1
|
Duan F, Han Z, Tian T, Zhang H, Yang M, Zhang Y. Development of a High-Throughput qPCR Assay for Detecting Waterborne Protozoa and Helminths Across Different Environmental Media in China. China CDC Wkly 2025; 7:101-106. [PMID: 39867816 PMCID: PMC11757901 DOI: 10.46234/ccdcw2025.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/12/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction The establishment of a high-throughput quantification approach for waterborne pathogenic protozoa and helminths is crucial for rapid screening and health risk assessment. Methods We developed a high-throughput quantitative polymerase chain reaction (HT-qPCR) assay targeting 19 waterborne protozoa and 3 waterborne helminths and validated its sensitivity, specificity, and repeatability. The assay was then applied to test various environmental media samples. Results The HT-qPCR assay's limit of detection (LOD) was 5×102 copies/μL DNA, and its specificity was confirmed using Giardia and Cryptosporidium standards. Repeatability, assessed through intra- and inter-group experiments, yielded a coefficient of variation (CV) of 1.0%-4.6% and 1.2%-6.4% at concentrations of 1×105 and 1×104 copies/μL, respectively. The R 2 values of the 22 standard curves ranged from 0.983 to 0.998, with amplification efficiencies between 80% and 107%. In drinking water sources, sludge from municipal wastewater treatment plants (MWTPs), and livestock manure samples, 17 of 22 targets were detected, with Acanthamoeba genus (50.0%), Acanthamoeba castellanii (11.8%), and Enterocytozoon bieneusi (11.8%) showing high prevalence. Cryptosporidium spp., Enterocytozoon bieneusi, and Cyclospora cayetanensis were simultaneously found in all three sample types. Discussion This study presents a useful tool for the rapid detection of waterborne protozoa and helminths in complex environmental microbiomes, providing scientific data for monitoring cross-media transmission and controlling microbial risk from a One Health perspective.
Collapse
Affiliation(s)
- Fuming Duan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Tiantian Tian
- College of Life Sciences, Henan Agricultural University, Zhengzhou City, Henan Province, China
| | - Huican Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou City, Henan Province, China
| |
Collapse
|
2
|
Lin C, Li LJ, Yang K, Xu JY, Fan XT, Chen QL, Zhu YG. Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance. THE ISME JOURNAL 2025; 19:wraf009. [PMID: 39869787 PMCID: PMC11845867 DOI: 10.1093/ismejo/wraf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/22/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes (ARGs). However, the effects of protozoan predation on ARGs dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of ARGs to soil microbial communities. Protozoan predation reduced the absolute abundance of plasmids but promoted the expression of conjugation-associated genes, leading to a 5-fold and 4.5-fold increase in conjugation frequency in the presence of C. steinii and A. castellanii, respectively. Excessive oxidative stress, increased membrane permeability, and the provoked SOS response closely associated with the increased conjugative transfer. Protozoan predation also altered the plasmid host range and selected for specific transconjugant taxa along with ARGs and virulence factors carried by transconjugant communities. This study underscores the role of protozoa in the plasmid-mediated conjugative transfer of ARGs, providing new insights into microbial mechanisms that drive the dissemination of environmental antibiotic resistance.
Collapse
Affiliation(s)
- Chenshuo Lin
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Li-Juan Li
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Kai Yang
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Jia-Yang Xu
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Ting Fan
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Qing-Lin Chen
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yong-Guan Zhu
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
3
|
Yu K, He B, Xiong J, Kan P, Sheng H, Zhi S, Zhu DZ, Yao Z. Deciphering basic and key traits of bio-pollutants in a long-term reclaimed water headwater urban stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177696. [PMID: 39577583 DOI: 10.1016/j.scitotenv.2024.177696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Reclaimed water has been recognized as a stable water resource for ecological replenishment in riverine environment. However, information about the bio-pollutants spatial and temporal distributions and the associated risk in this environment remains insufficient. Herein, the bio-pollutant profile in a long-term reclaimed water headwater urban stream, including antibiotic resistance genes (ARGs), mobile genetic elements and pathogens, were revealed by metagenomics. Notably, the temporal variation in bio-pollutant levels exceeded spatial fluctuations, possibly due to the varied rainfall intensity. Specially, multidrug resistance genes and Acinetobacter baumannii (A. baumannii) were the dominant ARGs and pathogens, respectively, exhibiting higher abundance in the dry season, especially in the downstream of the receiving point, where the bio-risk also peaked. A. baumannii and Ralstonia solanacearum were found to be the main plasmids contributors inducing the horizontal gene transfer process in this stream. Overall, A. baumannii contributed over 50 % bio-risk values in most samples, indicating that it was the "overlord" in this headwater urban stream. This study revealed characteristics of bio-pollutants in a typical long-term reclaimed water headwater urban stream, highlighting the superiority of A. baumannii in bio-pollutants, which should be a key consideration in the bio-pollutants surveillance for reclaimed waters.
Collapse
Affiliation(s)
- Kai Yu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Bin He
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Peiying Kan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Huafeng Sheng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo 315211, China
| | - David Z Zhu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Zhiyuan Yao
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
4
|
Wang Q, Chen J, Qi W, Bai Y, Mao J, Qu J. Dam construction alters the traits of health-related microbes along the Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176077. [PMID: 39244052 DOI: 10.1016/j.scitotenv.2024.176077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Dams, constructed globally for energy production and water conservation, fragment rivers, and modify flow regimes, thereby altering the composition of biological communities and ecosystem functions. Despite the extensive use of dams, few studies have explored their potential health impacts, particularly concerning changes in health-related genes, such as antibiotic resistance genes (ARGs) and virulence factor genes (VFGs), and their hosts (i.e., ARB and potential pathogens). Understanding these health-related effects is crucial because they can impact human health through water quality and pathogen prevalence. In this study, we investigated the planktonic microbial community in the Three Gorges Reservoir (TGR) and adjacent upstream and downstream areas of the Yangtze River during both the dry and wet season. Our metagenomic analysis showed that dam construction significantly decreased the abundance of ARGs, but it had an insignificant effect on VFGs. The observed reduction in ARGs abundance could be mainly attributed to the decrease abundance of the major ARGs carrier - Limnohabitansin the TGR and downstream areas due to high grazing pressure and fitness cost. Conversely, the abundance of microbes carrying VFGs (potential pathogens) remained stable from upstream to the dam reservoir, which may explain the negligible impact on VFG abundance. Overall, our results provide a detailed understanding of the ecological health implications of dam construction in large river ecosystems.
Collapse
Affiliation(s)
- Qiaojuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Science, Beijing 100049, China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Junwen Chen
- Center for Water and Ecology, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, Tsinghua University, Beijing 100084, China
| | - Yaohui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jie Mao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jiuhui Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Lei TY, Liao BB, Yang LR, Wang Y, Chen XB. Hypervirulent and carbapenem-resistant Klebsiella pneumoniae: A global public health threat. Microbiol Res 2024; 288:127839. [PMID: 39141971 DOI: 10.1016/j.micres.2024.127839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 08/16/2024]
Abstract
The evolution of hypervirulent and carbapenem-resistant Klebsiella pneumoniae can be categorized into three main patterns: the evolution of KL1/KL2-hvKp strains into CR-hvKp, the evolution of carbapenem-resistant K. pneumoniae (CRKp) strains into hv-CRKp, and the acquisition of hybrid plasmids carrying carbapenem resistance and virulence genes by classical K. pneumoniae (cKp). These strains are characterized by multi-drug resistance, high virulence, and high infectivity. Currently, there are no effective methods for treating and surveillance this pathogen. In addition, the continuous horizontal transfer and clonal spread of these bacteria under the pressure of hospital antibiotics have led to the emergence of more drug-resistant strains. This review discusses the evolution and distribution characteristics of hypervirulent and carbapenem-resistant K. pneumoniae, the mechanisms of carbapenem resistance and hypervirulence, risk factors for susceptibility, infection syndromes, treatment regimens, real-time surveillance and preventive control measures. It also outlines the resistance mechanisms of antimicrobial drugs used to treat this pathogen, providing insights for developing new drugs, combination therapies, and a "One Health" approach. Narrowing the scope of surveillance but intensifying implementation efforts is a viable solution. Monitoring of strains can be focused primarily on hospitals and urban wastewater treatment plants.
Collapse
Affiliation(s)
- Ting-Yu Lei
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Bin-Bin Liao
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Liang-Rui Yang
- First Affiliated Hospital of Dali University, Yunnan 671000, China.
| | - Ying Wang
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Xu-Bing Chen
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| |
Collapse
|
6
|
Yi G, Jin MK, Cai TG, Xu R, Gou XW, Yang N, Feng YL, Zhang SW, Qi XJ, Zhu YG, Zhu D, Li H. Antibiotics and Pesticides Enhancing the Transfer of Resistomes among Soil-Bayberry-Fruit Fly Food Chain in the Orchard Ecosystem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18167-18176. [PMID: 39365373 DOI: 10.1021/acs.est.4c05829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
While substantial amounts of antibiotics and pesticides are applied to maintain orchard yields, their influence on the dissemination and risk of antibiotic resisitome in the orchard food chain remains poorly understood. In this study, we characterized the bacterial and fungal communities and differentiated both antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in the soil, Chinese bayberry (matured and fallen), and fruit fly gut, collected from five geographic locations. Our results showed that fruit fly guts and soils exhibit a higher abundance of ARGs and VFGs compared with bayberry fruits. We identified 112 shared ARGs and 75 shared VFGs, with aminoglycoside and adherence factor genes being among the most abundant. The co-occurrence network revealed some shared microbes, such as Bacillus and Candida, as potential hosts of ARGs, highlighting the vector risks for both above- and below-ground parts of the orchard food chain. Notably, the elevated levels of antibiotics and pesticide residues in orchard soils increase ARGs, mobile genetic elements (MGEs), and VFGs in the soil-bayberry-fruit fly food chain. Our study highlighted that agricultural management, including the overuse of antibiotics and pesticides, could be the key factor in accumulating resistomes in the orchard food chain.
Collapse
Affiliation(s)
- Ge Yi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ming-Kang Jin
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Tian-Gui Cai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Xu
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China
| | - Xian-Wei Gou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Nan Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yi-Lu Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Shu-Wen Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences (ZAAS), Hangzhou 310021, China
| | - Xing-Jiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences (ZAAS), Hangzhou 310021, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Hongjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo 315000, China
| |
Collapse
|
7
|
Xie ST, Zhu D, Song YQ, Zhu YG, Ding LJ. Unveiling potential roles of earthworms in mitigating the presence of virulence factor genes in terrestrial ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135133. [PMID: 38986408 DOI: 10.1016/j.jhazmat.2024.135133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Earthworms can redistribute soil microbiota, and thus might affect the profile of virulence factor genes (VFGs) which are carried by pathogens in soils. Nevertheless, the knowledge of VFG profile in the earthworm guts and its interaction with earthworm gut microbiome is still lacking. Herein, we characterized earthworm gut and soil microbiome and VFG profiles in natural and agricultural ecosystems at a national scale using metagenomics. VFG profiles in the earthworm guts significantly differed from those in the surrounding soils, which was mainly driven by variations of bacterial communities. Furthermore, the total abundance of different types of VFGs in the earthworm guts was about 20-fold lower than that in the soils due to the dramatic decline (also by approximately 20-fold) of VFG-carrying bacterial pathogens in the earthworm guts. Additionally, five VFGs related to nutritional/metabolic factors and stress survival were identified as keystones merely in the microbe-VFG network in the earthworm guts, implying their pivotal roles in facilitating pathogen colonization in earthworm gut microhabitats. These findings suggest the potential roles of earthworms in reducing risks related to the presence of VFGs in soils, providing novel insights into earthworm-based bioremediation of VFG contamination in terrestrial ecosystems.
Collapse
Affiliation(s)
- Shu-Ting Xie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dong Zhu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Ya-Qiong Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101400, China; Sino-Danish Centre for Education and Research, Beijing 100049, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Jimei District, Xiamen 361021, China
| | - Long-Jun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
8
|
Tuo J, Shen Y, Jia S, Liu S, Zhang Q, Wang D, He X, Liu P, Zhang XX. HPB-Chip: An accurate high-throughput qPCR-based tool for rapidly profiling waterborne human pathogenic bacteria in the environment. WATER RESEARCH 2024; 260:121927. [PMID: 38941866 DOI: 10.1016/j.watres.2024.121927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024]
Abstract
Waterborne pathogens are threatening public health globally, but profiling multiple human pathogenic bacteria (HPBs) in various polluted environments is still a challenge due to the absence of rapid, high-throughput and accurate quantification tools. This work developed a novel chip, termed the HPB-Chip, based on high-throughput quantitative polymerase chain reactions (HT-qPCR). The HPB-Chip with 33-nL reaction volume could simultaneously complete 10,752 amplification reactions, quantifying 27 HPBs in up to 192 samples with two technical replicates (including those for generating standard curves). Specific positive bands of target genes across different species and single peak melting curves demonstrated high specificity of the HPB-Chip. The mixed plasmid serial dilution test validated its high sensitivity with the limit of quantification (LoD) of averaged 82 copies per reaction for 25 target genes. PCR amplification efficiencies and R2 coefficients of standard curves of the HPB-Chip averaged 101 % and 0.996, respectively. Moreover, a strong positive correlation (Pearson' r: 0.961-0.994, P < 0.001) of HPB concentrations (log10 copies/L) between HPB-Chip and conventional qPCR demonstrated high accuracy of the HPB-Chip. Subsequently, the HPB-Chip has been successfully applied to absolutely quantify 27 HPBs in municipal and hospital wastewater treatment plants (WWTPs) after PMA treatment. A total of 17 HPBs were detected in the 6 full-scale WWTPs, with an additional 19 in the hospital WWTP. Remarkably, Acinetobacter baumannii, Legionella pneumophila, and Arcobacter butzler were present in the final effluent of each municipal WWTP. Overall, the HPB-Chip is an efficient and accurate high-throughput quantification tool to comprehensively and rapidly quantify 27 HPBs in the environment.
Collapse
Affiliation(s)
- Jinhua Tuo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yan Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuyu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengnan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qifeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
9
|
Yu K, Hei S, Li P, Chen P, Yang J, He Y. Removal of intracellular and extracellular antibiotic resistance genes and virulence factor genes using electricity-intensified constructed wetlands. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134749. [PMID: 38876012 DOI: 10.1016/j.jhazmat.2024.134749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
Constructed wetland (CW) is considered a promising technology for the removal of emerging contaminants. However, its removal performance for antibiotic resistance genes (ARGs) is not efficient and influence of virulence factor genes (VFGs) have not been elucidated. Here, removal of intracellular and extracellular ARGs as well as VFGs by electricity-intensified CWs was comprehensively evaluated. The two electrolysis-intensified CWs can improve the removal of intracellular ARGs and MGEs to 0.96- and 0.85-logs, respectively. But cell-free extracellular ARGs (CF-eARGs) were significantly enriched with 1.8-logs in the electrolysis-intensified CW. Interestingly, adding Fe-C microelectrolysis to the electrolysis-intensified CW is conducive to the reduction of CF-eARGs. However, the detected number and relative abundances of intracellular and extracellular VFGs were increased in all of the three CWs. The biofilms attached onto the substrates and rhizosphere are also hotspots of both intracellular and particle-associated extracellular ARGs and VFGs. Structural equation models and correlation analysis indicated that ARGs and VFGs were significantly cooccurred, suggesting that VFGs may affect the dynamics of ARGs. The phenotypes of VFGs, such as biofilm, may act as protective matrix for ARGs, hindering the removal of resistance genes. Our results provide novel insights into the ecological remediation technologies to enhance the removal of ARGs.
Collapse
Affiliation(s)
- Kaifeng Yu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), National University of Singapore, 1 CREATE Way, 138602, Singapore
| | - Shenglei Hei
- School of Environmental and Municipal Engineering, Lanzhou Jiao Tong University, 118 West Anning Road, Lanzhou City 730070, China
| | - Peng Li
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ping Chen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinghan Yang
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, China
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Campus for Research Excellence and Technological Enterprise (CREATE), National University of Singapore, 1 CREATE Way, 138602, Singapore; China-UK Low Carbon College, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
10
|
Zeng H, Wang Y, Zhao Z, Zhu D, Xia H, Wei Y, Kuang P, An D, Chen K, Li R, Lei Y, Sun G. Travertine deposition rather than tourism activity is the primary contributor to the microplastic risks in alpine karst lakes. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135192. [PMID: 39002479 DOI: 10.1016/j.jhazmat.2024.135192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
Microplastics (MPs) are emerging as anthropogenic vectors to form plastisphere, facilitating microbiome colonization and pathogenic dissemination, thus contributing to environmental and health crises across various ecosystems. However, a knowledge gap persists regarding MPs risks and their driving factors in certain unique and vulnerable ecosystems, such as Karst travertine lakes, some of which are renowned World Natural Heritage Sites under ever-increasing tourism pressure. We hypothesized that tourism activities serve as the most important factor of MPs pollution, whereas intrinsic features, including travertine deposition can exacerbate potential environmental risks. Thus, metagenomic approaches were employed to investigate the geographical distribution of the microbiome, antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and their combined environmental risks in Jiuzhaigou and Huanglong, two famous tourism destinations in Southwest China. The plastisphere risks were higher in Huanglong, contradicting our hypothesis that Jiuzhaigou would face more crucial antibiotic risks due to its higher tourist activities. Specifically, the levels of Lipopolysaccharide Lewis and fosD increased by sevenfold and 20-fold, respectively, from upstream to downstream in Huanglong, whereas in Jiuzhaigou, no significant accrual was observed. Structural equation modeling results showed that travertine deposition was the primary contributor to MPs risks in alpine karstic lakes. Our findings suggest that tourism has low impact on MPs risks, possibly because of proper management, and that travertine deposition might act as an MPs hotspot, emphasizing the importance of considering the unique aspects of travertine lakes in mitigating MPs pollution and promoting the sustainable development of World Natural Heritage Sites.
Collapse
Affiliation(s)
- Hanyong Zeng
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijin Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhen Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Dalin Zhu
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hongxia Xia
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yihua Wei
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peigang Kuang
- Jiuzhaigou Nature Reserve Administration Bureau, Jiuzhaigou 623402, China
| | - Dejun An
- Huanglong Nature Reserve Administration Bureau, Songpan 623300, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ruilong Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yanbao Lei
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Geng Sun
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
11
|
Wang F, Xiang L, Sze-Yin Leung K, Elsner M, Zhang Y, Guo Y, Pan B, Sun H, An T, Ying G, Brooks BW, Hou D, Helbling DE, Sun J, Qiu H, Vogel TM, Zhang W, Gao Y, Simpson MJ, Luo Y, Chang SX, Su G, Wong BM, Fu TM, Zhu D, Jobst KJ, Ge C, Coulon F, Harindintwali JD, Zeng X, Wang H, Fu Y, Wei Z, Lohmann R, Chen C, Song Y, Sanchez-Cid C, Wang Y, El-Naggar A, Yao Y, Huang Y, Cheuk-Fung Law J, Gu C, Shen H, Gao Y, Qin C, Li H, Zhang T, Corcoll N, Liu M, Alessi DS, Li H, Brandt KK, Pico Y, Gu C, Guo J, Su J, Corvini P, Ye M, Rocha-Santos T, He H, Yang Y, Tong M, Zhang W, Suanon F, Brahushi F, Wang Z, Hashsham SA, Virta M, Yuan Q, Jiang G, Tremblay LA, Bu Q, Wu J, Peijnenburg W, Topp E, Cao X, Jiang X, Zheng M, Zhang T, Luo Y, Zhu L, Li X, Barceló D, Chen J, Xing B, Amelung W, Cai Z, Naidu R, Shen Q, Pawliszyn J, Zhu YG, Schaeffer A, Rillig MC, Wu F, Yu G, Tiedje JM. Emerging contaminants: A One Health perspective. Innovation (N Y) 2024; 5:100612. [PMID: 38756954 PMCID: PMC11096751 DOI: 10.1016/j.xinn.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 05/18/2024] Open
Abstract
Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China
| | - Martin Elsner
- Technical University of Munich, TUM School of Natural Sciences, Institute of Hydrochemistry, 85748 Garching, Germany
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangguo Ying
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Bryan W. Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX, USA
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Damian E. Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Timothy M. Vogel
- Laboratoire d’Ecologie Microbienne, Universite Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Myrna J. Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bryan M. Wong
- Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, CA, USA
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Karl J. Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John’s, NL A1C 5S7, Canada
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiankui Zeng
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Haijun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Changer Chen
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Concepcion Sanchez-Cid
- Environmental Microbial Genomics, UMR 5005 Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ali El-Naggar
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanran Huang
- Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | | | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Natàlia Corcoll
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Daniel S. Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Sino-Danish Center (SDC), Beijing, China
| | - Yolanda Pico
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre - CIDE (CSIC-UV-GV), Road CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Philippe Corvini
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Huan He
- Jiangsu Engineering Laboratory of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weina Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fidèle Suanon
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Laboratory of Physical Chemistry, Materials and Molecular Modeling (LCP3M), University of Abomey-Calavi, Republic of Benin, Cotonou 01 BP 526, Benin
| | - Ferdi Brahushi
- Department of Environment and Natural Resources, Agricultural University of Tirana, 1029 Tirana, Albania
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Syed A. Hashsham
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Marko Virta
- Department of Microbiology, University of Helsinki, 00010 Helsinki, Finland
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Louis A. Tremblay
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa 1142, New Zealand
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing 100083, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Willie Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, 3720 BA Bilthoven, The Netherlands
- Leiden University, Center for Environmental Studies, Leiden, the Netherlands
| | - Edward Topp
- Agroecology Mixed Research Unit, INRAE, 17 rue Sully, 21065 Dijon Cedex, France
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Taolin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120 Almeria, Spain
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, 53115 Bonn, Germany
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yong-guan Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias C. Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China
| | - James M. Tiedje
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Wang T, Luo Y, Kong X, Yu B, Zheng P, Huang Z, Mao X, Yu J, Luo J, Yan H, He J. Genetic- and fiber-diet-mediated changes in virulence factors in pig colon contents and feces and their driving factors. Front Vet Sci 2024; 11:1351962. [PMID: 38689852 PMCID: PMC11058638 DOI: 10.3389/fvets.2024.1351962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Virulence factors (VFs) are key factors for microorganisms to establish defense mechanisms in the host and enhance their pathogenic potential. However, the spectrum of virulence factors in pig colon and feces, as well as the influence of dietary and genetic factors on them, remains unreported. In this study, we firstly revealed the diversity, abundance and distribution characteristics of VFs in the colonic contents of different breeds of pigs (Taoyuan, Xiangcun and Duroc pig) fed with different fiber levels by using a metagenomic analysis. The analysis resulted in the identification of 1,236 virulence factors, which could be grouped into 16 virulence features. Among these, Taoyuan pigs exhibited significantly higher levels of virulence factors compared to Duroc pigs. The high-fiber diet significantly reduced the abundance of certain virulence factor categories, including iron uptake systems (FbpABC, HitABC) and Ig protease categories in the colon, along with a noteworthy decrease in the relative abundance of plasmid categories in mobile genetic elements (MGEs). Further we examined VFs in feces using absolute quantification. The results showed that high-fiber diets reduce fecal excretion of VFs and that this effect is strongly influenced by MGEs and short-chain fatty acids (SCFAs). In vitro fermentation experiments confirmed that acetic acid (AA) led to a decrease in the relative abundance of VFs (p < 0.1). In conclusion, our findings reveal for the first time how fiber diet and genetic factors affect the distribution of VFs in pig colon contents and feces and their driving factors. This information provides valuable reference data to further improve food safety and animal health.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| |
Collapse
|
13
|
Wang M, Zhao J, Liu Y, Huang S, Zhao C, Jiang Z, Gu Y, Xiao J, Wu Y, Ying R, Zhang J, Tian W. Deciphering soil resistance and virulence gene risks in conventional and organic farming systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133788. [PMID: 38367443 DOI: 10.1016/j.jhazmat.2024.133788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Organic farming is a sustainable agricultural practice emphasizing natural inputs and ecological balance, and has garnered significant attention for its potential health and environmental benefits. However, a comprehensive evaluation of the emergent contaminants, particularly resistance and virulence genes within organic farming system, remains elusive. Here, a total of 36 soil samples from paired conventional and organic vegetable farms were collected from Jiangsu province, China. A systematic metagenomic approach was employed to investigate the prevalence, dispersal capability, pathogenic potential, and drivers of resistance and virulence genes across both organic and conventional systems. Our findings revealed a higher abundance of antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and virulence factor genes (VFGs) in organic farming system, with ARGs exhibiting a particularly notable increase of 10.76% compared to the conventional one. Pathogens such as Pseudomonas aeruginosa, Escherichia coli, and Mycobacterium tuberculosis were hosts carrying all four gene categories, highlighting their potential health implications. The neutral community model captured 77.1% and 71.9% of the variance in community dynamics within the conventional and organic farming systems, respectively, indicating that stochastic process was the predominant factor shaping gene communities. The relative smaller m value calculated in organic farming system (0.021 vs 0.023) indicated diminished gene exchange with external sources. Moreover, farming practices were observed to influence the resistance and virulence gene landscape by modifying soil properties, managing heavy metal stress, and steering mobile genetic elements (MGEs) dynamics. The study offers insights that can guide agricultural strategies to address potential health and ecological concerns.
Collapse
Affiliation(s)
- Mengmeng Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Jiayin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Yu Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Sijie Huang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Caiyi Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Zhongkun Jiang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, Jiangsu, China
| | - Yongjing Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, Jiangsu, China
| | - Jian Xiao
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yuncheng Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China.
| | - Rongrong Ying
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China.
| | - Jibing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| |
Collapse
|
14
|
Wang L, Zhang TL, Xiang Q, Fu CX, Qiao M, Ding LJ, Zhu D. Selective enrichment of virulence factor genes in the plastisphere under antibiotic and heavy metal pressures. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133319. [PMID: 38159517 DOI: 10.1016/j.jhazmat.2023.133319] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
The growing accumulation of plastic waste in the environment has created novel habitats known as the "plastisphere", where microorganisms can thrive. Concerns are rising about the potential for pathogenic microorganisms to proliferate in the plastisphere, posing risks to human health. However, our knowledge regarding the virulence and pathogenic potential of these microorganisms in the plastisphere remains limited. This study quantified the abundance of virulence factor genes (VFGs) in the plastisphere and its surrounding environments (water and soil) to better assess pathogenic risks. Our findings revealed a selective enrichment of VFGs in the plastisphere, which were attributed to the specific microbial community assembled. The presence of arsenic and ciprofloxacin in the plastisphere exerted additional co-selective pressures, intensifying the enrichment of VFGs. Notably, VFGs that encoded multiple functions or enhanced the survival of host microorganisms (e.g., encoding adherence functions) tended to accumulate in the plastisphere. These versatile and environmentally adaptable VFGs are more likely to be favored by bacteria in the environment, warranting increased attention in future investigations due to their potential for widespread dissemination. In terms of virulence and pathogenicity, this research offers new insights into evaluating pathogen-related risks in the plastisphere.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Tian-Lun Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Chen-Xi Fu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Long-Jun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China.
| |
Collapse
|
15
|
Ni B, Zhang TL, Cai TG, Xiang Q, Zhu D. Effects of heavy metal and disinfectant on antibiotic resistance genes and virulence factor genes in the plastisphere from diverse soil ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133335. [PMID: 38142651 DOI: 10.1016/j.jhazmat.2023.133335] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Antibiotic-resistance genes (ARGs) are world-wide contaminants posing potential health risks. Quaternary ammonium compounds (QACs) and heavy metals can apply selective pressure on antibiotic resistance. However, there is a lack of evidence regarding their coupled effect on changes in ARGs and virulence factor genes (VFGs) in various soil types and their plastispheres. Herein, we conducted a microcosm experiment to explore the abundances and profiles of ARGs and VFGs in soil plastispheres from three distinct types of soils amended with Cu and disinfectants. The plastispheres enriched the ARGs' abundance compared to soils and stimulated the coupling effect of combined pollutants on promoting the abundances of ARGs and VFGs. Horizontal gene transfer inevitably accelerates the propagation of ARGs and VFGs in plastispheres under pollutant stress. In plastispheres, combined exposure to disinfectants and Cu increased some potential pathogens' relative abundances. Moreover, the combined effect of disinfectants and Cu on ARGs and VFGs changed with soil type in plastispheres, emphasising the necessity to incorporate soil type considerations into health risk assessments for ARGs and VFGs. Overall, this study highlights the high health risks of ARGs under the selective pressure of combined pollutants in plastispheres and provides valuable insights for future risk assessments related to antibiotic resistance.
Collapse
Affiliation(s)
- Bang Ni
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Tian-Lun Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tian-Gui Cai
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China.
| |
Collapse
|
16
|
Fang GY, Liu XQ, Jiang YJ, Mu XJ, Huang BW. Horizontal gene transfer in activated sludge enhances microbial antimicrobial resistance and virulence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168908. [PMID: 38013098 DOI: 10.1016/j.scitotenv.2023.168908] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Activated sludge (AS) plays a vital role in removing organic pollutants and nutrients from wastewater. However, the risks posed by horizontal gene transfer (HGT) between bacteria in AS are still unclear. Here, a total of 478 high-quality non-redundant metagenome-assembled genomes (MAGs) were obtained. >50 % and 5 % of MAGs were involved in at least one HGT and recent HGT, respectively. Most of the transfers (82.4 %) of antimicrobial resistance genes (ARGs) occurred among the classes of Alphaproteobacteria and Gammaproteobacteria. The bacteria involved in the transfers of virulence factor genes (VFGs) mainly include Alphaproteobacteria (42.3 %), Bacteroidia (19.2 %), and Gammaproteobacteria (11.5 %). Moreover, the number of ARGs and VFGs in the classes of Alphaproteobacteria and Gammaproteobacteria was higher than that in other bacteria (P < 0.001). Mobile genetic elements were important contributors to ARGs and VFGs in AS bacteria. These results have implications for the management of antimicrobial resistance and virulence in activated sludge microorganisms.
Collapse
Affiliation(s)
- Guan-Yu Fang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, PR China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou 311300, PR China.
| | - Xing-Quan Liu
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, PR China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yu-Jian Jiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xiao-Jing Mu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Bing-Wen Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| |
Collapse
|
17
|
Wang HT, Gan QY, Li G, Zhu D. Effects of Zinc Thiazole and Oxytetracycline on the Microbial Metabolism, Antibiotic Resistance, and Virulence Factor Genes of Soil, Earthworm Gut, and Phyllosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:160-170. [PMID: 38148496 DOI: 10.1021/acs.est.3c06513] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Pesticides and antibiotics are believed to increase the incidence of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs), constituting a serious threat to global health. However, the impact of this combined pollution on the microbiome and that of the related ARGs and VFGs on soil-plant-animal systems remain unknown. In this study, a 60-day microcosm experiment was conducted to reveal the effects of zinc thiazole (ZT) and oxytetracycline (OTC) on microbial communities, antibiotic resistomes, and virulence factors in soil, earthworm gut, and phyllosphere samples using metagenomics. ZT exposure perturbed microbial communities and nutrient metabolism and increased the abundance of ARGs and VFGs in the gut. Combined exposure changed the profiles of ARGs and VFGs by decreasing microbial diversity in the phyllosphere. Host-tracking analysis identified some genera, such as Citrobacter and Aeromonas, as frequent hosts of ARGs and VFGs in the gut. Notably, some co-occurrence patterns of ARGs and MGEs were observed on the metagenome-assembled contigs. More importantly, ZT markedly increased the abundance of potentially drug-resistant pathogens Acinetobacter soli and Acinetobacter junii in the phyllosphere. Overall, this study expands our current understanding of the spread of ARGs and VFGs in soil-plant-animal systems under pollutant-induced stress and the associated health risks.
Collapse
Affiliation(s)
- Hong-Tao Wang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
| | - Qiu-Yu Gan
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|