1
|
Citarella A, Besharat ZM, Coppola L, Sabato C, Autilio TM, Vicentini E, Bimonte VM, Catanzaro G, Pediconi N, Fabi A, Migliaccio S, Milella M, Bei R, Ferretti E, Po A. Bisphenol A drives nuclear factor-kappa B signaling activation and enhanced motility in non-transformed breast cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126422. [PMID: 40360080 DOI: 10.1016/j.envpol.2025.126422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 05/06/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
Bisphenol A (BPA) is a chemical compound found in a wide range of everyday consumer products, resulting in human exposure. BPA has been described as an endocrine disruptor, affecting different systems of the human body. Notably, nanomolar levels of BPA have been detected in human matrices, including plasma and milk. BPA exposure has been associated with the development of breast cancer, and the increase in breast cancer incidence prompted us to investigate the effects of BPA in MCF10A, a model of non-transformed mammary epithelium. Cells were treated with 10 nM BPA for 24 h to capture early molecular alterations preceding phenotypic transitions. Comprehensive transcriptomic analyses were conducted to identify differentially expressed genes and enriched signaling pathways. Subsequent validations included assessment of cytokine release, protein expression, immunofluorescence for subcellular localization of Nuclear Factor-Kappa B (NF-κB), and evaluation of actin cytoskeletal organization. Transcriptome analysis revealed enrichment in interleukin signaling and activation of the NF-κB pathway following BPA exposure. Functional assays demonstrated that BPA treatment enhanced cell motility, accompanied by increased phosphorylation of NF-κB. Inhibition of NF-κB effectively mitigated BPA-induced effects, including augmented cell motility, nuclear translocation of NF-κB, and cytoskeletal rearrangements. Notably, inhibition of the Mitogen-Activated Protein Kinase (MAPK) pathway, and to a lesser extent of the AKT pathway, counteracted BPA-induced NF-κB activation and the associated increase in cell motility. In conclusion, we show that nanomolar concentration of BPA induces significant changes in the molecular setting and behaviour of non-tranformed breast cells, activating NF-κB signalling that in turn controls inflammation, cell cycle, proliferation and cell motility. Our findings indicate that nanomolar concentrations of BPA can induce significant molecular and behavioral changes in non-transformed breast epithelial cells. These results contribute to a deeper understanding of how environmental pollutants like BPA may perturb breast epithelial cell function and potentially contribute to carcinogenesis.
Collapse
Affiliation(s)
- Anna Citarella
- Department of Experimental Medicine, Sapienza University, Rome, Italy; Department of Life, Health and Health Professions Sciences, Link Campus University, Rome, Italy
| | | | - Lucia Coppola
- Department of Experimental Medicine, Sapienza University, Rome, Italy; Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia Sabato
- Department of Experimental Medicine, Sapienza University, Rome, Italy; IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), Basilicata, Italy
| | | | - Elena Vicentini
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Viviana Maria Bimonte
- Department of Movement, Human and Health Sciences, University of Foro Italico, Rome, Italy
| | - Giuseppina Catanzaro
- Department of Experimental Medicine, Sapienza University, Rome, Italy; Department of Life, Health and Health Professions Sciences, Link Campus University, Rome, Italy
| | - Natalia Pediconi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Alessandra Fabi
- Precision Medicine Unit in Senology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Silvia Migliaccio
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Michele Milella
- Department of Engineering for Innovative Medicine, Hospital of Trust of Verona, Oncology Section, Verona, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Tor Vergata, Rome, Italy
| | | | - Agnese Po
- Department of Molecular Medicine, Sapienza University, Rome, Italy; Department of Radiological Sciences, Oncology and Pathology, Sapienza University, Rome, Italy.
| |
Collapse
|
2
|
Lin Y, Zhang Y, She J, Zhao R, Lin S, Zhang Y, Zhang L, Wei J, Lin Y, Yang Q. Novel insights into the causal relationship between endocrine-disrupting chemicals and breast cancer mediated by circulating metabolites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126349. [PMID: 40311737 DOI: 10.1016/j.envpol.2025.126349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/07/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025]
Abstract
The relationship between endocrine-disrupting chemicals (EDCs) and breast cancer has not been extensively investigated. Although EDCs can disrupt human endocrine system, the underlying mechanism of EDCs on breast cancer requires further exploration. This study aimed to investigate the causal relationship between EDCs and breast cancer through Mendelian randomization (MR) and Generalised Summary-data-based Mendelian Randomization (GSMR) approach. Our results demonstrated that Bisphenol F was associated with increased risk of breast cancer [odds ratio (OR) = 1.018 (95 % CI 1.004-1.031), P = 0.010)]. Mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) was associated with lower breast cancer risk (OR = 0.894, 95 %CI = 0.819-0.975, P = 0.012). In addition, we identified 4 EDCs (bisphenol F, MECPP, Mono-ethyl phthalate, and Methyl paraben) significantly associated with ER + breast cancer. Furthermore, 3-bromo-5-chloro-2,6-dihydroxybenzoic acid mediated 10.9 % of the influence of MECPP on breast cancer. In addition, enrichment analysis was used to identify the pathways related to EDCs. MR-Phenome Wide Association Study (PheWAS) analysis was used to explore potential treatable diseases and adverse outcomes of EDCs. These findings shed light on the potential impact of EDCs exposure on breast cancer, which offer novel perspectives for future mechanistic and clinical research of EDCs and breast cancer.
Collapse
Affiliation(s)
- Yilong Lin
- Department of Breast Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yue Zhang
- Department of Hematology, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jing She
- Department of Breast Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ruidan Zhao
- Department of Breast Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shengjie Lin
- School of Medicine, Xiamen University, Xiamen, China
| | - Yun Zhang
- Medical College, Guangxi University, Nanning, China
| | - Liyi Zhang
- Department of Breast Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jie Wei
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yi Lin
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Qingmo Yang
- Department of Breast Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
3
|
Zhu X, Liu Q, Cheng Z, Luo Y. Disruption of PPARG Activity and CPT1A Regulation by Bisphenol A: Implications for Hepatic Lipid Metabolism. J Cell Mol Med 2025; 29:e70416. [PMID: 40346756 PMCID: PMC12064412 DOI: 10.1111/jcmm.70416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/11/2025] [Accepted: 01/30/2025] [Indexed: 05/12/2025] Open
Abstract
Bisphenol A (BPA) is a widely used industrial chemical with potential endocrine-disrupting effects on metabolic processes. This study investigates the impact of BPA on hepatic function and transcriptional regulation in mouse livers and AML12 cells. Male mice were exposed to low (5 g/kg) and high (50 g/kg) doses of BPA for six weeks. Transcriptomic analysis was performed on liver tissues, and histological examinations were conducted. AML12 cells were treated with varying BPA concentrations, and PPARG transcriptional activity was assessed using a luciferase reporter assay. Additionally, molecular docking, molecular dynamics (MD) simulations, drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), MM-PBSA calculations, and multi-species protein structure comparative analysis were employed to analyse the interaction between BPA and PPARG. Transcriptomic analysis revealed a decrease in differentially expressed genes with higher BPA doses, with low-dose exposure significantly downregulating hepatic Cpt1a mRNA levels. Histological examination indicated lipid vacuole formation at high doses without collagen deposition. BPA consistently inhibited PPARG activity in both MCF7 cells and mouse livers. BPA exposure disrupts hepatic lipid metabolism and PPARG activity, highlighting its role as an endocrine disruptor. Further research is needed to elucidate the long-term effects of BPA on liver health.
Collapse
Affiliation(s)
- Xiliang Zhu
- Department of Cardiovascular Surgery, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central‐China Cardiovascular HospitalCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qi Liu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Zhaoyun Cheng
- Department of Cardiovascular Surgery, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central‐China Cardiovascular HospitalCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yi Luo
- Department of Cardiology, The Affiliated HospitalKey Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular ResearchSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
4
|
Akhigbe RE, Adekunle AO, Ajao MD, Sunmola TA, Aboyeji DO, Adegbola CA, Oladipo AA, Akhigbe TM. Silymarin attenuates post-weaning bisphenol A-induced renal injury by suppressing ferroptosis and amyloidosis through Kim-1/Nrf2/HO-1 signaling modulation in male Wistar rats. Biochem Biophys Res Commun 2025; 758:151668. [PMID: 40120348 DOI: 10.1016/j.bbrc.2025.151668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Bisphenol A (BPA) is a synthetic chemical used in producing polycarbonate plastics and epoxy resins and is commonly found in everyday items like water bottles and food containers. Although its usefulness cannot be overemphasized, the major challenge is its toxicity, including renal toxicity. BPA has been reported to induce ferroptosis and amyloidosis via the modulation of Nrf2/HO-1 signaling. On the other hand, silymarin activates the Nrf2/HO-1 pathway, thus providing cellular defense. However, the effect of silymarin on BPA-induced renal toxicity is yet to be reported. This study investigated the potential impact of silymarin on renal structure and function following post-weaning BPA exposure. Twenty-four male Wistar rats were randomly assigned into four equal groups. The control was vehicle-treated, while the silymarin-treated received 100 mg/kg/day of silymarin and BPA-treated rats received 50 mg/kg/day of BPA. The BPA + silymarin-treated rats received treatments as BPA-treated and silymarin-treated. Silymarin diminished BPA-induced rise in serum urea, creatinine, BUN, and plasma kim-1 levels. Also, silymarin improved BPA-induced dyslipidemia. More so, silymarin abrogated toxic amyloid formation and improved renal histoarchitecture in BPA-exposed rats. These events were associated with the suppression of BPA-induced rise in renal iron, MDA, TNF-α, IL-1β, and cytochrome c levels, and myeloperoxidase and caspase 3 activities by silymarin therapy. Furthermore, silymarin attenuated BPA-induced downregulation of Nrf2 and GSH levels, and HO-1, GPX4, SOD, catalase, GST, and GR activities. In conclusion, silymarin mitigated post-weaning BPA-induced renal toxicity by suppressing ferroptosis and amyloidosis through Kim-1/Nrf2/HO-1 modulation.
Collapse
Affiliation(s)
- Roland Eghoghosoa Akhigbe
- Reproductive Physiology/Developmental Programming and Molecular Toxicology Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Osun State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
| | - Adebayo Oluwafemi Adekunle
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Mutiyat Damilola Ajao
- Reproductive Physiology/Developmental Programming and Molecular Toxicology Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Osun State, Nigeria
| | - Temiloluwa Angela Sunmola
- Reproductive Physiology/Developmental Programming and Molecular Toxicology Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Osun State, Nigeria
| | - Deborah Oluwatimileyin Aboyeji
- Reproductive Physiology/Developmental Programming and Molecular Toxicology Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Osun State, Nigeria
| | - Cecilia Adedeji Adegbola
- Reproductive Physiology/Developmental Programming and Molecular Toxicology Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Osun State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Ayoola Abimbola Oladipo
- Reproductive Physiology/Developmental Programming and Molecular Toxicology Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Osun State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Tunmise Maryanne Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Department of Agronomy, Osun State University, Ejigbo Campus, Ejigbo, Osun State, Nigeria
| |
Collapse
|
5
|
La Merrill MA, Smith MT, McHale CM, Heindel JJ, Atlas E, Cave MC, Collier D, Guyton KZ, Koliwad S, Nadal A, Rhodes CJ, Sargis RM, Zeise L, Blumberg B. Consensus on the key characteristics of metabolism disruptors. Nat Rev Endocrinol 2025; 21:245-261. [PMID: 39613954 PMCID: PMC11916920 DOI: 10.1038/s41574-024-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Metabolism-disrupting agents (MDAs) are chemical, infectious or physical agents that increase the risk of metabolic disorders. Examples include pharmaceuticals, such as antidepressants, and environmental agents, such as bisphenol A. Various types of studies can provide evidence to identify MDAs, yet a systematic method is needed to integrate these data to help to identify such hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we developed 12 KCs of MDAs based on our knowledge of processes underlying metabolic diseases and the effects of their causal agents: (1) alters function of the endocrine pancreas; (2) impairs function of adipose tissue; (3) alters nervous system control of metabolic function; (4) promotes insulin resistance; (5) disrupts metabolic signalling pathways; (6) alters development and fate of metabolic cell types; (7) alters energy homeostasis; (8) causes inappropriate nutrient handling and partitioning; (9) promotes chronic inflammation and immune dysregulation in metabolic tissues; (10) disrupts gastrointestinal tract function; (11) induces cellular stress pathways; and (12) disrupts circadian rhythms. In this Consensus Statement, we present the logic that revealed the KCs of MDAs and highlight evidence that supports the identification of KCs. We use chemical, infectious and physical agents as examples to illustrate how the KCs can be used to organize and use mechanistic data to help to identify MDAs.
Collapse
Affiliation(s)
- Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| | - Martyn T Smith
- School of Public Health, University of California, Berkeley, CA, USA
| | - Cliona M McHale
- School of Public Health, University of California, Berkeley, CA, USA
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Environmental Health Sciences, Bozeman, MT, USA
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| | - David Collier
- Department of Pediatrics, East Carolina University, Greenville, NC, USA
| | - Kathryn Z Guyton
- Board on Environmental Studies and Toxicology, National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Suneil Koliwad
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), CIBERDEM, Miguel Hernandez University of Elche, Elche, Spain
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, IL, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency, Sacramento, CA, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
6
|
Luo L, Gao C, Fan YJ, Zhuang T, Li Y, Li CA, Lv J, Hu ZW, Tao L, Gibson R, Wang H, Xu DX, Huang Y. Perinatal Bisphenol Exposure and Small-for-Gestational-Age Neonates: The Evolving Effect of Replacements Then and Now. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5983-5993. [PMID: 40059834 DOI: 10.1021/acs.est.4c13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Bisphenol analogues have been shown to have similar estrogenic activity to that of BPA and may affect fetal development. However, no human studies have examined the effects of perinatal exposure to emerging bisphenol alternatives [bisphenol G, bisphenol M, and bisphenol BP (BPBP)] on small for gestational age (SGA) and how placental function may mediate the relationship. Here, 13 urinary bisphenol analogues were detected in 1054 contemporary pregnant women, and BPA was still the most dominant congener. Logistic regressions identified BPA and its traditional alternatives [bisphenol B (BPB), bisphenol E (BPE), bisphenol Z, and bisphenol AP (BPAP)] as being associated with an elevated risk of SGA (all ORs > 1.80, P < 0.05). In contrast, the emerging substitutes, despite high occurrences, all showed much attenuated risk. Mixture effect models Bayesian kernel machine regression and quantile-based g-computation demonstrated that coexposure to bisphenols was strongly correlated with SGA risk (OR = 2.70, P < 0.001), with BPA and the conventional substitutes (BPB, BPE, and BPAP) as primary effect drivers, outweighing the effect from emerging substitutes. Finally, mediation analysis revealed that the placental function index estriol mediated the relationship between exposure and SGA, dominated by BPBP (25.4%). Our findings provide new epidemiological evidence that early BPA alternatives may pose a higher risk for offspring development than those emerging alternatives, potentially via mediation by compromised placental function. Future toxicity assessments and validation studies in other settings on these emerging bisphenols are needed.
Collapse
Affiliation(s)
- Lin Luo
- School of Public Health and Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei 230032, China
- MOE Key Laboratory of Population Health across Life Cycle, Anhui Medical University, Hefei 230032, China
| | - Chang Gao
- School of Public Health and Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei 230032, China
- MOE Key Laboratory of Population Health across Life Cycle, Anhui Medical University, Hefei 230032, China
| | - Yi-Jun Fan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Ting Zhuang
- Clinical Research Center, Suzhou Hospital of Anhui Medical University, Suzhou 234099, China
| | - Yuanyuan Li
- Clinical Research Center, Suzhou Hospital of Anhui Medical University, Suzhou 234099, China
| | - Chang-An Li
- Hefei Center for Disease Control & Prevention, Hefei 230061, China
| | - Jia Lv
- School of Public Health and Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei 230032, China
- MOE Key Laboratory of Population Health across Life Cycle, Anhui Medical University, Hefei 230032, China
| | - Zhong-Wang Hu
- Hefei Center for Disease Control & Prevention, Hefei 230061, China
| | - Lin Tao
- School of Public Health and Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei 230032, China
- MOE Key Laboratory of Population Health across Life Cycle, Anhui Medical University, Hefei 230032, China
| | - Robert Gibson
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Hua Wang
- School of Public Health and Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei 230032, China
- MOE Key Laboratory of Population Health across Life Cycle, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- School of Public Health and Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei 230032, China
- MOE Key Laboratory of Population Health across Life Cycle, Anhui Medical University, Hefei 230032, China
| | - Yichao Huang
- School of Public Health and Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei 230032, China
- MOE Key Laboratory of Population Health across Life Cycle, Anhui Medical University, Hefei 230032, China
- Clinical Research Center, Suzhou Hospital of Anhui Medical University, Suzhou 234099, China
| |
Collapse
|
7
|
Zhang Y, Zhang B, Yang H, Liu M, Wang J, Zhao L, Guo W, Li M, Lai X, Yang L, Meng X, Wang C, Zhang Z, Zhang X. Associations of endocrine-disrupting chemicals mixtures with serum lipid and glucose metabolism among overweight/obese and normal-weight children: A panel study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118077. [PMID: 40118019 DOI: 10.1016/j.ecoenv.2025.118077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Endocrine-disrupting chemicals (EDCs) can disturb lipid and glucose metabolism, but few studies have explored the effects of EDC mixtures and underlying inflammation mechanisms in weight-specific children. METHODS We conducted a panel study with 3 repeated visits among 144 children aged 4-12 years. For each visit, participants provided morning urine samples for 4 consecutive days and fasting blood samples on day 4. A total of 36 EDCs were measured, including 10 per- and polyfluoroalkyl substances (PFAS), 3 phenols, 3 parabens, 10 phthalates, and 10 polycyclic aromatic hydrocarbons. We used quantile g-computation, grouped weighted quantile sum (GWQS) regression, and linear mixed-effect models to evaluate and validate the associations of the mixture and individual effects of EDCs on lipid and fasting blood glucose (FBG). Further, mediation models were applied to explore the potential role of cytokines in the relationships of EDCs and outcomes. RESULTS A quantile increase in EDC mixtures was associated with elevated triglyceride (TG) (β = 0.18, 95 % CI: 0.04, 0.33) and FBG (β = 0.02, 95 % CI: 0.01, 0.04). Also, GWQS regression revealed that PFAS contributed the most to the overall effects for TG and FBG, followed by phenols. These associations were more pronounced in overweight/obese children. Regarding individual pollutants, we observed positive relationships of several PFAS with TG and FBG. Furthermore, chemokine ligand 2 mediated the associations of PFAS with TG among overweight/obese children. CONCLUSIONS The present study suggested that the EDC mixtures were associated with elevated lipid and glucose levels among children, particularly for those with overweight/obesity.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Biao Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Wang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Li
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao Meng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Cuijuan Wang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhihu Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Boro D, Chirania M, Verma AK, Chettri D, Verma AK. Comprehensive approaches to managing emerging contaminants in wastewater: identification, sources, monitoring and remediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:456. [PMID: 40119196 DOI: 10.1007/s10661-025-13809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/20/2025] [Indexed: 03/24/2025]
Abstract
Wastewater is a major source of contamination and must be treated before it is discharged into rivers and lakes. Water contaminated with emerging pollutants such as micropollutants, pharmaceuticals, endocrine disruptors (EDs), pesticides, synthetic dyes, toxins and hormones is of major concern due to its potential adverse effects. The accumulation of such pollutants can disbalance trophic levels and has negative ecological impacts and possible health risks. Monitoring and detecting these contaminants is essential for effective mitigation. Ongoing research on emerging contaminants drives the development of new analytical techniques and technologies for detection, monitoring and removal of such contaminants. As the demand for sustainable wastewater management increases, both conventional and advanced detection methods can be practised as treatment strategies. This approach enhances our capacity to detect and measure contaminants in environmental samples, leading to the development of more effective treatment methods. This review provides important insights into different classes of emerging contaminants, their sources as well as environmental and health risks associated with these pollutants. It also examines the major conventional and advanced technologies used to manage emerging contaminants.
Collapse
Affiliation(s)
- Deepjyoti Boro
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Manisha Chirania
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Ashwani Kumar Verma
- Department of Biotechnology, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
9
|
Zhang Y, Zhang X, Jin X, Li Z, Li L, Zhu Y, Kong F, Wang D. Structural characterization of polysaccharide isolated from Inonotus hispidus and its anti-obesity effect based on regulation of the interleukin-17-mediated inflammatory response. Int J Biol Macromol 2025; 291:138975. [PMID: 39706397 DOI: 10.1016/j.ijbiomac.2024.138975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/19/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
A heteropolysaccharide (IHP3) with a molecular weight of 22.0 kDa was isolated from Inonotus hispidus (Bull.: Fr.) P. Karst using column chromatography purification from water extraction. Its backbone was predominantly composed of →6)-α-D-Galp-(1→, →2,6)-α-D-Galp-(1→,→6)-α-D-O-Me-Galp-(1→, →3)-α-D-Manp-(1→, and →3,4,6) -β-D-Galp-(1→ residues, branched at C2 of partial α-D-Galp, or C3 and C4 of β-D-Galp, and terminated by α-D-Manp, and α-L-Fucp. In high-fat diet (HFD)-fed obese mice, IHP3 effectively suppressed body weight and plasma glucose gain, decreased fat accumulation, ameliorated lipid metabolism, and protected liver function from HFD-induced damage. Combining the analysis of gut microbiota metabolomics, hepatic proteomics and biochemical detection revealed, IHP3 significantly altered cecum fecal metabolite abundances, inhibited the phosphorylation of peroxisome proliferator-activated receptor gamma, and promoted the browning of white adipose tissue and the activation of brown adipose tissue. These changes collectively contributed to alleviating obesity symptoms by suppressing the interleukin (IL)-17-mediated inflammatory response in obese mice. Therefore, these findings suggest that IHP3 could be a potential candidate for the development of anti-obesity drugs.
Collapse
Affiliation(s)
- Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xin Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China; Shenyang Agricultural University, Shenyang 110866, China.
| | - Xinghui Jin
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Zhige Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Fange Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
10
|
Cai W, Yan Q, Deng Y, Guo Y. The correlation of bisphenol A exposure on inflammatory cytokines in preschool children. Cytokine 2025; 186:156835. [PMID: 39689452 DOI: 10.1016/j.cyto.2024.156835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVE Based on current evidence suggesting that bisphenol A (BPA) may contribute to obesity through the modulation of inflammatory markers, this study aims to investigate the correlation between BPA exposure and cellular inflammatory factors in preschool children. METHODS A total of 155 preschool children aged 4-6 years were included. Urine and blood samples were collected. BPA exposure was detected by liquid chromatography-tandem mass spectrometry through urine samples. The levels of six inflammatory cytokines (IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ) were determined by flow fluorescence technique. The correlation between urinary BPA exposure and cellular inflammatory factors was analyzed using Spearman's correlation and respectively stratified by gender and BMI. RESULTS The detection rate of BPA in urine samples was 100 %. The median urinary BPA concentration was 0.48 μg/L(IQR:0.25-1.02 μg/L), and the creatinine-adjusted BPA concentration was 0.94 μg/g(IQR:0.57-1.66 μg/g). BPA level was negatively correlated with IL-10 (r = -0.172, P < 0.05). After stratification by gender, the negative association between BPA exposure and IL-10 was found in females (r = -0.257, P < 0.05), while no association was found in males. According to BMI stratification, BPA exposure in overweight/obese children was positively correlated with IL-6 (r = 0.354, P < 0.05). CONCLUSIONS Our study demonstrated that BPA exposure in preschool children was correlated with a decrease in levels of IL-10, and this effect was significantly expressed in girls. In addition, BPA exposure in overweight/obese children was correlated with increased levels of IL-6. However, the mechanism between BPA and inflammatory factors remains to be further explored.
Collapse
Affiliation(s)
- Wenya Cai
- Department of Public Health, Guangzhou Medical University, Guangzhou 511436, China; Department of Health Care, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Qingshan Yan
- Department of Health Care, Guangdong Women and Children Hospital, Guangzhou 511442, China; Department of Basic Medicine and Public Health, Jinan University, Guangzhou 510632, China
| | - Yuhong Deng
- Department of Children's Health Care, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Yong Guo
- Department of Public Health, Guangzhou Medical University, Guangzhou 511436, China; Department of Health Care, Guangdong Women and Children Hospital, Guangzhou 511442, China
| |
Collapse
|
11
|
Krupka S, Aldehoff AS, Goerdeler C, Engelmann B, Rolle-Kampczyk U, Schubert K, Klöting N, von Bergen M, Blüher M. Metabolic and molecular Characterization, following dietary exposure to DINCH, Reveals new Implications for its role as a Metabolism-Disrupting chemical. ENVIRONMENT INTERNATIONAL 2025; 196:109306. [PMID: 39884247 DOI: 10.1016/j.envint.2025.109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/20/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Plastic materials are ubiquitous, leading to constant human exposure to plastic additives such as plasticizers. There is growing evidence that plasticizers may contribute to obesity due to their disruptive effects on metabolism. Alternatives like diisononylcyclohexane-1,2-dicarboxylate (DINCH) are replacing traditional phthalates such as di-(2-ethylhexyl) phthalate (DEHP), which are now banned due to their proven harmful health effects. While DINCH is considered a safer alternative to DEHP and no adipogenic effects have been demonstrated in in vivo studies, recent research suggests that the primary metabolite, monoisononylcyclohexane-1,2-dicarboxylic acid ester (MINCH), promotes adipocyte differentiation and dysfunction in vitro. However, metabolic and molecular effects are not fully understood in vivo. Here, we performed a comprehensive in vivo analysis using C57BL/6N mice to investigate the effects of DINCH on adipose tissue physiology and function. Mice were exposed to two doses of DINCH for 16 weeks, followed by a 10-week recovery period. Tissue analysis confirmed the presence of DINCH and MINCH in liver and adipose tissue after treatment and recovery. After the recovery period, elevated DINCH concentrations in adipose tissue depots indicated possible bioaccumulation. Although no changes were observed in body composition and energy expenditure, sex-specific metabolic effects were identified. Female mice exhibited impaired whole-body insulin sensitivity and higher triglyceride levels, while male mice showed an altered insulin/C-peptide ratio and elevated cholesterol, HDL, and LDL levels. Proteomic profiling of serum, adipose and liver tissues revealed changes in pathways related to central energy metabolism and immune response, highlighting the systemic impact of DINCH, potentially on inflammatory processes. Most effects of DINCH, such as changes in insulin response and serum lipid levels, were diminished after the recovery period. Despite many findings consistent with the existing literature suggesting DINCH as a safer DEHP substitute, the observed sex-specific effects on insulin sensitivity, lipid metabolism and inflammatory processes, as well as potential bioaccumulation and long-term metabolic effects of DINCH exposure warrant careful consideration in further risk assessment.
Collapse
Affiliation(s)
- Sontje Krupka
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Centre München at the University of Leipzig Germany; Department of Endocrinology Nephrology Rheumatology University Hospital Leipzig Medical Research Center Leipzig Germany
| | - Alix Sarah Aldehoff
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ) Leipzig Germany
| | - Cornelius Goerdeler
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ) Leipzig Germany
| | - Beatrice Engelmann
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ) Leipzig Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ) Leipzig Germany
| | - Kristin Schubert
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ) Leipzig Germany.
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Centre München at the University of Leipzig Germany.
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ) Leipzig Germany; Institute of Biochemistry Faculty of Biosciences, Pharmacy and Psychology Leipzig University Leipzig Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Centre München at the University of Leipzig Germany; Department of Endocrinology Nephrology Rheumatology University Hospital Leipzig Medical Research Center Leipzig Germany
| |
Collapse
|
12
|
Luque G, Ortiz P, Torres-Sánchez A, Ruiz-Rodríguez A, López-Moreno A, Aguilera M. Impact of Ex Vivo Bisphenol A Exposure on Gut Microbiota Dysbiosis and Its Association with Childhood Obesity. J Xenobiot 2025; 15:14. [PMID: 39846546 PMCID: PMC11755556 DOI: 10.3390/jox15010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Dietary exposure to the plasticiser bisphenol A (BPA), an obesogenic and endocrine disruptor from plastic and epoxy resin industries, remains prevalent despite regulatory restriction and food safety efforts. BPA can be accumulated in humans and animals, potentially exerting differential health effects based on individual metabolic capacity. This pilot study examines the impact of direct ex vivo BPA exposure on the gut microbiota of obese and normal-weight children, using 16S rRNA amplicon sequencing and anaerobic culturing combined methods. Results showed that direct xenobiotic exposure induced modifications in microbial taxa relative abundance, community structure, and diversity. Specifically, BPA reduced the abundance of bacteria belonging to the phylum Bacteroidota, while taxa from the phylum Actinomycetota were promoted. Consistently, Bacteroides species were classified as sensitive to BPA, whereas bacteria belonging to the class Clostridia were identified as resistant to BPA in our culturomics analysis. Some of the altered bacterial abundance patterns were common for both the BPA-exposed groups and the obese non-exposed group in our pilot study. These findings were also corroborated in a larger cohort of children. Future research will be essential to evaluate these microbial taxa as potential biomarkers for biomonitoring the effect of BPA and its role as an obesogenic substance in children.
Collapse
Affiliation(s)
- Gracia Luque
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Pilar Ortiz
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Alfonso Torres-Sánchez
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Alicia Ruiz-Rodríguez
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Ana López-Moreno
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- IBS: Instituto de Investigación Biosanitaria, 18012 Granada, Spain
| | - Margarita Aguilera
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- IBS: Instituto de Investigación Biosanitaria, 18012 Granada, Spain
| |
Collapse
|
13
|
Zhao G, Wang C, Wang Q, Wang Z, Wang C, Wu Q. Cyano-functionalized porous hyper-crosslinked cationic polymers for efficient preconcentration and detection of phenolic endocrine disruptors in fresh water and fish. Talanta 2025; 281:126822. [PMID: 39260255 DOI: 10.1016/j.talanta.2024.126822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Sensitively analyzing phenolic endocrine-disrupting chemicals (EDCs) in environmental substrates and aquatic organisms provides a significant challenge. Here, we developed a novel porous hyper-crosslinked ionic polymer bearing cyano groups (CN-HIP) as adsorbent for the highly efficient solid phase extraction (SPE) of phenolic EDCs in water and fish. The CN-HIP gave an excellent adsorption capability for targeted EDCs over a wide pH range, and the adsorption capacity was superior to that of several common commercial SPE adsorbents. The coexistence of electrostatic forces, hydrogen bond, and π-π interactions was confirmed as the main adsorption mechanism. A sensitive quantitative method was established by coupling CN-HIP based SPE method with high-performance liquid chromatography for the simultaneously determining trace bisphenol A, bisphenol F, bisphenol B and 4-tert-butylphenol in fresh water and fish. The method afforded lower detection limits (S/N = 3) (at 0.03-0.10 ng mL-1 for water and 0.8-4.0 ng g-1 for fish), high accuracy (the recovery of spiked sample at 88.0%-112 %) and high precision (the relative standard deviation < 8.5 %). This work provides a feasible method for detecting phenolic EDCs, and also opens a new perspective in developing functionalized cationic adsorbent.
Collapse
Affiliation(s)
- Guijiao Zhao
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Chenhuan Wang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding, 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
14
|
Gao X, Wang X, Zhuang Z, Tian X, Nie Y. Key role of sulfur in sulfidated zerovalent iron during persulfate activation for the dynamic equilibrium of oxidative radicals including SO 4•- and •OH. ENVIRONMENTAL RESEARCH 2024; 263:119957. [PMID: 39307229 DOI: 10.1016/j.envres.2024.119957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
Surface sulfidation has been widely investigated to effectively enhance the utilization and selectivity of iron electrons for enhanced pollutant reduction. However, there is relatively less knowledge on whether sulfidation facilitates the catalytic oxidation process and the mechanism of enhancement. Therefore, in this study, the role of surface sulfidation in modulating the oxidant decomposition pathway and reactive oxygen species generation was investigated with the sulfidated zerovalent iron (S-ZVI) activated persulfate (PS) system. The results revealed that sulfur on the surface of S-ZVI not only facilitates PS activation to generate more SO4•-, but also acts as an essential in the dynamic equilibrium between SO4•- and •OH. Specifically, the S-ZVI surface sulfide first forms sulfur monomers during catalysis, which promotes electron transfer to accelerate Fe3+ to Fe2+ cycling, prompting the generation of more SO4•- also generates SO32-. Then, SO32- is further reacted with •OH to generate the [O--O-SO3-] intermediate of SO4•-, which leads to a dynamic equilibrium of SO4•- and •OH, mitigating the further conversion of SO4•- to •OH. These findings unveiled the dynamic variation of sulfur on the surface of S-ZVI during PS activation, elevating new insights for the sulfate radical-based efficient degradation.
Collapse
Affiliation(s)
- Xuyun Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| | - Xiang Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| | - Zihan Zhuang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China.
| |
Collapse
|
15
|
Zhang L, Tian L, Liang B, Wang L, Huang S, Zhou Y, Ni M, Zhang L, Li Y, Chen J, Li X. Construction of an adverse outcome pathway for the cardiac toxicity of bisphenol a by using bioinformatics analysis. Toxicology 2024; 509:153955. [PMID: 39303899 DOI: 10.1016/j.tox.2024.153955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Bisphenol A (BPA), a common endocrine disruptor, has shown cardiovascular toxicity in several epidemiological studies, as well as in vivo and in vitro experimental studies. However, the related adverse outcome pathway (AOP) of BPA toxicity remains unraveled. This study aimed to develop an AOP for the cardiac toxicity of BPA through bioinformatics analysis. The interactions among BPA, genes, phenotypes, and cardiac toxicity were retrieved from several databases, including the Comparative Toxicogenomics Database, Computational Toxicology, DisGeNet, and MalaCards. The target genes and part of target phenotypes were obtained by Venn analysis and literature screening. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed for target genes by using the DAVID online analysis tool to obtain other target phenotypes. AOP hypotheses from BPA exposure to heart disease were established and evaluated comprehensively by a quantitative weight of evidence (QWOE) method. The target genes included ESR2, MAPK1, TGFB1, and ESR1, and the target phenotypes included heart contraction, cardiac muscle contraction, cellular Ca2+ homeostasis, cellular metabolic process, heart development, etc. Overall, the AOP of BPA cardiac toxicity was deduced to be as follows. Initially, BPA bound with ERα/β and then activated the MAPK, AKT, and IL-17 signaling pathways, leading to Ca2+ homeostasis disorder and increased inflammatory response. Subsequently, cardiac function was impaired, causing coronary heart disease, arrhythmia, cardiac dysplasia, and other heart diseases. According to the Bradford-Hill causal considerations, the score of AOP by QWOE was 69, demonstrating a moderate confidence and providing clues on cardiotoxicity-assessment procedure and further studies on BPA.
Collapse
Affiliation(s)
- Leyan Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Baofang Liang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Liang Wang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Shuzhen Huang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongru Zhou
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Mengmei Ni
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yun Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
16
|
Dou Y, Li Z, Wang C, Wang Q, Wang Z, Wu Q, Wang C. Hydroxyl-functionalized cationic porous organic polymers for efficient enrichment and detection of phenolic endocrine disrupting chemicals in water and snapper. Food Chem 2024; 460:140587. [PMID: 39067381 DOI: 10.1016/j.foodchem.2024.140587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) can disrupt the normal functioning of the endocrine system in organisms, leading to various health issues. Therefore, monitoring EDCs in the environment and food is of significant importance. In this study, a hydroxyl-functionalized ionic porous organic polymer (OH-IPOP) has been synthesized for the first time using 2-benzimidazolemethanol as a monomer. The OH-IPOP exhibited excellent adsorption performance towards phenolic EDCs. An efficient method for determination of phenolic EDCs (p-tert-butylphenol, bisphenol B, bisphenol A and bisphenol F) in environmental water and snapper samples was successfully established by with OH-IPOP as solid-phase extraction sorbent and determination with high-performance liquid chromatography-ultraviolet detection. The method showed good linearity (r2 > 0.998), low detection limits (0.008-0.020 ng mL-1 for lake water, 1.00-3.00 ng/g for snapper), high recovery rates (82.3-106 %), and good precision (relative standard deviation < 6.6 %), making it a highly efficient adsorbent for the enrichment of EDCs in complex sample matrices.
Collapse
Affiliation(s)
- Yiran Dou
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Li
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chenhuan Wang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
17
|
Yang D, Zhao D, Chen H, Cai Y, Liu Y, Guo F, Li F, Zhang Y, Xu Z, Xue J, Kannan K. Distribution, bioaccumulation and human exposure risk of bisphenol analogues, bisphenol A diglycidyl ether and its derivatives in the Dongjiang River basin, south China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175969. [PMID: 39222812 DOI: 10.1016/j.scitotenv.2024.175969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Bisphenols, bisphenol A diglycidyl ether (BADGE), and bisphenol F diglycidyl ether (BFDGE) are commonly used as raw materials or additives in the production of several industrial and consumer products. However, information regarding the occurrence and distribution of these industrial chemicals in freshwater ecosystem is limited. In this study, four bisphenols, six BADGEs, and three BFDGEs were determined in abiotic and biotic samples collected from the Dongjiang River basin in southern China. Among the four bisphenols, BPA was widely present in all samples analyzed including surface water (median: 1.81 ng/L), sediment (3.1 ng/g dw), aquatic plants (3.69 ng/g dw), algae (7.57 ng/g dw), zooplankton (6.17 ng/g dw), and fish muscle (5.28 ng/g dw). Among the nine BADGEs and BFDGEs analyzed, BADGE, BADGE•H2O, BADGE·HCl·H2O and BADGE•2H2O was found in all sample types. Although the median concentration of BADGE•2H2O in surface water was below LOQ, this compound was found at median concentrations of 2.61, 3.59, 1.03, 1.69, and 49.8 ng/g dw in sediment, plants, algae, zooplankton, and fish muscle, respectively. Significant positive linear correlations were found among logarithmic transformed concentrations of BPA, BADGE, BADGE•H2O, BADGE•HCl•H2O, and BADGE•2H2O in sediment. The bioconcentration factor (logBCF) values of BADGE, BADGE•H2O, BADGE•HCl, BADGE•HCl•H2O, BADGE•2H2O, and BADGE•2HCl in fish, plants, algae, and zooplankton were > 3.3 L/kg (wet weight), indicating that these chemicals possess moderate bioaccumulation potential. The estimated daily total intake of bisphenols and BADGEs through fish consumption was 75.1 ng/kg bw/day for urban adult residents. The study provides baseline information on the occurrence of bisphenols, BADGEs, and BFDGEs in a freshwater ecosystem.
Collapse
Affiliation(s)
- Danlin Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Daoming Zhao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Honglin Chen
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Fen Guo
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Feilong Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihao Xu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingchuan Xue
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, United States; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, NY 12237, United States
| |
Collapse
|
18
|
Pu C, Liu Y, Zhu J, Ma J, Cui M, Mehdi OM, Wang B, Wang A, Zhang C. Mechanisms insights into bisphenol S-induced oxidative stress, lipid metabolism disruption, and autophagy dysfunction in freshwater crayfish. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135704. [PMID: 39217924 DOI: 10.1016/j.jhazmat.2024.135704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Bisphenol S (BPS) is widely used in plastic products, food packaging, electronic products, and other applications. In recent years, BPS emissions have increasingly impacted aquatic ecosystems. The effects of BPS exposure on aquatic animal health have been documented; however, our understanding of its toxicology remains limited. This study aimed to explore the mechanisms of lipid metabolism disorders, oxidative stress, and autophagy dysfunction induced in freshwater crayfish (Procambarus clarkii) by exposure to different concentrations of BPS (0 µg/L, 1 µg/L, 10 µg/L, and 100 µg/L) over 14 d. The results indicated that BPS exposure led to oxidative stress by inducing elevated levels of reactive oxygen species (ROS) and inhibiting the activity of antioxidant-related enzymes. Additionally, BPS exposure led to increased lipid content in the serum and hepatopancreas, which was associated with elevated lipid-related enzyme activity and increased expression of related genes. Furthermore, BPS exposure decreased levels of phosphatidylcholine (PC) and phosphatidylinositol (PI), disrupted glycerophospholipid (GPI) metabolism, and caused lipid deposition in the hepatopancreatic. These phenomena may have occurred because BPS exposure reduced the transport of fatty acids and led to hepatopancreatic lipid deposition by inhibiting the transport and synthesis of PC and PI in the hepatopancreas, thereby inhibiting the PI3K-AMPK pathway. In conclusion, BPS exposure induced oxidative stress, promoted lipid accumulation, and led to autophagy dysfunction in the hepatopancreas of freshwater crayfish. Collectively, our findings provide the first evidence that environmentally relevant levels of BPS exposure can induce hepatopancreatic lipid deposition through multiple pathways, raising concerns about the potential population-level harm of BPS and other bisphenol analogues.
Collapse
Affiliation(s)
- Changchang Pu
- Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuanyi Liu
- Henan University of Science and Technology, Luoyang, Henan, China
| | - Jiaxiang Zhu
- Henan University of Science and Technology, Luoyang, Henan, China
| | - Jianshuang Ma
- Henan University of Science and Technology, Luoyang, Henan, China
| | - Mengran Cui
- Henan University of Science and Technology, Luoyang, Henan, China
| | | | - Bingke Wang
- Henan Academy of Fishery Sciences, Zhengzhou, Henan, China
| | - Aimin Wang
- Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Chunnuan Zhang
- Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
19
|
Hu T, Zhang J, Wei Y, Zhang L, Wu Q. Enhanced endoplasmic reticulum stress signaling disrupts porcine sertoli cell function in response to Bisphenol A exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122908. [PMID: 39405871 DOI: 10.1016/j.jenvman.2024.122908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
Bisphenol A (BPA), a pervasive substance in our daily lives and livestock excreta, poses significant threats due to its infiltration into foods and water sources. BPA has adverse impacts on male reproductive function, particularly affecting the critical Sertoli (ST) cells that play a pivotal role in the process of spermatogonia differentiating into spermatozoa. In this study, we examined the prevalence of BPA within the pig industry and delved into the impact of BPA exposure on the motility of boar sperm, the function of pig ST cells, as well as the underlying molecular mechanisms involved. This study revealed spatial disparities in the global distribution of BPA and its analogue contamination, utilizing data compiled from 130 comprehensive studies. The average concentration of BPA found in pig feed ranges from 9.7 to 47.9 μg/kg, while in serum, it averages between 55.1 and 75.6 ng/L. The BPA concentration in feed exhibits a negative correlation with sperm viability and the percentage of progressive motile spermatozoa. Exposure to BPA reduced sperm motility in boar and ST cell activity at both 6 and 24 h. The transcriptome analysis revealed that, compared to untreated control cells, endoplasmic reticulum stress (ERS)-related genes were upregulated in ST cells exposed to BPA at 6 and 24 h. This activation of ERS in ST cells was mediated by receptor protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring protein-1α (IRE1α), and activating transcription factor 6 (ATF6). Additionally, BPA exposure triggered oxidative stress and a proinflammatory response mediated by the transcription factor NF-κB, accompanied by an increase in downstream proinflammatory cytokines. BPA exposure also led to apoptosis in ST cells and upregulated the expression levels of pro-apoptosis proteins. However, inhibiting ERS activity with 4-PBA attenuated the BPA-induced inflammatory response and apoptosis in ST cells. Our findings suggest that BPA induced apoptosis and inflammatory response in porcine ST cells through persistent activation of ERS, thereby compromising the normal function of these cells.
Collapse
Affiliation(s)
- Ting Hu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102208, China
| | - Jiaxi Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102208, China
| | - Yuxuan Wei
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102208, China
| | - Lingyu Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102208, China
| | - Qiong Wu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102208, China.
| |
Collapse
|
20
|
Mangla A, Goswami P, Sharma B, Suramya S, Jindal G, Javed M, Saifi MA, Parvez S, Nag TC, Raisuddin S. Obesity aggravates neuroinflammatory and neurodegenerative effects of bisphenol A in female rats. Toxicol Mech Methods 2024; 34:781-794. [PMID: 38699799 DOI: 10.1080/15376516.2024.2349538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Bisphenol A (BPA), a common plasticizer, is categorized as a neurotoxic compound. Its impact on individuals exhibits sex-linked variations. Several biological and environmental factors impact the degree of toxicity. Moreover, nutritional factors have profound influence on toxicity outcome. BPA has been demonstrated to be an obesogen. However, research on the potential role of obesity as a confounding factor in BPA toxicity is lacking. We studied the neurodegenerative effects in high-fat diet (HFD)-induced obese female rats after exposure to BPA (10 mg/L via drinking water for 90 days). Four groups were taken in this study - Control, HFD, HFD + BPA and BPA. Cognitive function was evaluated through novel object recognition (NOR) test. Inflammatory changes in brain, and changes in hormonal level, lipid profile, glucose tolerance, oxidative stress, and antioxidants were also determined. HFD + BPA group rats showed a significant decline in memory function in NOR test. The cerebral cortex (CC) of the brain showed increased neurodegenerative changes as measured by microtubule-associated protein-2 (MAP-2) accompanied by histopathological confirmation. The increased level of neuroinflammation was demonstrated by microglial activation (Iba-1) and protein expression of nuclear factor- kappa B (NF-КB) in the brain. Obesity also caused significant (p < 0.05) increase in lipid peroxidation accompanied by reduced activities of antioxidant enzymes (glutathione S-transferase, catalase and glutathione peroxidase) and decrease in reduced-glutathione (p < 0.05) when compared to non-obese rats with BPA treatment. Overall, study revealed that obesity serves as a risk factor in the toxicity of BPA which may exacerbate the progression of neurological diseases.
Collapse
Affiliation(s)
- Anuradha Mangla
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Poonam Goswami
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Bhaskar Sharma
- Neurobiology Laboratory, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Suramya Suramya
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Garima Jindal
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Mehjbeen Javed
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Mohd Anas Saifi
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Suhel Parvez
- Neurobiology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Tapas Chandra Nag
- Neurobiology Laboratory, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sheikh Raisuddin
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
21
|
Singh M, Crosthwait J, Sorisky A, Atlas E. Tetra methyl bisphenol F: another potential obesogen. Int J Obes (Lond) 2024; 48:923-933. [PMID: 38388800 PMCID: PMC11216980 DOI: 10.1038/s41366-024-01496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND/OBJECTIVES Obesity and its associated metabolic diseases are increasing globally. Sedentary lifestyle, high caloric diet, and genetic predisposition are known to contribute to the onset of obesity. It is increasingly recognized that exposure to environmental chemicals such as Bisphenol A (BPA) may also play a significant role. BPA has been correlated with an array of adverse health effects, including obesity and metabolic disorders. Due to public concern, manufacturers are replacing BPA with structural analogues for which there is limited toxicological data. The objective of this study was to assess the effects of these BPA analogues on adipogenesis. METHODS The adipogenic effects of Tetra Methyl Bisphenol F (TMBPF), Bisphenol F (BPF), Bisphenol AP (BPAP), and fluorine-9-bisphenol (BHPF) were evaluated in murine 3T3-L1 cells. The cells were treated with BPA and its analogues at concentrations from 0.01 µM to 20 µM, throughout differentiation, in the absence of Dexamethasone (Dex). Lipid accumulation, mRNA and protein levels of adipogenic markers was assessed. RESULTS We found that TMBPF, BPF and BPA increased 3T3-L1 lipid accumulation and the expression levels of adipogenic markers lipoprotein lipase (Lpl), fatty acid binding protein 4 (Fabp4) and perilipin (Plin) (1-20 µM; p < 0.05), whereas BHPF and BPAP had no effect in this model. Further, TMBPF induced adipogenesis to a greater extent than all the other chemicals including BPA (1-20 µM; p < 0.05). The effect mediated by TMBPF on expression levels of Fabp4, but not Plin, is likely mediated via peroxisome proliferator-activated receptor (PPAR) γ activation. CONCLUSIONS Of the BPA analogues tested, BPF was most similar to BPA in its effects, while TMBPF was most adipogenic. In addition, TMBPF is likely a PPARγ agonist, it is likely an obesogenic chemical and may be a metabolic disruptor.
Collapse
Affiliation(s)
- Misha Singh
- Environmental Health Science and Research Bureau (EHSRB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Jennifer Crosthwait
- Environmental Health Science and Research Bureau (EHSRB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Alexander Sorisky
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau (EHSRB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
22
|
Zhao G, Wang C, Kang M, Hao L, Liu W, Wang Z, Shi X, Wu Q. Construction of magnetic azo-linked porous polymer for highly-efficient enrichment and separation of phenolic endocrine disruptors from environmental water and fish. Food Chem 2024; 445:138698. [PMID: 38350198 DOI: 10.1016/j.foodchem.2024.138698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Developing effective methods for highly sensitive detection of phenolic endocrine disruptors (EDCs) is especially urgent. Herein, a magnetic hydroxyl-functional porous organic polymer (M-FH-POP) was facilely synthesized by green diazo-couple reaction using basic fuchsin and hesperetin as monomer for the first time. M-FH-POP delivered superior adsorption performance for phenolic EDCs. The adsorption mechanism was hydrogen bonds, hydrophobic interaction and π-π interplay. With M-FH-POP as adsorbent, a magnetic solid phase extraction method was established for extracting trace phenolic EDCs (bisphenol A, 4-tert-butylphenol, bisphenol F and bisphenol B) in water and fish before ultra-high performance liquid chromatography tandem mass spectrometry analysis. The method displayed low detection limit (S/N = 3) of 0.05-0.15 ng mL-1 for water and 0.08-0.3 ng g-1 for fish. The spiked recoveries were 88.3 %-109.8 % with the relative standard deviations of 2.4 %-6.4 %. The method offers a new strategy for sensitive determination of phenolic EDCs in water and fish samples.
Collapse
Affiliation(s)
- Guijiao Zhao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chenhuan Wang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Min Kang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Weihua Liu
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States.
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
23
|
Wang H, Liu J, Qiang S, Che Y, Hu T. 4-tert-Butylphenol impairs the liver by inducing excess liver lipid accumulation via disrupting the lipid metabolism pathway in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124385. [PMID: 38897274 DOI: 10.1016/j.envpol.2024.124385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Endocrine disrupting chemicals (EDCs) can disrupt normal endocrine function by interfering with the synthesis and release of hormones, causing adverse reactions to development, immunity, nerves, and reproduction. 4-tert-Butylphenol (4-t-BP) is disruptive to early zebrafish development, but its effects on zebrafish liver are unknown. In this study, the adverse effects of 4-t-BP on the liver were investigated using zebrafish as a model organism. 4-t-BP inhibited liver development in zebrafish embryos and induced liver damage in adult zebrafish. Even if F1 was not directly exposed to 4-t-BP, its growth and development were inhibited. 4-t-BP can lead to an increase in lipid accumulation, total cholesterol and triglycerides contents, and the activities of alanine transaminase and aspartate aminotransferase in zebrafish embryos and adult zebrafish livers, and also cause an acceleration of glucose metabolism in zebrafish embryos. In addition, qRT-PCR showed that 4-t-BP induced the changes in the expressions of liver development-, steroid and unsaturated fatty acid biosynthesis-, and glycerolipid and arachidonic acid metabolism-related genes in zebrafish embryos and inflammatory factors-, antioxidant enzymes- and lipid metabolism-related genes in adult zebrafish livers. Transcriptome sequencing of embryos showed that 4-t-BP altered the expressions of lipid metabolism pathways such as steroid and unsaturated fatty acid biosynthesis, glycerolipid, and arachidonic acid metabolism pathways. Therefore, 4-t-BP may be external stimuli that cause oxidative stress, inflammation, and lipid accumulation in zebrafish liver, resulting in tissue damage and dysfunction in zebrafish liver.
Collapse
Affiliation(s)
- Huiyun Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Shuting Qiang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yufeng Che
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
24
|
Roohi TF, Faizan S, Shaikh MF, Krishna KL, Mehdi S, Kinattingal N, Arulsamy A. Beyond drug discovery: Exploring the physiological and methodological dimensions of zebrafish in diabetes research. Exp Physiol 2024; 109:847-872. [PMID: 38279951 PMCID: PMC11140176 DOI: 10.1113/ep091587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
Diabetes mellitus is a chronic disease that is now considered a global epidemic. Chronic diabetes conditions include type 1 and type 2 diabetes, both of which are normally irreversible. As a result of long-term uncontrolled high levels of glucose, diabetes can progress to hyperglycaemic pathologies, such as cardiovascular diseases, retinopathy, nephropathy and neuropathy, among many other complications. The complete mechanism underlying diabetes remains unclear due to its complexity. In this scenario, zebrafish (Danio rerio) have arisen as a versatile and promising animal model due to their good reproducibility, simplicity, and time- and cost-effectiveness. The Zebrafish model allows us to make progress in the investigation and comprehension of the root cause of diabetes, which in turn would aid in the development of pharmacological and surgical approaches for its management. The current review provides valuable reference information on zebrafish models, from the first zebrafish diabetes models using genetic, disease induction and chemical approaches, to the newest ones that further allow for drug screening and testing. This review aims to update our knowledge related to diabetes mellitus by gathering the most authoritative studies on zebrafish as a chemical, dietary and insulin induction, and genetic model for diabetes research.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Syed Faizan
- Department of Pharmaceutical ChemistryJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Mohd. Farooq Shaikh
- School of Dentistry and Medical SciencesCharles Sturt UniversityOrangeNew South WalesAustralia
| | - Kamsagara Linganna Krishna
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Seema Mehdi
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Nabeel Kinattingal
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Alina Arulsamy
- Neuropharmacology Research LaboratoryJeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| |
Collapse
|
25
|
Kulsange SE, Sharma M, Sonawane B, Jaiswal MR, Kulkarni MJ, Santhakumari B. SWATH-MS reveals that bisphenol A and its analogs regulate pathways leading to disruption in insulin signaling and fatty acid metabolism. Food Chem Toxicol 2024; 188:114667. [PMID: 38653447 DOI: 10.1016/j.fct.2024.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC), associated with obesity and insulin resistance. The FDA prohibited the use of BPA-based polycarbonate resins in infant formula packaging; thus, its analogs, viz. Bisphenol S (BPS) and Bisphenol F (BPF) were considered alternatives in epoxy resins, plastics, and food cans. As these analogs might evoke a similar response, we investigated the role of Bisphenols (BPA, BPF, and BPS), on insulin signaling in CHO-HIRc-myc-GLUT4eGFP cells at environmentally relevant concentrations of 2 nM and 200 nM. Insulin signaling demonstrated that Bisphenols reduced phosphorylation of IR and AKT2, GLUT4 translocation, and glucose uptake. This was accompanied by increased oxidative stress. Furthermore, SWATH-MS-based proteomics of 3T3-L1 cells demonstrated that Bisphenol-treated cells regulate proteins in insulin resistance, adipogenesis, and fatty acid metabolism pathways differently. All three Bisphenols induced differentially expressed proteins enriched similar pathways, although their abundance differed for each Bisphenol. This might be due to their varying toxicity level, structural differences, and estrogen-mimetic activity. This study has important implications in addressing health concerns related to EDCs. Given that the analogs of BPA are considered alternatives to BPA, the findings of this study suggest they are equally potent in altering fatty acid metabolism and inducing insulin resistance.
Collapse
Affiliation(s)
- Shabda E Kulsange
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Monika Sharma
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Babasaheb Sonawane
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Meera R Jaiswal
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh J Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - B Santhakumari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Centre for Material Characterization, CSIR-National Chemical Laboratory, Pune 411008, India.
| |
Collapse
|
26
|
vom Saal FS, Antoniou M, Belcher SM, Bergman A, Bhandari RK, Birnbaum LS, Cohen A, Collins TJ, Demeneix B, Fine AM, Flaws JA, Gayrard V, Goodson WH, Gore AC, Heindel JJ, Hunt PA, Iguchi T, Kassotis CD, Kortenkamp A, Mesnage R, Muncke J, Myers JP, Nadal A, Newbold RR, Padmanabhan V, Palanza P, Palma Z, Parmigiani S, Patrick L, Prins GS, Rosenfeld CS, Skakkebaek NE, Sonnenschein C, Soto AM, Swan SH, Taylor JA, Toutain PL, von Hippel FA, Welshons WV, Zalko D, Zoeller RT. The Conflict between Regulatory Agencies over the 20,000-Fold Lowering of the Tolerable Daily Intake (TDI) for Bisphenol A (BPA) by the European Food Safety Authority (EFSA). ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:45001. [PMID: 38592230 PMCID: PMC11003459 DOI: 10.1289/ehp13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND The European Food Safety Authority (EFSA) recommended lowering their estimated tolerable daily intake (TDI) for bisphenol A (BPA) 20,000-fold to 0.2 ng / kg body weight ( BW ) / day . BPA is an extensively studied high production volume endocrine disrupting chemical (EDC) associated with a vast array of diseases. Prior risk assessments of BPA by EFSA as well as the US Food and Drug Administration (FDA) have relied on industry-funded studies conducted under good laboratory practice protocols (GLP) requiring guideline end points and detailed record keeping, while also claiming to examine (but rejecting) thousands of published findings by academic scientists. Guideline protocols initially formalized in the mid-twentieth century are still used by many regulatory agencies. EFSA used a 21st century approach in its reassessment of BPA and conducted a transparent, but time-limited, systematic review that included both guideline and academic research. The German Federal Institute for Risk Assessment (BfR) opposed EFSA's revision of the TDI for BPA. OBJECTIVES We identify the flaws in the assumptions that the German BfR, as well as the FDA, have used to justify maintaining the TDI for BPA at levels above what a vast amount of academic research shows to cause harm. We argue that regulatory agencies need to incorporate 21st century science into chemical hazard identifications using the CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) nonguideline academic studies in a collaborative government-academic program model. DISCUSSION We strongly endorse EFSA's revised TDI for BPA and support the European Commission's (EC) apparent acceptance of this updated BPA risk assessment. We discuss challenges to current chemical risk assessment assumptions about EDCs that need to be addressed by regulatory agencies to, in our opinion, become truly protective of public health. Addressing these challenges will hopefully result in BPA, and eventually other structurally similar bisphenols (called regrettable substitutions) for which there are known adverse effects, being eliminated from all food-related and many other uses in the EU and elsewhere. https://doi.org/10.1289/EHP13812.
Collapse
Affiliation(s)
- Frederick S. vom Saal
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Michael Antoniou
- Department of Medical and Molecular Genetics, King’s College London School of Medicine, London, UK
| | - Scott M. Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Ake Bergman
- Department of Environmental Science (ACES), Stockholm University, Stockholm, Sweden
| | - Ramji K. Bhandari
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Linda S. Birnbaum
- Scientist Emeritus and Former Director, National Toxicology Program (NTP), National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- Scholar in Residence, Duke University, Durham, North Carolina, USA
| | - Aly Cohen
- Integrative Rheumatology Associates, Princeton, New Jersey, USA
| | - Terrence J. Collins
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Barbara Demeneix
- Comparative Physiology Laboratory, Natural History Museum, Paris, France
| | - Anne Marie Fine
- Environmental Medicine Education International, Mancos, Colorado, USA
| | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois Urbana—Champaign, Urbana-Champaign, Illinois, USA
| | - Veronique Gayrard
- ToxAlim (Research Centre in Food Toxicology), University of Toulouse, Toulouse, France
| | - William H. Goodson
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Andrea C. Gore
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, Texas, USA
| | - Jerrold J. Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Raleigh, North Carolina, USA
| | - Patricia A. Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Christopher D. Kassotis
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA
| | - Andreas Kortenkamp
- Centre for Pollution Research and Policy, Brunel University London, Uxbridge, UK
| | - Robin Mesnage
- Department of Medical and Molecular Genetics, King’s College London School of Medicine, London, UK
| | - Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | | | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and CIBERDEM, Miguel Hernandez University of Elche, Elche, Alicante, Spain
| | - Retha R. Newbold
- Scientist Emeritus, NTP, NIEHS, Research Triangle Park, North Carolina, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Paola Palanza
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Stefano Parmigiani
- Unit of Evolutionary and Functional Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Lyn Patrick
- Environmental Medicine Education International, Mancos, Colorado, USA
| | - Gail S. Prins
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cheryl S. Rosenfeld
- Biomedical Sciences, Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri—Columbia, Columbia, Missouri, USA
- MU Institute of Data Science and Informatics, University of Missouri—Columbia, Columbia, Missouri, USA
| | - Niels E. Skakkebaek
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Sonnenschein
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ana M. Soto
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Shanna H. Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julia A. Taylor
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Pierre-Louis Toutain
- Royal Veterinary College, University of London, London, UK
- NTHERES, INRAE, ENVT, Université de Toulouse, Toulouse, France
| | - Frank A. von Hippel
- Department of Community, Environment & Policy, University of Arizona, Tucson, Arizona, USA
| | - Wade V. Welshons
- Department of Biomedical Sciences, University of Missouri—Columbia, Columbia, Missouri, USA
| | - Daniel Zalko
- ToxAlim (Research Centre in Food Toxicology), University of Toulouse, Toulouse, France
| | - R. Thomas Zoeller
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
27
|
Warger J, Lucas M, Lucas A. Assessing the contribution of plastic-associated obesogenic compounds to cardiometabolic diseases. Curr Opin Endocrinol Diabetes Obes 2024; 31:98-103. [PMID: 38054472 PMCID: PMC10911259 DOI: 10.1097/med.0000000000000852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
PURPOSE OF REVIEW To present recent evidence that strengthens the concept that exogenous pollutants contribute to adipose dysfunction and increased rates of disease and to highlight the ineffective regulation of this risk as industry switches to related but similarly toxic variants. RECENT FINDINGS Substitutes for common phthalates and the highly regulated bisphenol A (BPA) show similar deleterious effects on adipocytes. The well tolerated limit for BPA exposure has been reduced in Europe to below the level detected in recent population studies. Additionally, the role for BPA-induced inflammation mediated by interleukin 17a has been described in animal and human studies. SUMMARY Despite experimental and associative evidence that supports plastics and plastic associated chemicals deleteriously influencing adipose homeostatasis and contributing to metabolic diseases, structurally related alternate chemicals are being substituted by manufacturers to circumvent trailing regulatory actions.
Collapse
Affiliation(s)
- Jacob Warger
- Medical School, The University of Western Australia
| | - Michaela Lucas
- Medical School, The University of Western Australia
- Department of Immunology PathWest
- Department of Immunology, Sir Charles Gairdner Hospital & Perth Childrens Hospital
| | - Andrew Lucas
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
28
|
Li J, Fang L, Xi M, Ni A, Qian Q, Wang Z, Wang H, Yan J. Toxic effects of triclosan on hepatic and intestinal lipid accumulation in zebrafish via regulation of m6A-RNA methylation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106884. [PMID: 38458066 DOI: 10.1016/j.aquatox.2024.106884] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Triclosan (TCS), recognized as an endocrine disruptor, has raised significant concerns due to its widespread use and potential health risks. To explore the impact of TCS on lipid metabolism, both larval and adult zebrafish were subjected to acute and chronic exposure to TCS. Through analyzes of biochemical and physiological markers, as well as Oil Red O (ORO) and hematoxylin and eosin (H&E) staining, our investigation revealed that TCS exposure induced hepatic and intestinal lipid accumulation in larval and adult zebrafish, leading to structural damage and inflammatory responses in these tissues. The strong affinity of TCS with PPARγ and subsequent pathway activation indicate that PPARγ pathway plays a crucial role in TCS-induced lipid buildup. Furthermore, we observed a decrease in m6A-RNA methylation levels in the TCS-treated group, which attributed to the increased activity of the demethylase FTO and concurrent suppression of the methyltransferase METTL3 gene expression by TCS. The alteration in methylation dynamics is identified as a potential underlying mechanism behind TCS-induced lipid accumulation. To address this concern, we explored the impact of folic acid-a methyl donor for m6A-RNA methylation-on lipid accumulation in zebrafish. Remarkably, folic acid administration partially alleviated lipid accumulation by restoring m6A-RNA methylation. This restoration, in turn, contributed to a reduction in inflammatory damage observed in both the liver and intestines. Additionally, folic acid partially mitigates the up-regulation of PPARγ and related genes induced by TCS. These findings carry substantial implications for understanding the adverse effects of environmental pollutants such as TCS. They also emphasize the promising potential of folic acid as a therapeutic intervention to alleviate disturbances in lipid metabolism induced by environmental pollutants.
Collapse
Affiliation(s)
- Jinyun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lu Fang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaocui Xi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Anyu Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
29
|
Guo J, Liu K, Yang J, Su Y. The association between prenatal exposure to bisphenol A and offspring obesity: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123391. [PMID: 38242307 DOI: 10.1016/j.envpol.2024.123391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/16/2023] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
In recent years, the global prevalence of childhood overweight and obesity has surged. Bisphenol A (BPA), prevalent in the manufacture of polycarbonate plastics and epoxy resins, is associated with this escalating obesity pattern. Both early life stages and pregnancy emerge as pivotal windows of vulnerability. This review systematically evaluates human studies to clarify the nexus between prenatal BPA exposure and offspring obesity. Our extensive literature search covered databases like PubMed, Web of Science, Cochrane Library, Embase, and Scopus, encompassing articles from their inception until July 2023. We utilized the Newcastle-Ottawa Scale (NOS) to evaluate the methodological rigor of the included studies, the Oxford Center for Evidence-Based Medicine Levels of Evidence Working Group (OCEBM) table to determine the level of the evidence, and the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) guidelines to evaluate the certainty of the evidence with statistical significance. We centered on primary studies investigating the link between urinary BPA levels during pregnancy and offspring obesity. Our analysis included thirteen studies, with participant counts ranging from 173 to 1124 mother-child dyads. Among them, eight studies conclusively linked prenatal BPA exposure to increased obesity in offspring. Evaluation metrics for the effect of prenatal BPA on offspring obesity comprised BMI z-score, waist circumference, overweight/obesity classification, aggregate skinfold thickness, body fat percentage, and more. Present findings indicate that prenatal BPA exposure amplifies offspring obesity risk, with potential effect variations by age and gender. Therefore, further research is needed to explore the causal link between prenatal BPA exposure and obesity at different developmental stages and genders, and to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Jinjin Guo
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Keqin Liu
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Jixin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Yanwei Su
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
30
|
Dalamaga M, Kounatidis D, Tsilingiris D, Vallianou NG, Karampela I, Psallida S, Papavassiliou AG. The Role of Endocrine Disruptors Bisphenols and Phthalates in Obesity: Current Evidence, Perspectives and Controversies. Int J Mol Sci 2024; 25:675. [PMID: 38203845 PMCID: PMC10779569 DOI: 10.3390/ijms25010675] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Excess body weight constitutes one of the major health challenges for societies and healthcare systems worldwide. Besides the type of diet, calorie intake and the lack of physical exercise, recent data have highlighted a possible association between endocrine-disrupting chemicals (EDCs), such as bisphenol A, phthalates and their analogs, and obesity. EDCs represent a heterogeneous group of chemicals that may influence the hormonal regulation of body mass and adipose tissue morphology. Based on the available data from mechanistic, animal and epidemiological studies including meta-analyses, the weight of evidence points towards the contribution of EDCs to the development of obesity, associated disorders and obesity-related adipose tissue dysfunction by (1) impacting adipogenesis; (2) modulating epigenetic pathways during development, enhancing susceptibility to obesity; (3) influencing neuroendocrine signals responsible for appetite and satiety; (4) promoting a proinflammatory milieu in adipose tissue and inducing a state of chronic subclinical inflammation; (5) dysregulating gut microbiome and immune homeostasis; and (6) inducing dysfunction in thermogenic adipose tissue. Critical periods of exposure to obesogenic EDCs are the prenatal, neonatal, pubertal and reproductive periods. Interestingly, EDCs even at low doses may promote epigenetic transgenerational inheritance of adult obesity in subsequent generations. The aim of this review is to summarize the available evidence on the role of obesogenic EDCs, specifically BPA and phthalate plasticizers, in the development of obesity, taking into account in vitro, animal and epidemiologic studies; discuss mechanisms linking EDCs to obesity; analyze the effects of EDCs on obesity in critical chronic periods of exposure; and present interesting perspectives, challenges and preventive measures in this research area.
Collapse
Affiliation(s)
- Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Kounatidis
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Irene Karampela
- Second Department of Critical Care, ‘Attikon’ General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Sotiria Psallida
- Department of Microbiology, ‘KAT’ General Hospital of Attica, 14561 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
31
|
Proença C, Freitas M, Rocha S, Ferreira de Oliveira JMP, Carvalho F, Fernandes E. Unravelling the Influence of Endocrine-Disrupting Chemicals on Obesity Pathophysiology Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:883-918. [PMID: 39287876 DOI: 10.1007/978-3-031-63657-8_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity represents a global health concern, affecting individuals of all age groups across the world. The prevalence of excess weight and obesity has escalated to pandemic proportions, leading to a substantial increase in the incidence of various comorbidities, such as cardiovascular diseases, type 2 diabetes, and cancer. This chapter seeks to provide a comprehensive exploration of the pathways through which endocrine-disrupting chemicals can influence the pathophysiology of obesity. These mechanisms encompass aspects such as the regulation of food intake and appetite, intestinal fat absorption, lipid metabolism, and the modulation of inflammation. This knowledge may help to elucidate the role of exogenous molecules in both the aetiology and progression of obesity.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Sílvia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
32
|
Nagarajan M, Maadurshni GB, Manivannan J. Bisphenol A (BPA) exposure aggravates hepatic oxidative stress and inflammatory response under hypertensive milieu - Impact of low dose on hepatocytes and influence of MAPK and ER stress pathways. Food Chem Toxicol 2024; 183:114197. [PMID: 38029875 DOI: 10.1016/j.fct.2023.114197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Human exposure to the hazardous chemical, Bisphenol A (BPA), is almost ubiquitous. Due to the prevalence of hypertension (CVD risk factor) in the aged human population, it is necessary to explore its adverse effect in hypertensive subjects. The current study exposed the Nω-nitro-l-arginine methyl ester (L-NAME) induced hypertensive Wistar rats to human exposure relevant low dose of BPA (50 μg/kg) for 30 days period. The liver biochemical parameters, histopathology, immunohistochemistry, gene expression (RT-qPCR), trace elements (ICP-MS), primary rat hepatocytes cell culture and metabolomic (1H NMR) assessments were performed. Results illustrate that BPA exposure potentiates/aggravates hypertension induced tissue abnormalities (hepatic fibrosis), oxidative stress, ACE activity, malfunction of the antioxidant system, lipid abnormalities and inflammatory factor (TNF-α and IL-6) expression. Also, in cells, BPA increased ROS generation, mitochondrial dysfunction and lipid peroxidation without any impact on cytotoxicity and caspase 3 and 9 activation. Notably, BPA exposure modulate lipid metabolism (cholesterol and fatty acid) in primary hepatocytes. Finally, the influence of ERK1/2, p38MAPK, ER stress and oxidative stress during relatively high dose of BPA elicited cytotoxicity was observed. Therefore, a precise hazardous risk investigation of BPA exposure in hypertensive populations is highly recommended.
Collapse
Affiliation(s)
- Manikandan Nagarajan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Jeganathan Manivannan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
33
|
Xiang J, Mlambo R, Dube P, Machona O, Shaw I, Seid Y, He Y, Luo M, Hong T, He B, Zhou W, Tan S. The obesogenic side of Genistein. Front Endocrinol (Lausanne) 2023; 14:1308341. [PMID: 38098865 PMCID: PMC10720314 DOI: 10.3389/fendo.2023.1308341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Genistein (GN) has been highly recommended for its medicinal properties like anticancer, antidiabetic, antihyperlipidemic, antiviral, and antioxidant activities among others. Recently, scientists realized that Genistein is an endocrine disruptor. It is an obesogen that interferes with the endocrine system causing obesity through many mechanisms like inducing adipocyte differentiation, lipid accumulation, and transformation of some stem cells into adipocytes (bone marrow mesenchymal stem cells for example) in vitro. Animal studies show that GN upregulates genes associated with adipogenesis like CCAAT/enhancer binding protein alpha (Cebpα), CCAAT/enhancer binding protein beta (Cebpβ), and PPARγ. In silico studies reveal a strong binding affinity for estrogen receptors. All these findings were contingent on concentration and tissues. It is beyond dispute that obesity is one of the most frustrating medical conditions under the sun. The pathophysiology of this disease was first attributed to a high-calorie diet and lack of physical activity. However, studies proved that these two factors are not enough to account for obesity in both children and adults. This mini review highlights how Genistein interaction with the peroxisome proliferator-activated receptor gamma protein can cause obesity.
Collapse
Affiliation(s)
- Jia Xiang
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Ronald Mlambo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Progress Dube
- Simon Mazorodze School of Medical and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Oleen Machona
- Simon Mazorodze School of Medical and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yimer Seid
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, China
| | - Min Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Wenhu Zhou
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Songwen Tan
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
34
|
Wu ZY, Luo L, Kan YQ, Qin ML, Li HT, He QZ, Zeng HC. Puerarin Prevents Bisphenol S Induced Lipid Accumulation by Reducing Liver Lipid Synthesis and Promoting Lipid Metabolism in C57BL/6J Mice. TOXICS 2023; 11:736. [PMID: 37755746 PMCID: PMC10538013 DOI: 10.3390/toxics11090736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Bisphenol S (BPS) is an environmental pollutant that can accumulate in the human body and cause harm. Puerarin (PUE) is a flavonoid with anti-inflammatory and antioxidant effects. In this study, we used 50 mg/kg/d BPS as a poison and PUE as an intervention for model mice for 42 d. BPS exposure significantly increased the levels of the impairment of the mice's liver function, T-CHO, TG, LDL-C, ALT, and AST in the BPS group were significantly increased (p < 0.05). Additionally, BPS exposure caused inflammatory cell infiltration in the mice liver tissue and enhanced oxidative stress response, the level of MDA was significantly increased (p < 0.05). The expression of CD36 and pparγ was stimulated after BPS exposure. Moreover, the expression of cpt1a and cpt1b, which promote fatty acid oxidation, was downregulated. After PUE intervention, the levels of genes and proteins involved in lipid synthesis (PPARγ, SREBP1C, and FASN) and metabolism (Cpt1a, Cpt1b, and PPARα) in mice returned to those of the control group, or much higher than those in the BPS group. Therefore, we hypothesized that BPS causes lipid accumulation in the liver by promoting lipid synthesis and reducing lipid metabolism, whereas PUE reduces lipid synthesis and promotes lipid metabolism. Conclusively, our results imply that long-term exposure to BPS in mice affects liver lipid metabolism and that PUE intervention could maintain the liver function of mice at normal metabolic levels.
Collapse
Affiliation(s)
- Zi-Yao Wu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Li Luo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin 541199, China
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Ya-Qi Kan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Mei-Lin Qin
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Hai-Ting Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Qing-Zhi He
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Huai-Cai Zeng
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, School of Public Health, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
35
|
Akash MSH, Rasheed S, Rehman K, Imran M, Assiri MA. Toxicological evaluation of bisphenol analogues: preventive measures and therapeutic interventions. RSC Adv 2023; 13:21613-21628. [PMID: 37476040 PMCID: PMC10354593 DOI: 10.1039/d3ra04285e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Bisphenol A (BPA) is a prominent endocrine-disrupting compound that shares structural similarities with estrogen. It is widely used, particularly in the production of food packaging, canned goods, and dental sealants. Of the eight bisphenol analogues, BPA is the most frequently utilized chemical in packaging food items, canned foods and dental sealants. However, chronic exposure to BPA can pose severe health risks, particularly in children. To ensure public safety, it is crucial to adopt proper precautionary measures to minimize BPA exposure. This article explores the toxic effects of bisphenols on various body systems and mechanisms, shedding light on their impact on the reproductive and endocrine system, obesity, albuminuria, and the generation of reactive oxygen species. Understanding the detrimental effects of bisphenols on these systems and mechanisms is vital for developing strategies to mitigate their harmful consequences. Furthermore, the article delves into the biotransformation processes of bisphenols, focusing on their occurrence in vertebrates, invertebrates, plants, and microorganisms. Investigating the biotransformation pathways provides valuable insights into the fate of bisphenols in various organisms and ecosystems. Lastly, the article emphasizes preventive measures to avoid bisphenol exposure and highlights the potential use of plant-based bioactive compounds for treatment strategies. By implementing effective preventive measures, such as utilizing BPA-free products and adopting safer alternatives, individuals can reduce their exposure to bisphenols. Additionally, exploring the potential of plant-based bioactive compounds as therapeutic agents offers promising avenues for addressing the adverse effects of bisphenols. The findings presented herein contribute to a better understanding of the novelty, significance, and potential implications of bisphenol research in the field, aiding in the development of safer practices and interventions to safeguard public health.
Collapse
Affiliation(s)
| | - Sumbal Rasheed
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University Multan Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Abha Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University Abha Saudi Arabia
| | - Mohammed A Assiri
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Abha Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University Abha Saudi Arabia
| |
Collapse
|
36
|
Martínez-Pinna J, Sempere-Navarro R, Medina-Gali RM, Fuentes E, Quesada I, Sargis RM, Trasande L, Nadal A. Endocrine disruptors in plastics alter β-cell physiology and increase the risk of diabetes mellitus. Am J Physiol Endocrinol Metab 2023; 324:E488-E505. [PMID: 37134142 PMCID: PMC10228669 DOI: 10.1152/ajpendo.00068.2023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Plastic pollution breaks a planetary boundary threatening wildlife and humans through its physical and chemical effects. Of the latter, the release of endocrine disrupting chemicals (EDCs) has consequences on the prevalence of human diseases related to the endocrine system. Bisphenols (BPs) and phthalates are two groups of EDCs commonly found in plastics that migrate into the environment and make low-dose human exposure ubiquitous. Here we review epidemiological, animal, and cellular studies linking exposure to BPs and phthalates to altered glucose regulation, with emphasis on the role of pancreatic β-cells. Epidemiological studies indicate that exposure to BPs and phthalates is associated with diabetes mellitus. Studies in animal models indicate that treatment with doses within the range of human exposure decreases insulin sensitivity and glucose tolerance, induces dyslipidemia, and modifies functional β-cell mass and serum levels of insulin, leptin, and adiponectin. These studies reveal that disruption of β-cell physiology by EDCs plays a key role in impairing glucose homeostasis by altering the mechanisms used by β-cells to adapt to metabolic stress such as chronic nutrient excess. Studies at the cellular level demonstrate that BPs and phthalates modify the same biochemical pathways involved in adaptation to chronic excess fuel. These include changes in insulin biosynthesis and secretion, electrical activity, expression of key genes, and mitochondrial function. The data summarized here indicate that BPs and phthalates are important risk factors for diabetes mellitus and support a global effort to decrease plastic pollution and human exposure to EDCs.
Collapse
Affiliation(s)
- Juan Martínez-Pinna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Roberto Sempere-Navarro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Regla M Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Fuentes
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, United States
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, United States
- Wagner School of Public Service, New York University, New York, New York, United States
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Guo Y, Liu C, Deng YH, Ning J, Yu L, Wu JL. Association between Bisphenol A exposure and body composition parameters in children. Front Endocrinol (Lausanne) 2023; 14:1180505. [PMID: 37274319 PMCID: PMC10234572 DOI: 10.3389/fendo.2023.1180505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Background Although there is evidence linking Bisphenol A (BPA) exposure to obesity, research examining its relationship with body composition parameters in young children is limited. Methods A cross-sectional investigation was conducted on 200 preschool children aged between 4 and 6 years in Guangzhou, China. BPA exposure was assessed through urine samples using ultra-high performance liquid chromatography- tandem mass spectrometry, and body composition parameters were measured through bioelectrical impedance analysis (InBody770). Results The median urinary BPA concentration was 0.556 μg/L (IQR: 0.301 - 1.031 μg/L) and creatinine-adjusted BPA concentration was 0.930 μg/g (IQR: 0.551 - 1.586 μg/g). BPA levels were significantly associated with body mass index (β= 1.15; 95%CI: 0.47, 1.83), body fat mass (β= 1.14; 95%CI: 0.39, 1.89), fat free mass (β= 0.92; 95%CI: 0.26, 1.58), and percent body fat (β= 3.44; 95%CI: 1.17, 5.71) after adjusting for potential confounding factors. Similarly, adjusted models with log10-transformed creatinine-adjusted BPA concentrations as a continuous variable showed similar trends. Positive linear associations were observed between quartiles of BPA concentrations and body composition parameters, with the highest coefficients in the fourth quartile. Conclusion Our study provides further evidence of positive correlations between BPA exposure and body composition parameters in children aged 4 to 6 years. These findings highlight the potential health risks associated with obesity-related body composition parameters in young children. Further investigations are needed to confirm this association and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Yong Guo
- *Correspondence: Yong Guo, ; Jie-Ling Wu,
| | | | | | | | | | | |
Collapse
|
38
|
González-Casanova JE, Bermúdez V, Caro Fuentes NJ, Angarita LC, Caicedo NH, Rivas Muñoz J, Rojas-Gómez DM. New Evidence on BPA's Role in Adipose Tissue Development of Proinflammatory Processes and Its Relationship with Obesity. Int J Mol Sci 2023; 24:ijms24098231. [PMID: 37175934 PMCID: PMC10179730 DOI: 10.3390/ijms24098231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Bisphenol A (BPA) is a xenobiotic with endocrine disruptor properties which interacts with various receptors, eliciting a cellular response. In the plastic industry, BPA is widely used in the production of polycarbonate and epoxy-phenolic resins to provide elastic properties. It can be found in the lining of canned foods, certain plastic containers, thermal printing papers, composite dental fillings, and medical devices, among other things. Therefore, it is a compound that, directly or indirectly, is in daily contact with the human organism. BPA is postulated to be a factor responsible for the global epidemic of obesity and non-communicable chronic diseases, belonging to the obesogenic and diabetogenic group of compounds. Hence, this endocrine disruptor may be responsible for the development of metabolic disorders, promoting in fat cells an increase in proinflammatory pathways and upregulating the expression and release of certain cytokines, such as IL6, IL1β, and TNFα. These, in turn, at a systemic and local level, are associated with a chronic low-grade inflammatory state, which allows the perpetuation of the typical physiological complications of obesity.
Collapse
Affiliation(s)
| | - Valmore Bermúdez
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Nelson Javier Caro Fuentes
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avda. Ejército 146, Santiago 8320000, Chile
| | - Lissé Chiquinquirá Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Sede Concepción, Talcahuano 4260000, Chile
| | - Nelson Hernando Caicedo
- Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali 760031, Colombia
| | - Jocelyn Rivas Muñoz
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370321, Chile
| | - Diana Marcela Rojas-Gómez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370321, Chile
| |
Collapse
|