives such as natural gas and electricity, and the use of public transportation, is crucial to mitigate particle and harmful pollutant emissions, thereby protecting public health.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shuai Zhu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Xu Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
13
|
Koner S, Chen JS, Hseu ZY, Chang EH, Chen KY, Asif A, Hsu BM. An inclusive study to elucidation the heavy metals-derived ecological risk nexus with antibiotic resistome functional shape of niche microbial community and their carbon substrate utilization ability in serpentine soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121688. [PMID: 38971059 DOI: 10.1016/j.jenvman.2024.121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Heavy metals (HMs) contained terrestrial ecosystems are often significantly display the antibiotic resistome in the pristine area due to increasing pressure from anthropogenic activity, is complex and emerging research interest. This study investigated that impact of chromium (Cr), nickel (Ni), cobalt (Co) concentrations in serpentine soil on the induction of antibiotic resistance genes and antimicrobial resistance within the native bacterial community as well as demonstrated their metabolic fingerprint. The full-length 16S-rRNA amplicon sequencing observed an increased abundance of Firmicutes, Actinobacteriota, and Acidobacteriota in serpentine soil. The microbial community in serpentine soil displayed varying preferences for different carbon sources, with some, such as carbohydrates and carboxylic acids, being consistently favored. Notably, 27 potential antibiotic resistance opportunistic bacterial genera have been identified in different serpentine soils. Among these, Lapillicoccus, Rubrobacter, Lacibacter, Chloroplast, Nitrospira, Rokubacteriales, Acinetobacter, Pseudomonas were significantly enriched in high and medium HMs concentrated serpentine soil samples. Functional profiling results illustrated that vancomycin resistance pathways were prevalent across all groups. Additionally, beta-lactamase, aminoglycoside, tetracycline, and vancomycin resistance involving specific bio-maker genes (ampC, penP, OXA, aacA, strB, hyg, aph, tet(A/B), otr(C), tet(M/O/Q), van(A/B/D), and vanJ) were the most abundant and enriched in the HMs-contaminated serpentine soil. Overall, this study highlighted that heavy-metal enriched serpentine soil is potential to support the proliferation of bacterial antibiotic resistance in native microbiome, and might able to spread antibiotic resistance to surrounding environment.
Collapse
Affiliation(s)
- Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Zeng-Yei Hseu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Ed-Haun Chang
- Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, Beitou, Taipei, Taiwan
| | - Kuang-Ying Chen
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Aslia Asif
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
14
|
Zuo Z, Pan Y, Huang X, Yuan T, Liu C, Cai X, Xu Z. Seasonal distribution of human-to-human pathogens in airborne PM 2.5 and their potential high-risk ARGs. Front Microbiol 2024; 15:1422637. [PMID: 39027113 PMCID: PMC11254772 DOI: 10.3389/fmicb.2024.1422637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Airborne microorganisms, an emerging global health threat, have attracted extensive studies. However, few attentions have been paid to the seasonal distribution of airborne pathogens, in particular their associations with antibiotic resistance genes (ARGs). To this end, two-week daily PM2.5 samples were consecutively collected from Nanchang in four seasons, and the human-to-human pathogens were screened based on high-throughput sequencing. The results showed that there were 20 pathogenic taxa in PM2.5 in Nanchang, and the highest relative abundance of pathogens was observed in winter (5.84%), followed by summer (3.51%), autumn (2.66%), and spring (1.80%). Although more than half of pathogenic taxa were shared by the four seasons, the analysis of similarities showed that pathogenic community was shaped by season (r = 0.16, p < 0.01). Co-occurrence network analysis disclosed significant interactions among pathogens in each season. Moreover, some dominant pathogens such as Plesiomonas shigelloides, Bacteroides fragilis, and Escherichia-Shigella were hub pathogens. In addition, PICRUSt2 predicted that there were 35 high-risk ARG subtypes in PM2.5, and the pathogens had strongly positive correlations with these ARGs. Even some pathogens like Plesiomonas shigelloides, Bacteroides fragilis, Aeromonas, Citrobacter, may be multi-drug resistant pathogens, including beta-lactam, aminoglycosides, chloramphenicol and multi-drug resistances, etc. Both air pollutants and meteorological conditions contributed to the seasonal variation of airborne pathogenic bacteria (r = 0.15, p < 0.01), especially CO, O3, PM2.5, temperature and relative humidity. This study furthers our understanding of airborne pathogens and highlights their associations with ARGs.
Collapse
Affiliation(s)
- Zhiwei Zuo
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Yuanyuan Pan
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Xueyun Huang
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Tao Yuan
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Cheng Liu
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Xihong Cai
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Zhongji Xu
- Jiangxi Center for Patriotic Health and Health Promotion, Nanchang, China
| |
Collapse
|
15
|
Liang XP, Wang HJ, Zheng JR, Wang XR, Lin DM, Wu YQ, Yu RL, Hu GR, Yan Y. Comprehensive analysis of metal(loid)s and associated metal(loid) resistance genes in atmospheric particulate matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173038. [PMID: 38719055 DOI: 10.1016/j.scitotenv.2024.173038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Despite global concerns about metal(loid)s in atmospheric particulate matter (PM), the presence of metal(loid) resistance genes (MRGs) in PM remains unknown. Therefore, we conducted a comprehensive investigation of the metal(loid)s and associated MRGs in PMs in two seasons (summer and winter) in Xiamen, China. According to the geoaccumulation index (Igeo), most metal(loid)s, except for V and Mn, exhibited enrichment in PM, suggesting potential anthropogenic sources. By employing Positive Matrix Factorization (PMF) model, utilizing a dataset encompassing both total and bioaccessible metal(loid)s, along with backward trajectory simulations, traffic emissions were determined to be the primary potential contributor of metal(loid)s in summer, whereas coal combustion was observed to have a dominant contribution in winter. The major contributor to the carcinogenic risk of metal(loid)s in both summer and winter was predominantly attributed to coal combustion, which serves as the main source of bioaccessible Cr. Bacterial communities within PMs showed lower diversity and network complexity in summer than in winter, with Pseudomonadales being the dominant order. Abundant MRGs, including the As(III) S-adenosylmethionine methyltransferase gene (arsM), Cu(I)-translocating P-type ATPase gene (copA), Zn(II)/Cd(II)/Pb(II)-translocating P-type ATPase gene (zntA), and Zn(II)-translocating P-type ATPase gene (ziaA), were detected within the PMs. Seasonal variations were observed for the metal(loid) concentration, bacterial community structure, and MRG abundance. The bacterial community composition and MRG abundance within PMs were primarily influenced by temperature, rather than metal(loid)s. This research offers novel perspectives on the occurrence of metal(loid)s and MRGs in PMs, thereby contributing to the control of air pollution.
Collapse
Affiliation(s)
- Xiu-Peng Liang
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - He-Jing Wang
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jie-Ru Zheng
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xiao-Ru Wang
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Dao-Ming Lin
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Ya-Qing Wu
- Instrumental Analysis Center of Huaqiao University, Huaqiao University, Xiamen 361021, China
| | - Rui-Lian Yu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Gong-Ren Hu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yu Yan
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
16
|
Au-Yeung C, Lam KL, Choi MH, Chan KW, Cheung YS, Tsui YL, Mo WY. Impact of Prophylactic Antibiotic Use in Ornamental Fish Tanks on Microbial Communities and Pathogen Selection in Carriage Water in Hong Kong Retail Shops. Microorganisms 2024; 12:1184. [PMID: 38930567 PMCID: PMC11205468 DOI: 10.3390/microorganisms12061184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Antibiotics are routinely added to ornamental fish tanks for treating bacterial infection or as a prophylactic measure. However, the overuse or subtherapeutical application of antibiotics could potentially facilitate the selection of antibiotic resistance in bacteria, yet no studies have investigated antibiotic use in the retail ornamental fish sector and its impact on microbial communities. The present study analyzed the concentrations of twenty antibiotics in the carriage water (which also originates from fish tanks in retail shops) collected monthly from ten local ornamental fish shops over a duration of three months. The antibiotic concentrations were correlated with the sequenced microbial community composition, and the risk of resistance selection in bacteria was assessed. Results revealed that the detected concentrations of tetracyclines were the highest among samples, followed by fluoroquinolones and macrolides. The concentrations of oxytetracycline (44.3 to 2,262,064.2 ng L-1) detected across three months demonstrated a high risk for resistance selection at most of the sampled shops. Zoonotic pathogens (species of Rhodococcus, Legionella, and Citrobacter) were positively correlated with the concentrations of oxytetracycline, tetracycline, chlortetracycline, and enrofloxacin. This suggests that antibiotic use in retail shops may increase the likelihood of selecting for zoonotic pathogens. These findings shed light on the potential for ornamental fish retail shops to create a favorable environment for the selection of pathogens with antibiotics, thereby highlighting the urgent need for enhanced antibiotic stewardship within the industry.
Collapse
Affiliation(s)
- Chun Au-Yeung
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong;
| | - Kit-Ling Lam
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| | - Man-Hay Choi
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| | - Ka-Wai Chan
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| | - Yu-Sum Cheung
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong;
| | - Yat-Lai Tsui
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| | - Wing-Yin Mo
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| |
Collapse
|
17
|
Mejías M, Madrid R, Díaz K, Gutiérrez-Cortés I, Pulgar R, Mandakovic D. The Impact of Environmental Gaseous Pollutants on the Cultivable Bacterial and Fungal Communities of the Aerobiome. Microorganisms 2024; 12:1103. [PMID: 38930485 PMCID: PMC11206153 DOI: 10.3390/microorganisms12061103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding air microbial content, especially in highly polluted urban areas, is crucial for assessing its effect on human health and ecosystems. In this context, the impact of gaseous pollutants on the aerobiome remains inconclusive due to a lack of studies separating this factor from other contaminants or environmental factors. In this study, we aimed to experimentally assess the influence of contrasting concentrations of atmospheric gaseous pollutants as isolated variables on the composition of the aerobiome. Our study sites were contrasting Air Quality Index (AQI) sites of the Metropolitan Region of Chile, where nitric oxide (NO) was significantly lower at the low-AQI site than at the high-AQI site, while ozone (O3) was significantly higher. Cultivable aerobiome communities from the low-AQI site were exposed to their own pollutants or those from the high-AQI site and characterized using high-throughput sequencing (HTS), which allowed comparisons between the entire cultivable communities. The results showed increased alpha diversity in bacterial and fungal communities exposed to the high-AQI site compared to the low-AQI site. Beta diversity and compositional hierarchical clustering analyses revealed a clear separation based on NO and O3 concentrations. At the phylum level, four bacterial and three fungal phyla were identified, revealing an over-representation of Actinobacteriota and Basidiomycota in the samples transferred to the high-AQI site, while Proteobacteria were more abundant in the community maintained at the low-AQI site. At the functional level, bacterial imputed functions were over-represented only in samples maintained at the low-AQI site, while fungal functions were affected in both conditions. Overall, our results highlight the impact of NO and/or O3 on both taxonomic and functional compositions of the cultivable aerobiome. This study provides, for the first time, insights into the influence of contrasting pollutant gases on entire bacterial and fungal cultivable communities through a controlled environmental intervention.
Collapse
Affiliation(s)
- Madelaine Mejías
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (M.M.); (R.M.); (K.D.); (I.G.-C.)
- Programa de Doctorado en Ecología Integrativa, Universidad Mayor, Santiago 8580745, Chile
| | - Romina Madrid
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (M.M.); (R.M.); (K.D.); (I.G.-C.)
| | - Karina Díaz
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (M.M.); (R.M.); (K.D.); (I.G.-C.)
| | - Ignacio Gutiérrez-Cortés
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (M.M.); (R.M.); (K.D.); (I.G.-C.)
| | - Rodrigo Pulgar
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LG2IB), Instituto de Nutrición y Tecnología de los Alimento, Universidad de Chile, Santiago 7830490, Chile
| | - Dinka Mandakovic
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (M.M.); (R.M.); (K.D.); (I.G.-C.)
| |
Collapse
|
18
|
Zhang T, Liu M, Zhou D, Ma Z, Chen L, Wu D, Diao H, Wang W, Li D, Zhen Q. Environmental factors and particle size shape the community structure of airborne total and pathogenic bacteria in a university campus. Front Public Health 2024; 12:1371656. [PMID: 38651126 PMCID: PMC11033423 DOI: 10.3389/fpubh.2024.1371656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Given the dense population on university campuses, indoor and outdoor airborne bacterial contamination may lead to the rapid spread of diseases in a university environment. However, there are few studies of the characteristics of airborne and pathogenic bacterial communities in different sites on a university campus. In this study, we collected particulate matter samples from indoor and outdoor locations at a university in Bengbu City, Anhui Province, China, and analyzed the community characteristics of airborne and pathogenic bacteria using a high-throughput sequencing technique. The results showed that the composition of the dominant airborne and pathogenic bacterial communities was consistent among sites at the phylum and genus levels, with differences in their relative abundance. There were significant differences in the structure of the airborne and pathogenic bacterial communities between indoor and outdoor sites (p < 0.05). An analysis of similarities (ANOSIM) indicated that the structure of airborne bacterial communities in indoor sites was influenced by the room occupancy rate, ventilation conditions, and the extent of indoor furnishing (p < 0.05), while the structure of pathogenic bacterial communities was influenced by the number of individuals and spatial dimensions (p < 0.05). The impact of particle size on the structure of airborne and pathogenic bacterial communities was relatively minor. A total of 194 suspected pathogenic bacterial species were identified, accounting for 0.0001-1.3923% of the total airborne bacteria, all of which were conditional pathogens. Among them, Saccharopolyspora rectivirgula, Acinetobacter johnsonii, and Moraxella osloensis exhibited relatively high relative abundance, accounting for 24.40, 16.22, and 8.66% of the total pathogenic bacteria, respectively. Moreover, 18 emerging or re-emerging pathogenic bacterial species with significant implications for human health were identified, although their relative abundance was relatively low (0.5098%). The relative abundance of pathogenic bacteria in indoor environments was significantly higher than outdoors, with the laboratory and dormitory having the highest levels. The findings of this study provide valuable guidance for the prevention and control of airborne bacterial contamination and the associated health risks in both a campus environment and other public spaces with high occupancy rates.
Collapse
Affiliation(s)
- Tianer Zhang
- School of Public Health, Bengbu Medical University, Bengbu, China
- Xinchang Center for Disease Control and Prevention, Shaoxing, China
| | - Mengmeng Liu
- School of Public Health, Bengbu Medical University, Bengbu, China
- Quality Management Department, Fuyang Tumor Hospital, Fuyang, China
| | - Dalin Zhou
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Zhijing Ma
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Liu Chen
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Danchen Wu
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Haitao Diao
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Wanru Wang
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Die Li
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Quan Zhen
- School of Public Health, Bengbu Medical University, Bengbu, China
| |
Collapse
|
19
|
Zhang L, Wang B, Su Y, Wu D, Wang Z, Li K, Xie B. Pathogenic Bacteria Are the Primary Determinants Shaping PM 2.5-Borne Resistomes in the Municipal Food Waste Treatment System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19965-19978. [PMID: 37972223 DOI: 10.1021/acs.est.3c04681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Bioaerosol pollution poses a substantial threat to human health during municipal food waste (FW) recycling. However, bioaerosol-borne antibiotic-resistant genes (ARGs) have received little attention. Herein, 48 metagenomic data were applied to study the prevalence of PM2.5-borne ARGs in and around full-scale food waste treatment plants (FWTPs). Overall, FWTP PM2.5 (2.82 ± 1.47 copies/16S rRNA gene) harbored comparable total abundance of ARGs to that of municipal wastewater treatment plant PM2.5 (WWTP), but was significantly enriched with the multidrug type (e.g., AdeC/I/J; p < 0.05), especially the abundant multidrug ARGs could serve as effective indicators to define resistome profiles of FWTPs (Random Forest accuracy >92%). FWTP PM2.5 exhibited a decreasing enrichment of total ARGs along the FWTP-downwind-boundary gradient, eventually reaching levels comparable to urban PM2.5 (1.46 ± 0.21 copies/16S rRNA gene, N = 12). The combined analysis of source-tracking, metagenome-assembled genomes (MAGs), and culture-based testing provides strong evidence that Acinetobacter johnsonii-dominated pathogens contributed significantly to shaping and disseminating multidrug ARGs, while abiotic factors (i.e., SO42-) indirectly participated in these processes, which deserves more attention in developing strategies to mitigate airborne ARGs. In addition, the exposure level of FWTP PM2.5-borne resistant pathogens was about 5-11 times higher than those in urban PM2.5, and could be more severe than hospital PM2.5 in certain scenarios (<41.53%). This work highlights the importance of FWTP in disseminating airborne multidrug ARGs and the need for re-evaluating the air pollution induced by municipal FWTP in public health terms.
Collapse
Affiliation(s)
- Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Binghan Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zijiang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Kaiyi Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China
| |
Collapse
|
20
|
Gao M, Zhang Q, Lei C, Lu T, Qian H. Atmospheric antibiotic resistome driven by air pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165942. [PMID: 37543315 DOI: 10.1016/j.scitotenv.2023.165942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
The atmosphere is an important reservoir and habitat for antibiotic resistance genes (ARGs) and is a main pathway to cause potential health risks through inhalation and ingestion. However, the distribution characteristics of ARGs in the atmosphere and whether they were driven by atmospheric pollutants remain unclear. We annotated 392 public air metagenomic data worldwide and identified 1863 ARGs, mainly conferring to tetracycline, MLS, and multidrug resistance. We quantified these ARG's risk to human health and identified their principal pathogenic hosts, Burkholderia and Staphylococcus. Additionally, we found that bacteria in particulate contaminated air carry more ARGs than in chemically polluted air. This study revealed the influence of typical pollutants in the global atmosphere on the dissemination and risk of ARGs, providing a theoretical basis for the prevention and mitigation of the global risks associated with ARGs.
Collapse
Affiliation(s)
- Mingyu Gao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chaotang Lei
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
21
|
Liu T, Li G, Liu Z, Xi L, Ma W, Gao X. Characteristics of aerosols from swine farms: A review of the past two-decade progress. ENVIRONMENT INTERNATIONAL 2023; 178:108074. [PMID: 37441818 DOI: 10.1016/j.envint.2023.108074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
With the rapid development of large-scale and intensive swine production, the emission of aerosols from swine farms has become a growing concern, attracting extensive attention. While aerosols are found in various environments, those from swine farms are distinguished from human habitats, such as residential, suburban, and urban areas. In order to gain a comprehensive understanding of aerosols from swine farms, this paper reviewed relevant studies conducted between 2000 and 2022. The main components, concentrations, and size distribution of the aerosols were systematically reviewed. The differences between aerosols from swine farms and human living and working environments were compared. Finally, the sources, influencing factors, and reduction technologies for aerosols from swine farms were thoroughly elucidated. The results demonstrated that the concentrations of aerosols inside swine farms varied considerably, and most exceeded safety thresholds. However, further exploration is needed to fully understand the difference in airborne microorganism community structure and particles with small sizes (<1 μm) between swine farms and human living and working environments. More airborne bacterial and viruses were adhered to large particles in swine houses, while the proportion of airborne fungi in the respirable fraction was similar to that of human living and working environments. In addition, swine farms have a higher abundance and diversity of potential pathogens, airborne resistant microorganisms and resistant genes compared to the human living and working environments. The aerosols of swine farms mainly originated from sources such as manure, feed, swine hair and skin, secondary production, and waste treatment. According to the source analysis and factors influencing aerosols in swine farms, various technologies could be employed to mitigate aerosol emissions, and some end-of-pipe technologies need to be further improved before they are widely applied. Swine farms are advised not to increase aerosol concentration in human living and working environments, in order to decrease the impact of aerosols from swine farms on human health and restrain the spread of airborne potential pathogens. This review provides critical insights into aerosols of swine farms, offering guidance for taking appropriate measures to enhance air quality inside and surrounding swine farms.
Collapse
Affiliation(s)
- Tongshuai Liu
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Guoming Li
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA; Institute for Artificial Intelligence, The University of Georgia, Athens, GA 30602, USA.
| | - Zhilong Liu
- Henan University of Animal Husbandry and Economy Library, Zhengzhou, Henan 450046, China
| | - Lei Xi
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Wei Ma
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Xuan Gao
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China
| |
Collapse
|
22
|
Robinson JM, Breed MF. The aerobiome-health axis: a paradigm shift in bioaerosol thinking. Trends Microbiol 2023; 31:661-664. [PMID: 37211511 DOI: 10.1016/j.tim.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023]
Abstract
Historically, a primary aim of bioaerosol research has been to understand and prevent 'unhealthy' human exposures to pathogens and allergens. However, there has been a recent paradigm shift in thinking about bioaerosols. Exposure to a diverse aerobiome - the microbiome of the air - is now considered necessary to be healthy.
Collapse
Affiliation(s)
- Jake M Robinson
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia.
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
23
|
Liu J, Yu X, Wang Y, Han Y, Cao Y, Wang Z, Lyu J, Zhou Z, Yan Y, Zheng T. Dispersion characteristics of bioaerosols during treatment of rural solid waste in northwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121338. [PMID: 36842620 DOI: 10.1016/j.envpol.2023.121338] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In rural China, the release of bioaerosols containing pathogens from solid waste dumps poses a potential health risk to the local population. Here, we sampled bioaerosols from rural solid waste-treatment in four provinces of northwest China to investigate their emission and dispersion characteristics in order to provide a scientific basis for control and risk reduction of bioaerosols released from rural sanitation facilities. The airborne bioaerosol concentrations and particle size distributions were calculated using an Anderson six-stage airborne microbial sampler and counting with its internal Petri dish culture. High-throughput sequencing was used to characterize the microbial composition at different sampling sites and to explore possible influencing factors, while the health risk associated with exposure was estimated based on average daily dose-rate. The highest concentration point values of bacteria and fungi in bioaerosols near the solid waste were 63,617 ± 15,007 and 8044 ± 893 CFU/m³, respectively. Furthermore, the highest concentration point values of Enterobacteriaceae was 502 ± 35 CFU/m³. Most bioaerosols were coarse particles larger than 3.3 μm. Potentially pathogenic genera of winter-indicator species detected in the air were primarily Delftia, Rhodococcus and Aspergillus. The composition of solid waste and environmental conditions are important factors in determining the characteristics of bioaerosols. Local residents are exposed to bioaerosols mainly through inhalation. Children are at a particularly high risk of exposure through both inhalation and skin contact. The results of this study show that bioaerosols in the vicinity of rural solid waste dumps pose a health risk to the surrounding population. More suitable risk assessment criteria for rural areas should be established, and corresponding control and protection measures should be taken from three aspects: generation source and transmission pathway, as well as the recipient.
Collapse
Affiliation(s)
- Jianguo Liu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot, 010051, Inner Mongolia, China.
| | - Xuezheng Yu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot, 010051, Inner Mongolia, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yingnan Cao
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot, 010051, Inner Mongolia, China.
| | - Zixuan Wang
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot, 010051, Inner Mongolia, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jinxin Lyu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot, 010051, Inner Mongolia, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Ziyu Zhou
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot, 010051, Inner Mongolia, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Ying Yan
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot, 010051, Inner Mongolia, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Tianlong Zheng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Nan N, Yan Z, Zhang Y, Chen R, Qin G, Sang N. Overview of PM 2.5 and health outcomes: Focusing on components, sources, and pollutant mixture co-exposure. CHEMOSPHERE 2023; 323:138181. [PMID: 36806809 DOI: 10.1016/j.chemosphere.2023.138181] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 varies in source and composition over time and space as a complicated mixture. Consequently, the health effects caused by PM2.5 varies significantly over time and generally exhibit significant regional variations. According to numerous studies, a notable relationship exists between PM2.5 and the occurrence of many diseases, such as respiratory, cardiovascular, and nervous system diseases, as well as cancer. Therefore, a comprehensive understanding of the effect of PM2.5 on human health is critical. The toxic effects of various PM2.5 components, as well as the overall toxicity of PM2.5 are discussed in this review to provide a foundation for precise PM2.5 emission control. Furthermore, this review summarizes the synergistic effect of PM2.5 and other pollutants, which can be used to draft effective policies.
Collapse
Affiliation(s)
- Nan Nan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Zhipeng Yan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yaru Zhang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, PR China; Beijing City University, Beijing, 11418, PR China.
| | - Guohua Qin
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| |
Collapse
|
25
|
Ma L, Yabo SD, Lu L, Jiang J, Meng F, Qi H. Seasonal variation characteristics of inhalable bacteria in bioaerosols and antibiotic resistance genes in Harbin. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130597. [PMID: 36584645 DOI: 10.1016/j.jhazmat.2022.130597] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/27/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Bioaerosols have received extensive attention due to their impact on climate, ecological environment, and human health. This study aimed to reveal the driving factors that structure bacterial community composition and the transmission route of antibiotic resistance genes (ARGs) in PM2.5. The results showed that the bacterial concentration in spring (8.76 × 105 copies/m3) was significantly higher than that in summer (1.03 × 105 copies/m3) and winter (4.74 × 104 copies/m3). Low temperatures and air pollution in winter negatively affected bacterial concentrations. Keystone taxa were identified by network analysis. Although about 50 % of the keystone taxa had low relative abundances, the strong impact of complex interactions between keystone taxa and other taxa on bacterial community structure deserved attention. The bacterial community assembly was dominated by stochastic processes (79.3 %). Interactions between bacteria and environmental filtering together affected bacterial community composition. Vertical gene transfer played an important role in the transmission of airborne ARGs. Given the potential integration and expression of ARGs in recipients, the human exposure risk due to high concentrations of ARGs and mobile genetic elements cannot be ignored. This study highlights human exposure to inhalable bacterial pathogens and ARGs in urban areas.
Collapse
Affiliation(s)
- Lixin Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Stephen Dauda Yabo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinpan Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fan Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
26
|
Xu X, Zhou W, Xie C, Zhu Y, Tang W, Zhou X, Xiao H. Airborne bacterial communities in the poultry farm and their relevance with environmental factors and antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157420. [PMID: 35850323 DOI: 10.1016/j.scitotenv.2022.157420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The accelerating occurrence and environmental dissemination of bacteria, gas pollutants and antibiotic resistance genes (ARGs) in aerosols of poultry farms have become emerging environmental issues due to their potential threat to animals, workers, and the communities located near such farms. Here, aerosol samples were gathered from inside and outside of the chicken house in winter with a transportable high-flow bioaerosol sampler. Then, 16S rRNA gene amplicon sequencing was used to categorize the bacteria in air samples, and the abundance of 12 ARG subtypes was researched via the real-time quantitative polymerase chain reaction (qPCR). Results indicated that the bacterial richness and diversity and total absolute abundance of ARGs were similar in the bioaerosols from indoor and downwind site of the poultry farm. The zoonotic pathogens, Staphylococcus and Corynebacterium, were detected both inside and outside of the chicken house, and the four most abundant target genes were blaTEM, tetQ, ermB and sul1 in aerosols. Moreover, the correlation between the bacterial communities and environmental factors, such as NH3 and H2S concentrations, wind speed, temperature and relative humidity, was analyzed. The result revealed that the indoor bacteria community was positively associated with temperature and concentrations of air pollutants (NH3 and H2S), and could spread from confinement buildings to the ambient atmosphere through wind. In addition, the network analysis result showed that the airborne bacteria might significantly contribute in shaping the ARGs' profiles in bioaerosol from inside and outside of the poultry house. Overall, our results revealed the airborne bacterial communities and their associated influencing factors in the micro-environment (inside of the chicken house and nearby the boundary of the farm), and brought a new perspective for studying the gas pollutants and bioaerosol from poultry farms in winter.
Collapse
Affiliation(s)
- Xing Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weidong Zhou
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chuanqi Xie
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yinchu Zhu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wensheng Tang
- Institute of Animal Husbandry and Veterinary Science, Huangyan Bureau of Agriculture and Rural Affairs, Taizhou 318020, China
| | - Xin Zhou
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hua Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
27
|
Kormos D, Lin K, Pruden A, Marr LC. Critical review of antibiotic resistance genes in the atmosphere. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:870-883. [PMID: 35638569 DOI: 10.1039/d2em00091a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We conducted a critical review to establish what is known about the sources, characteristics, and dissemination of ARGs in the atmosphere. We identified 52 papers that reported direct measurements of bacterial ARGs in air samples and met other inclusion criteria. The settings of the studies fell into the following categories: urban, rural, hospital, industrial, wastewater treatment plants (WWTPs), composting and landfill sites, and indoor environments. Certain genes were commonly studied and generally abundant: sul1, intI1, β-lactam ARGs, and tetracycline ARGs. Abundances of total ARGs varied by season and setting, with air in urban areas having higher ARG abundance than rural areas during the summer and vice versa during the winter. There was greater consistency in the types and abundances of ARGs throughout the seasons in urban areas. Human activity within indoor environments was also linked to increased ARG content (abundance, diversity, and concentration) in the air. Several studies found that human exposure to ARGs through inhalation was comparable to exposure through drinking water or ingesting soil. Detection of ARGs in air is a developing field, and differences in sampling and analysis methods reflect the many possible approaches to studying ARGs in air and make direct comparisons between studies difficult. Methodologies need to be standardized to facilitate identification of the dominant ARGs in the air, determine their major sources, and quantify the role of atmospheric transport in dissemination of ARGs in the environment. With such knowledge we can develop better policies and guidelines to limit the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- David Kormos
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Kaisen Lin
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Linsey C Marr
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|