1
|
Zurek-Ost MA, Phillips KA, Williams AJ, Edelman-Muñoz A, Charest N, Handa S, Isaacs KK. ExpoPath: A method for identifying and annotating exposure pathways from chemical co-occurrence networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 979:179465. [PMID: 40286620 DOI: 10.1016/j.scitotenv.2025.179465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025]
Abstract
Improving risk evaluation for environmental and human health is of paramount concern for the U.S. Environmental Protection Agency (EPA). This includes the identification and assessment of chemical transport from commercial and industrial sources to environmental and ecological media, where repeated patterns are often categorized as exposure pathways. Utilizing network analysis techniques paired with graph machine learning tools allows for the construction and analysis of a global chemical co-occurrence network with which to identify sets of overlapping or distinct communities that represent likely exposure pathways. Data from several chemical source databases were aggregated and used to generate a chemical co-occurrence network that encoded linkages between source categories and environmental and receptor categories within the EPA's Multimedia Monitoring Database (MMDB). Multiple algorithms were used to detect communities of chemicals within this network, while enrichment of the resulting communities based on presence-in-media information, physicochemical properties, and functional use information helped to annotate likely exposure pathways. This research identified communities of chemicals associated with various pharmaceutical, consumer, pesticide, and persistent chemical pathways. This novel approach to the study of chemical co-occurrence demonstrates the applicability of network analyses and graph machine learning methods for identifying empirical patterns of connectivity within the domain of exposure science. SYNOPSIS: Network analysis and community detection algorithms help reveal linkages among environmental monitoring data and chemical sources while providing supporting evidence for empirically derived exposure pathways.
Collapse
Affiliation(s)
- Michael A Zurek-Ost
- Oak Ridge Institute for Science and Education, 299 Bethel Valley Rd, Oak Ridge, TN 37830, USA; Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Katherine A Phillips
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Adam Edelman-Muñoz
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC 27709, USA; Oak Ridge Associated Universities, 210 Badger Rd, Oak Ridge, TN 37830, USA
| | - Nathaniel Charest
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Sakshi Handa
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Kristin K Isaacs
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
2
|
Snook J, Becanova J, Vojta S, Lohmann R. Furthering the Capabilities of Diffusive-Gradient Passive Samplers for Per- and Polyfluoroalkyl Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9744-9753. [PMID: 40338921 DOI: 10.1021/acs.est.4c14136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are chemical pollutants of growing concern for many stakeholders. Due to their ubiquity, persistence in the environment, and potential for toxicity at low environmental concentrations, it is necessary to have convenient and reliable methods to measure PFAS in natural waters. Passive sampling methods (in situ preconcentration of PFAS) may be suitable for monitoring situations. One passive sampling design successfully employed for other, well studied contaminants (e.g., methylmercury) is the diffusive gradient in thin film sampler (DGT). However, the application of DGT for PFAS requires development and validation. Here, we iterate on previous PFAS-DGT studies by introducing a redesigned diffusive gradient sampler for PFAS in water and show that it reliably measures 25 PFAS in water, consistent with diffusion theory. Diffusion and whole-sampler uptake rates consistently agreed with model predictions within ±50% relative difference, including when tested at cold temperature (5 °C). In field and laboratory deployments, DGT samplers measured PFAS concentrations within ±23% of grab sample results on average in each case─better performance than codeployed microporous polyethylene tube passive samplers. Based on the evidence in this study, the DGT passive sampler is a promising tool for consistently and accurately passively sampling PFAS in natural waters.
Collapse
Affiliation(s)
- Jarod Snook
- University of Rhode Island Graduate School of Oceanography, 215 S Ferry Rd, Narragansett, Rhode Island 02882, United States
| | - Jitka Becanova
- University of Rhode Island Graduate School of Oceanography, 215 S Ferry Rd, Narragansett, Rhode Island 02882, United States
| | - Simon Vojta
- University of Rhode Island Graduate School of Oceanography, 215 S Ferry Rd, Narragansett, Rhode Island 02882, United States
| | - Rainer Lohmann
- University of Rhode Island Graduate School of Oceanography, 215 S Ferry Rd, Narragansett, Rhode Island 02882, United States
| |
Collapse
|
3
|
Paustenbach D, McCauley K, Siracusa J, Smallets S, Brew D, Stevens M, Deckard B, Hua M. United States Environmental Protection Agency's Perfluorooctanoic Acid, Perfluorooctane Sulfonic Acid, and Related Per- and Polyfluoroalkyl Substances 2024 Drinking Water Maximum Contaminant Level: Part 2 - Fifteen Misconceptions About the Health Hazards. Crit Rev Toxicol 2025:1-48. [PMID: 40391660 DOI: 10.1080/10408444.2024.2446453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 05/22/2025]
Abstract
This paper examines widely held beliefs about the six per- and polyfluoroalkyl substances (PFAS) addressed in the final U.S. Environmental Protection Agency's (EPA) rule on PFAS in drinking water (e.g., the Maximum Contaminant Levels - MCLs). Based on our understanding of the scientific literature and the comments submitted by stakeholders regarding the EPA's regulation that was promulgated in April 2024, we identified 15 misconceptions that had a weak scientific foundation. These are now memoralized in the MCLs for the six PFAS but remain debated due to ongoing ambiguous research findings. Many critics of the MCLs found the EPA's systematic review of the published relevant information, particularly the toxicology of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), to be inadequate. The following seven views are among the most important. First, the EPA asserted that the toxicology of these six chemicals was poorly understood and lacked sufficient data to determine a safe daily intake level for chronic health effects; nonetheless, they promulgated what may be the costliest environmental regulation to date. Notably, adverse effects remain difficult to demonstrate in occupationally exposed individuals even at blood concentrations 50-100 times higher than current background PFAS levels. Second, the Agency indicated that the epidemiology data showed that exposure to PFOA and PFOS caused kidney and potentially other cancers, yet the data were equivocal and do not support that assertion. Third, it was stated that specific non-cancer effects, such as heart disease, would be prevented under the promulgated rule; however, the studies that they relied upon do not show an increased incidence of heart disease even in highly exposed populations. Fourth, the Agency relied on animal data to support its views on the likely toxic effects in humans, despite ample toxicology data that animals, particularly rodents, are poor predictors of the human response to PFAS exposures. Fifth, the EPA predicted a reduction in healthcare expenditures that would offset much of the cost of complying with the MCL, but, they did not have adequate data to support this prediction. Sixth, the EPA suggested that these six PFAS act through a shared mechanism of action (i.e., PPARα pathway induction); however, data indicate that PPARα induction in humans may be 80% less than what is observed in rodents. Also, induction of the PPARα pathway is not a cause of systemic disease. Seventh, the Agency failed to disclose that achieving the new MCL would yield negligible reductions in blood PFAS levels even among highly exposed populations, given drinking water accounts for only 20% or less of total PFAS exposure. The survey that could answer that question, the EPA's fifth Unregulated Contaminant Monitoring Rule, was only 25% complete at the time the MCL was promulgated. Overall, our analysis concluded that while the EPA's intent to regulate these chemicals due to their environmental presence was necessary, the derivation of the MCLs and the alleged health effects was based on the application of the precautionary principle rather than robust scientific evidence.
Collapse
Affiliation(s)
| | | | | | | | - David Brew
- Paustenbach and Associates, Jackson, WY, USA
| | | | | | - My Hua
- Paustenbach and Associates, Glendale, CA, USA
| |
Collapse
|
4
|
Simpson A, Fisher M, Harrison S, Morisset AS, Borghese MM, Braun JM, Bouchard MF, Saha T, Panagiotopoulos C, Booij L, Morrison K, Ashley-Martin J. Diet quality in relation to serum perfluoroalkyl substance concentrations in Canadian preadolescents. ENVIRONMENTAL RESEARCH 2025; 279:121790. [PMID: 40340011 DOI: 10.1016/j.envres.2025.121790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Exposure to perfluoroalkyl substances (PFAS) is concerning because some of these chemicals are associated with health effects. Preadolescents eat more food per body weight and may be more affected by substances in food compared to adults. OBJECTIVE Estimate how diet quality and nutrients are associated with concurrently measured PFAS concentrations in Canadian preadolescents. METHODS Using data from 157 participants (7-11 years) in a Maternal-Infant Research on Environmental Chemicals follow-up study (2018-2021), we analyzed serum concentrations of 9 PFAS, and derived 2019-Healthy Eating Food Index (HEFI-2019) scores and nutrient intakes from 24-h diet recalls. We used multivariable linear regression to estimate cross-sectional associations between diet and serum PFAS concentrations. RESULTS Saturated fat consumption was associated with higher serum perfluorooctanesulfonic acid (PFOS) concentrations. The fruits and vegetables score was associated with higher perfluorodecanoic acid (PFDA), and perfluorononanoic acid (PFNA); similar associations appeared with the HEFI-2019 total score. Percentage of energy intake (%E) from protein was associated with lower perfluorooctanoic acid (PFOA), PFOS, and perfluorohexanesulphonic acid (PFHxS) while %E from fat was associated with higher PFDA and PFOS. Fiber and iron intakes were associated with higher PFHxS. Vitamin D intake was associated with lower PFNA. CONCLUSIONS We observed some associations between diet and PFAS. Our findings may be partially explained by toxicokinetics and PFAS presence in Canadian food systems. However, our interpretation is hindered by lack of temporality and potential confounding. Additional investigations which integrate food systems information paired with PFAS concentrations from food and biomonitoring are required.
Collapse
Affiliation(s)
- Ashlyn Simpson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Mandy Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Stéphanie Harrison
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, Canada
| | - Anne-Sophie Morisset
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, Canada; École de Nutrition, Université Laval, Québec, Canada
| | - Michael M Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, United States of America
| | - Maryse F Bouchard
- Department of Epidemiology and Biostatistics, Institut national de la recherche Scientifique (INRS), Québec, Canada
| | - Trisha Saha
- Department of Epidemiology and Biostatistics, Institut national de la recherche Scientifique (INRS), Québec, Canada
| | | | - Linda Booij
- Department of Psychiatry, McGill University, Douglas Mental Health University Institute, CHU Sainte-Justine Research Centre, Montreal, Québec, Canada
| | - Katherine Morrison
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Jillian Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
Picone M, Marangoni S, Silan G, Volpi Ghirardini A, Piazza R, Bonato T. Hair analysis as a non-invasive method for assessing the exposure of wildlife to per- and poly-fluoroalkyl substances (PFAS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 377:126443. [PMID: 40373857 DOI: 10.1016/j.envpol.2025.126443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/20/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
In mammals, exposure to PFAS is usually assessed by measuring burdens in internal organs (i.e., liver and brain) or plasma, while less emphasis is devoted to non-invasive and non-destructive methods. We assess the suitability of hair as a non-invasive matrix for monitoring the exposure of mammals to 33 PFAS, including perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs), perfluoroalkylether carboxylic acids (PFECAs), perfluoroalkylether sulfonic acids (PFESAs), perfluoroalkane sulfonyl fluoride-based substances (PASFs), and fluorotelomers (FTs). The Red fox is chosen as the target species due to its apical position in the terrestrial food web of the study area, the Cavallino-Treporti peninsula in North-East Italy. All analysed samples (n = 24) are positive for PFAS, with eight compounds quantified in all samples, including PFHxA, PFOA, PFDA, PFUnDA, PFDoDA, PFTriDA, PFTeDA, and PFOS. The highest mean concentration in hair samples is measured for PFOS (1.40 ± 0.48 ng g-1 dw) followed by PFDoDA (0.31 ± 0.05 ng g-1 dw), and PFOA (0.31 ± 0.19 ng g-1 dw), while the mean ∑33PFAS was 3.41 ± 0.93 ng g-1 dw. The dominance of PFOS and long-chain PFAS in the PFAS profile and the occurrence of compounds with even-numbered carbon chains at higher concentrations than the odd-numbered compounds with a one-carbon longer chain (i.e., PFOA > PFNA, PFDA > PFUnDA, PFDoDA > PFTriDA) suggest the trophic transfer along the terrestrial food web as the primary exposure pathway in the study area. The data suggest hair analysis as a reliable, non-invasive method for assessing the possible exposure of mammals to PFAS and suggested that the Red fox can be used as a sentinel of the environment, embracing the One Health perspective.
Collapse
Affiliation(s)
- Marco Picone
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172, Venezia, Mestre, Italy.
| | - Simone Marangoni
- Società Estense Servizi Ambientali (S.E.S.A. S.p.A.), 35042, Este, Italy
| | - Giulia Silan
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172, Venezia, Mestre, Italy
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172, Venezia, Mestre, Italy
| | - Rossano Piazza
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172, Venezia, Mestre, Italy
| | - Tiziano Bonato
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172, Venezia, Mestre, Italy; Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Italy
| |
Collapse
|
6
|
Xu C, Yang Y, Ling H, Yi C, Zhang X, Zhang R. Occurrence and human exposure assessment of PFAS in river and groundwater around a closed fluorochemical plant in China. Sci Rep 2025; 15:16241. [PMID: 40346148 PMCID: PMC12064658 DOI: 10.1038/s41598-025-01128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 05/05/2025] [Indexed: 05/11/2025] Open
Abstract
Studies have demonstrated that point source emissions constitute the main direct source of PFASs in water. However, if production/usage and emission from a specific point are stopped, does the point source still present a threat to surrounding waters? In this study, the occurrence and potential human exposure to 17 PFASs in the surrounding ambient river and ground/drinking water within a 13 km around the facility were assessed. Of the 17 PFASs analyzed, 11 were frequently detected in river and groundwater samples, with perfluorobutane sulfonate (PFBS) (36.8-11462.9 ng/L), perfluorobutyric acid (PFBA) (below the detection limit (BDL)-4789.8 ng/L) and perfluorohexane sulfonate (PFHxS) (3.3-3549.0 ng/L) exhibiting the highest concentrations. Prevalence of short-chain PFASs was observed in both river and groundwater. The spatial distribution pattern showed that locations near the facility exhibited higher PFASs concentrations. The seasonal distribution pattern indicated that the PFASs concentration in river water during the wet season was higher than that during the dry season. However, the seasonal distribution in groundwater was unexpectedly the opposite to that in river water. Nevertheless, the major health risk of PFASs is primarily attributed to the presence of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) with maximum hazard quotients of 6.9 × 102 and 1.0 × 103 and 2.4 and 3.6 for adults and toddlers, respectively. Thus, the potential threat of the closed fluorochemical manufacturing plant to the surrounding waters cannot be ignored.
Collapse
Affiliation(s)
- Chunyan Xu
- Hubei Academy of Environmental Sciences, Wuhan, Hubei, People's Republic of China
- Hubei key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan, Hubei, People's Republic of China
| | - Yijing Yang
- Hubei Academy of Environmental Sciences, Wuhan, Hubei, People's Republic of China
- Hubei key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan, Hubei, People's Republic of China
| | - Haibo Ling
- Hubei Academy of Environmental Sciences, Wuhan, Hubei, People's Republic of China
- Hubei key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan, Hubei, People's Republic of China
| | - Chuan Yi
- Hubei Academy of Environmental Sciences, Wuhan, Hubei, People's Republic of China.
- Hubei key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan, Hubei, People's Republic of China.
| | - Xiangpu Zhang
- Hubei Academy of Environmental Sciences, Wuhan, Hubei, People's Republic of China
- Hubei key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan, Hubei, People's Republic of China
| | - Ruowen Zhang
- Hubei Academy of Environmental Sciences, Wuhan, Hubei, People's Republic of China
- Hubei key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
7
|
Schrott R, Ladd-Acosta C, Padmanabhan V, Barr DB, Breton CV, Cardenas A, Carignan CC, Dabelea D, Dunlop AL, Fallin DM, Hivert MF, Howerton EM, Knight AK, Oken E, Peterson AK, Petriello MC, Ruden D, Schmidt RJ, Smith AK, Starling AP, Yang IV, Zhu Y, Goodrich JM. Prenatal per- and polyfluoroalkyl substance exposures and DNA methylation among newborns in the Environmental influences on Child Health Outcomes program. ENVIRONMENTAL EPIGENETICS 2025; 11:dvaf010. [PMID: 40401168 PMCID: PMC12094075 DOI: 10.1093/eep/dvaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/06/2025] [Accepted: 04/21/2025] [Indexed: 05/23/2025]
Abstract
Gestation is a vulnerable window when exposure to per- and polyfluoroalkyl substances (PFAS) may impact child development and health. Epigenetic modification, including DNA methylation (DNAm), may be one mechanism linking prenatal PFAS exposure to offspring outcomes. We tested associations between prenatal PFAS and newborn DNAm in 1017 participants from 6 cohorts in the US Environmental influences on Child Health Outcomes consortium. Concentrations of PFAS [perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), perfluorononanoic acid (PFNA), and perfluorodecanoic acid] were measured in maternal serum or plasma. DNAm was quantified in newborn dried blood spot or umbilical cord blood leukocytes using the Infinium HumanMethylation450 (450K) or MethylationEPIC (EPIC) arrays. We tested associations between prenatal PFAS and neonatal blood DNAm on the 450K (n = 772) and EPIC (n = 245) arrays; results were meta-analysed across the platforms. Regional changes in DNAm were investigated, and findings were checked for replication in the Michigan Mother-Infant Pairs (MMIP) cohort (n = 140). Following correction for false discovery rate (q = 0.1 for meta-analyses), we identified an association between PFHxS and one cytosine-guanine (CpG) mapped to CASC3 (q = 0.065) that replicated in MMIP (P = .006). PFOS was associated with six CpG sites, of which five were mapped to the genes KIAA1841, ABR, LEP, SERPINA1, and LOXL1. One differentially methylated region (DMR) was associated with prenatal PFOA exposure, and one DMR was associated with PFOS exposure. In this multicohort analysis including a diverse group from the USA, PFOA, PFOS, PFHxS, and PFNA exposures in pregnancy were associated with offspring DNAm, and the implications for children's health merit further exploration.
Collapse
Affiliation(s)
- Rose Schrott
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Carrie V Breton
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, United States
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, United States
| | - Courtney C Carignan
- Department of Food Science and Human Nutrition, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Danielle M Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, United States
| | - Ellen M Howerton
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Anna K Knight
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, United States
| | - Alicia K Peterson
- Division of Research, Kaiser Permanente Northern California, Pleasanton, Pleasanton 94588 United States
| | - Michael C Petriello
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, United States
| | - Douglas Ruden
- Department of Obstetrics and Gynecology, Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | - Rebecca J Schmidt
- Department of Public Health Sciences and the MIND Institute, University of California Davis School of Medicine, Davis, CA 95817, United States
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Anne P Starling
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 , United States
| | - Ivana V Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Pleasanton, Pleasanton 94588 United States
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
8
|
Noyes TS, Abington LM, van 't Erve TJ, Wang L, McDonald JM, Wasilevich EA, Gray JS, Karrer TA, Smith K, Bailey JM. Per and polyfluoroalkyl substances affect thyroid hormones for people with a history of exposure from drinking water. Sci Rep 2025; 15:12502. [PMID: 40216802 PMCID: PMC11992217 DOI: 10.1038/s41598-025-91977-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/24/2025] [Indexed: 04/14/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) may disrupt thyroid hormones although the literature shows mixed evidence of this effect and exposure to mixtures of PFAS remains poorly understood. We used the Michigan PFAS Exposure and Health Study cohort to examine linear and nonlinear associations between serum PFAS concentrations, both alone and as a mixture, and serum thyroid hormone concentrations. Study participants included 728 adolescents and adults living in an area with past PFAS contamination of drinking water. We quantified 39 individual PFAS and four thyroid hormones in serum from participants between the years 2020 and 2021. Linear regression, weighted quantile sum (WQS) regression, supervised Principal Component Analysis (PCA), and Bayesian Kernel Machine Regression (BKMR) were used. When analyzed individually, a 1% increase in PFUnA serum concentrations was associated with a 0.023% decrease in TT3 concentration (95% CI: -0.04%, -0.01%, p < 0.05). All three mixture analyses consistently indicated an inverse relationship between PFAS mixtures and TT3 concentrations: (1) a one standard deviation increase in the WQS of the PFAS mixture was associated with a 2.0% decrease in TT3 concentration (95% CI= -4%, 0%, p < 0.05) adjusting for covariates, (2) using PCA, one standard deviation increase in a PFAS mixture was associated with a 1.2% decrease in TT3 (95% CI: -2.1%, -0.4%), and (3) BKMR similarly suggested a negative association between the PFAS mixture and TT3. We observed cross-sectional associations between a mixture of serum PFAS concentrations and thyroid hormone dysregulation, largely manifesting as decreased TT3 serum concentrations.
Collapse
Affiliation(s)
- Taylor S Noyes
- Michigan Department of Health and Human Services, Environmental Health Bureau, 333 South Grand Ave., 3rd Floor, Lansing, MI, 48909, USA
| | - Laura M Abington
- Michigan Department of Health and Human Services, Environmental Health Bureau, 333 South Grand Ave., 3rd Floor, Lansing, MI, 48909, USA
| | - T Joost van 't Erve
- Michigan Department of Health and Human Services, Environmental Health Bureau, 333 South Grand Ave., 3rd Floor, Lansing, MI, 48909, USA
| | - Ling Wang
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Jennifer M McDonald
- Michigan Department of Health and Human Services, Environmental Health Bureau, 333 South Grand Ave., 3rd Floor, Lansing, MI, 48909, USA
| | - Elizabeth A Wasilevich
- Michigan Department of Health and Human Services, Environmental Health Bureau, 333 South Grand Ave., 3rd Floor, Lansing, MI, 48909, USA
| | - Jennifer S Gray
- Michigan Department of Health and Human Services, Environmental Health Bureau, 333 South Grand Ave., 3rd Floor, Lansing, MI, 48909, USA
| | - Timothy A Karrer
- Division of Chemistry and Toxicology, Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI, USA
| | - Kristine Smith
- Division of Infectious Disease, Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI, USA
| | - Jordan M Bailey
- Michigan Department of Health and Human Services, Environmental Health Bureau, 333 South Grand Ave., 3rd Floor, Lansing, MI, 48909, USA.
| |
Collapse
|
9
|
Xu H, Kang J, Gao X, Lan Y, Li M. Towards a Better Understanding of the Human Health Risk of Per- and Polyfluoroalkyl Substances Using Organoid Models. Bioengineering (Basel) 2025; 12:393. [PMID: 40281753 PMCID: PMC12025065 DOI: 10.3390/bioengineering12040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/16/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
The ubiquitous presence of per- and polyfluoroalkyl substances (PFAS) in the environment has garnered global public concern. Epidemiological studies have proved that exposure to PFAS is associated with human health risks. Although evidence demonstrated the toxic mechanisms of PFAS based on animal models and traditional cell cultures, their limitations in inter-species differences and lack of human-relevant microenvironments hinder the understanding of health risks from PFAS exposure. There is an increasing necessity to explore alternative methodologies that can effectively evaluate human health risks. Human organoids derived from stem cells accurately mimic the sophisticated and multicellular structures of native human organs, providing promising models for toxicology research. Advanced organoids combined with innovative technologies are expected to improve understanding of the breadth and depth of PFAS toxicity.
Collapse
Affiliation(s)
- Haoan Xu
- School of Life Sciences and Technology, Tongji University, Shanghai 200120, China;
| | - Jiahui Kang
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China;
| | - Xue Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China;
| | - Yingying Lan
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Minghui Li
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China;
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China;
| |
Collapse
|
10
|
Mišľanová C, Valachovičová M. Health Impacts of Per- and Polyfluoroalkyl Substances (PFASs): A Comprehensive Review. Life (Basel) 2025; 15:573. [PMID: 40283131 PMCID: PMC12028640 DOI: 10.3390/life15040573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are among the persistent organic pollutants characterized by their persistence in the environment, high mobility, and adverse impact not only on the ecosystem but also on human health. The biggest challenges in human biomonitoring are the low concentrations of PFASs in biological matrices and the presence of matrix interferents in samples. The combination of liquid chromatography with tandem mass spectrometry (LC-MS/MS) and solid-phase extraction (SPE) as a sample preparation technique appears to be the most suitable solution for achieving the desired selectivity and sensitivity in PFAS determination. The aim of this review is to describe possible sources of PFASs, their presence in various human matrices, analytical methods for determining PFASs in different biological matrices using various pretreatment techniques for complex samples, as well as adverse health risks associated with PFAS exposure. The most studied PFASs include PFOA and PFOS, which are most frequently detected in matrices such as plasma, serum, and breast milk. The average concentrations of PFOA range from 1.0 to 2.6 ng.mL-1 in plasma, 1.9 to 2.4 ng.mL-1 in serum, and 0.4 to 3.1 ng.mL-1 in breast milk. For PFOS, the average concentrations were 2.0-4.0 ng.mL-1, 3.7-4.6 ng.mL-1, and 3.6-4.8 ng.mL-1 for plasma, serum, and breast milk, respectively. The most significant health effects associated with exposure to long-chain PFASs (such as PFOA and PFOS) include lipid disorders, hypertension, diabetes mellitus, thyroid disorders, infertility, cancer, obesity, autism, neurodevelopmental issues, cardiovascular diseases, and kidney and liver disorders. It is of utmost importance to monitor PFAS exposure, predict their toxicity, and develop effective strategies to mitigate their potential effects on human health.
Collapse
Affiliation(s)
- Csilla Mišľanová
- Institute of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, 833 03 Bratislava, Slovakia;
| | | |
Collapse
|
11
|
Jeon H, Shin MY, Kim WY, Choi S, Lee A, Lim JE, Park J, Moon HB, Choi K, Kim S, Kho Y. Family-based exposure assessment of legacy and alternative poly- and perfluoroalkyl substances (PFASs) by multiple pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178735. [PMID: 40020573 DOI: 10.1016/j.scitotenv.2025.178735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/06/2024] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
PFASs are persistent, amphiphilic chemicals that bioaccumulate and cause adverse health effects. Restrictions on major PFASs have increased exposure to precursors and alternatives, requiring examination of contamination from major sources and internal levels. We collected house dust (n = 45), dietary (n = 124), and serum (n = 123) from 48 families and analyzed 30 PFASs. Three PFCAs (PFOA, PFDA, and PFUnDA) and one precursor (6:2diPAP) showed detection rates >90 % in house dust. Among these compounds, 6:2diPAP showed the highest level, with median of 4.71 ng/g dry weight. In dietary, PFPeA (1.43 ng/g) and 6:2FTS (0.61 ng/g) had the highest medians and were detected in all samples. In serum, the highest median was PFOA (4.50 ng/mL), followed by linear (L)-PFOS (3.90 ng/mL), L-PFHxS (1.79 ng/mL), and PFNA (1.15 ng/mL) across all family groups. The study identified diet as a significant exposure pathway, underscoring the importance of dietary habits in PFASs intake. The estimated daily intake from PFOA for all family members exceeded the USEPA's threshold. Compared to the EFSA's threshold for a mixture of four PFASs, exceedances ranged from 18 % to 38 %. This study highlights the need for continuous monitoring and regulation of PFASs and their alternatives to mitigate health risks.
Collapse
Affiliation(s)
- Hyeri Jeon
- Department of Health, Environment & Safety, Eulji University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Mi-Yeon Shin
- Office of Dental Education, School of Dentistry, Seoul National University, Seoul, Republic of Korea; Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Won-Young Kim
- Department of Health, Environment & Safety, Eulji University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Sohyeon Choi
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Aram Lee
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Jae-Eun Lim
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea
| | - Jeongim Park
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Sungkyoon Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
12
|
Bold E, Zimmermann S, Schönecker C, Oesterschulze E. Partially substrateless microchannels for direct monitoring of interfacial dynamics in hydrophobic surfaces. COMMUNICATIONS ENGINEERING 2025; 4:46. [PMID: 40082553 PMCID: PMC11906875 DOI: 10.1038/s44172-025-00386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Superhydrophobic and liquid-infused surfaces are the most prominent techniques to achieve drag reduction in microchannels. However, they have specific drawbacks such as costly fabrication of complex and mechanically sensitive surfaces, surfaces susceptible to lubricant abrasion or involve hazardous chemicals. We present a partially substrateless microchannel whose upper wall features a large no-shear air/water meniscus at atmospheric pressure. On this wall, a self-assembled monolayer of hydrophobic alkyl silane was bonded covalently. Flow experiments reveal a drag reduction of up to 25% although only 4% of the wall fulfils the no-shear condition. These experiments demonstrated long-term stability and self-healing properties. Furthermore, White Light Interferometry (WLI) was used for direct monitoring of interfacial dynamics. By optical investigation of the full meniscus topography the contact-free evaluation of the spatially resolved static pressure distribution was possible. Conducted numerical simulations are in good agreement with the experimental findings and illustrate the drag reduction mechanism.
Collapse
Affiliation(s)
- Ellen Bold
- Rhineland-Palatinate Technical University (RPTU) Kaiserslautern, Department of Physics, Physics and Technology of Nanostructures, Erwin-Schrödinger Str. 46, Kaiserslautern, 67663, Germany
| | - Sebastian Zimmermann
- Rhineland-Palatinate Technical University (RPTU) Kaiserslautern, Department of Mechanical Engineering, Microfluidics, Gottlieb-Daimler Str. 46, Kaiserslautern, 67663, Germany
| | - Clarissa Schönecker
- Rhineland-Palatinate Technical University (RPTU) Kaiserslautern, Department of Mechanical Engineering, Microfluidics, Gottlieb-Daimler Str. 46, Kaiserslautern, 67663, Germany
| | - Egbert Oesterschulze
- Rhineland-Palatinate Technical University (RPTU) Kaiserslautern, Department of Physics, Physics and Technology of Nanostructures, Erwin-Schrödinger Str. 46, Kaiserslautern, 67663, Germany.
| |
Collapse
|
13
|
LIN Q, WANG J, LI J, SU D, LI M, WANG J, NIU Y, SHAO B. [Determination of 17 perfluorinated/polyfluoroalkyl compounds in serum by high-throughput solid-phase extraction-ultra-high performance liquid chromatography-tandem mass spectrometry]. Se Pu 2025; 43:252-260. [PMID: 40045647 PMCID: PMC11883548 DOI: 10.3724/sp.j.1123.2024.03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Indexed: 03/09/2025] Open
Abstract
Perfluorinated/polyfluoroalkyl compounds (PFASs) are a group of synthetic chemicals. Since the 1940s, PFASs have been widely used in industrial and daily consumer fields. PFASs can enter the human body through various pathways, such as drinking water, food, and air. Toxicological studies have shown that PFASs feature developmental and reproductive toxicity. Thus, the accurate assessment of PFAS exposure levels plays an important role in determining the health risks of these compounds. Biological monitoring is considered the most ideal means of monitoring and evaluating PFAS levels in the human body. The concentration of PFASs in serum can directly reflect their level of absorption in the human body after exposure; therefore, serum is widely used as a biological matrix for evaluating PFASs. In this study, a high-throughput solid-phase extraction (SPE)-ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for the determination of 17 PFASs in serum. A laboratory-made straight-through SPE column was used to purify serum samples. The SPE column used a new inorganic material with a low perfluorinated compound background. Unlike traditional SPE columns, the extraction column does not require activation before use, and the sample can be directly loaded into it for purification. The straight-through SPE column adopts a stepped design, which does not require a large sample volume and is suitable for the pretreatment of precious biological samples such as serum. The serum sample size adopted in this study was only 50 μL, which is much lower than that required by other extraction methods. The straight-through SPE column can be used in conjunction with a 96-well plate, and the purification treatment of 96 serum samples can be completed within 30 min with high efficiency. The mass spectrometry parameters were optimized, and the results indicated that the electrospray ionization source temperature had a significant impact on the PFASs with later elution peaks. The effects of ion-source temperatures of 400 and 500 ℃ on the peak shapes and response values of the target compounds were compared, and 400 ℃ was selected. The sample pretreatment and ultra-high performance liquid chromatographic conditions were optimized. Briefly, 50 μL of the sample was loaded into the SPE column and extracted twice using 200 μL of acetonitrile each time. The purified solution was collected, blown with nitrogen at 40 ℃ to near dryness, dissolved in a 50% methanol aqueous solution, and then separated on a Poroshell 120 EC-C18 chromatographic column (100 mm×3 mm, 2.7 μm) with 5 mmol/L ammonium acetate aqueous solution and methanol as mobile phases. Detection was conducted in multiple-reaction monitoring mode, and quantification was performed using an isotope internal standard method. The 17 detected PFASs had good linear relationships within the corresponding mass concentration ranges (r2>0.995), with limits of detection ranging from 3.6 ng/L to 14 ng/L and limits of quantification ranging from 11 ng/L to 42 ng/L. The recoveries in spiked serum samples were 89.3%-110.2%, the intra-day RSDs were 2.5%-9.8%, and the inter-day RSDs were 3.6%-10.2%. The method was applied to the detection of 20 human serum samples, and all 17 compounds were successfully detected. The proposed method is easy to operate, highly sensitive, has a small sample size and high detection efficiency, and is suitable for the large-scale monitoring and exposure assessment of PFASs in human serum samples.
Collapse
|
14
|
Madsen MH, Møller JJ, Ebbehøj NE, Nielsen F, Severinsen MT, Jensen JF, Lenschow SR, Bønløkke JH. PFAS concentrations in the blood of Danish surfers. Int J Hyg Environ Health 2025; 264:114522. [PMID: 39836987 DOI: 10.1016/j.ijheh.2025.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Per- and poly-fluoroalkyl Substances (PFAS) have been used for decades in countless households and industrial products. Many PFAS do not degrade and are thus ubiquitous in the environment and within organisms. Humans are primarily exposed to PFAS through ingestion and inhalation, and such exposure has been associated with several health effects. Some PFAS accumulate in the top layer of seawater and in seafoam up to 100,000 times the concentration in bulk seawater. No studies have investigated whether exposure to seafoam or aerosols by surfing or other water activities is associated with a higher PFAS burden. This study aimed to measure PFAS concentrations in the blood of 34 Danish surfers and investigate the effect of annual surfing hours on these concentrations. METHODS A cross-sectional questionnaire-based study of surfers from the West Coast of Denmark was conducted to investigate a possible association between annual surfing hours and serum PFAS concentrations including PFOA, PFOS, PFNA, PFDA and PFHxS. FINDINGS All 34 surfers had measurable PFAS concentrations in their blood. However, annual surfing hours were not associated with increased PFAS concentrations. Unadjusted subgroup analyses showed statistically significant associations with male sex and consumption of meat from free-ranging animals with higher PFAS concentrations in blood, although these associations might be driven by other factors. INTERPRETATION This study descriptively explored the distribution of PFAS concentrations in different subgroups based on potential risk factors of higher PFAS exposure. Even though no association between surfing and PFAS concentrations in blood was found, several other factors are suspected to be associated with increased concentrations. To prevent exposures that might lead to adverse health effects, further studies are needed.
Collapse
Affiliation(s)
- Mette Hyllegaard Madsen
- Department of Occupational and Environmental Medicine, Danish Ramazzini Centre, Aalborg University Hospital, Havrevangen 1, 9000, Aalborg C, Denmark; Department of Clinical Medicine, Aalborg University, Selma Lagerløftsvej 249, 9260, Aalborg, Denmark.
| | - Janne Julie Møller
- Department of Occupational and Social Medicine, Holbæk University Hospital, Smedelundsgade 60, 4300 Holbæk, Denmark
| | - Niels Erik Ebbehøj
- Department of Occupational and Social Medicine, Holbæk University Hospital, Smedelundsgade 60, 4300 Holbæk, Denmark
| | - Flemming Nielsen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Marianne Tang Severinsen
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Sdr. Skovvej 15, 9000, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Selma Lagerløftsvej 249, 9260, Aalborg, Denmark
| | - Jonas Faartoft Jensen
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Sdr. Skovvej 15, 9000, Aalborg, Denmark
| | | | - Jakob Hjort Bønløkke
- Department of Occupational and Environmental Medicine, Danish Ramazzini Centre, Aalborg University Hospital, Havrevangen 1, 9000, Aalborg C, Denmark; Department of Clinical Medicine, Aalborg University, Selma Lagerløftsvej 249, 9260, Aalborg, Denmark
| |
Collapse
|
15
|
Boettger JD, DeLuca NM, Zurek-Ost MA, Miller KE, Fuller C, Bradham KD, Ashley P, Friedman W, Pinzer EA, Cox DC, Dewalt G, Isaacs KK, Cohen Hubal EA, McCord JP. Emerging Per- and Polyfluoroalkyl Substances in Tap Water from the American Healthy Homes Survey II. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2686-2698. [PMID: 39878442 PMCID: PMC11823458 DOI: 10.1021/acs.est.4c08037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
Humans experience widespread exposure to anthropogenic per- and polyfluoroalkyl substances (PFAS) through various media, which can lead to a wide range of negative health impacts. Tap water is an important source of exposure in communities with any degree of contamination but routine or large-scale PFAS monitoring often depends on targeted analytical methods limited to measuring specific PFAS. We analyzed 680 tap water samples from the American Healthy Homes Survey II for PFAS using non-targeted analysis (NTA) to expand the range of detectable PFAS. Based on detection frequency and relative abundance, about half of the identified PFAS were found only by NTA. We identified (with varying degrees of confidence) 75 distinct PFAS, including 57 exclusively detected by NTA. The identified PFAS are members of seven structural subclasses differentiated by their head groups and degree of fluorination. Clustering analysis categorized the PFAS into four coabundance groups dominated by specific PFAS subclasses. One group uniquely identified by NTA contains zwitterionic PFAS and other PFAS transformation products which are likely associated with aqueous firefighting foam contaminants in a small number of spatially correlated samples. These results help further characterize the scope of exposure to emerging PFAS experienced by the U.S. population via tap water and augment nationwide targeted-PFAS monitoring programs.
Collapse
Affiliation(s)
- Jason D. Boettger
- ORISE Fellow, U.S. Environmental Protection Agency/Office of Research
and Development, Durham, North Carolina 27711, United States
| | - Nicole M. DeLuca
- U.S. Environmental
Protection Agency/Office of Research and Development, Durham, North Carolina 27711, United States
| | - Michael A. Zurek-Ost
- ORISE Fellow, U.S. Environmental Protection Agency/Office of Research
and Development, Durham, North Carolina 27711, United States
| | - Kelsey E. Miller
- U.S. Environmental
Protection Agency/Office of Research and Development, Durham, North Carolina 27711, United States
| | - Christopher Fuller
- U.S. Environmental
Protection Agency/Office of Research and Development, Durham, North Carolina 27711, United States
| | - Karen D. Bradham
- U.S. Environmental
Protection Agency/Office of Research and Development, Durham, North Carolina 27711, United States
| | - Peter Ashley
- U.S.
Department
of Housing and Urban Development/Office of Lead Hazard Control and
Healthy Homes, Washington, District of Columbia 20410, United States
| | - Warren Friedman
- U.S.
Department
of Housing and Urban Development/Office of Lead Hazard Control and
Healthy Homes, Washington, District of Columbia 20410, United States
| | - Eugene A. Pinzer
- U.S.
Department
of Housing and Urban Development/Office of Lead Hazard Control and
Healthy Homes, Washington, District of Columbia 20410, United States
| | - David C. Cox
- QuanTech
Inc., Rockville, Maryland 20852, United States
| | - Gary Dewalt
- QuanTech
Inc., Rockville, Maryland 20852, United States
| | - Kristin K. Isaacs
- U.S. Environmental
Protection Agency/Office of Research and Development, Durham, North Carolina 27711, United States
| | - Elaine A. Cohen Hubal
- U.S. Environmental
Protection Agency/Office of Research and Development, Durham, North Carolina 27711, United States
| | - James P. McCord
- U.S. Environmental
Protection Agency/Office of Research and Development, Durham, North Carolina 27711, United States
| |
Collapse
|
16
|
Lupton SJ, Smith DJ, Howey EB, Predgen AS, Schmidt CE, Scholljegerdes E, Ivey S, Esteban E, Johnston JJ. Tissue histology and depuration of per- and polyfluoroalkyl substances (PFAS) from dairy cattle with lifetime exposures to PFAS-contaminated drinking water and feed. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:223-239. [PMID: 39787095 DOI: 10.1080/19440049.2024.2444560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
Plasma, milk and tissue samples were collected from 30 dairy cattle (0.4 to 8.9 years of age) with lifetime exposures to perfluoroalkyl substances (PFAS) removed from a PFAS-contaminated farm and provided PFAS-free feed and water. Twenty cattle were slaughtered 2 weeks after removal from the farm and tissues were collected for histological and residue analyses. Milk and/or plasma were collected from all remaining cattle at 2-week intervals and milk samples were collected daily but were analyzed at the same intervals as plasma samples. The remaining cattle were slaughtered 20 and 22 weeks after the initial set of 20 animals were slaughtered. While many incidental and normal background findings were noted on histological evaluation, no consistent histological finding was associated with PFAS exposure. Perfluoroalkyl carboxylic acids (PFCA) and perfluoro butane sulfonic acid (PFBS) were not generally detected in milk, plasma and tissues, but perfluoroalkyl sulfonic acids (PFSA) were quantifiable throughout the 22-week withdrawal period in most matrices. Estimated plasma half-lives of perfluorohexane sulfonic acid (PFHxS), perfluoroheptane sulfonic acid (PFHpS), linear perfluorooctane sulfonic acid (L-PFOS), perfluoro-3-methyl heptanesulfonate (3Me-PFOS) and perfluoro-6-methyl heptanesulfonate (6Me-PFOS) ranged from 4 to 10 weeks, but the estimates were associated with large confidence intervals. Across animal status (heifer, lactating, dry), natural log transformed (Ln) plasma residues of PFHxS and L-PFOS were generally well correlated with Ln-transformed PFHxS and L-PFOS residues in lung, muscle, liver and kidney (R2, 0.7572 to 0.9394) whereas the strongest relationships of Ln-transformed L-PFOS residues among tissues were between lung and liver, kidney and muscle (R2, 0.8287 to 0.9138).
Collapse
Affiliation(s)
- Sara J Lupton
- Edward T. Schafer Agricultural Research Center, USDA ARS, Fargo, ND, USA
| | - David J Smith
- Edward T. Schafer Agricultural Research Center, USDA ARS, Fargo, ND, USA
| | - Erin B Howey
- Office of Public Health Science, Russell Research Center, USDA FSIS, Athens, GA, USA
| | - Ann S Predgen
- Office of Public Health Science, Russell Research Center, USDA FSIS, Athens, GA, USA
| | - Carrie E Schmidt
- Office of Public Health Science, Russell Research Center, USDA FSIS, Athens, GA, USA
| | - Eric Scholljegerdes
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Shanna Ivey
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Emilio Esteban
- Office of Public Health Science, USDA FSIS, Washington, DC, USA
| | - John J Johnston
- Retired, Office of Public Health Science, USDA FSIS, Fort Collins, CO, USA
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
17
|
Wallis DJ, Miller KE, DeLuca NM, Thomas K, Fuller C, McCord J, Cohen Hubal EA, Minucci JM. Understanding prenatal household exposures to per- and polyfluorylalkyl substances using paired Biological and dust measurements with sociodemographic and housing variables. ENVIRONMENT INTERNATIONAL 2024; 194:109157. [PMID: 39642652 DOI: 10.1016/j.envint.2024.109157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are chemicals of concern-they are ubiquitous, persistent, with known and suspected health impacts. Well studied, primary sources of exposure to PFAS are drinking water and food. The presence of PFAS in human tissue of general populations suggests other important exposure sources/pathways. House dust measurements suggest widespread presence of PFAS in residences. Limited studies report paired analyses of PFAS occurrence in indoor media and PFAS concentrations in serum. While paired samples of house dust and blood serum are currently rare, the National Children's Study (NCS) contains paired samples, as well as sociodemographic information, from pregnant people that participated in the study. These archived NCS data and specimens for 104 participants collected between 2009 and 2014 were leveraged and analyzed for 16 commonly measured PFAS. We evaluated PFAS levels in the home, and the relationships between PFAS in dust and serum, and sociodemographic or housing variables. In addition, mechanistic exposure models, and then steady-state serum level models with simple parameters were used to estimate dust contributions of PFAS to serum. The geometric means for the most commonly found PFAS (full names in table 1) in serum were: 4.1 ng/mL for PFOS, 1.1 ng/mL for PFOA, 0.87 ng/mL for PFHxS, 0.16 ng/mL for PFDA. The geometric means of PFAS in dust were: 17 µg/kg for PFOS, 16 µg/kg for PFOA, 9.6 µg/kg for PFDS, 4.5 µg/kg for PFHpA, 4.4 µg/kg for PFNA, 3.9 µg/kg for PFHxS, 3.5 µg/kg for PFDA, 2.3 µg/kg for PFDoA, 2.1 µg/kg for PFUdA. PFOA was significantly correlated in serum and dust as was the sum of all PFAS detected in > 50 % of serum and dust. PFAS in serum was significantly associated with: Higher income, recent renovations, years lived in the home, and educational attainment. PFAS in dust was significantly associated with: Higher participant age, type of home, amount of carpet, educational attainment, higher income, recent renovation, and membership in the military. For some PFAS, 25 % of the overall exposure, on average, is from dust, but for others, 3-4 % is attributed to dust. We were able to identify important associations in PFAS exposure in the homes of pregnant people based on paired serum and dust samples. This built a clearer picture of which PFAS and at what quantities they exist in these homes, how they relate to each other, and how they are tied to sociodemographic and housing factors. Our results demonstrate that exposure to PFAS via house dust may contribute up to 25% of total exposure for adults, highlighting the importance of understanding what drives residential exposures.
Collapse
Affiliation(s)
- Dylan James Wallis
- Oak Ridge Institute for Science and Education (ORISE) Participant, 109 T.W Alexander Drive Research Triangle Park, NC 27711, USA.
| | - Kelsey E Miller
- U.S Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| | - Nicole M DeLuca
- U.S Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| | - Kent Thomas
- U.S Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| | - Chris Fuller
- U.S Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| | - James McCord
- U.S Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| | - Elaine A Cohen Hubal
- U.S Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| | - Jeffrey M Minucci
- U.S Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| |
Collapse
|
18
|
Seewoo BJ, Wong EVS, Mulders YR, Gozt A, Elagali A, Symeonides C, Dunlop SA. A systematic evidence map protocol for mapping global exposure to bisphenols and their alternatives and social and environmental justice implications. ENVIRONMENT INTERNATIONAL 2024; 194:109091. [PMID: 39577356 DOI: 10.1016/j.envint.2024.109091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/06/2024] [Accepted: 10/19/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Bisphenol A (BPA) is one of the highest-volume chemicals produced worldwide, and human exposure to BPA is thought to be ubiquitous. Stricter regulations around the use of BPA have led many manufacturers to switch to other bisphenol chemicals with similar functions such as bisphenol S and F. Even though exposure to BPA, other bisphenol chemicals and bisphenol alternatives poses a health risk for humans, very little is known about the granular exposure levels of different populations around the world. AIM This systematic evidence map (SEM) will identify human studies reporting concentrations of bisphenols and their alternatives measured in human bio-samples with the aim to chart the global human exposure levels by country and population characteristics to identify research gaps and discuss any social and environmental injustice implications. SEARCH STRATEGY AND ELIGIBILITY CRITERIA MEDLINE®, Embase and Web of Science (WoS) databases as well as grey literature sources will be searched using predefined search strings. The database search results will be supplemented by backward and forward citation tracking on included studies. A scoping exercise conducted during planning identified 90 bisphenol chemicals and alternatives used in plastics. These include BPA, other bisphenol chemicals with/without similar functions to BPA as well as alternatives with similar functions to bisphenol chemicals. Eligible studies must measure concentrations of at least one relevant bisphenol chemical/alternative in human bio-samples. STUDY SELECTION Only primary studies published in English since 2010 will be considered. The title, abstract and keywords will be screened by the DistillerAI tool and two independent reviewers. Grey literature will be screened by two reviewers for inclusion and exclusion. The full text of the included studies will then be screened by two independent reviewers. STUDY APPRAISAL Study quality will not be evaluated in this SEM. DATA EXTRACTION AND CODING Data extraction and coding will be performed by two independent reviewers. Parameters of interest will include the following: study characteristics (e.g., year of publication, sampling timepoints and study design), population information (e.g., country, age, sex, ethnicity, number of participants) and exposure information (sources of exposure, bio-sample analyzed, chemical name, concentration, and detection frequencies). SYNTHESIS AND VISUALIZATION The results will be presented using a narrative summary, tables, bar plots and color-coded maps. The interactive database will be available on a dedicated freely accessible website. SYSTEMATIC MAP PROTOCOL REGISTRY AND REGISTRATION NUMBER This protocol has been registered on Open Science Framework (OSF) and is available at https://doi.org/10.17605/OSF.IO/MNWTD.
Collapse
Affiliation(s)
- Bhedita J Seewoo
- Plastics and Human Health, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Enoch V S Wong
- Plastics and Human Health, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Yannick R Mulders
- Plastics and Human Health, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Aleksandra Gozt
- Plastics and Human Health, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia.
| | - Ahmed Elagali
- Plastics and Human Health, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Christos Symeonides
- Plastics and Human Health, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia.
| | - Sarah A Dunlop
- Plastics and Human Health, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
19
|
Sun M, Wang Z, Cao Z, Dong Z. Infants exposure to chemicals in diapers: A review and perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176072. [PMID: 39255936 DOI: 10.1016/j.scitotenv.2024.176072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Diapers are a staple care product for infants, yet concerns persist regarding the potential risks posed by dermal exposure to chemicals through their usage. This review provides a comprehensive summary of reported chemicals, highlighting the frequent detection of polychlorodibenzo-p-dioxins (PCDDs), phthalates (PAEs), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), bisphenols (BPs), organotins, and heavy metals. Disposable diapers commonly exhibit higher concentrations of VOCs, PAEs, BPs, and heavy metals than other chemicals. Our estimation reveals formaldehyde as posing the highest dermal exposure dose, reaching up to 0.018 mg/kg bw/day. Conversely, perfluorooctanoic acid (PFOA) exhibits lower exposure, but its non-cancer hazard quotient (0.062) is the highest. In most scenarios, the risk of chemical exposure through diapers for infants is deemed acceptable, while the risk is higher under some extreme exposure scenarios. Using the cancer slope factor recently suggested by U.S. EPA, the cancer risk in diapers raised by PFOA is 5.5 × 10-5. It should be noted that our estimation is approximately 1000-10,000 folds lower than some previous estimations. The high uncertainties associated with exposure and risk estimations are primarily raised by unclear parameters related to chemical migration coefficients, absorption factors, concentrations, and toxicity data for skin exposure, which requires research attention in future. Besides that, future research endeavors should prioritize the identification of potential toxic chemicals and the development of hygiene guidelines and standards.
Collapse
Affiliation(s)
- Mengxin Sun
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Zhexi Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Zhaomin Dong
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; School of Materials Science and Engineering, Beihang University, Beijing, China; School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
20
|
Stanek LW, Cascio WE, Barzyk TM, Breen MS, DeLuca NM, Griffin SM, Melnyk LJ, Minucci JM, Thomas KW, Tulve NS, Weaver CP, Cohen Hubal EA. Environmental public health research at the U.S. Environmental Protection Agency: A blueprint for exposure science in a connected world. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00720-8. [PMID: 39550492 DOI: 10.1038/s41370-024-00720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 11/18/2024]
Abstract
Exposure science plays an essential role in the U.S. Environmental Protection Agency's (U.S. EPA) mission to protect human health and the environment. The U.S. EPA's Center for Public Health and Environmental Assessment (CPHEA) within the Office of Research and Development (ORD) provides the exposure science needed to characterize the multifaceted relationships between people and their surroundings in support of national, regional, local and individual-level actions. Furthermore, exposure science research must position its enterprise to tackle the most pressing public health challenges in an ever-changing environment. These challenges include understanding and confronting complex human disease etiologies, disparities in the social environment, and system-level changes in the physical environment. Solutions will sustainably balance and optimize the health of people, animals, and ecosystems. Our objectives for this paper are to review the role of CPHEA exposure science research in various recent decision-making contexts, to present current challenges facing U.S. EPA and the larger exposure science field, and to provide illustrative case examples where CPHEA exposure science is demonstrating the latest methodologies at the intersection of these two motivations. This blueprint provides a foundation for applying exposomic tools and approaches to holistically understand real-world exposures so optimal environmental public health protective actions can be realized within the broader context of a One Health framework. IMPACT STATEMENT: The U.S. EPA's Center for Public Health and Environmental Assessment exposure research priorities reside at the intersection of environmental decision contexts and broad public health challenges. The blueprint provides a foundation for advancing the tools and approaches to holistically understand real-world exposures so optimal environmental protection actions can be realized. A One Health lens can help shape exposure research for maximum impact to support solutions that are transdisciplinary and must engage multiple sectors.
Collapse
Affiliation(s)
- Lindsay W Stanek
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA.
| | - Wayne E Cascio
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA
| | - Timothy M Barzyk
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA
| | - Michael S Breen
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA
| | - Nicole M DeLuca
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA
- Research Triangle Institute International, Research Triangle Park, NC, 27709, USA
| | - Shannon M Griffin
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Cincinnati, OH, 45268, USA
| | - Lisa Jo Melnyk
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Cincinnati, OH, 45268, USA
| | - Jeffrey M Minucci
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA
| | - Kent W Thomas
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA
| | - Nicolle S Tulve
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA
| | - Christopher P Weaver
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA
| | - Elaine A Cohen Hubal
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA
| |
Collapse
|
21
|
Chang NY, Eichler CMA, Cohen Hubal EA, Surratt JD, Morrison GC, Turpin BJ. Exposure to per- and polyfluoroalkyl substances (PFAS) in North Carolina homes: results from the indoor PFAS assessment (IPA) campaign. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024:10.1039/d4em00525b. [PMID: 39526893 PMCID: PMC12065928 DOI: 10.1039/d4em00525b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Per and polyfluoroalkyl substances (PFAS) are ubiquitous in the indoor environment, resulting in indoor exposure. However, a dearth of concurrent indoor multi-compartment PFAS measurements, including air, has limited our understanding of the contributions of each exposure pathway to residential PFAS exposure. As part of the Indoor PFAS Assessment (IPA) Campaign, we measured 35 neutral and ionic PFAS in air, settled dust, drinking water, clothing, and on surfaces in 11 North Carolina homes. Ionic and neutral PFAS measurements reported previously and ionic PFAS measurements reported herein for drinking water (1.4-34.1 ng L-1), dust (202-1036 ng g-1), and surfaces (4.1 × 10-4-1.7 × 10-2 ng cm-2) were used to conduct a residential indoor PFAS exposure assessment. We considered inhalation of air, ingestion of drinking water and dust, mouthing of clothing (children only), and transdermal uptake from contact with dust, air, and surfaces. Average intake rates were estimated to be 3.6 ng kg-1 per day (adults) and 12.4 ng kg-1 per day (2 year-old), with neutral PFAS contributing over 80% total PFAS intake. Excluding dietary ingestion, which was not measured, inhalation contributed over 65% of PFAS intake and was dominated by neutral PFAS because fluorotelomer alcohol (FTOH) concentrations in air were several orders of magnitude greater than ionic PFAS concentrations. Perfluorooctanoic acid (PFOA) intake was 6.1 × 10-2 ng kg-1 per day (adults) and 1.5 × 10-1 ng kg-1 per day (2 year-old), and biotransformation of 8 : 2 FTOH to PFOA increased this PFOA body burden by 14% (adults) and 17% (2 year-old), suggesting inhalation may also be a meaningful contributor to ionic PFAS exposure through biotransformation.
Collapse
Affiliation(s)
- Naomi Y Chang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Clara M A Eichler
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Elaine A Cohen Hubal
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Chemistry, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Tan Y, Eick SM, Dunlop AL, Barr DB, Taibl KR, Steenland K, Kannan K, Robinson M, Chang CJ, Panuwet P, Yakimavets V, Marsit CJ, Ryan PB, Liang D. A Prospective Analysis of Per- and Polyfluoroalkyl Substances from Early Pregnancy to Delivery in the Atlanta African American Maternal-Child Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:117001. [PMID: 39504273 PMCID: PMC11540153 DOI: 10.1289/ehp14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Longitudinal trends in per- and polyfluoroalkyl substances (PFAS) serum concentrations across pregnancy have not been thoroughly examined, despite evidence linking prenatal PFAS exposures with adverse birth outcomes. OBJECTIVES We sought to characterize longitudinal PFAS concentrations across pregnancy and to examine the maternal-fetal transfer ratio among participants in a study of risk and protective factors for adverse birth outcomes among African Americans. METHODS In the Atlanta African American Maternal-Child cohort (2014-2020), we quantified serum concentrations of four PFAS in 376 participants and an additional eight PFAS in a subset of 301 participants during early (8-14 weeks gestation) and late pregnancy (24-30 weeks gestation). Among these, PFAS concentrations were also measured among 199 newborns with available dried blood spot (DBS) samples. We characterized the patterns, variability, and associations in PFAS concentrations at different time points across pregnancy using intraclass correlation coefficients (ICCs), maternal-newborn pairs transfer ratios, linear mixed effect models, and multivariable linear regression, adjusting for socioeconomic and prenatal predictors. RESULTS Perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) were detected in > 95 % of maternal samples, with PFHxS and PFOS having the highest median concentrations. We observed high variability in PFAS concentrations across pregnancy time points (ICC = 0.03 - 0.59 ). All median PFAS concentrations increased from early to late pregnancy, except for PFOA and N-methyl perfluorooctane sulfonamido acetic acid (NMFOSAA), which decreased [paired t -test for all PFAS p < 0.05 except for PFOA and perfluorobutane sulfonic acid (PFBS)]. Prenatal serum PFAS were weakly to moderately correlated with newborn DBS PFAS (- 0.05 < rho < 0.49 ). The median maternal-fetal PFAS transfer ratio was lower for PFAS with longer carbon chains. After adjusting for socioeconomic and prenatal predictors, in linear mixed effect models, the adjusted mean PFAS concentrations significantly increased during pregnancy, except for PFOA. In multivariable linear regression, PFAS concentrations in early pregnancy significantly predicted the PFAS concentrations in late pregnancy and in newborns. DISCUSSION We found that the concentrations of most PFAS increased during pregnancy, and the magnitude of variability differed by individual PFAS. Future studies are needed to understand the influence of within-person PFAS variability during and after pregnancy on birth outcomes. https://doi.org/10.1289/EHP14334.
Collapse
Affiliation(s)
- Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Stephanie M. Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Anne L. Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Kaitlin R. Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - Morgan Robinson
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Che-Jung Chang
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - P. Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Eichler CMA, Chang NY, Amparo DE, Hubal EAC, Surratt JD, Morrison GC, Turpin BJ. Partitioning of Neutral PFAS in Homes and Release to the Outdoor Environment: Results from the IPA Campaign. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18870-18880. [PMID: 39387867 PMCID: PMC11996290 DOI: 10.1021/acs.est.4c05286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The distribution and fate of per- and polyfluoroalkyl substances (PFAS) in homes are not well understood. To address this, we measured nine neutral PFAS in dust, airborne particles, dryer lint, and on heating and air conditioning (HAC) filters in 11 homes in North Carolina as part of the Indoor PFAS Assessment (IPA) Campaign and compared them with concurrently collected gas and cloth measurements. Fluorotelomer alcohols (FTOHs) contributed most (≥75%) to total (∑) measured neutral PFAS concentrations in dust, HAC filter, and dryer lint samples, with mean ∑(FTOH) concentrations of 207 ng/g, 549 ng/g, and 84 ng/g, respectively. In particles, perfluorooctane sulfonamidoethanols (FOSEs) dominated, with a mean ∑(FOSE) concentration of 0.28 ng/m3 or 75,467 ng/g. For FTOHs and FOSEs, resulting mean dust-air, HAC filter-air, dryer lint-air and particle-air partition coefficients in units of log(m3/μg) ranged (across species) from -5.1 to -3.6, -4.9 to -3.5, -5.4 to -4.1, and -3.2 to -0.78, respectively. We estimate that cloth, gas phase, and HAC filters are the largest reservoirs for FTOHs, while cloth, HAC filters, and dust are the largest reservoirs for FOSEs. Release rates of neutral PFAS from homes to the outdoor environment are reported.
Collapse
Affiliation(s)
- Clara M. A. Eichler
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599, USA
| | - Naomi Y. Chang
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599, USA
| | - Daniel E. Amparo
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599, USA
| | - Elaine A. Cohen Hubal
- U.S. EPA, Center for Public Health and Environmental Assessment, Research Triangle Park, NC 27709, USA
| | - Jason D. Surratt
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599, USA
- University of North Carolina at Chapel Hill, College of Arts and Sciences, Department of Chemistry, Chapel Hill, NC 27599, USA
| | - Glenn C. Morrison
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599, USA
| | - Barbara J. Turpin
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599, USA
| |
Collapse
|
24
|
Chang NY, Eichler CMA, Amparo DE, Zhou J, Baumann K, Cohen Hubal EA, Surratt JD, Morrison GC, Turpin BJ. Indoor air concentrations of PM 2.5 quartz fiber filter-collected ionic PFAS and emissions to outdoor air: findings from the IPA campaign. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024:10.1039/d4em00359d. [PMID: 39361046 PMCID: PMC11965442 DOI: 10.1039/d4em00359d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are prevalent in consumer products used indoors. However, few measurements of ionic PFAS exist for indoor air. We analyzed samples collected on PM2.5 quartz fiber filters (QFFs) in 11 North Carolina homes 1-3 times in living rooms (two QFFs in series), and immediately outside each home (single QFF), for 26 ionic PFAS as part of the 9 months Indoor PFAS Assessment (IPA) Campaign. All targeted PFAS, except for PFDS and 8:2 monoPAP, were detected indoors. PFBA, PFHpA, PFHxA, PFOA, PFOS, and 6:2 diPAP were detected in >50% of indoor samples. PFHxA, PFOA, and PFOS had the highest detection frequency (DF = 80%; medians = 0.5-0.7 pg m-3), while median PFBA concentrations (3.6 pg m-3; DF = 67%) were highest indoors. Residential indoor air concentrations (sum of measured PFAS) were, on average, 3.4 times higher than residential outdoor air concentrations, and an order of magnitude higher than regional background concentrations. Indoor-to-outdoor emission rate estimates suggest that emissions from single unit homes could be a meaningful contributor to PFBA, PFOA, and PFOS emissions in populated areas far from major point sources. Backup QFFs were observed to adsorb some targeted PFAS from the gas-phase, making reported values upper-bounds for particle-phase and lower-bounds for total air (gas plus particle) concentrations. We found that higher concentrations of carbonaceous aerosol were associated with a shift in partitioning of short chain PFCAs and long chain PFSAs toward the particle phase.
Collapse
Affiliation(s)
- Naomi Y Chang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Clara M A Eichler
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Daniel E Amparo
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jiaqi Zhou
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Karsten Baumann
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Picarro Inc., Santa Clara, CA, USA
| | - Elaine A Cohen Hubal
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Chemistry, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
25
|
Yao D, Shao J, Jia D, Sun W. Immunotoxicity of legacy and alternative per- and polyfluoroalkyl substances on zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124511. [PMID: 38977121 DOI: 10.1016/j.envpol.2024.124511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/10/2024]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA) and perfluoroethylcyclohexane sulfonate (PFECHS) are increasingly used as alternatives for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). However, their immunotoxicity and underlying molecular mechanisms remain poorly understood. Here, to assess immunotoxic effects, zebrafish embryos were exposed to environmentally relevant concentrations of PFOA, PFOS, HFPO-DA, and PFECHS for four days. Results revealed that all four per- and polyfluoroalkyl substances (PFAS) resulted in decreased heart rate and spontaneous movement, and induced oxidative stress in zebrafish larvae. Notably, HFPO-DA exhibited more severe oxidative stress than PFOA. Immune dysfunction was observed, characterized by elevated cytokine, complement factor, nitric oxide, and neutrophil content, along with a significant decrease in lysozyme content. Transcriptomic analysis revealed the activation of Toll-like receptor (TLR)/NOD-like receptor (NLR)/RIG-I-like receptor (RLR) and associated downstream genes, indicating their pivotal role in PFAS-induced immunomodulation. Molecular docking simulations demonstrated stable interactions between PFAS and key receptors (TLR2, NOD2 and RIG-I). Overall, HFPO-DA and PFECHS exhibited immunotoxic effects in zebrafish larvae similar to legacy PFAS, providing important information for understanding the toxic mode of action of these emerging alternatives.
Collapse
Affiliation(s)
- Dengdiao Yao
- College of Animal Science, Guizhou University, The Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Jian Shao
- College of Animal Science, Guizhou University, The Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Dantong Jia
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China.
| |
Collapse
|
26
|
Hilly JJ, Singh KR, Jagals P, Mani FS, Turagabeci A, Ashworth M, Mataki M, Morawska L, Knibbs LD, Stuetz RM, Dansie AP. Review of scientific research on air quality and environmental health risk and impact for PICTS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173628. [PMID: 38848924 DOI: 10.1016/j.scitotenv.2024.173628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024]
Abstract
Air quality (AQ) significantly impacts human health, influenced by both natural phenomena and human activities. In 2021, heightened awareness of AQ's health impacts prompted the revision of the World Health Organization (WHO) guidelines, advocating for stricter pollution standards. However, research on AQ has predominantly focused on high-income countries and densely populated cities, neglecting low- and middle-income countries, particularly Pacific Island Countries, Territories, and States (PICTS). This systematic review compiles existing peer-reviewed literature on AQ research in PICTS to assess the current state of knowledge and emphasize the need for further investigation. A systematic literature search yielded 40 papers from databases including Web of Science, Scopus, and Embase. Among the 26 PICTS, only 6 (Hawai'i, Fiji, Papua New Guinea, New Caledonia, Republic of Marshall Islands, and Pacific) have been subject to AQ-related research, with 4 considering the World Health Organization (WHO) parameters and 26 addressing non-WHO parameters. Analysis reveals AQ parameters often exceed 2021 WHO guidelines for PM2.5, PM10, SO2, and CO, raising concerns among regional governments. Studies primarily focused on urban, agricultural, rural, and open ocean areas, with 15 based on primary data and 14 on both primary and secondary sources. Research interests and funding sources dictated the methods used, with a predominant focus on environmental risks over social, economic, and technological impacts. Although some papers addressed health implications, further efforts are needed in this area. This review underscores the urgent need for ongoing AQ monitoring efforts in PICTS to generate spatially and temporally comparable data. By presenting the current state of AQ knowledge, this work lays the foundation for coordinated regional monitoring and informs national policy development.
Collapse
Affiliation(s)
- J J Hilly
- School of Civil and Environmental Engineering, University of New South Wales, Australia; Environmental Health Division, Solomon Islands Ministry of Health and Medical Services, Solomon Islands.
| | - K R Singh
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Republic of Korea
| | - P Jagals
- Children's Health and Environmental Program, The University of Queensland, Australia
| | - F S Mani
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences, The University of the South Pacific, Suva, Fiji
| | - A Turagabeci
- College of Medicine, Nursing & Health science, Fiji National University, Fiji
| | - M Ashworth
- Institute of Environmental Science and Research Limited (ESR), Christchurch Science Centre, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - M Mataki
- Solomon Islands Ministry of Environment, Climate Change, Disaster Management and Meteorology, Solomon Islands
| | - L Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Australia
| | - L D Knibbs
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Australia; Public Health Research Analytics and Methods for Evidence, Public Health Unit, Sydney Local Health District, Camperdown, NSW 2050, Australia
| | - R M Stuetz
- School of Civil and Environmental Engineering, University of New South Wales, Australia
| | - A P Dansie
- School of Civil and Environmental Engineering, University of New South Wales, Australia
| |
Collapse
|
27
|
Martínez J, Picardo M, Peñalver A, Fabregas J, Aguilar C, Borrull F. Occurrence and health risk assessment of PFAS and possible precursors: a case study in a drinking water treatment plant and bottled water (south Catalonia, Spain). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56536-56549. [PMID: 39271611 PMCID: PMC11422264 DOI: 10.1007/s11356-024-34805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
The presence of PFAS in drinking water may pose a serious threat to human health. This study aims to determine the levels of these compounds and their precursors in water samples from a drinking water treatment plant (DWTP) located in l'Ampolla (Spain) and to assess their fate. Additionally, ten Spanish bottled waters were analyzed to compare the occurrence of PFAS in the mentioned matrices and in drinking water. Off-line solid phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was applied to determine 26 PFAS and PFAS precursors after a total oxidizable precursor assay. The analytical method presents low quantification limits (0.25-5 ng/L). A total PFAS concentration of up to 16 ng/L in all the DWTP samples was obtained, and 6:2 FTS was the only precursor detected. Results are close to the quantification limits, resulting in a high degree of uncertainty, and for this, it is difficult to evaluate the DWTP PFAS removal efficiency. Regarding bottled water, total PFAS concentration found was up to 12 ng/L in one of ten samples, with no precursors detected. Exposure assessment revealed that there is no risk associated with the ingestion of the samples analyzed. Moreover, there were no differences in terms of risk between drinking water from l'Ampolla DWTP and bottled water.
Collapse
Affiliation(s)
- Joana Martínez
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, Unitat de Radioquímica Ambiental i Sanitaria, Ctra. Nacional 340, Km. 1094, 43895 L'Ampolla, Tarragona, Spain
| | - Massimo Picardo
- Consorci d'Aigües de Tarragona, Ctra. Nacional 340, Km. 1094, 43895 L'Ampolla, Tarragona, Spain
| | - Alejandra Peñalver
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, Unitat de Radioquímica Ambiental i Sanitaria, Ctra. Nacional 340, Km. 1094, 43895 L'Ampolla, Tarragona, Spain
| | - Josepa Fabregas
- Consorci d'Aigües de Tarragona, Ctra. Nacional 340, Km. 1094, 43895 L'Ampolla, Tarragona, Spain
| | - Carme Aguilar
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, Unitat de Radioquímica Ambiental i Sanitaria, Ctra. Nacional 340, Km. 1094, 43895 L'Ampolla, Tarragona, Spain
- Serra Húnter Professor, Generalitat de Catalunya, Barcelona, Spain
| | - Francesc Borrull
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, Unitat de Radioquímica Ambiental i Sanitaria, Ctra. Nacional 340, Km. 1094, 43895 L'Ampolla, Tarragona, Spain.
| |
Collapse
|
28
|
Jung W, Park H, Lee BS, Chang YS, Kim JB, Yang MJ, Lim J, Choi H, Park EJ. General toxicity and screening of reproductive and developmental toxicity following bioaccumulation of oral-dosed perfluorooctanoic acid: Loss of the Golgi apparatus. Food Chem Toxicol 2024; 191:114867. [PMID: 39002792 DOI: 10.1016/j.fct.2024.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Despite its widespread use as a stabilizer across various industries over the past several decades, the health effects of chronic exposure to PFOA are still unclear. We administered PFOA by oral gavage (0, 12.5, 50, and 200 μg/day/mouse, eight groups) to male and female mice for six months. Body weight gain decreased with dose accompanied by increased liver weight, and PFOA altered liver damage-related-blood biochemical indicators and induced pathological lesions, including hepatocellular hypertrophy, cholangiofibrosis, and centrilobular hepatocellular vacuolation. Loss of the Golgi apparatus, formation of lamellar body-like structures, and lipid accumulation were observed in the liver of PFOA-treated mice. We also cohabited five pairs of male and female mice for the last ten days of administration, dosed PFOA to dam up to 28 days after birth, and investigated effects on reproduction and development. The survival rate of pups and the sex ratio of surviving mice decreased significantly at the highest dose. PFOA tissue concentration increased with the dose in the parent mice's liver and the pups' blood and brain. Taken together, we suggest that PFOA primarily affects the liver and reproduction system and that disturbance in lipid metabolism and Golgi's structural stability may be involved in PFOA-induced toxicity.
Collapse
Affiliation(s)
- Wonkyun Jung
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, 02447, South Korea
| | - Heejin Park
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Yoon-Seok Chang
- Department of Civil, Urban, Earth and Environmental Engineering, UNIST, 44919, South Korea
| | - Jin-Bae Kim
- Division of Cardiology, Department of Internal Medicine, Kyung-Hee University Hospital, Kyung Hee University, 02447, South Korea
| | - Mi-Jin Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup, 56212, South Korea
| | - Jiyun Lim
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, 02447, South Korea
| | - Hyosun Choi
- National Instrumentation Center for Environmental Management, Seoul National University, South Korea
| | - Eun-Jung Park
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, 02447, South Korea; Human Health and Environmental Toxins Research Center, Kyung Hee University, 02447, South Korea.
| |
Collapse
|
29
|
Obiako PC, Ayisire SO, Sayes CM. Impact of perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA) on oxidative stress and metabolic biomarkers in human neuronal cells (SH-SY5Y). ENVIRONMENT INTERNATIONAL 2024; 190:108864. [PMID: 38986427 DOI: 10.1016/j.envint.2024.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/04/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Perfluorinated alkyl substances (PFAS) are pervasive environmental contaminants that have attracted considerable attention due to their widespread utilization, resilient characteristics, adverse health implications, and regulatory scrutiny. Despite documented toxicity in living organisms, the precise molecular mechanisms governing the induced adverse effects remain unclear. This study aims to elucidate mechanisms of toxic action by collecting empirical data sets along oxidative stress and metabolic disruption pathways. We investigated the impact of long-chain PFAS (perfluorooctanoic acid (PFOA)) and its short-chain analog (perfluorobutanoic acid (PFBA)) on human neuronal cells (SH-SY5Y). The functionalities of enzymes associated with oxidative stress (catalase and glutathione reductase) and cellular metabolism (lactate dehydrogenase and pyruvate dehydrogenase) were also characterized. Our results reveal that a 24-hour exposure to PFOA and PFBA generated significant levels of reactive oxygen species. Correspondingly, there was a notable decline in catalase and glutathione reductase activities, with PFBA demonstrating a more pronounced effect. High concentrations of PFOA and PFBA reduced metabolic activity. Lactate dehydrogenase activity was only impacted by a high concentration of PFBA, while pyruvate dehydrogenase activity was decreased with PFBA exposure and increased with PFOA exposure. The findings from this study contribute to the knowledge of PFAS and cell interactions and reveal the potential underlying mechanisms of PFAS-induced toxicity.
Collapse
Affiliation(s)
- Precious C Obiako
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Solomon O Ayisire
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, United States.
| |
Collapse
|
30
|
Solan ME, Park JA. Per- and poly-fluoroalkyl substances (PFAS) effects on lung health: a perspective on the current literature and future recommendations. FRONTIERS IN TOXICOLOGY 2024; 6:1423449. [PMID: 39092081 PMCID: PMC11291370 DOI: 10.3389/ftox.2024.1423449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are a broad class of synthetic compounds widely used in commercial applications. The persistent nature of PFAS in the environment has earned them the epithet "forever chemicals." Concerns arise from widespread exposure to PFAS from occupational, household, and environmental sources. This widespread use of PFAS is particularly concerning, as emerging epidemiological evidence highlights their adverse effects on lung health. Such adverse impacts include impaired fetal lung development, reduced immune function in children, and potential links to lung cancer. Both in vivo and in vitro studies illuminate potential mechanisms underlying such adverse health outcomes subsequent to PFAS inhalation exposure, which may include immunomodulation, oxidative stress, and disruptions to epithelial barriers. However, evidence-based information focusing on the mechanisms of PFAS-mediated lung injury is lacking. Additionally, the discrepancies between data collected from animal and epidemiological studies highlight the need for improved approaches to better understand the toxicity results of PFAS exposure. To address these gaps, we recommend leveraging route-to-route extrapolation for risk assessment, prioritizing research on understudied PFAS, and adopting physiologically relevant, high-throughput approaches. These strategies are aimed at enhancing our understanding of PFAS inhalation effects, aiding in more informed risk management decisions. In this review, we summarize the current literature on PFAS exposure, emphasizing its adverse effects on lung health, particularly through inhalation. We then discuss the current knowledge on mechanisms underlying tissue- and cellular-level adverse outcomes caused by PFAS.
Collapse
Affiliation(s)
| | - Jin-Ah Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
31
|
DeLuca NM, Boettger J, Miller KE, Fuller C, Minucci JM, Ashley PJ, Cox D, DeWalt G, Friedman W, Pinzer EA, Bradham KD, McCord J, Hubal EAC. Per- and polyfluoroalkyl substances (PFAS) in paired tap water and house dust from United States homes. INDOOR ENVIRONMENTS 2024; 1:100033. [PMID: 40183116 PMCID: PMC11964114 DOI: 10.1016/j.indenv.2024.100033] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Most people in the United States have been exposed to per- and polyfluoroalkyl substances (PFAS) which have been linked to a wide array of adverse health conditions in adults and children. The consumption of contaminated drinking water is an important human exposure pathway to PFAS. Residential sources also contribute to PFAS exposure through dermal contact and ingestion of house dust, which acts as an aggregate of chemicals from sources like furnishing materials and consumer products. The U.S. Department of Housing and Urban Development (HUD) conducted the first nationwide survey of residential hazards called the American Healthy Homes Survey (AHHS) in 2005, followed by a second survey (AHHS II) in 2017. The U.S. Environmental Protection Agency (EPA) collaborated with HUD on both efforts and subsequently analyzed PFAS in household tap water and house dust collected from the same homes during the AHHS II study. This study leverages these paired samples to investigate potentially important exposure sources and pathways in the residential environment. Here we report results for paired household tap water and house dust samples from 241 homes for 13 and 16 PFAS chemicals, respectively. All 13 targeted chemicals were detected in the household tap water samples with detections ranging from 100 % for PFBS to 1 % for PFNS, and all 16 targeted chemicals were detected in the house dust samples with detections ranging from 97 % for PFOA to 9 % for PFNS. Four chemicals (PFOA, PFOS, PFHxS, and PFHpA) were measured above the limit of detection in at least 50 % of the samples in both media. All households had at least one of the targeted PFAS detected in both their tap water and house dust. Results provided evidence that geographical factors, such as proximity to ambient contamination sources, were main drivers of PFAS contamination in tap water, while PFAS contamination in house dust was driven mainly by within-home sources. Exposure estimates calculated from the measured PFAS concentrations highlight the importance of addressing potential sources of exposure to PFAS within homes in addition to ambient sources affecting communities' drinking water, particularly to reduce children's exposure to these chemicals.
Collapse
Affiliation(s)
- Nicole M. DeLuca
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jason Boettger
- Oak Ridge Institute for Science and Education, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kelsey E. Miller
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Christopher Fuller
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jeffrey M. Minucci
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Peter J. Ashley
- Office of Lead Hazard Control and Healthy Homes, US Department of Housing and Urban Development, Washington, DC, USA
| | - David Cox
- QuanTech, 6110 Executive Blvd Suite 206, Rockville, MD, 20852, USA
| | - Gary DeWalt
- QuanTech, 6110 Executive Blvd Suite 206, Rockville, MD, 20852, USA
| | - Warren Friedman
- Office of Lead Hazard Control and Healthy Homes, US Department of Housing and Urban Development, Washington, DC, USA
| | - Eugene A. Pinzer
- Office of Lead Hazard Control and Healthy Homes, US Department of Housing and Urban Development, Washington, DC, USA
| | - Karen D. Bradham
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - James McCord
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Elaine A. Cohen Hubal
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
32
|
Buckley JP, Zhou J, Marquess KM, Lanphear BP, Cecil KM, Chen A, Sears CG, Xu Y, Yolton K, Kalkwarf HJ, Braun JM, Kuiper JR. Per- and polyfluoroalkyl substances and bone mineral content in early adolescence: Modification by diet and physical activity. ENVIRONMENTAL RESEARCH 2024; 252:118872. [PMID: 38580001 PMCID: PMC11156547 DOI: 10.1016/j.envres.2024.118872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substance (PFAS) exposures may negatively impact bone mineral accrual, but little is known about potential mitigators of this relation. We assessed whether associations of PFAS and their mixture with bone mineral content (BMC) in adolescence were modified by diet and physical activity. METHODS We included 197 adolescents enrolled in a prospective pregnancy and birth cohort in Cincinnati, Ohio (2003-2006). At age 12 years, we collected serum for PFAS measurements and used dual-energy x-ray absorptiometry to measure BMC. We calculated dietary calcium intake and Health Eating Index (HEI) scores from repeated 24-h dietary recalls, physical activity scores using the Physical Activity Questionnaire for Older Children (PAQ-C), and average moderate to vigorous physical activity (MVPA) based on accelerometry. We estimated covariate-adjusted differences in BMC z-scores per interquartile range (IQR) increase of individual PFAS concentrations using linear regression and per simultaneous IQR increase in all four PFAS using g-computation. We evaluated effect measure modification (EMM) using interaction terms between each modifier and PFAS. RESULTS Higher serum perfluorooctanoic acid, perfluorooctanesulfonic acid, and perfluorononanoic acid concentrations and the PFAS mixture were associated with lower BMC z-scores. An IQR increase in all PFAS was associated with a 0.27 (-0.54, 0.01) lower distal radius BMC z-score. Associations with lower BMC were generally stronger among adolescents classified as < median for calcium intake, HEI scores, or MVPA compared to those ≥ median. The difference in distal radius BMC z-score per IQR increase in all PFAS was -0.38 (-0.72, -0.04) for those with CONCLUSION Healthy, calcium-rich diets and higher intensity physical activity may mitigate the adverse impact of PFAS on adolescent bone health.
Collapse
Affiliation(s)
- Jessie P Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Junyi Zhou
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Katherine M Marquess
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, Canada
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Clara G Sears
- Christina Lee Brown Envirome Institute, Department of Medicine, Division of Environmental Medicine, University of Louisville, KY, USA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Heidi J Kalkwarf
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, USA
| | - Jordan R Kuiper
- Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, D.C., USA
| |
Collapse
|
33
|
Holder C, Cohen Hubal EA, Luh J, Lee MG, Melnyk LJ, Thomas K. Systematic evidence mapping of potential correlates of exposure for per- and poly-fluoroalkyl substances (PFAS) based on measured occurrence in biomatrices and surveys of dietary consumption and product use. Int J Hyg Environ Health 2024; 259:114384. [PMID: 38735219 PMCID: PMC11874334 DOI: 10.1016/j.ijheh.2024.114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/05/2024] [Accepted: 04/21/2024] [Indexed: 05/14/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are widely observed in environmental media and often are found in indoor environments as well as personal-care and consumer products. Humans may be exposed through water, food, indoor dust, air, and the use of PFAS-containing products. Information about relationships between PFAS exposure sources and pathways and the amounts found in human biomatrices can inform source-contribution assessments and provide targets for exposure reduction. This work collected and collated evidence for correlates of PFAS human exposure as measured through sampling of biomatrices and surveys of dietary consumption and use of consumer products and articles. A systematic evidence mapping approach was applied to perform a literature search, conduct title-abstract and full-text screening, and to extract primary data into a comprehensive database for 16 PFAS. Parameters of interest included: sampling dates and locations, cohort descriptors, PFAS measured in a human biomatrix, information about food consumption in 11 categories, use of products/articles in 11 categories, and reported correlation values (and their statistical strength). The literature search and screening process yielded 103 studies with information for correlates of PFAS exposures. Detailed data were extracted and compiled on measures of PFAS correlations between biomatrix concentrations and dietary consumption and other product/article use. A majority of studies (61/103; 59%) were published after 2015 with few (8/103; 8%) prior to 2010. Studies were most abundant for dietary correlates (n = 94) with fewer publications reporting correlate assessments for product use (n = 56), while some examined both. PFOA and PFOS were assessed in almost all studies, followed by PFHxS, PFNA, and PFDA which were included in >50% of the studies. No relevant studies included PFNS or PFPeS. Among the 94 studies of dietary correlates, significant correlations were reported in 83% of the studies for one or more PFAS. The significant dietary correlations most commonly were for seafood, meats/eggs, and cereals/grains/pulses. Among the 56 studies of product/article correlates, significant correlations were reported in 70% of the studies. The significant product/article correlations most commonly were for smoking/tobacco, cosmetics/toiletries, non-stick cookware, and carpet/flooring/furniture and housing. Six of 11 product/article categories included five or fewer studies, including food containers and stain- and water-resistant products. Significant dietary and product/article correlations most commonly were positive. Some studies found a mix of positive and negative correlations depending on the PFAS, specific correlate, and specific response level, particularly for fats/oils, dairy consumption, food containers, and cosmetics/toiletries. Most of the significant findings for cereals/grains/pulses were negative correlations. Substantial evidence was found for correlations between dietary intake and biomatrix levels for several PFAS in multiple food groups. Studies examining product/article use relationships were relatively sparse, except for smoking/tobacco, and would benefit from additional research. The resulting database can inform further assessments of dietary and product use exposure relationships and can inform new research to better understand PFAS source-to-exposure relationships. The search strategy should be extended and implemented to support living evidence review in this rapidly advancing area.
Collapse
Affiliation(s)
| | - Elaine A Cohen Hubal
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA, 27711.
| | | | | | - Lisa Jo Melnyk
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, Cincinnati, OH, 45268, USA.
| | - Kent Thomas
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA, 27711.
| |
Collapse
|
34
|
Minucci JM, DeLuca NM, Durant JT, Goodwin B, Kowalski P, Scruton K, Thomas K, Cohen Hubal EA. Linking exposure to per- and polyfluoroalkyl substances (PFAS) in house dust and biomonitoring data in eight impacted communities. ENVIRONMENT INTERNATIONAL 2024; 188:108756. [PMID: 38795657 PMCID: PMC11323284 DOI: 10.1016/j.envint.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used in industry and have been linked to various adverse health effects. Communities adjacent to sites where PFAS are manufactured, stored, or used may be at elevated risk. In these impacted communities, significant exposure often occurs through contaminated drinking water, yet less is known about the role of other pathways such as residential exposure through house dust. We analyzed a paired serum and house dust dataset from the Agency for Toxic Substances and Disease Registry's PFAS Exposure Assessments, which sampled eight United States communities with a history of drinking water contamination due to aqueous film forming foam (AFFF) use at nearby military bases. We found that serum PFAS levels of residents were significantly positively associated with the dust PFAS levels in their homes, for three of seven PFAS analyzed, when accounting for site and participant age. We also found that increased dust PFAS levels were associated with a shift in the relative abundance of PFAS in serum towards those chemicals not strongly linked to AFFF contamination, which may suggest household sources. Additionally, we analyzed participant responses to exposure questionnaires to identify factors associated with dust PFAS levels. Dust PFAS levels for some analytes were significantly elevated in households where participants were older and had lived at the home longer, cleaned less frequently, used stain resistant products, and had carpeted living rooms. Our results suggest that residential exposure to PFAS via dust or other indoor pathways may contribute to overall exposure and body burden, even in communities impacted by AFFF contamination of drinking water, and the magnitude of this exposure may also be influenced by demographic, behavioral, and housing factors.
Collapse
Affiliation(s)
- Jeffrey M Minucci
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, United States.
| | - Nicole M DeLuca
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, United States
| | - James T Durant
- Agency for Toxic Substances and Disease Registry, Office of Community Health Hazard Assessment, United States
| | - Bradley Goodwin
- Agency for Toxic Substances and Disease Registry, Office of Community Health Hazard Assessment, United States
| | - Peter Kowalski
- Agency for Toxic Substances and Disease Registry, Office of Community Health Hazard Assessment, United States
| | - Karen Scruton
- Agency for Toxic Substances and Disease Registry, Office of Community Health Hazard Assessment, United States
| | - Kent Thomas
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, United States
| | - Elaine A Cohen Hubal
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, United States
| |
Collapse
|
35
|
Yang A, Tam CHT, Wong KK, Ozaki R, Lowe WL, Metzger BE, Chow E, Tam WH, Wong CKC, Ma RCW. Epidemic-specific association of maternal exposure to per- and polyfluoroalkyl substances (PFAS) and their components with maternal glucose metabolism: A cross-sectional analysis in a birth cohort from Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170220. [PMID: 38278268 DOI: 10.1016/j.scitotenv.2024.170220] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent chemicals that have been linked to increased risk of gestational diabetes mellitus (GDM) and may affect glucose metabolisms during pregnancy. We examined the associations between maternal PFAS exposure and maternal glucose metabolisms and GDM risk among 1601 mothers who joined the Hyperglycaemia-and-Adverse-Pregnancy-Outcome (HAPO) Study in Hong Kong in 2001-2006. All mothers underwent a 75 g-oral-glucose-tolerance test at 24-32 weeks of gestation. We measured serum concentrations of six PFAS biomarkers using high-performance liquid-chromatography-coupled-with-tandem-mass-spectrometry (LC-MS-MS). We fitted conventional and advanced models (quantile-g-computation [qgcomp] and Bayesian-kernel machine regression [BKMR]) to assess the associations of individual and a mixture of PFAS with glycaemic traits. Subgroup analyses were performed based on the enrollment period by the severe-acute-respiratory-syndrome (SARS) epidemic periods in Hong Kong between March 2003 and May 2004. PFOS and PFOA were the main components of PFAS mixture among 1601 pregnant women in the Hong Kong HAPO study, with significantly higher median PFOS concentrations (19.09 ng/mL), compared to Chinese pregnant women (9.40 ng/mL) and US women (5.27 ng/mL). Maternal exposure to PFAS mixture was associated with higher HbA1c in the qgcomp (β = 0.04, 95 % CI: 0.01-0.06) model. We did not observe significant associations of PFAS mixture with fasting plasma glucose (PG), 1-h and 2-h PG in either model, except for 2-h PG in the qgcmop model (β = 0.074, 95 % CI: 0.01-0.15). PFOS was the primary contributor to the overall positive effects on HbA1c. Epidemic-specific analyses showed specific associations between PFAS exposure and the odds of GDM in the pre-SARS epidemic period. The median concentration of PFOS was highest during the peri-SARS epidemic (21.2 [14.5-43.6] ng/mL) compared with the pre-SARS (12.3 [9.2-19.9] ng/mL) and post-SARS (20.3 [14.2-46.3] ng/mL) epidemic periods. Potential interactions and exposure-response relationships between PFOA and PFNA with elevated HbA1c were observed in the peri-SARS period in BKMR model. Maternal exposure to PFAS mixture was associated with altered glucose metabolism during pregnancy. SARS epidemic-specific associations call for further studies on its long-term adverse health effects, especially potential modified associations by lifestyle changes during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Aimin Yang
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China.
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Kwun Kiu Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - Risa Ozaki
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - William L Lowe
- Northwestern University Feinberg School of Medicine, Chicago, USA.
| | - Boyd E Metzger
- Northwestern University Feinberg School of Medicine, Chicago, USA.
| | - Elaine Chow
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Wing Hung Tam
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Chris K C Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
36
|
Ford LC, Lin HC, Tsai HHD, Zhou YH, Wright FA, Sedykh A, Shah RR, Chiu WA, Rusyn I. Hazard and risk characterization of 56 structurally diverse PFAS using a targeted battery of broad coverage assays using six human cell types. Toxicology 2024; 503:153763. [PMID: 38423244 PMCID: PMC11214689 DOI: 10.1016/j.tox.2024.153763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are extensively used in commerce leading to their prevalence in the environment. Due to their chemical stability, PFAS are considered to be persistent and bioaccumulative; they are frequently detected in both the environment and humans. Because of this, PFAS as a class (composed of hundreds to thousands of chemicals) are contaminants of very high concern. Little information is available for the vast majority of PFAS, and regulatory agencies lack safety data to determine whether exposure limits or restrictions are needed. Cell-based assays are a pragmatic approach to inform decision-makers on potential health hazards; therefore, we hypothesized that a targeted battery of human in vitro assays can be used to determine whether there are structure-bioactivity relationships for PFAS, and to characterize potential risks by comparing bioactivity (points of departure) to exposure estimates. We tested 56 PFAS from 8 structure-based subclasses in concentration response (0.1-100 μM) using six human cell types selected from target organs with suggested adverse effects of PFAS - human induced pluripotent stem cell (iPSC)-derived hepatocytes, neurons, and cardiomyocytes, primary human hepatocytes, endothelial and HepG2 cells. While many compounds were without effect; certain PFAS demonstrated cell-specific activity highlighting the necessity of using a compendium of in vitro models to identify potential hazards. No class-specific groupings were evident except for some chain length- and structure-related trends. In addition, margins of exposure (MOE) were derived using empirical and predicted exposure data. Conservative MOE calculations showed that most tested PFAS had a MOE in the 1-100 range; ∼20% of PFAS had MOE<1, providing tiered priorities for further studies. Overall, we show that a compendium of human cell-based models can be used to derive bioactivity estimates for a range of PFAS, enabling comparisons with human biomonitoring data. Furthermore, we emphasize that establishing structure-bioactivity relationships may be challenging for the tested PFAS.
Collapse
Affiliation(s)
- Lucie C Ford
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Hsing-Chieh Lin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Han-Hsuan D Tsai
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Yi-Hui Zhou
- Department of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Fred A Wright
- Department of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
37
|
Zhao M, Yin N, Yang R, Li S, Zhang S, Faiola F. Understanding the effects of per- and polyfluoroalkyl substances on early skin development: Role of ciliogenesis inhibition and altered microtubule dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169702. [PMID: 38163615 DOI: 10.1016/j.scitotenv.2023.169702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of highly stable chemicals, widely used in everyday products, and widespread in the environment, even in pregnant women. While epidemiological studies have linked prenatal exposure to PFAS with atopic dermatitis in children, little is known about their toxic effects on skin development, especially during the embryonic stage. In this study, we utilized human embryonic stem cells to generate non-neural ectoderm (NNE) cells and exposed them to six PFAS (perfluorooctanoic acid (PFOA), undecafluorohexanoic acid (PFHxA), heptafluorobutyric acid (PFBA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorobutyric acid (PFBS)) during the differentiation process to assess their toxicity to early skin development. Our results showed that PFOS altered the spindle-like morphology of NNE cells to a pebble-like morphology, and disrupted several NNE markers, including KRT16, SMYD1, and WISP1. The six PFAS had a high potential to cause hypohidrotic ectodermal dysplasia (HED) by disrupting the expression levels of HED-relevant genes. Transcriptomic analysis revealed that PFOS treatment produced the highest number (1156) of differentially expressed genes (DEGs) among the six PFAS, including the keratinocyte-related genes KRT6A, KRT17, KRT18, KRT24, KRT40, and KRT81. Additionally, we found that PFOS treatment disturbed several signaling pathways that are involved in regulating skin cell fate decisions and differentiation, including TGF-β, NOTCH, Hedgehog, and Hippo signaling pathways. Interestingly, we discovered that PFOS inhibited, by partially interfering with the expression of cytoskeleton-related genes, the ciliogenesis of NNE cells, which is crucial for the intercellular transduction of the above-mentioned signaling pathways. Overall, our study suggests that PFAS can inhibit ciliogenesis and hamper the transduction of important signaling pathways, leading potential congenital skin diseases. It sheds light on the underlying mechanisms of early embryonic skin developmental toxicity and provides an explanation for the epidemiological data on PFAS. ENVIRONMENTAL IMPLICATION: We employed a model based on human embryonic stem cells to demonstrate that PFOS has the potential to elevate the risk of hypohidrotic ectodermal dysplasia. This is achieved by targeting cilia, inhibiting ciliogenesis, and subsequently disrupting crucial signaling pathways like TGF-β, NOTCH, Hedgehog, and Hippo, during the early phases of embryonic skin development. Our study highlights the dangers and potential impacts of six PFAS pollutants on human skin development. Additionally, we emphasize the importance of closely considering PFHxA, PFBA, PFHxS, and PFBS, as they have shown the capacity to modify gene expression levels, albeit to a lesser degree.
Collapse
Affiliation(s)
- Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Moon J, Mun Y. The association between per- and polyfluoroalkyl substances (PFASs) and brain, esophageal, melanomatous skin, prostate, and lung cancer using the 2003-2018 US National Health and Nutrition Examination Survey (NHANES) datasets. Heliyon 2024; 10:e24337. [PMID: 38298650 PMCID: PMC10827757 DOI: 10.1016/j.heliyon.2024.e24337] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Introduction The purpose of this study was to use the US National Health and Nutrition Examination Survey (NHANES) datasets to examine potential relationships between four per- and polyfluoroalkyl substance (PFAS) exposures and each type of cancer, specifically perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA). Methods A logistic regression analysis was performed. A directed acyclic graph was plotted to adjust for the potential confounders. Results The odds ratio (OR) of brain cancer for a one-unit increase in ln (PFHxS) was 8.16 (95 % confidence interval [CI] 2.98-68.89). The OR of esophageal cancer for one unit increase of ln (PFOA) and ln (PFOS) was 5.10 (95 % CI 1.18-17.34) and 3.97 (95 % CI 1.24-11.42), respectively. The OR of melanoma for one unit increase of ln (PFOA) and ln (PFHxS) was 1.65 (95 % CI 1.07-2.58) and 1.55 (95 % CI 1.07-2.25), respectively. The OR of prostate cancer for one unit increase of ln (PFOS) and ln (PFNA) was 1.21 (95 % CI 1.00-1.48) and 1.27 (95 % CI 1.00-1.62), respectively. The OR of lung cancer for one unit increase of ln (PFOS) and ln (PFNA) was 2.62 (95 % CI 1.24-5.83) and 2.38 (95 % CI 1.00-5.52), respectively. Discussion Considering that brain, esophageal, and melanomatous skin cancers have not been targets of epidemiologic studies regarding PFAS exposure, future studies could target these cancers as outcomes of interest.
Collapse
Affiliation(s)
- Jinyoung Moon
- Interdisciplinary Program in Bioinformatics, College of Natural Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Department of Occupational and Environmental Medicine, Inha University Hospital, 27, Inhang-ro, Jung-gu, Incheon, 22332, South Korea
- Department of Occupational and Environmental Medicine, Ewha Womans University Seoul Hospital, 260, Gonghang-daero, Gangseo-gu, Seoul, 07804, South Korea
| | - Yongseok Mun
- Department of Ophthalmology, Hallym University College of Medicine, Hallym University Kangnam Sacred Heart Hospital, 1, Singil-ro, Yeongdeungpo-gu, Seoul, 07441, South Korea
| |
Collapse
|
39
|
Ulhaq ZS, Tse WKF. PFHxS Exposure and the Risk of Non-Alcoholic Fatty Liver Disease. Genes (Basel) 2024; 15:93. [PMID: 38254982 PMCID: PMC10815161 DOI: 10.3390/genes15010093] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Perfluorohexanesulfonic acid (PFHxS) is a highly prevalent environmental pollutant, often considered to be less toxic than other poly- and perfluoroalkyl substances (PFASs). Despite its relatively lower environmental impact compared to other PFASs, several studies have suggested that exposure to PFHxS may be associated with disruptions of liver function in humans. Nevertheless, the precise pathomechanisms underlying PFHxS-induced non-alcoholic fatty liver disease (NAFLD) remain relatively unclear. Therefore, this study applied our previously published transcriptome dataset to explore the effects of PFHxS exposure on the susceptibility to NAFLD and to identify potential mechanisms responsible for PFHxS-induced NAFLD through transcriptomic analysis conducted on zebrafish embryos. Results showed that exposure to PFHxS markedly aggravated hepatic symptoms resembling NAFLD and other metabolic syndromes (MetS) in fish. Transcriptomic analysis unveiled 17 genes consistently observed in both NAFLD and insulin resistance (IR), along with an additional 28 genes identified in both the adipocytokine signaling pathway and IR. These shared genes were also found within the NAFLD dataset, suggesting that hepatic IR may play a prominent role in the development of PFHxS-induced NAFLD. In conclusion, our study suggests that environmental exposure to PFHxS could be a potential risk factor for the development of NAFLD, challenging the earlier notion of PFHxS being safer as previously claimed.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong 16911, Indonesia
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
40
|
Hyötyläinen T, McGlinchey A, Salihovic S, Schubert A, Douglas A, Hay DC, O'Shaughnessy PJ, Iredale JP, Shaw S, Fowler PA, Orešič M. In utero exposures to perfluoroalkyl substances and the human fetal liver metabolome in Scotland: a cross-sectional study. Lancet Planet Health 2024; 8:e5-e17. [PMID: 38199723 DOI: 10.1016/s2542-5196(23)00257-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substances are classed as endocrine disrupting compounds but continue to be used in many products such as firefighting foams, flame retardants, utensil coatings, and waterproofing of food packaging. Perfluoroalkyl exposure aberrantly modulates lipid, metabolite, and bile acid levels, increasing susceptibility to onset and severity of metabolic diseases, such as diabetes and metabolic dysfunction-associated steatotic liver disease. To date, most studies in humans have focused on perfluoroalkyl-exposure effects in adults. In this study we aimed to show if perfluoroalkyls are present in the human fetal liver and if they have metabolic consequences for the human fetus. METHODS In this cross-sectional study, human fetal livers from elective termination of pregnancies at the Aberdeen Pregnancy Counselling Service, Aberdeen, UK, were analysed by both targeted (bile acids and perfluoroalkyl substances) and combined targeted and untargeted (lipids and polar metabolites) mass spectrometry based metabolomic analyses, as well as with RNA-Seq. Only fetuses from normally progressing pregnancies (determined at ultrasound scan before termination), terminated for non-medical reasons, from women older than 16 years, fluent in English, and between 11 and 21 weeks of gestation were collected. Women exhibiting considerable emotional distress or whose fetuses had anomalies identified at ultrasound scan were excluded. Stringent bioinformatic and statistical methods such as partial correlation network analysis, linear regression, and pathway analysis were applied to this data to investigate the association of perfluoroalkyl exposure with hepatic metabolic pathways. FINDINGS Fetuses included in this study were collected between Dec 2, 2004, and Oct 27, 2014. 78 fetuses were included in the study: all 78 fetuses were included in the metabolomics analysis (40 female and 38 male) and 57 fetuses were included in the RNA-Seq analysis (28 female and 29 male). Metabolites associated with perfluoroalkyl were identified in the fetal liver and these varied with gestational age. Conjugated bile acids were markedly positively associated with fetal age. 23 amino acids, fatty acids, and sugar derivatives in fetal livers were inversely associated with perfluoroalkyl exposure, and the bile acid glycolithocholic acid was markedly positively associated with all quantified perfluoroalkyl. Furthermore, 7α-hydroxy-4-cholesten-3-one, a marker of bile acid synthesis rate, was strongly positively associated with perfluoroalkyl levels and was detectable as early as gestational week 12. INTERPRETATION Our study shows direct evidence for the in utero effects of perfluoroalkyl exposure on specific key hepatic products. Our results provide evidence that perfluoroalkyl exposure, with potential future consequences, manifests in the human fetus as early as the first trimester of gestation. Furthermore, the profiles of metabolic changes resemble those observed in perinatal perfluoroalkyl exposures. Such exposures are already linked with susceptibility, initiation, progression, and exacerbation of a wide range of metabolic diseases. FUNDING UK Medical Research Council, Horizon Europe Program of the European Union, Seventh Framework Programme of the European Union, NHS Grampian Endowments grants, European Partnership for the Assessment of Risks from Chemicals, Swedish Research Council, Formas, Novo Nordisk Foundation, and the Academy of Finland.
Collapse
Affiliation(s)
| | - Aidan McGlinchey
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Samira Salihovic
- School of Science and Technology, Örebro University, Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Antonia Schubert
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Alex Douglas
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - David C Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | | | | | - Sophie Shaw
- All Wales Medical Genomics Service, Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | - Paul A Fowler
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
41
|
Hollister J, Caban-Martinez AJ, Ellingson KD, Beitel S, Fowlkes AL, Lutrick K, Tyner HL, Naleway AL, Yoon SK, Gaglani M, Hunt D, Meece J, Mayo Lamberte J, Schaefer Solle N, Rose S, Dunnigan K, Khan SM, Kuntz JL, Fisher JM, Coleman A, Britton A, Thiese MS, Hegmann KT, Pavuk M, Ramadan FA, Fuller S, Nematollahi A, Sprissler R, Burgess JL. Serum per- and polyfluoroalkyl substance concentrations and longitudinal change in post-infection and post-vaccination SARS-CoV-2 antibodies. ENVIRONMENTAL RESEARCH 2023; 239:117297. [PMID: 37816422 PMCID: PMC10842580 DOI: 10.1016/j.envres.2023.117297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/17/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous throughout the United States. Previous studies have shown PFAS exposure to be associated with a reduced immune response. However, the relationship between serum PFAS and antibody levels following SARS-CoV-2 infection or COVID-19 vaccination has not been examined. We examined differences in peak immune response and the longitudinal decline of antibodies following SARS-CoV-2 infection and COVID-19 vaccination by serum PFAS levels in a cohort of essential workers in the United States. We measured serum antibodies using an in-house semi-quantitative enzyme-linked immunosorbent assay (ELISA). Two cohorts contributed blood samples following SARS-CoV-2 infection or COVID-19 vaccination. We used linear mixed regression models, adjusting for age, race/ethnicity, gender, presence of chronic conditions, location, and occupation, to estimate differences in immune response with respect to serum PFAS levels. Our study populations included 153 unvaccinated participants that contributed 316 blood draws over a 14-month period following infection, and 860 participants and 2451 blood draws over a 12-month period following vaccination. Higher perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) concentrations were associated with a lower peak antibody response after infection (p = 0.009, 0.031, 0.015). Higher PFOS, perfluorooctanoic acid (PFOA), PFHxS, and PFNA concentrations were associated with slower declines in antibodies over time after infection (p = 0.003, 0.014, 0.026, 0.025). PFOA, PFOS, PFHxS, and PFNA serum concentrations prior to vaccination were not associated with differences in peak antibody response after vaccination or with differences in decline of antibodies over time after vaccination. These results suggest that elevated PFAS may impede potential immune response to SARS-CoV-2 infection by blunting peak antibody levels following infection; the same finding was not observed for immune response to vaccination.
Collapse
Affiliation(s)
- James Hollister
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.
| | - Alberto J Caban-Martinez
- Department of Public Health Sciences and Physical Medicine and Rehabilitation, University of Miami, Miller School of Medicine, USA
| | - Katherine D Ellingson
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Shawn Beitel
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | | | - Karen Lutrick
- College of Medicine - Tucson, University of Arizona, Tucson, AZ, USA
| | | | - Allison L Naleway
- Kaiser Permanente Northwest Center for Health Research, Portland, OR, USA
| | - Sarang K Yoon
- University of Utah Health, Rocky Mountain Center for Occupational and Environmental Health, USA
| | - Manjusha Gaglani
- Baylor Scott and White Health, Temple, TX, USA; Texas A&M University College of Medicine, Temple, TX, USA
| | | | | | | | - Natasha Schaefer Solle
- Department of Public Health Sciences and Physical Medicine and Rehabilitation, University of Miami, Miller School of Medicine, USA
| | | | | | - Sana M Khan
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Jennifer L Kuntz
- Kaiser Permanente Northwest Center for Health Research, Portland, OR, USA
| | | | - Alissa Coleman
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | | | - Matthew S Thiese
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT, USA
| | - Kurt T Hegmann
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT, USA
| | - Marian Pavuk
- Agency for Toxic Substances and Disease Registry, CDC, Atlanta, GA, USA
| | - Ferris A Ramadan
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | | | - Amy Nematollahi
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Ryan Sprissler
- University of Arizona Genetics Core, Office for Research, Innovation and Impact, University of Arizona, Tucson, AZ, USA
| | - Jefferey L Burgess
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
42
|
Di Credico A, Weiss A, Corsini M, Gaggi G, Ghinassi B, Wilbertz JH, Di Baldassarre A. Machine learning identifies phenotypic profile alterations of human dopaminergic neurons exposed to bisphenols and perfluoroalkyls. Sci Rep 2023; 13:21907. [PMID: 38081991 PMCID: PMC10713827 DOI: 10.1038/s41598-023-49364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by the loss of midbrain dopaminergic neurons. Endocrine disrupting chemicals (EDCs) are active substances that interfere with hormonal signaling. Among EDCs, bisphenols (BPs) and perfluoroalkyls (PFs) are chemicals leached from plastics and other household products, and humans are unavoidably exposed to these xenobiotics. Data from animal studies suggest that EDCs exposure may play a role in PD, but data about the effect of BPs and PFs on human models of the nervous system are lacking. Previous studies demonstrated that machine learning (ML) applied to microscopy data can classify different cell phenotypes based on image features. In this study, the effect of BPs and PFs at different concentrations within the real-life exposure range (0.01, 0.1, 1, and 2 µM) on the phenotypic profile of human stem cell-derived midbrain dopaminergic neurons (mDANs) was analyzed. Cells exposed for 72 h to the xenobiotics were stained with neuronal markers and evaluated using high content microscopy yielding 126 different phenotypic features. Three different ML models (LDA, XGBoost and LightGBM) were trained to classify EDC-treated versus control mDANs. EDC treated mDANs were identified with high accuracies (0.88-0.96). Assessment of the phenotypic feature contribution to the classification showed that EDCs induced a significant increase of alpha-synuclein (αSyn) and tyrosine hydroxylase (TH) staining intensity within the neurons. Moreover, microtubule-associated protein 2 (MAP2) neurite length and branching were significantly diminished in treated neurons. Our study shows that human mDANs are adversely impacted by exposure to EDCs, causing their phenotype to shift and exhibit more characteristics of PD. Importantly, ML-supported high-content imaging can identify concrete but subtle subcellular phenotypic changes that can be easily overlooked by visual inspection alone and that define EDCs effects in mDANs, thus enabling further pathological characterization in the future.
Collapse
Affiliation(s)
- Andrea Di Credico
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies, and Technology (CAST), 66100, Chieti, Italy
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UdATech Lab Center (UdATech), 66100, Chieti, Italy
| | | | - Massimo Corsini
- Dipartimento Di Neuroscienze Umane, "Sapienza" University of Rome, Chieti, Italy
| | - Giulia Gaggi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies, and Technology (CAST), 66100, Chieti, Italy
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UdATech Lab Center (UdATech), 66100, Chieti, Italy
| | - Barbara Ghinassi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies, and Technology (CAST), 66100, Chieti, Italy
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UdATech Lab Center (UdATech), 66100, Chieti, Italy
| | | | - Angela Di Baldassarre
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies, and Technology (CAST), 66100, Chieti, Italy
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UdATech Lab Center (UdATech), 66100, Chieti, Italy
| |
Collapse
|
43
|
Solan ME, Schackmuth B, Bruce ED, Pradhan S, Sayes CM, Lavado R. Effects of short-chain per- and polyfluoroalkyl substances (PFAS) on toxicologically relevant gene expression profiles in a liver-on-a-chip model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122610. [PMID: 37742859 DOI: 10.1016/j.envpol.2023.122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Short-chain per- and polyfluoroalkyl substances (PFAS) are highly stable and widely used environmental contaminants that pose potential health risks to humans. Aggregating reliable mechanistic information for safety assessments necessitates physiologically relevant high-throughput screening approaches. Here, we demonstrated the utility of a liver-on-a-chip model to investigate the effects of five short-chain PFAS at low (1 nM) and high (1 μM) concentrations on toxicologically-relevant gene expression profiles using the QuantiGene® Plex Assay. We found that the short-chain PFAS tested in this study modulated the expression of ABCG2, a gene encoding for the breast cancer resistance protein (BCRP), with marked and significant upregulation (up to 4-fold) observed for all but one of the short-chain PFAS tested. PFBS and HFPO-DA repressed SLCO1B3 expression, a gene that encodes for an essential liver-specific organic anion transporter. High concentrations of PFBS, PFHxA, and PFHxS upregulated the expression of genes encCYP1A1,CYP2B6 and CYP2C19 with the same treatments resulting in the repression of the expression of the gene encoding CYP1A2. This dysregulation could have consequences for the clearance of endogenous compounds and xenobiotics. However, we acknowledge that increased expression of genes encoding for transporters and biotransformation enzymes may or may not indicate changes to their protein expression or activity. Overall, our study provides important insights into the effects of short-chain PFAS on liver function and their potential implications for human health. The use of the liver-on-a-chip model in combination with the QuantiGene® Plex Assay may be a valuable tool for future high-throughput screening and gene expression profiling in toxicology studies.
Collapse
Affiliation(s)
- Megan E Solan
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Bennett Schackmuth
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Erica D Bruce
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Sahar Pradhan
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
44
|
Hull SD, Deen L, Petersen KU, Jensen TK, Hammer P, Wils RS, Frankel HN, Ostrowski SR, Tøttenborg SS. Time trends in per- and polyfluoroalkyl substances (PFAS) concentrations in the Danish population: A review based on published and newly analyzed data. ENVIRONMENTAL RESEARCH 2023; 237:117036. [PMID: 37659637 DOI: 10.1016/j.envres.2023.117036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
INTRODUCTION Per- and polyfluoroalkyl substances (PFAS) are persistent chemicals used in many industries and everyday consumer products and exposure has been linked to several adverse health outcomes. Currently, no systematic monitoring of PFAS levels in the general Danish population has been conducted. OBJECTIVE To study temporal trends of PFAS concentrations in the Danish population. MATERIALS AND METHODS In August 2023, we performed a search for original peer-reviewed reports in PubMed using combinations of search terms for PFAS and Denmark. Reports were included if they comprised a Danish study population and direct measurements of PFAS in serum or plasma samples. Scatter plots of medians presented in the reports were used to visualize time-trends of PFAS concentrations among Danish individuals. RESULTS We included 29 reports based on a total of 18,231 individuals from 19 Danish study populations. A total of 24 PFAS measured in serum or plasma were presented in the reports, the most frequent being PFOS, PFOA, PFDA, PFNA, PFHpA, PFHpS, and PFHxS. Median concentrations of PFOS ranged from 4.0 ng/mL to 44.5 ng/mL, PFOA ranged from 0.8 ng/mL to 9.7 ng/mL, while lower concentrations were presented for the other PFAS. Median concentrations of PFOS and PFOA increased from 1988 until the late 1990s followed by a decrease until 2021. A less clear time-trend were observed for the other PFAS. CONCLUSION Blood concentrations of PFOS and PFOA in the Danish population have declined substantially from the late 1990s until 2021 reflecting a phase-out of the production and regulation of the use of these PFAS. Time-trends for PFDA, PFNA, PFHpA, PFHpS, and PFHxS were less evident, yet a tendency toward a decline was observed. As only some of the compounds are measured, it is not possible to determine if the decrease in some PFAS is outweighed by an increase in others.
Collapse
Affiliation(s)
- Sidsel Dan Hull
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark.
| | - Laura Deen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark
| | - Kajsa Ugelvig Petersen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute for Public Health, University of Southern, Denmark
| | - Paula Hammer
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark; Department of Occupational and Social Medicine, Holbaek University Hospital, Denmark
| | - Regitze Sølling Wils
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark
| | - Hannah Nørtoft Frankel
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sandra Søgaard Tøttenborg
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark; Department of Public Health, University of Copenhagen, Denmark
| |
Collapse
|
45
|
Gao XX, Zuo QL, Fu XH, Song LL, Cen MQ, Wu J. Association between prenatal exposure to per- and polyfluoroalkyl substances and neurodevelopment in children: Evidence based on birth cohort. ENVIRONMENTAL RESEARCH 2023; 236:116812. [PMID: 37536558 DOI: 10.1016/j.envres.2023.116812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Although numerous studies have examined the effect of prenatal per- and polyfluoroalkyl substances (PFAS) exposure on neurodevelopment in children, findings have been inconsistent. OBJECTIVE To better understand the effects of PFAS exposure during pregnancy on offspring neurodevelopment, we conducted a systematic review of prenatal exposure to different types of PFAS and neurodevelopment in children. METHODS A comprehensive search was conducted in the PubMed, Web of Science, and EMBASE electronic databases up to March 2023. Only birth cohort studies that report a specific association between PFAS exposure during pregnancy and neurodevelopment were included in this review. RESULTS 31 birth cohort studies that met the inclusion criteria were qualitatively integrated. Among these, 14 studies investigated the impact of PFAS exposure during pregnancy on cognition, 13 on neurobehavior, and 4 on both cognition and neurobehavior. Additionally, 4 studies explored the influence of PFAS on children's comprehensive development. CONCLUSION Prenatal PFAS exposure was associated with poor neurodevelopment in children, including psychomotor development, externalizing behavior, and comprehensive development. However, conclusive evidence regarding its effects on other neurological outcomes remains limited. In addition, sex-specific effects on social behavior and sleep problems were identified.
Collapse
Affiliation(s)
- Xin-Xin Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian-Lin Zuo
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi-Hang Fu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling-Ling Song
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man-Qiu Cen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
46
|
Eichler CMA, Chang NY, Cohen Hubal EA, Amparo DE, Zhou J, Surratt JD, Morrison GC, Turpin BJ. Cloth-Air Partitioning of Neutral Per- and Polyfluoroalkyl Substances (PFAS) in North Carolina Homes during the Indoor PFAS Assessment (IPA) Campaign. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15173-15183. [PMID: 37757488 PMCID: PMC11182342 DOI: 10.1021/acs.est.3c04770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Partitioning of per- and polyfluoroalkyl substances (PFAS) to indoor materials, including clothing, may prolong the residence time of PFAS indoors and contribute to exposure. During the Indoor PFAS Assessment (IPA) Campaign, we measured concentrations of nine neutral PFAS in air and cotton cloth in 11 homes in North Carolina, for up to 9 months. Fluorotelomer alcohols (i.e., 6:2 FTOH, 8:2 FTOH, and 10:2 FTOH) are the dominant target species in indoor air, with concentrations ranging from 1.8 to 49 ng m-3, 1.2 to 53 ng m-3, and 0.21 to 5.7 ng m-3, respectively. In cloth, perfluorooctane sulfonamidoethanols (i.e., MeFOSE and EtFOSE) accumulated most significantly over time, reaching concentrations of up to 0.26 ng cm-2 and 0.24 ng cm-2, respectively. From paired measurements of neutral PFAS in air and suspended cloth, we derived cloth-air partition coefficients (Kca) for 6:2, 8:2, and 10:2 FTOH; ethylperfluorooctane sulfonamide (EtFOSA); MeFOSE; and EtFOSE. Mean log(Kca) values range from 4.7 to 6.6 and are positively correlated with the octanol-air partition coefficient. We investigated the effect of the cloth storage method on PFAS accumulation and the influence of home characteristics on air concentrations. Temperature had the overall greatest effect. This study provides valuable insights into PFAS distribution, fate, and exposure indoors.
Collapse
Affiliation(s)
- Clara M A Eichler
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, North Carolina 27599-7400, United States
| | - Naomi Y Chang
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, North Carolina 27599-7400, United States
| | - Elaine A Cohen Hubal
- U.S. EPA, Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina 27711, United States
| | - Daniel E Amparo
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, North Carolina 27599-7400, United States
| | - Jiaqi Zhou
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, North Carolina 27599-7400, United States
| | - Jason D Surratt
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, North Carolina 27599-7400, United States
- University of North Carolina at Chapel Hill, College of Arts and Sciences, Department of Chemistry, Chapel Hill, North Carolina 27599-3290, United States
| | - Glenn C Morrison
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, North Carolina 27599-7400, United States
| | - Barbara J Turpin
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, North Carolina 27599-7400, United States
| |
Collapse
|
47
|
Hegedus C, Andronie L, Uiuiu P, Jurco E, Lazar EA, Popescu S. Pets, Genuine Tools of Environmental Pollutant Detection. Animals (Basel) 2023; 13:2923. [PMID: 37760323 PMCID: PMC10525180 DOI: 10.3390/ani13182923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In a shared environment, our companion animals became unintended sentinels for pollutant exposure consequences, developing even earlier similar conditions to humans. This review focused on the human-pet cohabitation in an environment we all share. Alongside other species, canine and feline companions are veritable models in human medical research. The latency period for showing chronic exposure effects to pollutants is just a few years in them, compared to considerably more, decades in humans. Comparing the serum values of people and their companion animals can, for example, indicate the degree of poisonous lead load we are exposed to and of other substances as well. We can find 2.4 times higher perfluorochemicals from stain- and grease-proof coatings in canine companions, 23 times higher values of flame retardants in cats, and 5 times more mercury compared to the average levels tested in humans. All these represent early warning signals. Taking these into account, together with the animal welfare orientation of today's society, finding non-invasive methods to detect the degree of environmental pollution in our animals becomes paramount, alongside the need to raise awareness of the risks carried by certain chemicals we knowingly use.
Collapse
Affiliation(s)
- Cristina Hegedus
- Department of Fundamental Sciences, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Luisa Andronie
- Department of Biophysics, Meteorology and Climatology, Faculty of Forestry and Cadastre, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Paul Uiuiu
- Department of Fundamental Sciences, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Eugen Jurco
- Department of Technological Sciences, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Eva Andrea Lazar
- Association for the Welfare of Horses, 725700 Vatra Dornei, Romania;
| | - Silvana Popescu
- Department of Animal Hygiene and Welfare, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
48
|
Tewfik EL, Noisel N, Verner MA. Biomonitoring equivalents for perfluorooctanoic acid (PFOA) for the interpretation of biomonitoring data. ENVIRONMENT INTERNATIONAL 2023; 179:108170. [PMID: 37657409 DOI: 10.1016/j.envint.2023.108170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA) is detected in the blood of virtually all biomonitoring study participants. Assessing health risks associated with blood PFOA levels is challenging because exposure guidance values (EGVs) are typically expressed in terms of external dose. Biomonitoring equivalents (BEs) consistent with EGVs could facilitate health-based interpretations. OBJECTIVE To i) derive BEs for serum/plasma PFOA corresponding to non-cancer EGVs of the U.S. Environmental Protection Agency (U.S. EPA), the Agency for Toxic Substances and Disease Registry (ATSDR) and Health Canada, and ii) compare with PFOA concentrations from national biomonitoring surveys. METHODS Starting from EGV points of departure, we employed pharmacokinetic data/models and uncertainty factors. Points of departure in pregnant rodents (U.S. EPA 2016, ATSDR) were converted into fetus and pup serum concentrations using an animal gestation/lactation pharmacokinetic model, and equivalent human fetus and child concentrations were converted into BEs in maternal serum using a human gestation/lactation model. The point of departure in adult rodents (Health Canada) was converted into a BE using experimental data. For epidemiology-based EGVs (U.S. EPA 2023, draft), BEs were directly based on epidemiological data or derived using a human gestation/lactation pharmacokinetic model. BEs were compared with Canadian/U.S. biomonitoring data. RESULTS Non-cancer BEs (ng/mL) were 684 (Health Canada, 2018) or ranged from 15 to 29 (U.S. EPA, 2016), 6-10 (ATSDR, 2021) and 0.2-0.8 (U.S. EPA, 2023, draft). Ninety-fifth percentiles of serum levels from the 2018-2019 Canadian Health Measures Survey (CHMS) and the 2017-2018 National Health and Nutrition Examination Survey (NHANES) were slightly below the BE for ATSDR, and geometric means were above the non-cancer BEs for the U.S. EPA (2023, draft). CONCLUSION Non-cancer BEs spanned three orders of magnitude. The lowest BEs were for EGVs based on developmental endpoints in epidemiological studies. Concentrations in Canadian/U.S. national surveys were higher than or close to BEs for the most recent non-cancer EGVs.
Collapse
Affiliation(s)
- Ernest-Louli Tewfik
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada; Centre de Recherche en Santé Publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Canada
| | - Nolwenn Noisel
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada; Centre de Recherche en Santé Publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Canada
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada; Centre de Recherche en Santé Publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Canada.
| |
Collapse
|
49
|
Rosen Vollmar AK, Lin EZ, Nason SL, Santiago K, Johnson CH, Ma X, Godri Pollitt KJ, Deziel NC. Per- and polyfluoroalkyl substances (PFAS) and thyroid hormone measurements in dried blood spots and neonatal characteristics: a pilot study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:737-747. [PMID: 37730931 PMCID: PMC10541328 DOI: 10.1038/s41370-023-00603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Pediatric thyroid diseases have been increasing in recent years. Environmental risk factors such as exposures to chemical contaminants may play a role but are largely unexplored. Archived neonatal dried blood spots (DBS) offer an innovative approach to investigate environmental exposures and effects. OBJECTIVE In this pilot study, we applied a new method for quantifying per- and polyfluoroalkyl substances (PFAS) to 18 archived DBS from babies born in California from 1985-2018 and acquired thyroid hormone measurements from newborn screening tests. Leveraging these novel data, we evaluated (1) changes in the concentrations of eight PFAS over time and (2) the relationship between PFAS concentrations, thyroid hormone concentrations, and neonatal characteristics to inform future research. METHODS PFAS concentrations in DBS were measured using ultra-high-performance liquid chromatography-mass spectrometry. Summary statistics and non-parametric Wilcoxon rank-sum and Kruskal-Wallis tests were used to evaluate temporal changes in PFAS concentrations and relationships between PFAS concentrations, thyroid hormone concentrations, and neonatal characteristics. RESULTS The concentration and detection frequencies of several PFAS (PFOA, PFOS, and PFOSA) declined over the assessment period. We observed that the timing of specimen collection in hours after birth was related to thyroid hormone but not PFAS concentrations, and that thyroid hormones were related to some PFAS concentrations (PFOA and PFOS). IMPACT STATEMENT This pilot study examines the relationship between concentrations of eight per- and polyfluoroalkyl substances (PFAS), thyroid hormone levels, and neonatal characteristics in newborn dried blood spots (DBS) collected over a period of 33 years. To our knowledge, 6 of the 22 PFAS we attempted to measure have not been quantified previously in neonatal DBS, and this is the first study to examine both PFAS and thyroid hormone concentrations using DBS. This research demonstrates the feasibility of using newborn DBS for quantifying PFAS exposures in population-based studies, highlights methodological considerations in the use of thyroid hormone data for future studies using newborn DBS, and indicates potential relationships between PFAS concentrations and thyroid hormones for follow-up in future research.
Collapse
Affiliation(s)
- Ana K Rosen Vollmar
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Sara L Nason
- Departments of Environmental Science and Forestry and Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Katerina Santiago
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
50
|
Starling AP. Invited Perspective: Per- and Polyfluoroalkyl Substances and Impaired Antibody Response to Vaccination-Who Is Affected? ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:81304. [PMID: 37578903 PMCID: PMC10424815 DOI: 10.1289/ehp12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/19/2023] [Accepted: 07/03/2023] [Indexed: 08/16/2023]
Affiliation(s)
- Anne P. Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|