1
|
Riaz M, Abdullah S, Jamil M, Rasheed A, Sheikh U, Fatima M, Umer N, Aslam K. Evaluation of toxic effects of benzophenone on histopathology of Labeo rohita. Toxicol Rep 2025; 14:101914. [PMID: 39897405 PMCID: PMC11787587 DOI: 10.1016/j.toxrep.2025.101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
Benzophenone (BP) is an organic ultraviolet (UV) filter widely used in sunscreens and personal care products. This compound enters aquatic ecosystems due to industrialization, wastewater treatment plants (WWTPs), and domestic effluents, poses serious threats to aquatic organisms, and is considered an emerging pollutant. This laboratory-based study assessed the 96-hour (h) median lethal concentrations (LC50) and sub-lethal effects of BP on the histology of the gills and muscles of Labeo rohita. Fish fingerlings of the same weight (48 ± 2 g) and length (5 ± 2 in.) were exposed to gradually increasing concentrations of BP (100 µg/L to 1000 µg/L) and their 96-h LC50 was determined as 612.822 ± 37.38 µg/L. To determine the sub-lethal effects, the fish were exposed to 1/5th of the 96-h LC50 of BP for 35 days (d) to investigate organ-specific responses. The results indicated significant damage to the exposed organs and showed damage in pillar cells and intraluminal debris in gill mucous cells. Moreover, fragmentation of intact muscle structures, intraluminal debris, and vascular necrosis were observed in exposed muscles. In conclusion, these results confirmed the histopathological changes in the gills and muscles of L. rohita caused by BP exposure, thereby confirming its risk to aquatic life.
Collapse
|
2
|
Han W, Su L, Xie Q, Xiao Z, Zhang Y, Chen X, Fu Z, Chen J. Chemical Dissipation from Outdoor Plastics: The Significant Impact of Transformation Processes Revealed by Adjusted Mass Transfer Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2181-2191. [PMID: 39844585 DOI: 10.1021/acs.est.4c08651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Chemicals in plastics raise significant concerns for potential adverse environmental and health impacts. However, dissipation kinetics and fluxes of chemicals from outdoor plastic products remain largely uncharacterized, hindering the accurate assessment of their environmental exposure. This study quantified outdoor dissipation profiles for 20 "priority" chemicals, including sunscreens (benzophenone, benzophenone-3, octyl salicylate, etc.), phthalates, benzotriazole ultraviolet stabilizers (UV-P, UV-326, UV-327, etc.), and polycyclic aromatic hydrocarbons (PAHs), from 3 types of plastic protective nets over 180 days. Results revealed that levels of sunscreens and PAHs decreased to less than 50% of their initial concentrations within 5 days. Adjusted mass transfer modeling by integrating transformation processes well reproduced the dissipation kinetics (median determination coefficients R2 = 0.82) and revealed synchronous release and transformation in the dissipation. Average dissipation half-lives of the chemicals were 19.7 days and positively correlated with the number of electron lone pairs and carbon atoms in the molecules. Unexpectedly, the transformation contributed 82.1% to the total chemical dissipation, especially for di(2-ethylhexyl) phthalate (DEHP) and UV-326. Suspect screening of formed products in PPNs suggested photolysis, ozone, and hydroxyl radical-induced oxidation as the primary transformation processes, supported by a high concentration of 2-ethylhexyl benzoate product comparable to its parent DEHP. These insights underscore the pivotal role of transformation in chemical dissipation from plastics, informing more precise emission assessment of chemicals and future efforts toward developing environmentally benign plastics.
Collapse
Affiliation(s)
- Wenjing Han
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lihao Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zijun Xiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuxuan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xi Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Sandech N, Yang MC, Juntranggoor P, Rukthong P, Gorelkin P, Savin N, Timoshenko R, Vaneev A, Erofeev A, Wichaiyo S, Pradidarcheep W, Maiuthed A. Benja-ummarit induces ferroptosis with cell ballooning feature through ROS and iron-dependent pathway in hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118672. [PMID: 39127118 DOI: 10.1016/j.jep.2024.118672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/22/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Benja-ummarit (BU), a traditional Thai herbal formula, has been prescribed by traditional Thai practitioners for the treatment of liver cancer. Clinical trials of BU have shown an increase in overall survival in hepatocellular carcinoma (HCC) patients, including stage 1-3 (with or without prior standard chemotherapy) and terminal stage. The clinical outcomes differ from those of other apoptosis-based conventional chemotherapies. The molecular mechanisms underlying the anti-cancer properties of BU remain unclear. AIM OF STUDY To investigate BU-induced ferroptosis through morphological and molecular analyses of HCC cell lines and HCC rat tissues. METHODOLOGY Cytotoxicity of BU extract in HepG2 and HuH-7 cells, with or without LX-2 in 2D and 3D cultures, was determined through MTT assay and by observing spheroid formation, respectively, as compared to sorafenib. Morphological changes and the cellular ultrastructure of the treated cells were evaluated by light microscopy and transmission electron microscopy (TEM), respectively. In addition, alterations in ferroptosis protein markers in both cell lines and rat liver tissue were determined using western blot analysis and immunohistochemical staining, respectively. To investigate the pathways mediating ferroptosis, cells were pretreated with an iron chelator to confirm the iron-dependent ferroptosis induced by the BU extract. Intracellular ROS, a mediator of ferroptosis, was measured using a scanning ion conductance microscope (SICM). SICM was also used to determine cellular stiffness. The lipid profiles of BU-treated cells were studied using LC-MS/MS. RESULTS The BU extract induced cell death under all HCC cell culture conditions. The BU-IC50 in HepG2 and HuH-7 were 31.24 ± 4.46 μg/mL and 23.35 ± 0.27 μg/mL, respectively as determined by MTT assay. In co-culture with LX-2, BU exhibited a similar trend of cytotoxicity in both HepG2 and HuH-7 cells. Light microscopy showed cell ballooning features with intact plasma membranes, and TEM microscopy showed mitochondrial swelling and reduced mitochondrial cristae in BU-treated cells. BU promotes intracellular iron levels by increasing DMT1 and NCOA4 expression and decreasing FTH1 expression. BU also suppressed the cellular antioxidant system by lowering CD98, NRF2, and GPX4 expression, and promoting KEAP1 expression. IHC results of HCC rat liver tissues showed the absence of DMT1 and high expression of GPX4 in the tumor area. Pre-treatment with an iron chelator partially restored cell viability and shifted the mode of cell death to a more apoptosis-like morphology in the BU-treated group. The SICM showed increased intracellular ROS levels and cellular stiffness 24 h after BU treatment. In more detail of BU-mediated ferroptosis, cellular lipid profiling revealed increased expression of 3 polyunsaturated lipids, which are highly susceptible to lipid peroxidation, in BU-treated cells. DISCUSSION Alterations in intracellular iron levels, ROS levels, and cellular lipid composition have been previously reported in cancer cells. Therefore, targeting the iron-dependent ROS pathway and polyunsaturated lipids via BU-induced ferroptosis may be more cancer-specific than apoptosis-based cancer drugs. These observations are in accordance with the clinical outcomes of BU. The ferroptosis-inducing mechanism of BU makes it an extremely promising novel drug candidate for the treatment of HCC.
Collapse
Affiliation(s)
- Nichawadee Sandech
- Doctor of Philosophy Program in Innovative Anatomy, Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand; Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Meng Chieh Yang
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Pichakorn Juntranggoor
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Pattarawit Rukthong
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Srinakharinwirot University, Nakornnayok, 26120, Thailand; Center for Excellence in Plant and Herbal Innovation Research, Strategic Wisdom and Research Institute, Srinakharinwirot University, Nakornnayok, 26120, Thailand
| | - Petr Gorelkin
- ICAPPIC Limited, London, E8 3PN, United Kingdom; Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia
| | - Nikita Savin
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia
| | - Roman Timoshenko
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia
| | - Alexander Vaneev
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander Erofeev
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Surasak Wichaiyo
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand; Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Wisuit Pradidarcheep
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand.
| | - Arnatchai Maiuthed
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand; Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
4
|
Cuccaro A, De Marchi L, Pirone A, Monni G, Meucci V, Lazzarini G, Fumagalli G, Oliva M, Miragliotta V, Freitas R, Pretti C. Interplay of UV-filter pollution and temperature rise scenarios on Mytilus galloprovincialis health: Unveiling sperm quality and adult physiology, biochemistry, and histology insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124930. [PMID: 39260551 DOI: 10.1016/j.envpol.2024.124930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/07/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Addressing the impacts of emerging contaminants within the context of climate change is crucial for understanding ecosystem health decline. Among these, the organic UV-filters 4-methylbenzylidenecamphor (4-MBC) and benzophenone-3 (BP-3) are widely used in cosmetics and personal care products. Their unique physico-chemical properties, along with their growing commercialization and consumption, have made them ubiquitous in aquatic environments through both direct and indirect releases, raising significant concerns about their potential threats to inhabiting biota. Additionally, increasing surface water temperatures exacerbate ecological risks, making it imperative to understand the implications for non-target species at different biological levels. This study investigated the short- and long-term effects of UV-filters 4-MBC or BP-3, at ecologically relevant concentrations, combined with current and predicted warming scenarios, on the performance and male reproductive health of Mytilus galloprovincialis mussel populations. Using biomarkers across sub-cellular, cellular, tissue, and individual levels, the study revealed significant physiological and biochemical impairments in both sperm cells and adults exposed to UV-filters. Temperature emerged as the primary driver influencing mussel responses and modulating the impacts of 4-MBC/BP-3, emphasizing their sensitivity to temperatures outside the optimal range and interactive effects between stressors. Specifically, sperm motility declined with increasing UV-filter concentrations, while temperature alone influenced ROS production, leading to compromised mitochondrial activity and DNA damage in the presence of combined stressors, indicative of potential reproductive impairments. Adults exhibited high UV-filter bioconcentration potential in whole tissues, compromised physiological status, morphophysiological changes in digestive glands, oxidative stress, and alterations in metabolic capacity, antioxidant defences, and biotransformation mechanisms, correlating with UV-filter exposure and temperature increase. Among the UV-filters tested, 4-MBC was the most detrimental, especially when combined with warming. Overall, this study underscores the vulnerability of M. galloprovincialis to cumulative stressors and highlights the importance of employing a multi-biomarker approach to assess and mitigate the impacts of stressors on coastal ecosystems.
Collapse
Affiliation(s)
- Alessia Cuccaro
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Giorgia Fumagalli
- Interuniversity Consortium of Marine Biology and Applied Ecology, "G. Bacci", 57128, Livorno, Italy
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology, "G. Bacci", 57128, Livorno, Italy
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy; Interuniversity Consortium of Marine Biology and Applied Ecology, "G. Bacci", 57128, Livorno, Italy.
| |
Collapse
|
5
|
Tan J, Yang L, Ye M, Geng Y, Guo Y, Zou H, Hou L. Effects of cortisone in zebrafish (Danio rerio): Insights into gut microbiota interactions and molecular mechanisms underlying DNA damage and apoptosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135576. [PMID: 39173371 DOI: 10.1016/j.jhazmat.2024.135576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Cortisone can enter aquatic ecosystems and pose a risk to organisms therein. However, few studies have explored the effects of cortisone on the gut microbiota of aquatic organisms. Here, we exposed zebrafish (Danio rerio) to cortisone at environmentally relevant concentrations (5.0, 50.0, or 500.0 ng L-1) for 60 days to explore its toxicological effects and their association with gut microbiota changes. The terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling assay revealed that exposure to 50 ng L-1 cortisone significantly increased the intestinal cell apoptosis rate, 8-hydroxydeoxyguanosine contents, and caspase-3 and caspase-8 activities. Moreover, the transcriptome analysis results demonstrated a notable downregulation in the expression of most differentially expressed genes associated with apoptosis pathways, as well as changes in DNA replication, oxidative stress, and drug metabolism pathways; these results indicated the occurrence of cortisone-induced stress response in zebrafish. Molecular docking analysis revealed that cortisone can bind to caspase-3 through hydrogen bonds and hydrophobic interactions but that no such interactions occur between cortisone and caspase-8. Thus, cortisone may induce oxidative DNA damage and apoptosis by activating caspase-3. Finally, the 16S rRNA sequencing results demonstrated that cortisone significantly affected microbial community structures and functions in the intestinal ecosystem. These changes may indicate gut microbiota response to cortisone-induced intestinal damage and inflammation. In conclusion, the current results clarify the mechanisms underlying intestinal response to cortisone exposure and provide a basis for evaluating the health risks of cortisone in animals.
Collapse
Affiliation(s)
- Jiefeng Tan
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China; School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Lihua Yang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Meixin Ye
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yuxin Geng
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yanfang Guo
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hong Zou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China.
| |
Collapse
|
6
|
Chen L, Jin J, Shao K, Xu Z, Lv L, Wu C, Wang Y. Mixture toxic mechanism of phoxim and prochloraz in the hook snout carp Opsariichthysbidens. CHEMOSPHERE 2024; 364:143217. [PMID: 39216554 DOI: 10.1016/j.chemosphere.2024.143217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Pesticides are usually found as mixtures in surface water bodies, even though their regulation in aquatic ecosystems is usually approached individually. In this context, this work aimed to investigate the enzymatic- and transcriptional-level responses after the mixture exposure of phoxim (PHX) and prochloraz (PRC) in the livers of hook snout carp Opsariichthys bidens. These data exhibited that co-exposure to PHX and PRC induced an acute synergistic impact on O. bidens. The activities of catalase (CAT), superoxide dismutase (SOD), carboxylesterase (CarE), and caspase3 varied significantly in most of the individual and combined challenges relative to basal values, indicating the activation of oxidative stress, detoxification dysfunction, as well as cell apoptosis. Besides, the transcriptional levels of five genes (gst, erα, mn-sod, cxcl-c1c, and il-8) exhibited more pronounced changes when subjected to combined pesticide exposure in contrast to the corresponding individual compounds. The findings revealed the manifestation of endocrine dysfunction and immune disruption. These results underscored the potential biochemical and molecular toxicity posed by the combination of PHX and PRC to O. bidens, thereby contributing to a deeper comprehension of the ecological toxicity of pesticide mixtures on aquatic organisms. Importantly, the concurrent presence of PHX and PRC might exacerbate hepatocellular damage in hook snout carps, potentially attributable to their synergistic toxic interactions. This study underscored the toxicological potency inherent in the co-occurrence of PHX and PRC in influencing fish development, thereby offering valuable insights for the risk assessment of pesticide mixtures and the safeguarding of aquatic organisms.
Collapse
Affiliation(s)
- Liping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jiansheng Jin
- Huzhou Agricultural Technology Extension Service Center, Zhejiang Province, 313000, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, 47405, USA
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Changxin Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
7
|
Zhang J, Wang N, Zhang Z, Gao Y, Dong J, Gao X, Yuan H, Li X. Combined effects of toxic Microcystis aeruginosa and high pH on antioxidant responses, immune responses, and apoptosis of the edible freshwater bivalve Corbicula fluminea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116568. [PMID: 38850693 DOI: 10.1016/j.ecoenv.2024.116568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Due to increasing anthropogenic perturbation and water eutrophication, cyanobacterial blooms (CYBs) have become a global ecological and environmental problem. Toxic CYBs and elevated pH are considered to be the two key stressors associated with eutrophication in natural waters, particularly in the event of CO2 depletion induced by dense blooms. However, previous research has been focused on investigating the impacts of toxic CYBs or pH changes in isolation, whereas the interactive effects of such stressors on edible bivalves that inhabit CYB waters still lack information. In this study, the combined effects of toxic Microcystis aeruginosa and pH shifts on the antioxidant responses, immune responses, and apoptosis of the edible freshwater bivalve Corbicula fluminea were explored. The results showed that the activity of antioxidant enzymes was significantly impacted by the interactive effects between toxic M. aeruginosa exposure and time course, yet pH shifts showed no significant effects on the activities of these antioxidant enzymes, implying that the antioxidant response in C. fluminea was mainly triggered by toxic M. aeruginosa exposure. Toxic M. aeruginosa also induced an increased production of reactive oxygen species and malondialdehyde in treated clams, particularly under high pH settings. The elevated lysosomal enzyme activity helped C. fluminea defend against toxic M. aeruginosa exposure under high pH conditions. The principal component analysis (PCA) and the integrated biomarker response (IBR) results suggested that the treated clams were subjected to the elevated toxicity of toxic M. aeruginosa in conditions of high pH. The heat shock proteins-related genes might be triggered to resist the oxidative damage in treated clams. Moreover, the upregulation of TNF and casp8 genes indicated the potential activation of the caspase8-mediated apoptotic pathway through TNF receptor interaction, potentially resulting in apoptosis. The TUNEL assay results further confirmed that apoptosis appeared in treated clams. These findings improve our understanding of the combined toxicological effects of harmful algae and pH shifts on bivalves, which will provide insights into a comprehensive ecological risk assessment of toxic CYBs to edible bivalve species.
Collapse
Affiliation(s)
- Jingxiao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 473000, China.
| | - Ning Wang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zehao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yunni Gao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jing Dong
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xiaofei Gao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Huatao Yuan
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 473000, China.
| |
Collapse
|
8
|
Lyu L, Tao Y, Wu S, Abaakil K, Zhong G, Gu Y, Hu Y, Zhang Y. Tissue-specific accumulation of DEHP and involvement of endogenous arachidonic acid in DEHP-induced spleen information and injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166841. [PMID: 37690753 DOI: 10.1016/j.scitotenv.2023.166841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
The plasticizer Diethylhexyl phthalate (DEHP), one of the most common contaminants, is widely detected in environmental and biological samples. However, the accumulation of DEHP in tissue and the molecular mechanisms underlying its physiological damage in the spleen of aquatic organisms have not yet been reported. In this study, gas chromatography-mass spectrometry (GC-MS), histology and multi-omics analysis were used to investigate DEHP exposure-induced alterations in transcriptomic profiles and metabolic network of zebrafish model. After exposure to DEHP, higher concentrations of DEHP were found in the intestine, liver and spleen. Anatomical and histological analyses showed that the zebrafish spleen index was significantly increased and inflammatory damage was observed. Increased splenic neutrophil counts indicate inflammation and tissue damage. Transcriptomic filtering showed that 3579 genes were significantly altered. Metabolomic analysis detected 543 differential metabolites. Multi-omics annotation results indicated that arachidonic acid and 12-Hydroperoxyicosatetraenoic acid (HPETE) are involved in the key inflammatory pathway "Inflammatory mediator regulation of TRP channels". This study demonstrated the accumulation characteristics of DEHP in aquatic zebrafish and the mechanisms of inflammation and tissue damage in the spleen which involve endogenous arachidonic acid. This will provide theoretical basis and data support for health risk assessments and tissue damage of DEHP.
Collapse
Affiliation(s)
- Liang Lyu
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, China; Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK.
| | - Yue Tao
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, China.
| | - Song Wu
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, China.
| | - Kaoutar Abaakil
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK.
| | - Guanyu Zhong
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, China.
| | - Yanyan Gu
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, China.
| | - Yang Hu
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, China.
| | - Ying Zhang
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, China.
| |
Collapse
|
9
|
Malinovska V, Kuklina I, Grabicová K, Buřič M, Kozák P. Short-term effects of an environmentally relevant concentration of organic UV filters on signal crayfish Pacifastacus leniusculus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115012. [PMID: 37209570 DOI: 10.1016/j.ecoenv.2023.115012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Personal care products, including organic UV filters, are considered emerging contaminants, with their toxic effects being a concern in recent decades. UV filters continually enter surface waters via wastewater and human activity. Despite the presence of organic UV filters in the freshwater environment, little is known of their impact on aquatic biota. In this study, we evaluated the cardiac and locomotor responses of signal crayfish Pacifastacus leniusculus exposed to environmentally relevant concentrations of either 2-Phenylbenzimidazole-5-sulfonic acid (PBSA, 3 µg/L) or 5-Benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid (BP4, 2.5 µg/L). Specimens exposed to the tested compounds for 30 min exhibited significantly greater changes in distance moved and time active than did unexposed controls. Significant differences of mean heart rate change compared to control were detected in both PBSA and BP4 experimental groups. Such behavior and physiological alterations demonstrate ecological effects of personal care products with the tested sunscreen compounds even with a short exposure. Evidence of the consequences of organic UV filters on aquatic organisms is scarce and is an important topic for future research.
Collapse
Affiliation(s)
- Viktoriia Malinovska
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Iryna Kuklina
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Miloš Buřič
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Pavel Kozák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
10
|
Li X, Li M, Jiang N, Yao X, Wang Q, Lv H, Wang C, Wang J. Evaluation of soil ecological health after exposure to environmentally relevant doses of Di (2-ethylhexyl) phthalate: Insights from toxicological studies of earthworms at different ecological niches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121204. [PMID: 36754202 DOI: 10.1016/j.envpol.2023.121204] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
As one of the most critical soil faunas in agroecosystems, earthworms are significant in preserving soil ecological health. Di (2-ethylhexyl) phthalate (DEHP) is a major plasticizer and widely used in plastic products like agricultural films. However, it has become ubiquitous contaminant in agricultural soil and poses a potential threat to soil health. Although the awareness of the impacts of DEHP on soil ecology is increasing, its adverse effects on soil invertebrates, especially earthworms, are still not well developed. In this study, the ecotoxicological effects and underlying mechanisms of environmentally relevant doses DEHP on earthworms of different ecological niches were investigated at the individual, cytological, and biochemical levels, respectively. Results showed that the acute toxicity of DEHP to M. guillelmi was higher than E. foetida. DEHP induced reactive oxygen species (ROS) levels and further caused oxidative damage (including cellular DNA and lipid peroxidation damage) in both species, speculating that they may exhibit similar oxidative stress mechanisms. Furthermore, two earthworms presented the alleviated toxicity when re-cultured in uncontaminated circumstances, yet, the accumulated ROS in bodies could not be completely scavenged. Risk assessment indicated that the detrimental impacts of DEHP were more significant in the M. guillelmi than in E. foetida in whole experiments prides, and the biomarkers additionally showed a species-specific trend. Besides, molecular docking revealed that DEHP could bind to the active center of superoxide dismutase/catalase (SOD/CAT) by hydrogen bonding or hydrophobic interactions. Overall, this study will provide a novel insight for accurate contaminant risk assessment, and also highlight that the comprehensive biological effects of different species should be emphasized in soil ecological health diagnostics and environmental toxicology assays, as otherwise it may lead to underestimation or misestimation of the soil health risk of contaminants.
Collapse
Affiliation(s)
- Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Min'an Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Nan Jiang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China; College of Natural Resources and Environment, Northwest A&; F University, Yangling, 712000, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Huijuan Lv
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Can Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China.
| |
Collapse
|
11
|
Luan H, Zhao J, Yang J, Gao X, Song J, Chen X, Cai Q, Yang C, Zhao L, Ji M, Zhai H, Chen Z, Li X, Liu W. Integrated genotoxicity of secondary and tertiary treatment effluents in North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161241. [PMID: 36586681 DOI: 10.1016/j.scitotenv.2022.161241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Genotoxic effects on aquatic organisms caused by wastewater discharging have raised extensive concerns. However, the efficiency of various wastewater treatment processes to reduce effluent genotoxicity was not well known. Genotoxic effects of effluents from four secondary wastewater treatment plants (SWTPs) and a tertiary wastewater treatment plant (TTP) in north China on Chinese rare minnows (Gobiocypris rarus) were evaluated and the toxicity reduction efficiency of various treatment techniques was compared. SWTPs and TTP final effluents disturbed the antioxidant system and lipid peroxidation, with malondialdehyde (MDA) contents in the fish livers and gills increasing to 1.4-2.4 folds and 1.6-3.1 folds of control, respectively. Significant increases in erythrocytes micronucleus (MN) frequency were induced by effluent, and liver DNA damage caused by final SWTPs effluent was 29-54 % lower than TTP effluent. Further, DNA repair gene atm and growth arrest gene gadd45a were remarkably upregulated by SWTP and TTP final effluents to 1.8-12 folds and 4.1-15 folds, respectively, being consistent with the chromosomal aberration and DNA damage in liver tissue. Integrated biomarker response (IBR) of the tertiary effluent was 49 %-69 % lower than the secondary effluents. However, the final ozone disinfection at TTP caused an increase in the DNA damage, suggesting the generation of genotoxic by-products. UV disinfection at secondary treatment removed part of genotoxicity, with a reduction in IBR of 0 %-47 %. The total semi-volatile organic compounds (SVOCs) detected in the final effluent contained 5 %-56 % potential genotoxic substances, removal of which was 9 %-51 % lower than non-genotoxic compounds. Microfiltration and reverse osmosis process exhibited good performance in removing both the integrated genotoxicity and the potential genotoxic SVOCs. Our finding shows that TTP is superior than SWTP for wastewater treatment due to higher genotoxicity removal, but ozone disinfection needs improvement by optimizing performance parameters or adding post-treatment processes, to achieve better protection for aquatic organisms against genotoxic contaminants.
Collapse
Affiliation(s)
- Haiyang Luan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jing Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingyang Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaofeng Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qinyu Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chen Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liqian Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
12
|
Jiang N, Li X, Wang Q, Baihetiyaer B, Fan X, Li M, Sun H, Yin X, Wang J. Ecological risk assessment of environmentally relevant concentrations of propofol on zebrafish (Danio rerio) at early life stage: Insight into physiological, biochemical, and molecular aspects. CHEMOSPHERE 2023; 316:137846. [PMID: 36646180 DOI: 10.1016/j.chemosphere.2023.137846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/25/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Propofol is an intravenous anesthetic injection extensively used in clinic, which has been proved to be neurotoxic in humans. Improper use and disposal of propofol may lead to its release into the aquatic environment, but the potential ecological risk of propofol to aquatic organisms remains poorly understood. For this study, we comprehensively explored the ecotoxicological effects and potential mechanisms of propofol (0.04, 0.2 and 2 mg L-1) on 120 hpf zebrafish (Danio rerio) embryos from physiological, biochemical, and molecular perspectives. The results showed that propofol has moderate toxicity on zebrafish embryos (96 h LC50 = 4.260 mg L-1), which could significantly reduce the hatchability and delay the development. Propofol can trigger reactive oxygen species (ROS) generation, lipid peroxidation (Malondialdehyde, MDA) and DNA damage (8-hydroxy-2-deoxyguanosine, 8-OHdG). The glutathione peroxidase (GPX) activity of zebrafish embryos in 0.04 and 0.2 mg L-1 propofol treatment group was activated in response to oxidative damage, while activities of superoxide dismutase (SOD), catalase (CAT) and GPX in zebrafish treated with 2 mg L-1 was significant inhibited compared with the control group (p<0.05). Moreover, the expression of antioxidant genes and related pathways was inhibited. Apoptosis was investigated at genes level and histochemistry. Molecular docking confirmed that propofol could change in the secondary structure of acetylcholinesterase (AChE) and competitively inhibited acetylcholine (ACh) binding to AChE, which may disturb the nervous system. These results described toxic response and molecular mechanism in zebrafish embryos, providing multiple aspects about ecological risk assessment of propofol in water environment.
Collapse
Affiliation(s)
- Nan Jiang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Baikerouzi Baihetiyaer
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xiaoteng Fan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Mingsheng Li
- Department of Anesthesiology, Tai'an City Central Hospital, Tai'an, 271000, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China.
| |
Collapse
|
13
|
Wang Q, Yao X, Jiang N, Zhang J, Liu G, Li X, Wang C, Yang Z, Wang J, Zhu L, Wang J. Environmentally relevant concentrations of butyl benzyl phthalate triggered oxidative stress and apoptosis in adult zebrafish (Danio rerio) liver: Combined analysis at physiological and molecular levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160109. [PMID: 36370777 DOI: 10.1016/j.scitotenv.2022.160109] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Butyl benzyl phthalate (BBP), a typical phthalate plasticizer, is frequently detected in aquatic environments, but its possible effects on fish liver are unknown. In this study, adult zebrafish were exposed to 5-500 μg/L BBP and cultured for 28 days. The toxicity mechanism of environmentally relevant concentrations of BBP in the liver was explored using integrated biomarker response (IBR), molecular docking, and histopathological analysis, based on the tests of oxidative stress, apoptosis, and tissue damage, respectively. The results revealed that exposure to 500 μg/L BBP caused lipid peroxidation and DNA damage and induced inflammatory responses in the liver and intestinal tissues. The accumulation of reactive oxygen species (ROS) is the primary manifestation of BBP toxicity and is accompanied by changes in the activities of antioxidant and detoxification enzymes. Notably, the pro-apoptotic genes (p53 and caspase-3) were still significantly upregulated in the 50 μg/L and 500 μg/L treatment groups on day 28. Moreover, BBP interfered with apoptosis by forming a stable complex with apoptosis proteins (P53 and Caspase-3). Our findings are helpful for understanding the toxicity mechanisms of BBP, which could further promote the assessment of the potential environmental risks of BBP.
Collapse
Affiliation(s)
- Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Nan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, PR China
| | - Juan Zhang
- ShanDong Institute for Product Quality Inspection, Jinan 250100, PR China
| | | | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Can Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Zhongkang Yang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
14
|
Cheng J, Zou H, Li M, Wang J, Wang G, Li W. Morphological and Molecular Identification of Dactylogyrus gobiocypris (Monogenea: Dactylogyridae) on Gills of a Model Fish, Gobiocypris rarus (Cypriniformes: Gobionidae). Pathogens 2023; 12:pathogens12020206. [PMID: 36839478 PMCID: PMC9960294 DOI: 10.3390/pathogens12020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 02/03/2023] Open
Abstract
The rare minnow Gobiocypris rarus is an ideal model organism for toxicological research. Dactylogyrus species are usually found on the gills of this rare minnow in laboratory farming systems. Dactylogyrid infection may change the sensibility of fish to toxicants and affect toxicological evaluations. In the present study, dactylogyrid infection was investigated, and species of Dactylogyrus collected from rare minnows were determined. Based on the observed 'D. wunderi' type anchors, with a shorter outer root and elongated inner root, and accessory piece consisting of two parts, the dactylogyrids were identified as D. gobiocypris. A partial 18S-ITS1 rDNA sequence was firstly sequenced, and the highest sequence identity (86.7%) was to D. cryptomeres. Phylogenetic analysis revealed that D. gobiocypris formed a clade with D. squameus, D. finitimus, and D. cryptomeres, all of which have been recorded in the family Gobionidae. Histopathology analysis indicated that a heavy burden of D. gobiocypris caused necrosis of gill filaments. Inflammatory responses, such as tumefaction and hyperaemia, were also observed on gills with severe dactylogyrid infection. Supplementary morphological characteristics and 18S-ITS1 rDNA sequence provided basic data for identification of this parasite species.
Collapse
Affiliation(s)
- Jiangwen Cheng
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Science, Tibet University, Lhasa 850000, China
| | - Hong Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianwei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guitang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wenxiang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
15
|
Benzophenones in the Environment: Occurrence, Fate and Sample Preparation in the Analysis. Molecules 2023; 28:molecules28031229. [PMID: 36770896 PMCID: PMC9920342 DOI: 10.3390/molecules28031229] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
The ubiquitous presence of emerging contaminants in the environment is an issue of great concern. Notably, for some of them, no established regulation exists. Benzophenones are listed as emerging contaminants, which have been identified in the environment as well as in human fluids, such as urine, placenta, and breast milk. Their accumulation and stability in the environment, combined with the revealed adverse effects on ecosystems including endocrine, reproductive, and other disorders, have triggered significant interest for research. Benzophenones should be extracted from environmental samples and determined for environmental-monitoring purposes to assess their presence and possible dangers. Numerous sample preparation methods for benzophenones in environmental matrices and industrial effluents have been proposed and their detection in more complex matrices, such as fish and sludges, has also been reported. These methods range from classical to more state-of-the-art methods, such as solid-phase extraction, dispersive SPE, LLE, SBSE, etc., and the analysis is mostly completed with liquid chromatography, using several detection modes. This review critically outlines sample preparation methods that have been proposed to date, for the extraction of benzophenones from simple and complex environmental matrices and for cleaning up sample extracts to eliminate potential interfering components that coexist therein. Moreover, it provides a brief overview of their occurrence, fate, and toxicity.
Collapse
|
16
|
Jiang N, Wang J, Wang Q, Baihetiyaer B, Li X, Yang Z, Li M, Sun H, Yin X. Evaluation of the biological response of propofol in zebrafish (Danio rerio): Focusing on biochemical, transcriptional, and molecular level. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120764. [PMID: 36455772 DOI: 10.1016/j.envpol.2022.120764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Propofol, one of the most widely used intravenous anesthetic in clinical practice, has been reported to impair cognitive and memory function. However, the toxicological effects of propofol on aquatic organisms are still poorly understood. This study explored the toxic effects of chronic propofol exposure (0.008, 0.04, and 0.2 mg L-1) on adult zebrafish from biochemical, transcriptional, and molecular level after 7, 14, 21 and 28 days of exposure. Results indicated that the reactive oxygen species (ROS) levels were significantly upregulated during the 28 days exposure period, and excessive ROS caused lipid peroxidation, resulting in increased malondialdehyde (MDA) contents in the zebrafish brain. In order to relieve the oxidative damage induced by the excessive ROS, the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT)) were significantly activated, and detoxification enzyme (glutathione S-transferase, GST) activities showed an "activation-inhibition" trend. However, the antioxidant enzymes and detoxification enzyme system could not eliminate the excessive ROS in time and thus caused DNA damage in zebrafish brain. The olive tail moment (OTM) values displayed a "dose-response" relationship with propofol concentrations. Meanwhile, the transcription of related genes of Nrf2-Keap1 pathway was activated. Further molecular simulation experiments suggested that propofol could directly combine with SOD/CAT to change the activity of its biological enzyme. These findings indicated that zebrafish could regulate antioxidant capacity to combat oxidative stress at the early exposure stage, but the activity of antioxidant enzymes were significantly inhibited with the increase of propofol exposure time. Our results are of great importance for understanding toxicological effects of propofol on aquatic organisms.
Collapse
Affiliation(s)
- Nan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China; College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Baikerouzi Baihetiyaer
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Zhongkang Yang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Mingsheng Li
- Department of Anesthesiology, Tai'an City Central Hospital, Tai'an, 271000, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China.
| |
Collapse
|
17
|
Liao Z, Zi Y, Zhou C, Zeng W, Luo W, Zeng H, Xia M, Luo Z. Recent Advances in the Synthesis, Characterization, and Application of Carbon Nanomaterials for the Removal of Endocrine-Disrupting Chemicals: A Review. Int J Mol Sci 2022; 23:13148. [PMID: 36361935 PMCID: PMC9654603 DOI: 10.3390/ijms232113148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2023] Open
Abstract
The large-scale production and frequent use of endocrine-disrupting chemicals (EDCs) have led to the continuous release and wide distribution of these pollutions in the natural environment. At low levels, EDC exposure may cause metabolic disorders, sexual development, and reproductive disorders in aquatic animals and humans. Adsorption treatment, particularly using nanocomposites, may represent a promising and sustainable method for EDC removal from wastewater. EDCs could be effectively removed from wastewater using various carbon-based nanomaterials, such as carbon nanofiber, carbon nanotubes, graphene, magnetic carbon nanomaterials, carbon membranes, carbon dots, carbon sponges, etc. Important applications of carbon nanocomposites for the removal of different kinds of EDCs and the theory of adsorption are discussed, as well as recent advances in carbon nanocomposite synthesis technology and characterization technology. Furthermore, the factors affecting the use of carbon nanocomposites and comparisons with other adsorbents for EDC removal are reviewed. This review is significant because it helps to promote the development of nanocomposites for the decontamination of wastewater.
Collapse
Affiliation(s)
- Ze Liao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yang Zi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Chunyan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Wenqian Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Wenwen Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Hui Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Muqing Xia
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zhoufei Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
18
|
Anido-Varela L, Seoane M, Esperanza M, Cid Á, Rioboo C. Cytotoxicity of BP-3 and BP-4: Blockage of extrusion pumps, oxidative damage and programmed cell death on Chlamydomonas reinhardtii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106285. [PMID: 36087491 DOI: 10.1016/j.aquatox.2022.106285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The health concern associated with the dangers related to exposure to UV radiation has led to an increase in the use of sunscreens containing UV-filters that can reach aquatic environments and possibly affect ecosystems. Benzophenone-3 (BP-3) and benzophenone-4 (BP-4) are two of the most used UV-filters. In the present work, the microalga Chlamydomonas reinhardtii was exposed to several concentrations of both chemicals. To evaluate their potential cytotoxicity on microalgal cells, different parameters were analysed including fast response biomarkers (increase in intracellular free Ca2+) as well as biomarkers related with the presence of oxidative stress (lipid peroxidation), energy metabolism (photosynthetic yield and cytoplasmic lipid accumulations), cell division (proliferation and F-actin content), programmed cell death (PCD) (caspase activation and DNA fragmentation) and possible mechanisms of resistance to xenobiotics (operation of extrusion pumps and presence of autophagic vacuoles). Results showed an increment of the percentage of cells with cytosolic free Ca2+ that could act as a secondary messenger in response to the stress. A decrease in photosynthetic yield and an increase in cytoplasmic lipid accumulations and lipid peroxidation levels were also detected. In addition, a decrease in cell proliferation was observed, linked to a decrease in the percentage of cells with F-actin. The increase observed in the microalgal population with caspase activity, together with the DNA fragmentation and the alterations in the cytoskeleton, suggested the induction of processes linked to PCD. Moreover, a blockage of extrusion pumps, which could be related to the toxicity mechanism of these compounds, and an increase in autophagic vacuoles, as an attempt to repair the damage caused by benzophenones, were detected. Overall, these biomarkers indicate that both UV-filters can be a serious threat to non-target photosynthetic microorganisms in aquatic environments, although BP-3 affected C. reinhardtii more markedly.
Collapse
Affiliation(s)
- Laura Anido-Varela
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, SPAIN
| | - Marta Seoane
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, SPAIN
| | - Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, SPAIN
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, SPAIN
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, SPAIN.
| |
Collapse
|