1
|
Yan J, Li X, Pan Z, Lin X, Zuo Q, Zhou J, Zhou S, Sui F, Zhang L, Fischel MHH. Red mud causes dynamic changes in the soil microbial community and cadmium fractions in a slightly cadmium-contaminated paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138349. [PMID: 40267706 DOI: 10.1016/j.jhazmat.2025.138349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Red mud is a highly alkaline industrial by-product rich in iron oxides with great potential for soil cadmium remediation. Although the stabilization of Cd by red mud is well reported in rice potted and field experiments, the influence of red mud on microbial communities in paddy soil and the contribution of soil microbial communities subjected to red mud in Cd stabilization remain unknown. This study used high-throughput sequencing and bioinformatics, combined with a sequential extraction procedure, to determine the microbiological mechanisms of rice Cd reduction by red mud and information on the corresponding soil Cd fraction. The results showed that red mud significantly increased the soil pH and iron and manganese oxide-bound Cd fractions. Red mud application influenced the microbial beta diversity rather than the alpha diversity, especially for bacteria. Unique taxa associated with iron reduction (e.g., phylum Firmicutes and genus Anaeromyxobacter) were enriched at the rice-filling stage, which may contribute to the stabilization of Cd. Red mud application caused little difference in the fungal communities. A 2 % red mud amendment successfully decreased the grain Cd content in a high Cd-accumulating rice cultivar by 72 %. Red mud effectively reduces Cd accumulation in the short-term and demonstrates potential for remedial applications. This study provides microbiological evidence for stabilizing Cd in red mud, but its long-term environmental impact and field applicability require further research.
Collapse
Affiliation(s)
- Jiali Yan
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Xuwei Li
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Zhengguo Pan
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Xiaochen Lin
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Qinglin Zuo
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Jiankang Zhou
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Shiqi Zhou
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Fuqing Sui
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou, China.
| | - Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China.
| | - Matthew H H Fischel
- Sustainable Agricultural Systems Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
2
|
Lu T, Ge W, Li A, Deng S, Min T, Qiu G. Endogenous silicon-activated rice husk biochar prepared for the remediation of cadmium-contaminated soils: Performance and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125030. [PMID: 39332799 DOI: 10.1016/j.envpol.2024.125030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Biochar is widely used for the remediation of heavy metal-contaminated soils. However, pristine biochar generally has limited active functional groups and adsorption sites, thereby exhibiting low immobilization performance for heavy metals. In addition to carbon (C), silicon (Si) is another common macro-element present in rice husk biochar, but it often exists in the form of amorphous oxide and therefore contributes little to the adsorption performance for heavy metals. The transformation of amorphous Si oxide to dissolved silicate through a precipitation effect can significantly improve its heavy metal immobilization capability. Herein, the amorphous Si oxide in rice husk biochar was activated by sodium hydroxide and then the dissolved silicate was immobilized by calcium salt. The as-synthetized Si-activated biochar was used to remediate cadmium (Cd)-contaminated soils. The results indicated that Si-activated rice husk biochar could reduce Cd migration and environmental risks by the transformation from exchangeable Cd into carbonate-bound and residual Cd. With increasing Ca: Si molar ratio, the content of CaCl2 and H2O-extractable Cd exhibited a decreasing trend. Moreover, a higher addition amount of Si-activated biochar improved the Cd immobilization efficiency. The application of 1.0% Ca/Si molar ratio of 2: 2 Si-activated rice husk biochar decreased the CaCl2-Cd and H2O-Cd concentration by a maximum of 83.7% and 90.5% compared with pristine rice husk biochar, respectively. The present work proposes an approach for highly efficient remediation of Cd-polluted soils by biochar.
Collapse
Affiliation(s)
- Tao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenzhan Ge
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Anyu Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Shengjun Deng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Tao Min
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agriculture Science, Shenzhen, China.
| |
Collapse
|
3
|
Alqahtani FO, Parveen N, Khan GA, Behera M, Chakrabortty S, Tripathy SK. Synthesis, characterization and application of BR@Ag nanocomposite material for high degree reduction of p-nitro phenol under a suitable condition. Biotechnol Genet Eng Rev 2024; 40:4664-4695. [PMID: 37226482 DOI: 10.1080/02648725.2023.2216071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
One of the most essential chemical processes that is utilized in the manufacturing of a great deal of contemporary goods is called heterogeneously catalyzed reactions, and it is also one of the most fascinating. Metallic nanostructures are heterogeneous catalysts for range reactions due to their huge surface area, large assembly of active surface sites, and quantum confinement effects. Unprotected metal nanoparticles suffer from irreversible agglomeration, catalyst poisoning, and limited life cycle. To circumvent these technical disadvantages, catalysts are frequently spread on chemically inert materials like as mesoporous Al2O3, ZrO2, and different types of ceramic material. In this research, plentiful bauxite residue is used to create a low-cost alternative catalytic material. We have hydrogenated p-Nitrophenol to p-Aminophenol on bauxite residue (BR) supported silver nanocomposites (Ag NCs). The phase and crystal structure, bond structure and morphological analysis of the developed material will be done XRD, FTIR, and SEM-EDX respectively. The ideal conditions were 150 ppm of catalyst, 0.1 mM of p-NP, and 10 minutes overall up-to 99% conversion of p-NP to p-AP. A multi-variable predictive model created using Response Surface Methodology (RSM) and a data-based Artificial Neural Network (ANN) model were found to be the best ways to predict the maximum conversion efficiency. ANN models predicted efficiency more accurately than RSM models, and the strong agreement between model predictions and experimental data was indicated by their low relative error (RE0.10), high regression coefficient (R2>0.97), and Willmott-d index (dwill-index > 0.95) values.
Collapse
Affiliation(s)
| | - Nazish Parveen
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Gausal A Khan
- Department of Clinical Nutrition, College of Applied Medical Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Meerambika Behera
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sankha Chakrabortty
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Suraj K Tripathy
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Zhang Y, Zhang Y, Wu A. Design and construction of magnetic nanomaterials and their remediation mechanisms for heavy metal contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175369. [PMID: 39122020 DOI: 10.1016/j.scitotenv.2024.175369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Soil heavy metal pollution poses huge threat to ecosystem and human health. In-situ chemical remediation aims to immobilize free heavy metals in soil through adding passivators, thereby greatly reducing the mobility and bioavailability of heavy metals. Magnetic nanomaterials (MaN) have strong adsorption and immobilization capabilities for heavy metals due to their significant surface effects, small size effects and interfacial effects. Compared with traditional remediation materials, MaN can be recovered and reused using external magnetic fields. These advantages give MaN broad application prospects in the field of soil remediation. This work provides a comprehensive review of the application of MaN in heavy metal contaminated soil, including the design and application effect of various types of MaN, the influence of MaN on soil properties, environmental toxicity, and microbial composition, the in-situ remediation mechanism of MaN on heavy metal contaminated soil. On the other hand, there are potential risks associated with the remediation of heavy metal contaminated soil using MaN, including their impact on the soil ecosystem and biosafety concerns, requiring further research. Finally, this review proposes the future prospects for the application of MaN in the remediation of heavy metal polluted soil.
Collapse
Affiliation(s)
- Yuenan Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujie Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China.
| |
Collapse
|
5
|
Cai T, Yang M, Pan R. Study on the effect of sodium removal from citric acid pretreated red mud on the physical properties of red mud. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44191-44204. [PMID: 38937355 DOI: 10.1007/s11356-024-33850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
Red mud is a highly alkaline solid waste discharged from the alumina industry, and its high sodium content is the key factor limiting its wide utilization. Therefore, effective control of the "frosting" phenomenon during the application of red mud has received significant attention. In this study, the changes of particle size, phase, morphology, and pore size of red mud after sodium removal with different amounts of citric acid pretreatment were investigated. The single-factor experiment shows that the Na+ leaching rate is 86.33% under a citric acid dosage of 15%, liquid-to-solid ratio of 7 mL/g, leaching temperature of 80 °C, stirring speed of 300 rpm, and leaching time of 10 min. The leachate is characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. The results reveal that Na+ mainly exists in a combined state in the form of cancrinite. With the increase of citric acid dosage, red mud agglomerates, calcite, and cancrinite are dissolved, and new phases such as calcium oxalate and magnesium aluminum hydroxide are formed. The specific surface area, pore volume, and pore diameter show irregular changes with the increase in the citric acid dosage. Citric acid pretreatment can effectively reduce the sodium content in red mud, the treatment cost of leaching solution is low, and the leaching residue is neutral, which is helpful to promote the practical application of red mud.
Collapse
Affiliation(s)
- Tingya Cai
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Min Yang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.
| | - Rongxiang Pan
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
6
|
Wang Y, Zhang Z, Li Y, Liang C, Huang H, Wang S. Available heavy metals concentrations in agricultural soils: Relationship with soil properties and total heavy metals concentrations in different industries. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134410. [PMID: 38677121 DOI: 10.1016/j.jhazmat.2024.134410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Heavy metal (HM) pollution in agricultural soils has arisen sharply in recent years. However, the impact of main factors on available HMs concentrations in agricultural soils of the three main industries (smelting, chemical and mining industry) is unclear. Herein, soil properties (pH, cation exchange capacity (CEC) and texture (sand, slit, clay)), total and available concentrations were concluded based on the results of 165 research papers from 2000 to 2023 in Web of Science database. In the three industries, the correlation and redundancy analysis were used to study the correlation between main factors and available concentrations, and quantitatively analyzed the contribution of each factor to available concentrations with gradient boosting decision tree model. The results showed that different factors had varying degrees of impact on available metals in the three main industries, and the importance of same factors varied in each industry, as for soil pH, it was most important for available Pb and Zn in the chemical industry, but the total concentrations were most important in the smelting and mining industry. There was no significant correlation between total and available concentrations. Soil properties involved in this paper (especially soil pH) were negatively correlated with available concentrations. This study provides effective guidance for the formulation of soil pollution control and risk assessment standards based on industry classification in the three major industrial impact areas.
Collapse
Affiliation(s)
- Yakun Wang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhuo Zhang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Natural Resources, Beijing 100035, China.
| | - Yuanyuan Li
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Chouyuan Liang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Haochong Huang
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Sen Wang
- Hebei Key Laboratory of Geological Resources and Environment Monitoring and Protection, Hebei Geological Environmental Monitoring Institute, Shijiazhuang 050021, China
| |
Collapse
|
7
|
Li J, Li X, Fischel M, Lin X, Zhou S, Zhang L, Wang L, Yan J. Applying Red Mud in Cadmium Contamination Remediation: A Scoping Review. TOXICS 2024; 12:347. [PMID: 38787126 PMCID: PMC11125661 DOI: 10.3390/toxics12050347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Red mud is an industrial solid waste rarely utilized and often disposed of in landfills, resulting in resource waste and environmental pollution. However, due to its high pH and abundance of iron and aluminum oxides and hydroxides, red mud has excellent adsorption properties which can effectively remove heavy metals through ion exchange, adsorption, and precipitation. Therefore, red mud is a valuable resource rather than a waste byproduct. In recent years, red mud has been increasingly studied for its potential in wastewater treatment and soil improvement. Red mud can effectively reduce the migration and impact of heavy metals in soils and water bodies. This paper reviews the research results from using red mud to mitigate cadmium pollution in water bodies and soils, discusses the environmental risks of red mud, and proposes key research directions for the future management of red mud in cadmium-contaminated environments.
Collapse
Affiliation(s)
- Jintao Li
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Xuwei Li
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China
| | - Matthew Fischel
- Sustainable Agricultural Systems Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Xiaochen Lin
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China
| | - Shiqi Zhou
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Lei Wang
- Ecological Environment Bureau of Chuzhou City, Chuzhou 239000, China
| | - Jiali Yan
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| |
Collapse
|
8
|
Das S, Sengupta S, Patra PK, Dey P. Limestone and yellow gypsum can reduce cadmium accumulation in groundnut (Arachis hypogaea): A study from a three-decade old landfill site. CHEMOSPHERE 2024; 353:141645. [PMID: 38452977 DOI: 10.1016/j.chemosphere.2024.141645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/18/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024]
Abstract
Cadmium (Cd) toxicity has cropped up as an important menace in the soil-plant system. The use of industrial by-products to immobilise Cd in situ in polluted soils is an interesting remediation strategy. In the current investigation, two immobilizing amendments of Cd viz., Limestone (traditionally used) and Yellow gypsum (industrial by-product) have been used through a green-house pot culture experiment. Soil samples were collected from four locations based on four graded levels of DTPA extractable Cd as Site 1 (0.43 mg kg-1), Site 2 (0.92 mg kg-1), Site 3 (1.77 mg kg-1) and Site 4 (4.48 mg kg-1). The experiment was laid out in a thrice replicated Factorial Complete Randomized Design, with one factor as limestone (0, 250, 500 mg kg-1) and the other being yellow gypsum (0, 250, 500 mg kg-1) on the collected soils and groundnut was grown as a test crop. Results revealed that the DTPA-extractable Cd content in soil and Cd concentration in plants decreased significantly with the increasing doses of amendments irrespective of initial soil available Cd and types of amendment used. The effect of amendment was soil specific and in case of Site 1 (low initial Cd) the effect was more prominent. The reduction in DTPA-extractable Cd in combined application of limestone and yellow gypsum @500 mg kg-1 over the absolute control in soil under groundnut for the sites was by far the highest with the values of 83.72%, 77.17%, 48.59% and 40.63% respectively. With the combined application, Target Cancer Risk (TCR) of Cd was also reduced. Hence, combined application of limestone and yellow gypsum can be beneficial in the long run for mitigating Cd pollution.
Collapse
Affiliation(s)
- Shreya Das
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, Nadia, West Bengal, India; ICAR-Agricultural Technology Application Research Institute (ATARI) Kolkata, Sector III, Salt Lake, Kolkata, 700097, West Bengal, India
| | - Sudip Sengupta
- School of Agriculture, Swami Vivekananda University, Barrackpore, 700121, West Bengal, India
| | - Prasanta Kumar Patra
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, Nadia, West Bengal, India
| | - Pradip Dey
- ICAR-Agricultural Technology Application Research Institute (ATARI) Kolkata, Sector III, Salt Lake, Kolkata, 700097, West Bengal, India.
| |
Collapse
|
9
|
Al-Amin A, Ryan RJ, McKenzie ER. Effects of dissolved organic carbon on potentially toxic element desorption in stormwater bioretention systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168651. [PMID: 38008319 DOI: 10.1016/j.scitotenv.2023.168651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
Stormwater runoff contains dissolved organic carbon (DOC) and potentially toxic elements (PTEs). Interactions between DOC and PTEs can impact PTE speciation and mobility, but are not fully understood. Soil samples were collected from a vegetated bioretention bed to investigate the effects of DOC (0, 15, and 50 mg-C/L) on the desorption of 10 PTEs captured by the soil media: Mn, Fe, Co, Cu, Zn, As, Cd, Sn, Sb, and Pb. In the absence of DOC, the desorbed PTE concentration from bioretention media into the aqueous phase ranking was as follows: Fe > Mn ∼ Zn > Cu > Pb > Sb > As > Co > Sn ∼ Cd. Increased DOC concentrations resulted in a reduction of the soil-water distribution coefficient (Kd) values. The greatest shift in Kd was observed for Cu and lowest for Sb. The PTE sorption capacities were lower for surficial soil samples (lower Kd) compared to the deep soil samples. Overall, the desorbed PTE (average midchannel 55.7 μg/g) fraction accounted for <1.1 % of the total extracted PTEs (5364 μg/g), and while this is a small percentage of the total, this is the fraction that is mobile. The extracted PTE fractions revealed that DOC reduced the organic matter-bound and carbonate-bound fractions. The PTE desorption trends suggest that reducing DOC in stormwater runoff could be an effective measure to mitigate the release of PTEs into the environment.
Collapse
Affiliation(s)
- Abdullah Al-Amin
- Temple University, Department of Civil and Environmental Engineering, 1947 North 12 Street, Philadelphia, PA 19122, United States
| | - Robert J Ryan
- Temple University, Department of Civil and Environmental Engineering, 1947 North 12 Street, Philadelphia, PA 19122, United States
| | - Erica R McKenzie
- Temple University, Department of Civil and Environmental Engineering, 1947 North 12 Street, Philadelphia, PA 19122, United States.
| |
Collapse
|
10
|
Svobodova-Sedlackova A, Calderón A, Fernandez AI, Chimenos JM, Berlanga C, Yücel O, Barreneche C, Rodriguez R. Mapping the research landscape of bauxite by-products (red mud): An evolutionary perspective from 1995 to 2022. Heliyon 2024; 10:e24943. [PMID: 38317881 PMCID: PMC10838798 DOI: 10.1016/j.heliyon.2024.e24943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
The global population growth has significantly impacted energy and raw material consumption, unmatched since the Industrial Revolution. Among metals, aluminium ranks second only to steel, with annual production exceeding 69 million tonnes. Due to its high demand, bauxite, the primary ore from which aluminium is extracted, is now classified as a critical material in the EU and the US, given the potential risk of supply shortages for essential applications. Geographical and production challenges surround bauxite, presenting geo-economic and environmental challenges. A critical concern in aluminium production is managing by-products, notably red mud, a bauxite residue, generating over 175 million tonnes annually worldwide. Comprehensive bibliometric research is imperative due to the high amount of bibliographical resources related to this topic, encompassing circular economy, re-valorisation, sustainability, and disposal. This study employs bibliometric methods to assess red mud valorisation, offering insights into research topics, influential authors, and key journals, shedding light on the past, present, and future of red mud research. Such bibliometric analysis not only highlights the current state of the field but also serves as a valuable tool for decision-making, enabling researchers and policymakers to identify trends, gaps, and areas for further exploration, fostering informed and sustainable advancements in the by-products of the aluminium industry.
Collapse
Affiliation(s)
- Adela Svobodova-Sedlackova
- Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franqués 1, 08028, Barcelona, Spain
- Institute for Advanced Materials and Mathematics (INAMAT2), Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain
| | - Alejandro Calderón
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franqués 1, 08028, Barcelona, Spain
| | - A. Inés Fernandez
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franqués 1, 08028, Barcelona, Spain
| | - Josep Maria Chimenos
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franqués 1, 08028, Barcelona, Spain
| | - Carlos Berlanga
- Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain
- Institute for Advanced Materials and Mathematics (INAMAT2), Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain
| | - Onuralp Yücel
- Metallurgical and Materials Engineering Department, Istanbul Technical University, İTÜ Ayazaga Campus, 34469, Maslak, Istanbul, Turkey
| | - Camila Barreneche
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franqués 1, 08028, Barcelona, Spain
| | - Rafael Rodriguez
- Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain
- Institute for Advanced Materials and Mathematics (INAMAT2), Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain
| |
Collapse
|
11
|
Niu A, Lin C. Trends in research on characterization, treatment and valorization of hazardous red mud: A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119660. [PMID: 38043310 DOI: 10.1016/j.jenvman.2023.119660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/05/2023] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Abstract
Meta-analysis of red mud-related literature in English published from 1976 to 2022 and in Chinese from 1990 to 2022 was performed to support critical analysis and evaluation of the available literature based on the following aspects of red mud research: (a) characterization, (b) treatment for harmfulness minimization, (c) recovery of valuable metals, (d) environmental applications, and (e) uses as construction materials. It was found that (a) sinter red mud tended to contain more silica and calcium, and less iron, sodium and aluminium compared to Bayer red mud; (b) gypsum was the most frequently used agent for harmfulness reduction treatment of red mud, followed by flue gas/CO2; (c) the mean optimal pH for adsorption of major anionic pollutants was 8.42 ± 1.13 (arsenite), 3.73 ± 0.68 (arsenate), 3.50 ± 2.38 (phosphate), 4.43 ± 1.04 (fluoride) and 3.80 ± 1.54 (chromate); (d) wastewater treatment has attracted more attention compared to contaminated soils and waste gases; (e) recovery of iron and scandium has attracted more attention compared to other metals; (f) cement making has been the focus in construction uses. Most of the research findings were based on laboratory-scale experiments that focused on efficacy rather than efficiency. There was a lack of integrated approaches for research in red mud valorization.
Collapse
Affiliation(s)
- Anyi Niu
- International Envirotech Limited, Hong Kong 999077, China; School of Geography, South China Normal University, Guangzhou 510631, China
| | - Chuxia Lin
- Faculty of Science, Engineering and Built Environment, Deakin University, Burwood VIC 3125, Australia.
| |
Collapse
|
12
|
Kim DM, Bang S, Im DG, Yoon S. Synergistic effect from combined use of scrap-recycling slag and hydrated lime to stabilize Pb and Zn in highly contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4220-4237. [PMID: 38102423 DOI: 10.1007/s11356-023-31527-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
For the soil in an area which has been repeatedly chosen as one of the 10 most polluted places in the world, stabilization of Pb and Zn was assessed in batch, incubation, and column experiments. Single and combined amendment of scrap-recycling slag (Slag-R), charcoal, coal ash, hydrated lime, and basic oxygen furnace (BOF) slag were applied for the stabilization. Notably, the combined amendment of Slag-R and hydrated lime exhibited superior stabilization efficiencies than the individual use of all stabilizing agents and combined use of charcoal and hydrated lime. The combined amendment of Slag-R and hydrated lime decreased Pb levels by 92-99% and Zn levels by 63-88% in the incubation experiments and by 75% and 89-93%, respectively, in the column experiments. In particular, the combined amendment showed a synergistic effect for Pb stabilization because a higher pH enhanced sorption onto the slag and because sorption onto Fe (hydr)oxides of the sorbent possibly helped to remove Pb. Zinc had a relatively lower sorption tendency, so it was mainly controlled by the pH increase from hydrated lime. Although the addition of hydrated lime was very effective in stabilizing high concentrations of Pb and Zn, the dosage should be controlled carefully because excessively high pH redissolves Pb and Zn as anions.
Collapse
Affiliation(s)
- Duk-Min Kim
- Department of New Energy and Mining Engineering, Sangji University, Wonju, 26339, Republic of Korea.
| | - Sunbaek Bang
- Korea Mine Rehabilitation and Mineral Resources Corporation (KOMIR), Wonju, 26464, Republic of Korea
| | - Dae-Gyu Im
- Department of New Energy and Mining Engineering, Sangji University, Wonju, 26339, Republic of Korea
- Department of Earth and Environmental Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sungmoon Yoon
- Korea Mine Rehabilitation and Mineral Resources Corporation (KOMIR), Wonju, 26464, Republic of Korea
| |
Collapse
|
13
|
Gao Z, Zhao L, Geng H, Li M, Chen D, Zhang Y. Bibliometric and literature review of the development of mineral fertilizers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27-42. [PMID: 38017216 DOI: 10.1007/s11356-023-31209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Mineral fertilizers are a new type of sustainable fertilizers, containing natural ores as the primary raw material with various nutrients and organic matters. This study combines two methods of bibliometric analysis to comprehensively review the progress of mineral fertilizers from 2000 to 2021. The results showed that the research on mineral fertilizers has increased in the past 21 years, especially after 2014. Developed countries studied mineral fertilizers more extensively than developing countries, but some developing countries, such as China and India, are also paying attention to this area in recent years. Chinese Academic of Sciences, Agriculture and Agri-Food Canada, and Chinese Academy of Agricultural Sciences were the main publishing institutions. Nutrient elements, changes in soil properties, and the effects on promoting crop growth were the main contents of the research. Still, such issues as bioremediation, soil environment improvement, and crop resistance are becoming hot spots. The field of mineral fertilizers showed a strong interdisciplinary nature and an increasingly comprehensive research perspective. The goal is that this synthesis will be used as a starting point for a broader study on responsible environmental management and research on improving fertilizer use efficiency.
Collapse
Affiliation(s)
- Zijie Gao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Binhai Ecological Key Belt Protection and Function Construction Technology Engineering Center, Tianjin, 300456, China
| | - Hongzhi Geng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Mengxiao Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Daying Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Youjun Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
14
|
Oh SJ, Irshad MK, Kang MW, Roh HS, Jeon Y, Lee SS. In-situ physical and chemical remediation of Cd and Pb contaminated mine soils cultivated with Chinese cabbage: A three-year field study. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132091. [PMID: 37515987 DOI: 10.1016/j.jhazmat.2023.132091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Soils pollution with heavy metals (HMs) is a serious concern due to their toxic effects on crop yield, crop quality, soil environment, and human health. In the current study, four stabilizers of calcium carbonate (CC), dolomite (DL), zeolite (ZL), and steel slag (SS) were applied to cadmium (Cd) and lead (Pb)-contaminated soils as in-situ chemical remediation techniques along with in-situ physical remediation techniques i.e. soil covering (SC) and soil dilution (SD) under real field conditions. For three years, Chinese cabbage (Brassica rapa L.) was grown on the amended fields to examine how the amendments impacted Cd and Pb uptake in plants. The stabilization efficiency of SS, CC, and SC were 75.7 %, 66.0 %, and 71.1 %, respectively, for Cd, and 55.6 %, 55.6 %, and 70.0 %, respectively, for Pb. Results indicated that stabilizer soil amendments significantly decreased the exchangeable (F1) and carbonates bound (F2) fractions of both Cd and Pb. For instance, F1 fraction of Cd decreased from 10.2 (control) to 1.8-2.9 % (with stabilizers). The stabilizers increased Chinese cabbage dry weight by 11.4-22.5 % and decreased Cd and Pb uptake by 67.4 % and 24 %, respectively. The results demonstrated that in-situ chemical remediation technique showed promising results and maintained its efficiency for more than 130 weeks. Current study indicated that chemical remediation of Cd and Pb contaminated soil is more effective and last longer than physical remediation.
Collapse
Affiliation(s)
- Se Jin Oh
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, the Republic of Korea
| | - Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, the Republic of Korea
| | - Min Woo Kang
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, the Republic of Korea
| | - Hyun-Seog Roh
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, the Republic of Korea
| | - Yukwon Jeon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, the Republic of Korea
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, the Republic of Korea.
| |
Collapse
|
15
|
Du F, Liu L, Pan Y, Wu C, Wang R, Zhao Z, Fan W, Song H, Shi Y, Wang J. A novel biochar-based composite hydrogel for removing heavy metals in water and alleviating cadmium stress in tobacco seedlings. Sci Rep 2023; 13:15656. [PMID: 37730828 PMCID: PMC10511474 DOI: 10.1038/s41598-023-41946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
A novel composite hydrogel (AM/CMC/B) synthesized from peanut shell biochar effectively adsorbs heavy metal Cd in water and reduces its toxicity to tobacco seedlings. The hydrogel, prepared via hydrothermal polymerization using acrylamide (AM), carboxymethyl cellulose (CMC), and peanut shell biochar (B), exhibited a maximum adsorption capacity of 164.83 mg g-1 for Cd2+ and followed a pseudo-second-order kinetic model. In pot experiments, the application of exogenous AM/CMC/B mitigated the inhibitory effects of Cd-contaminated soil on tobacco seedling growth. Addition of 10 mg kg-1 Cd resulted in improved phenotype, root system development, enhanced photosynthetic capacity, stomatal conductance (Gs), stomatal number, and increased antioxidant activity while reducing MDA content and leaf cell death. These findings highlight the potential of AM/CMC/B as an environmentally friendly adsorbent for Cd removal from water and for reducing Cd stress toxicity in tobacco and other plants.
Collapse
Affiliation(s)
- Fu Du
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China
| | - Liping Liu
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China
| | - Yong Pan
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China
| | - Chuang Wu
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China
| | - Ronghao Wang
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China
| | - Zeyu Zhao
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China
| | - Wenpeng Fan
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China
| | - Hao Song
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China
| | - Youzhi Shi
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China.
| | - Jian Wang
- China Tobacco Hubei Industrial LLC, Wuhan, 430040, China.
| |
Collapse
|
16
|
Khan SN, Nafees M, Imtiaz M. Assessment of industrial effluents for heavy metals concentration and evaluation of grass ( Phalaris minor) as a pollution indicator. Heliyon 2023; 9:e20299. [PMID: 37809466 PMCID: PMC10560060 DOI: 10.1016/j.heliyon.2023.e20299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
This study was conducted to investigate the impact of industrial activities on heavy metals status in wastewater, sludge and flora on the bank of selected main drains of the Hayatabad Industrial estate, Peshawar. Plants, sludge and wastewater samples of selected sites were collected and analyzed for heavy metals distribution; cadmium (Cd), chromium (Cr), lead (Pb) and zinc (Zn) levels. Bioconcentration factor (BCF) values were calculated for plants (Phalaris minor) grass species found naturally at all sites. The results showed that the levels of metals in wastewater were lower than permissible limits except Cd and the concentration of metals in plants and sludge were within permissible limits when compared to their respective standards. Metal distribution was in the following order; sludge > plants > wastewater and the concentration of metals varied according to the distance from the source with no specific pattern. Sludge samples for all sites showed a high concentration of metals as compared to plants and wastewater samples. In grass samples, Zn was highest and Cd was low for all sites. Metals accumulation in plants was in order of; roots > shoot. Pearson's coefficient correlation showed that Cr in plant roots and Zn in shoots showed significantly high correlation with Cd in sludge while Pb in roots showed significant negative correlation with Zn in sludge. BCF values for Cr, Pb and Zn were >1, showing the phytoremediation potential of plants.
Collapse
Affiliation(s)
- Sara Nawaz Khan
- Department of Environmental Sciences, University of Peshawar, Pakistan
| | - Mohammad Nafees
- Department of Environmental Sciences, University of Peshawar, Pakistan
| | - Muhammad Imtiaz
- Soil and Environmental Sciences Division, Nuclear Institute for Food and Agriculture (NIFA), Tarnab, Peshawar, Pakistan
| |
Collapse
|
17
|
Padhye LP, Srivastava P, Jasemizad T, Bolan S, Hou D, Shaheen SM, Rinklebe J, O'Connor D, Lamb D, Wang H, Siddique KHM, Bolan N. Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131575. [PMID: 37172380 DOI: 10.1016/j.jhazmat.2023.131575] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/14/2023]
Abstract
Contaminant containment measures are often necessary to prevent or minimize offsite movement of contaminated materials for disposal or other purposes when they can be buried or left in place due to extensive subsurface contamination. These measures can include physical, chemical, and biological technologies such as impermeable and permeable barriers, stabilization and solidification, and phytostabilization. Contaminant containment is advantageous because it can stop contaminant plumes from migrating further and allow for pollutant reduction at sites where the source is inaccessible or cannot be removed. Moreover, unlike other options, contaminant containment measures do not require the excavation of contaminated substrates. However, contaminant containment measures require regular inspections to monitor for contaminant mobilization and migration. This review critically evaluates the sources of persistent contaminants, the different approaches to contaminant remediation, and the various physical-chemical-biological processes of contaminant containment. Additionally, the review provides case studies of contaminant containment operations under real or simulated field conditions. In summary, contaminant containment measures are essential for preventing further contamination and reducing risks to public health and the environment. While periodic monitoring is necessary, the benefits of contaminant containment make it a valuable remediation option when other methods are not feasible.
Collapse
Affiliation(s)
- Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Prashant Srivastava
- CSIRO, The Commonwealth Scientific and Industrial Research Organisation, Environment Business Unit, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - David O'Connor
- School of Real Estate and Land Management, Royal Agricultural University, Cirencester, Gloucestershire GL7 6JS, United Kingdom
| | - Dane Lamb
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
18
|
Li X, Huang L, Reible D, Zeng X, Liu S, Fu J, Wang K, Fang H. Inhibition of sediment erosion and phosphorus release by remediation strategy of contaminated sediment backfilling. WATER RESEARCH 2023; 239:120055. [PMID: 37207454 DOI: 10.1016/j.watres.2023.120055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/12/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
The management of sediment-water interfaces, especially bed stability, is essential for controlling accumulated contaminants in the sediment. In this study, the relationship between sediment erosion and phosphorus (P) release under the remediation strategy of contaminated sediment backfilling (CSBT) was explored through a flume experiment, i.e. the dredged sediment was calcined into ceramsite after dewatering and detoxification and then backfilled to the dredged area for sediment capping, thus avoiding the introduction of foreign materials via in-situ remediation and the large-scale land occupation associated with ex-situ remediation. Acoustic Doppler velocimeter (ADV) and optical backscatter sensor (OBS) were used to measure the vertical distributions of flow velocity and sediment concentration in the overlying water, respectively, and diffusive gradients in thin films (DGT) was used to measure the P distribution in the sediment. The results revealed that improving bed stability from CSBT can considerably improve the robustness of sediment-water interface and reduce sediment erosion by more than 70%. The corresponding P release from the contaminated sediment could be inhibited with an inhibition efficiency as high as 80%. CSBT is a potent strategy for managing contaminated sediment. This study provides a theoretical reference for controlling sediment pollution, further supporting river and lake ecological management and environmental restoration.
Collapse
Affiliation(s)
- Xiaocui Li
- State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Huang
- State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China.
| | - Danny Reible
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409-1023, USA
| | - Xiong Zeng
- State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Siwen Liu
- State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Jiahao Fu
- State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Kai Wang
- State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Hongwei Fang
- State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Guo X, Chen C, Wu QT, Wei Z. Field experiments to assess the remediation efficiency of metal-contaminated soil by flushing with ferric chloride followed by applying amendments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161592. [PMID: 36646214 DOI: 10.1016/j.scitotenv.2023.161592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The Cd, Cu, Pb, and Zn removal efficiencies achieved by flushing with FeCl3 were determined in a field experiment using soil contaminated with multiple metals. Soil was first flushed with FeCl3 and then with FeCl3 or a mixture of chelators. Flushed soil was amended with lime and organic matter to revitalize the soil, then the soil was used to grow Zea mays and Brassica juncea. The heavy metal concentrations in groundwater were determined to assess the risks of leaching caused by soil flushing. The Cd, Cu, Pb, and Zn removal efficiencies were 70%, 40%, 33%, and 17%, respectively, when FeCl3 (25 mmol (kg topsoil)-1) was applied. The second washing generally did not significantly decrease the heavy metal contents of the soil but the second FeCl3 washing did decrease the Pb content. Pb leached from topsoil was partly retained by the subsoil 20-40 cm deep. The Zea mays yields were significantly lower but the Brassica juncea yields were significantly higher after the combined soil flushing and amendment treatment than after only the amendment treatment. This indicated that soil flushing only negatively affected growth of deep-rooted Z. mays. The Cd, Cu, Pb, and Zn concentrations in Z. mays grains and the edible parts of B. juncea grown in remediated soil were below the Chinese tolerable limits for contaminants in food. Washing with FeCl3 did not increase groundwater contamination during the study. The results indicated that flushing soil with FeCl3 and subsequent amendments is a technically feasible method for remediating agricultural soil contaminated with Cd.
Collapse
Affiliation(s)
- Xiaofang Guo
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China; School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Cheng Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China
| | - Qi-Tang Wu
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zebin Wei
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
Zhang P, Wei X, Zhang Y, Zhan Q, Bocharnikova E, Matichenkov V. Silicon-mediated alleviation of cadmium toxicity in soil-plant system: historical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48617-48627. [PMID: 36840874 DOI: 10.1007/s11356-023-25983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/13/2023] [Indexed: 04/16/2023]
Abstract
The contamination of crops by Cd is a worldwide problem that needs to be addressed for minimizing risk for human health. Today, numerous investigations have demonstrated that Si plays a role in reducing Cd toxicity and accumulation in cultivated plants. The evolution of scientific understanding - the Cd behavior in soil and in plant is discussed for the first time. Our analysis evidences that the research on Si-Cd interactions in the soil-plant system has quickened only in recent years, although basic interactions between silicic acid and Cd cations in aqueous systems were studied over 40-50 years ago. Today, numerous direct and indirect mechanisms of the Si impact on mobility and translocation of Cd in soil and in plants are reported. More productive studies in this area are those that considered the soil-plant system as a whole. Analysis of the development of the Cd-Si-related ideas suggests the prospects of further studies aimed at finding synergetic action of Si and other substances on Cd behavior in the soil-plant system.
Collapse
Affiliation(s)
- Pengbo Zhang
- Hunan University of Finance and Economics, Changsha, 410205, China
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Xiao Wei
- Hunan University of Finance and Economics, Changsha, 410205, China
| | - Yangzhu Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Qiang Zhan
- Hunan University of Finance and Economics, Changsha, 410205, China
| | - Elena Bocharnikova
- Institute Basic Biological Problems Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Vladimir Matichenkov
- Hunan University of Finance and Economics, Changsha, 410205, China.
- Institute Basic Biological Problems Russian Academy of Sciences, Pushchino, 142290, Russia.
| |
Collapse
|
21
|
Sang T, Kang A, Zhang Y, Li B, Mao H, Kong H. Effect of Different Ameliorants on the Infiltration and Decontamination Capacities of Soil. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2795. [PMID: 37049089 PMCID: PMC10095892 DOI: 10.3390/ma16072795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The expansion of urban construction areas can reduce the infiltration rate of rainwater in permeable land, and a large amount of runoff rainwater cannot penetrate the soil. In extreme rainstorm weather, it is easy to cause serious urban waterlogging problems. To improve the infiltration and decontamination ability of green space soil, two types of inorganic ameliorants (i.e., sand and grain shell) and structural ameliorants (i.e., desulfurization gypsum and polyacrylamide) were utilized as amendments in the soil. The influence of the selected ameliorants on the infiltration and decontamination ability was analyzed through a soil infiltration test, soil pore distribution determination and a soil decontamination test. Three parameters including the soil infiltration rate, pore distribution characteristics and pollutant removal rate were proposed. The results showed that sand, grain shells and desulfurization gypsum (FGD gypsum) all enhanced the infiltration capacity of soil, while PAM decreased the infiltration capacity. Meanwhile, mixed sand and grain shell with the FGD gypsum and polyacrylamide can effectively improve the decontamination capacity of the soil. Comprehensive analysis showed that the better improvement combination is 10% sand + 20% grain hull + 0.5 g/kg FGD gypsum + 0.1 g/kg PAM.
Collapse
Affiliation(s)
- Tianyi Sang
- College of Civil Science and Engineering, Yangzhou University, Yangzhou 225100, China
| | - Aihong Kang
- College of Civil Science and Engineering, Yangzhou University, Yangzhou 225100, China
- Research Center for Basalt Fiber Composite Construction Materials, Yangzhou 225127, China
| | - Yao Zhang
- College of Civil Science and Engineering, Yangzhou University, Yangzhou 225100, China
| | - Bo Li
- College of Civil Science and Engineering, Yangzhou University, Yangzhou 225100, China
- Research Center for Basalt Fiber Composite Construction Materials, Yangzhou 225127, China
| | - Huiwen Mao
- College of Civil Science and Engineering, Yangzhou University, Yangzhou 225100, China
| | - Heyu Kong
- College of Civil Science and Engineering, Yangzhou University, Yangzhou 225100, China
| |
Collapse
|
22
|
Song L, Zhao F, Cui H, Wan J, Li H. Biofuel Ash Aging in Acidic Environment and Its Influence on Cd Immobilization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4635. [PMID: 36901648 PMCID: PMC10002395 DOI: 10.3390/ijerph20054635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Biofuel ash (BFA), which is the ash generated by biomass combustion in a biomass power plant, can be prepared as a heavy metal immobilizer and have a good immobilization effect on Cd in the soil environment of southern China, but the long-term effects of BFA on Cd immobilization remained unclear. Therefore, research about BFA aging and its influence on Cd immobilization was conducted in the paper. BFA was naturally aged into BFA-Natural aging (BFA-N) in the soil environment of southern China, and to simulate BFA-N, BFA was also artificially acid aged into BFA-Acid aging (BFA-A). The result indicated that BFA-A could partially simulate BFA-N in physicochemical properties. The Cd adsorption capacity of BFA reduced after natural aging and the decrease was more obvious in BFA-A according to Qm in Langmuir equation and qe from the pseudo-second-order kinetic model. The adsorption processes of BFA before and after aging were mainly controlled by chemical action rather than physical transport. The immobilization of Cd included adsorption and precipitation, and adsorption was the dominant factor; the precipitation proportion was only 12.3%, 18.8%, and 1.7% of BFA, BFA-N, and BFA-A, respectively. Compared with BFA, both BFA-N and BFA-A showed Ca loss, and BFA-A was more obvious than BFA-N. Ca content level was consistent with Cd adsorption level among BFA, BFA-N, and BFA-A. It could be inferred that the main immobilization mechanism of Cd by BFA before and after aging was consistent and closely related to Ca. However, the adsorption mechanism of electrostatic interaction, ion exchange, and hydroxyl complexation changed to varying degrees in BFA-N and BFA-A.
Collapse
Affiliation(s)
- Le Song
- Hebei and China Geological Survey key Laboratory of Groundwater Remediation, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei GEO University, Shijiazhuang 050031, China
| | - Feng Zhao
- Hebei Geological Environment Monitoring Institute, Shijiazhuang 050021, China
| | - Haiyang Cui
- College of Home Economics, Hebei Normal University, Shijiazhuang 050024, China
- Shijiazhuang City Longquan Lake Garden Affairs Center, Shijiazhuang 050000, China
| | - Jingmin Wan
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei GEO University, Shijiazhuang 050031, China
| | - Hui Li
- Hebei and China Geological Survey key Laboratory of Groundwater Remediation, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei GEO University, Shijiazhuang 050031, China
| |
Collapse
|
23
|
Zveushe OK, Ling Q, Li X, Sajid S, de Dios VR, Nabi F, Han Y, Dong F, Zeng F, Zhou L, Shen S, Zhang W, Li Z. Reduction of Cd Uptake in Rice ( Oryza sativa) Grain Using Different Field Management Practices in Alkaline Soils. Foods 2023; 12:314. [PMID: 36673405 PMCID: PMC9858237 DOI: 10.3390/foods12020314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Cadmium contamination and toxicity on plants and human health is a major problem in China. Safe rice production in Cd-contaminated alkaline soils, with acceptably low Cd levels and high yields, remains an important research challenge. To achieve this, a small-scale field experiment with seven different soil amendment materials was conducted to test their effects performance. Two best-performing materials were selected for the large-scale field experiment. Combinations of humic acid, foliar, and/or soil silicon fertilization and deep or shallow plowing were designed. It was found that the combination, including humic acid, soil and foliar silicate fertilization, and shallow plowing (5-10 cm), produced the most desirable results (the lowest soil bioavailable Cd, the lowest grain Cd concentrations, and the highest grain yield). Rice farmers are therefore recommended to implement this combination to attain high grain yield with low Cd concentrations in alkaline soils.
Collapse
Affiliation(s)
- Obey Kudakwashe Zveushe
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qin Ling
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xing Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Sumbal Sajid
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Department of Crop and Forest Sciences, University of Lleida, 25003 Lleida, Spain
- Joint Research Unit CTFC-AGROTECNIO, Universitat de Lleida, 25003 Lleida, Spain
| | - Farhan Nabi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ying Han
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Faqin Dong
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
| | - Fang Zeng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Zhou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Songrong Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wei Zhang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Center of Analysis and Testing, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhi Li
- Chengdu Defei Environmental Engineering Co., Ltd., Chengdu 610041, China
| |
Collapse
|
24
|
Xu T, Xi J, Ke J, Wang Y, Chen X, Zhang Z, Lin Y. Deciphering soil amendments and actinomycetes for remediation of cadmium (Cd) contaminated farmland. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114388. [PMID: 36508810 DOI: 10.1016/j.ecoenv.2022.114388] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/28/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Soil heavy metal pollution is one of the most serious environmental problems in China, especially cadmium (Cd), which has the most extensive contaminated soil coverage. Therefore, more economical and efficient remediation methods and measures are needed to control soil Cd contamination. In this study, different amendments (biochar (B), organic fertilizer (F), lime (L)) and actinomycetes (A) inoculants were applied to Cd contaminated farmland to explore their effects on wheat growth. Compared with Control, all treatments except A treatment were able to significantly increase the underground parts dry mass of wheat, with the highest increase of 57.19 %. The results showed that the B treatment significantly increased the plant height of wheat by 3.45 %. All treatments increased wheat SOD activity and chlorophyll content and reduced the MDA, which contributes to wheat stress resistance under Cd contamination. F, L and AF treatments can significantly reduce the Cd content in wheat above- and underground parts by up to 56.39 %. Soil amendments can modify the physical and chemical properties of the soil, which in turn affects the absorption of Cd by wheat. Moreover, the addition of soil amendments significantly affects the composition and structure of the rhizospheric soil bacterial community at the wheat jointing stage. The application of organic fertilizer increases the richness and diversity of the bacterial community, while lime makes it significantly decreases it. T-test and microbiome co-occurrence networks show that actinomycetes could not only effectively colonize in local soil, but also effectively enhance the complexity and stability of the rhizosphere microbial community. Considering the practical impact of different treatments on wheat, soil microorganisms, economic benefits and restoration of soil Cd contamination, the application of organic fertilizer and actinomycetes in Cd contaminated soil is a more ideal remediation strategy. This conclusion can be further verified by studying larger repair regions and longer consecutive repair cycles to gain insight into the repair mechanism.
Collapse
Affiliation(s)
- Tengqi Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Jiao Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Jihong Ke
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yufan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Xiaotian Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
25
|
Jiang Q, He Y, Wu Y, Dian B, Zhang J, Li T, Jiang M. Solidification/stabilization of soil heavy metals by alkaline industrial wastes: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120094. [PMID: 36067972 DOI: 10.1016/j.envpol.2022.120094] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Solidification/stabilization technology is one of the most desirable technologies for the remediation of heavy metal contaminated soils due to its convenience and effectiveness. The annual production of alkaline industrial wastes in China is in the hundreds of millions of tons. Alkaline industrial wastes have the potential to replace conventional stabilizers because of their cost effectiveness and performance in stabilizing heavy metals in soils. This paper systematically summarizes the use of four alkaline industrial wastes (soda residue, steel slag, carbide slag, and red mud) for the solidification/stabilization of heavy metal contaminated soils and provides a comprehensive analysis of the three mechanisms of action (hydration, precipitation, and adsorption) and factors that influence the process. In addition, the environmental risks associated with the use of alkaline industrial wastes are highlighted. We found that soda residues, steel slag and carbide slag are appropriate for solidification/stabilization of Pb, Cd, Zn and Cu, while red mud is a potential passivation agent for the stabilization of As in soils. However, implementation of remediation methods using alkaline industrial wastes has been limited because the long-term effectiveness, synergistic effects, and usage in soils containing multiple heavy metals have not been thoroughly studied. This review provides the latest knowledge on the mechanisms, risks, and challenges of using alkaline industrial wastes for solidification/stabilization of heavy metal contaminated soils.
Collapse
Affiliation(s)
- Qi Jiang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Yonglin Wu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Bo Dian
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Jilai Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Tianguo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Ming Jiang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
26
|
Trace Element Contents in Petrol-Contaminated Soil Following the Application of Compost and Mineral Materials. MATERIALS 2022; 15:ma15155233. [PMID: 35955168 PMCID: PMC9369601 DOI: 10.3390/ma15155233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022]
Abstract
The global use of petroleum hydrocarbons as raw materials and an energy source in industry results in serious environmental, health, and ecological problems. Consequently, there is growing interest in the development of technologies for the rehabilitation of contaminated areas. This study was undertaken in order to determine the effect of different phytostabilising materials (compost, bentonite, and CaO) on the trace element content in soil contaminated with unleaded petroleum 95 (0, 2.5, 5, and 10 cm3 kg−1 of soil). The doses of petroleum applied to the soil were based on the previously conducted preliminary experiment. The highest petroleum dose (10 cm3 kg−1 of soil) significantly reduced the chromium, zinc, and cobalt contents in the soil. Petroleum increased the cadmium, lead, nickel, and copper contents in the soil. The materials used for phytostabilisation (compost, bentonite, calcium oxide) had a significant effect on the trace element content in the soil. The application of mineral materials (bentonite and calcium oxide) was more effective than the application of compost, compared to the control series (without soil amendments) as they reduced the contents of cadmium, chromium, nickel, and cobalt in the soil to the greatest extent. The reduction effect of bentonite and calcium oxide on the content of these trace elements in the soil was stronger than compost.
Collapse
|
27
|
Bai X, Lin J, Zhang Z, Zhan Y. Immobilization of lead, copper, cadmium, nickel, and zinc in sediment by red mud: adsorption characteristics, mechanism, and effect of dosage on immobilization efficiency. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51793-51814. [PMID: 35254614 DOI: 10.1007/s11356-022-19506-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The objective of this work was to determine the effect of dosage on the immobilization of lead (Pb), copper (Cu), cadmium (Cd), nickel (Ni), and zinc (Zn) in sediment by red mud (RM). To achieve this aim, the adsorption characteristics and mechanism of Pb, Cu, Cd, Ni, and Zn from aqueous solution on RM were studied at first, and then the influence of the RM dosage on the fractionation and leaching potential of Pb, Cu, Cd, Ni, and Zn in sediment was investigated. The results showed that RM possessed high adsorption capacities for Pb(II), Cu(II), Cd(II), Ni(II), and Zn(II) in aqueous solution. The maximum monolayer Pb(II), Cu(II), Cd(II), Ni(II), and Zn(II) adsorption capacities for RM derived from the Langmuir isotherm model were found to be 296, 39.2, 70.2, 46.0, and 50.7 mg/g, respectively. The addition of RM into sediment could effectively reduce the toxicity characteristic leaching procedure (TCLP)-leachable concentrations of Pb, Cu, Cd, Ni, and Zn in the sediment. The added RM could effectively immobilize the mobile (exchangeable, reducible, and oxidizable fractions) Pb in sediment by the conversion of the exchangeable and reducible fractions into the residual fraction, and it could effectively immobilize the mobile Cu, Cd, Ni, and Zn in sediment by the conversion of the exchangeable fraction into the residual fraction. The quantities of mobile Pb, Cu, Cd, and Ni immobilized by RM had a good linear relationship with the added RM. The above results suggest that RM is a promising amendment for the immobilization of mobile Pb, Cu, Cd, Ni, and Zn in sediment, and the linear relationship between the RM dosage and the quantities of immobilized Pb, Cu, Cd, and Ni by RM can be employed to determine the RM dosage required for the immobilization of mobile Pb, Cu, Cd, and Ni in sediment.
Collapse
Affiliation(s)
- Xianshang Bai
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, People's Republic of China
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, People's Republic of China.
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, People's Republic of China.
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, People's Republic of China
| |
Collapse
|
28
|
Estimation of Copper and Cadmium Bioavailability in Contaminated Soil Remediated by Different Plants and Micron Hydroxyapatite. Bioinorg Chem Appl 2022; 2022:3565550. [PMID: 35706847 PMCID: PMC9192303 DOI: 10.1155/2022/3565550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
A three-year in situ remediation experiment was carried out to understand the effect of combined phytoremediation with chemical materials on the bioavailability of heavy metals in soil. Indigenous weed (Setaria pumila), energy plant (Pennisetum sp.), cadmium (Cd)-hyperaccumulator (Sedum plumbizincicola), and copper (Cu)-tolerant plant (Elsholtzia splendens) were used as the phytoremediation plants aided by micron hydroxyapatite (1% wt). The bioavailability of Cu and Cd in soil was evaluated during the three years. The results showed that the four plants combined with micron hydroxyapatite significantly increased soil pH and soil organic carbon (SOC), and decreased Cu and Cd fractions extracted by CaCl2 and diffusive gradients in thin films (DGT) than the untreated soils, respectively. Because of the large biomass, the accumulation of Cu and Cd is the largest in Pennisetum sp. followed by Elsholtzia splendens, Sedum plumbizincicola, and Setaria pumila. The bioavailability of Cu and Cd is significantly negatively correlated with pH, soil organic carbon, available phosphorus, and available potassium. Moreover, the correlation is mainly related to the addition of micron hydroxyapatite. The accumulation of Cu and Cd is the combined action of the soil bioavailability of Cu, Cd, and biomass. Our results suggest that Pennisetum sp. can act as an appropriate remediation plant for phytoremediation aided by amendments.
Collapse
|
29
|
Gautam M, Pandey B, Agrawal SB, Agrawal M. Stabilization of metals in sludge-amended soil using red mud and its effects on yield and oil quality of Brassica juncea cultivar Kranti. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1431-1450. [PMID: 34820730 DOI: 10.1007/s10653-021-01150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Prolonged application of sewage-sludge may cause excessive accumulation of metal(oid)s in soil, leading to phytotoxic effects. Spread of contaminants in soil can probably be hindered by using an effective metal(oid) stabilizer. Pot experiment in open field conditions was conducted for five months to evaluate the metal(oid) (Al, Cu, Zn, Cd and Cr) stabilization potential of red mud (RM) in sludge-amended soil and its effects on growth, yield, oil quality parameters and metal(oid) accumulations in Brassica juncea cultivar Kranti. The test plant was grown at different RM concentrations (0, 5, 10 and 15% w/w) in sludge-amended soil (soil/sludge: 2:1 w/w). As the total and phytoavailable metal(oid) concentrations in sludge were high, its application increased their concentrations in soil compared to the control (no RM and sludge). Increasing RM concentrations in sludge-amended soil effectively stabilized Cd followed by Cr, Cu, Zn and Al, leading to their reduced contents in plants coupled with enhanced growth performance and yield. Maximum plant (root and shoot) biomass (14.9%) and seed yield (40.4%) were found in 10% RM treatment, whereas oil content showed substantial increase with increasing RM treatments in sludge-amended soil. Mustard oil showed low rancidification, high long-chain fatty acids, saturated and polyunsaturated (ω-3 and ω-6) fatty acids within FAO ranges for edible oils under varying RM treatments compared to sludge-amended soil. Furthermore, high oleic and low erucic acid contents in mustard oil indicated a better oil quality under different RM treatments. Metal(oid) contents in seeds under different red mud treatments were within FAO/WHO limits for consumption. Thus, RM applications preferably 5 and 10% (w/w) in sludge-amended soil might be effective in stabilization of metal(oid)s using B. juncea cultivar Kranti coupled with better yield, improved oil quality and metal(oid)s within limits for human consumption.
Collapse
Affiliation(s)
- Meenu Gautam
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Bhanu Pandey
- Natural Resources and Environmental Management, CSIR-Central Institute of Mining and Fuel Research, Barware Road, Dhanbad, Jharkhand, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
30
|
Synergistically Using Bauxite Residue (Red Mud) and Other Solid Wastes to Manufacture Eco-Friendly Cementitious Materials. BUILDINGS 2022. [DOI: 10.3390/buildings12020117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bauxite residue (red mud) is a solid waste resulting from the aluminum production industry. Disposal or landfill of the red mud (RM) poses irreversible environmental problems; therefore, it is compelling to find practical solutions that can mitigate the negative environmental problems of RM stacking storage. In the past decades, although the recycling of RM has achieved significant progress, challenges remain from both academic and practical perspectives. Previous studies have demonstrated that all the aluminosilicate-based solid wastes have pozzolanic activity, and thus can be considered as resources to manufacture eco-friendly cementitious materials to relieve the carbon emission burden. Therefore, combining RM and other solid wastes to manufacture green cementitious materials has become a promising route to alleviate the burden of environmental pollutions. However, challenges from the fluctuation of the chemical compositions, inert activity, heavy metals stabilization, efflorescence, the side effects of the second pollutions from solid wastes, the hydration process, and mutual interaction mechanisms between the various types of solid wastes are still unclear, especially for multi-components RM-based cementitious materials. This review article summarizes the state of the art of mechanical properties, microstructure characterization methodologies, and hydration process and mechanisms of RM along with other solid wastes. The main challenges and future research trends are discussed. This article attempts to summarize the details of the RM recycling technologies that are beneficial to readers in understanding the background knowledge and research methodologies of eco-friendly cementitious materials.
Collapse
|
31
|
Yang W, Wang S, Zhou H, Zeng M, Zhang J, Huang F, Shan S, Guo Z, Yi H, Sun Z, Gu J, Liao B. Combined amendment reduces soil Cd availability and rice Cd accumulation in three consecutive rice planting seasons. J Environ Sci (China) 2022; 111:141-152. [PMID: 34949344 DOI: 10.1016/j.jes.2021.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 06/14/2023]
Abstract
The scientific application of stabilized materials has been considered an effective method for the in situ remediation of Cd-contaminated soil. This study aimed to investigate the persistence of the effect of a combined amendment of limestone and sepiolite (LS) on soil Cd availability and accumulation in rice grown in a mildly Cd-contaminated paddy field (0.45 mg/kg of Cd) over three consecutive rice seasons. 1125-4500 kg/ha of LS was applied to the soil before the first rice planting season and 562.5-2250 kg/ha of LS was supplemented before the third rice planting season. The application of LS (1125-4500 kg/ha) increased the soil pH by 0.44-1.09, 0.18-0.53, and 0.42-0.68 in the first, second, and third season, respectively, and decreased the soil acid-extractable Cd content by 18.2-36.4%, 17.7-33.5%, and 9.6-17.6%. LS application significantly decreased the Cd contents in the rice tissues. The application of 4500 kg/ha of LS decreased the Cd content in brown rice to below the National Food Limit Standard of 0.2 mg/kg (GB 2762-2017) in the three consecutive rice seasons. However, the effect of LS on the soil-rice system was significantly weakened in the third season. The supplementary application of 562.5-2250 kg/ha of LS further decreased the Cd content in brown rice by 26.1-56.5% and decreased the health risk index by 23.7-43.8%. Therefore, it was recommended to apply 4500 kg/ha of LS in the first season and to supplement 2250 kg/ha of LS in the third season to effectively guarantee the clean production of rice in three consecutive rice seasons.
Collapse
Affiliation(s)
- Wenjun Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Shilong Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China.
| | - Min Zeng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China
| | - Jingyi Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fang Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shiping Shan
- Hunan Institute of Microbiology, Changsha 410009, China
| | - Zhaohui Guo
- Hunan Institute of Microbiology, Changsha 410009, China
| | - Hongwei Yi
- Hunan Shuanghong Agricultural Ecological Engineering Co., Ltd., Changsha 410205, China
| | - Zhiguang Sun
- Hunan Shuanghong Agricultural Ecological Engineering Co., Ltd., Changsha 410205, China
| | - Jiaofeng Gu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China
| | - Bohan Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China
| |
Collapse
|
32
|
Drenning P, Chowdhury S, Volchko Y, Rosén L, Andersson-Sköld Y, Norrman J. A risk management framework for Gentle Remediation Options (GRO). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149880. [PMID: 34525755 DOI: 10.1016/j.scitotenv.2021.149880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Gentle Remediation Options (GRO) are remediation measures involving plants, fungi, bacteria, and soil amendments that can be applied to manage risks at contaminated sites. Several studies and decision-support tools promote the wider range of benefits provided by GRO, but there is still skepticism regarding GRO implementation. Key issues that need to be better communicated are the various risk mitigation mechanisms, the required risk reduction for an envisioned land use, and the time perspective associated with the risk mitigation mechanisms. To increase the viability and acceptance of GRO, the phytomanagement approach implies the combination of GRO with beneficial green land use, gradually reducing risks and restoring ecosystem services. To strengthen the decision basis for GRO implementation in practice, this paper proposes a framework for risk management and communication of GRO applications to support phytomanagement strategies at contaminated sites. The mapping of the risk mitigation mechanisms is done by an extensive literature review and the Swedish national soil guideline value model is used to derive the most relevant human health exposure pathways and ecological risks for generic green land use scenarios. Results indicate that most of the expected risk mitigation mechanisms are supported by literature, but that knowledge gaps still exist. The framework is demonstrated to support the identification of GRO options for the case study site given two envisioned land uses: biofuel park and allotment garden. A more easily understandable risk management framework, as proposed here, is expected to act as a communication tool to educate decision-makers, regulatory bodies and other stakeholders for better understanding of risk mitigation mechanisms and preliminary timeframes of various GRO, particularly in the early stages of a brownfield redevelopment project.
Collapse
Affiliation(s)
- Paul Drenning
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Water & Environment West, COWI AB, 414 58 Gothenburg, Sweden.
| | - Shaswati Chowdhury
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Yevheniya Volchko
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Lars Rosén
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Yvonne Andersson-Sköld
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; National Road and Transport Research Institute, VTI, 581 95 Linköping, Sweden
| | - Jenny Norrman
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
33
|
Debnath A, Singh PK, Chandra Sharma Y. Metallic contamination of global river sediments and latest developments for their remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113378. [PMID: 34435569 DOI: 10.1016/j.jenvman.2021.113378] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
This review article represents the comparative study of heavy metal concentration in water and sediments of 43 important global rivers. The review is a solitary effort in the area of heavy metal contamination of river-sediments during last ten years. The interpretation of heavy metal contamination in sediments has been verified with different indices, factors, codes and reference guidelines, which is based on geochemical data linked to background value of metals. It is observed that health hazards arise due to dynamics of movement of metals between water and sediments, which is primarily influenced by several factors such as physical, chemical, biological, hydrological and environmental. Also, the reason behind accumulation and assimilation of heavy metals on river water system is explained with appropriate mechanisms. Several factors e.g. pH, ORP, organic matter etc. are mainly involved in the distribution, accumulation and assimilation of metals in the sediment phase to water phase. Remediation technologies such as in-situ and ex-situ have been discussed for the removal of heavy metals from contaminated sediments. We have also compared the performance efficiencies of the technologies adopted by different researchers during the period 2003 to 2019 for the removal of metal bound sediments. Many researchers have preferred in-situ over ex-situ remediation due to low cost and time saving remediation effects. In this work we have also incorporated the safety measures and strategies which can prevent the metal accumulation in sediments of river system.
Collapse
Affiliation(s)
- Abhijit Debnath
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Prabhat Kumar Singh
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | | |
Collapse
|
34
|
Kaninga B, Lark RM, Chishala BH, Maseka KK, Sakala GM, Young SD, Tye A, Hamilton EM, Watts MJ. Crop uptake of heavy metals in response to the environment and agronomic practices on land near mine tailings in the Zambian Copperbelt Province. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3699-3713. [PMID: 33751307 DOI: 10.1007/s10653-021-00849-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
A field experiment was undertaken on farmers' fields adjacent to a large mine tailings dam in the Zambian mining town of Kitwe. Experimental plots were located close to the tailings (≤ 200 m) or further away (300-400 m) within the demarcated land farmed by the same community. This study evaluated the uptake of Cd, Cu, Ni, Pb and Zn by pumpkin leaves and maize grown in soil amended with lime and manure applied at agronomic rates, and the subsequent risk of dietary exposure to the local community, typical of many similar situations across the Zambian Copperbelt. Treatments, combinations of lime and manure (present or absent), were applied to subplots selected independently and randomly within each main plot, which represented variable geochemistry across this study site as a result of windblown/rain-driven dust from the tailings. Total elemental concentrations in crops were determined by ICP-MS following microwave-assisted acid digestion. Concentrations of Cu and Pb in pumpkin leaves were above the prescribed FAO/WHO safe limits by 60-205% and by 33-133%, respectively, while all five metals were below the limit for maize grain. Concentration of metals in maize grain was not affected by the amendments. However, lime at typical agronomic application rates significantly reduced concentrations of Cd, Cu, Pb and Zn in the pumpkin leaves by 40%, 33%, 19% and 10%, respectively, and for manure Cd reduced by 16%, while Zn increased by 35%. The uptake of metals by crops in locations further from the tailings was greater than closer to the tailings because of greater retention of metals in the soil at higher soil pH closer to the tailings. Crops in season 2 had greater concentrations of Cu, Ni, Pb and Zn than in season 1 due to diminished lime applied only in season 1, in line with common applications on a biannual basis. Maize as the staple crop is safe to grow in this area while pumpkin leaves as a readily available commonly consumed leafy vegetable may present a hazard due to accumulation of Cu and Pb above recommended safe limits.
Collapse
Affiliation(s)
- Belinda Kaninga
- Zambia Agriculture Research Institute, Mount Makulu Central Research Station, P/B 7, Chilanga, Lusaka, Zambia.
- School of Agricultural Sciences, University of Zambia, Great East Road Campus, P.O Box 32379, Lusaka, Zambia.
| | - R Murray Lark
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Benson H Chishala
- School of Agricultural Sciences, University of Zambia, Great East Road Campus, P.O Box 32379, Lusaka, Zambia
| | - Kakoma K Maseka
- Copperbelt University, Jambo Drive, Riverside, P.O. Box 21692, Kitwe, Zambia
| | - Godfrey M Sakala
- Zambia Agriculture Research Institute, Mount Makulu Central Research Station, P/B 7, Chilanga, Lusaka, Zambia
| | - Scott D Young
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Andrew Tye
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Nottingham, NG12 5GG, UK
| | - Elliott M Hamilton
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Nottingham, NG12 5GG, UK
| | - Michael J Watts
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Nottingham, NG12 5GG, UK
| |
Collapse
|
35
|
Li S, Zhang Y, Feng R, Yu H, Pan J, Bian J. Environmental Safety Analysis of Red Mud-Based Cemented Backfill on Groundwater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18158094. [PMID: 34360386 PMCID: PMC8345525 DOI: 10.3390/ijerph18158094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022]
Abstract
As one of the main industrial solid wastes, there are a large number of free alkaloids, chemically bound alkaloids, fluoride, and heavy metal ions in Bayer process red mud (BRM), which are difficult to remove and easily pollute groundwater as a result of open storage. In order to realize the large-scale industrial application of BRM as a backfilling aggregate for underground mining and simultaneously avoid polluting groundwater, the material characteristics of BRM were analyzed through physical, mechanical, and chemical composition tests. The optimum cement–sand ratio and solid mass concentration of the backfilling were obtained based on several mixture proportion tests. According to the results of bleeding, soaking, and toxic leaching experiments, the fuzzy comprehensive evaluation method was used to evaluate the environmental impact of BRM on groundwater. The results show that chemically bound alkaloids that remained in BRM reacted with Ca2+ in PO 42.5 cement, slowed down the solidification speed, and reduced the early strength of red mud-based cemented backfill (RMCB). The hydration products in RMCB, such as AFT and C-S-H gel, had significant encapsulation, solidification, and precipitation inhibition effects on contaminants, which could reduce the contents of inorganic contaminants in soaking water by 26.8% to 93.8% and the leaching of toxic heavy metal ions by 57.1% to 73.3%. As shown by the results of the fuzzy comprehensive evaluation, the degree of pollution of the RMCB in bleeding water belonged to a medium grade Ⅲ, while that in the soaking water belonged to a low grade II. The bleeding water was diluted by 50–100 times to reach grade I after flowing into the water sump and could be totally recycled for drilling and backfilling, thus causing negligible effects on the groundwater environment.
Collapse
|
36
|
Berta KM, Kurdi R, Lukács P, Penk M, Somogyi V. Red mud with other waste materials as artificial soil substitute and its effect on Sinapis alba. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112311. [PMID: 33752048 DOI: 10.1016/j.jenvman.2021.112311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Despite efforts to utilise bauxite residue, the amount of red mud stored in reservoirs is increasing. This paper aims to evaluate the potential of red mud and other sludge waste types as a soil substitute by monitoring plant development. Pot experiments were carried out testing two types of mixtures: dredging sludge from Lake Balaton mixed with garden soil and the sewage sludge and soil blend. These were then treated with red mud (15 and 30% w/w). The plants were under-, while the roots were more developed in the sewage sludge mix than the dredging sludge blend and the control soil. In the sewage amendment, the phosphorous content increased while the calcium content was lower than in the other soil types and the optimum. The metals uptake of the plants was a factor of the red mud quantity. Lead, nickel, titanium and silicon had elevated concentrations parallel to higher red mud content, but only the nickel exceeded the threshold of the Hungarian legislation. Silicon and titanium were beneficial for plant growth, compensating for the potentially toxic effects of lead and nickel. Results suggest that the red mud in a mixture with either sewage sludge or dredging sludge can act as catalysts for the growth rate of test plants, allowing their utilisation as secondary raw materials.
Collapse
Affiliation(s)
- Kinga M Berta
- University of Pannonia, Sustainable Solutions Research Laboratory, Veszprém, Hungary.
| | - Róbert Kurdi
- University of Pannonia, Sustainable Solutions Research Laboratory, Veszprém, Hungary.
| | - Pál Lukács
- University of Pannonia, Centre of Competence for Sustainability and Circular Economy, Veszprém, Hungary.
| | | | - Viola Somogyi
- University of Pannonia, Sustainable Solutions Research Laboratory, Veszprém, Hungary.
| |
Collapse
|
37
|
Zhao Y, Gao L, Zha F, Chen X, Zhou X, Wang X, Chen Y, Pan X. Research on heavy metal level and co-occurrence network in typical ecological fragile area. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:531-540. [PMID: 34150256 PMCID: PMC8172680 DOI: 10.1007/s40201-021-00625-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 05/13/2023]
Abstract
Due to the special sensitivity of typical ecologically fragile areas, a series of human life, mining, and other activities have a greater impact on the environment. In this study, three coal mines in Ordos City on the Loess Plateau were selected as the study area, and the pollution levels of heavy metals in the area were studied by measuring As, Hg, Cr, Cd, Cu, Ni, and Pb in the soil of 131 sampling points. Combined with the concept of "co-occurrence network" in biology, the level of heavy metals in soil was studied using geostatistics and remote sensing databases. The results showed that the concentrations of Hg, Cr, Ni, Cu, and Pb in more than half of the sampling points were higher than the local environmental background value, but did not exceed the risk control value specified by China, indicating that human factors have a greater influence, while Cd and As elements are mainly affected Soil parent material and human factors influence. Heavy metal elements have nothing to do with clay and silt but have an obvious correlation with gravel. Cd, Pb, As and Ni, Cd, Cr are all positively correlated, and different heavy metals are in space The distribution also reflects the autocorrelation, mainly concentrated in the northeast of the TS mining area and the middle of the PS mining area.
Collapse
Affiliation(s)
- Yiwei Zhao
- Department of Environmental Science and Engineering, School of Earth and Environment, Anhui University of Science and Technology, 232001 Huainan, People’s Republic of China
| | - Liangmin Gao
- Department of Environmental Science and Engineering, School of Earth and Environment, Anhui University of Science and Technology, 232001 Huainan, People’s Republic of China
| | - Fugeng Zha
- Department of Environmental Science and Engineering, School of Earth and Environment, Anhui University of Science and Technology, 232001 Huainan, People’s Republic of China
| | - Xiaoqing Chen
- Department of Environmental Science and Engineering, School of Earth and Environment, Anhui University of Science and Technology, 232001 Huainan, People’s Republic of China
| | - Xiaofang Zhou
- Department of Environmental Science and Engineering, School of Earth and Environment, Anhui University of Science and Technology, 232001 Huainan, People’s Republic of China
| | - Xinfu Wang
- Department of Environmental Science and Engineering, School of Earth and Environment, Anhui University of Science and Technology, 232001 Huainan, People’s Republic of China
| | - Yang Chen
- Department of Environmental Science and Engineering, School of Earth and Environment, Anhui University of Science and Technology, 232001 Huainan, People’s Republic of China
| | - Xiangwei Pan
- Department of Environmental Science and Engineering, School of Earth and Environment, Anhui University of Science and Technology, 232001 Huainan, People’s Republic of China
| |
Collapse
|
38
|
Miao C, Yao SS, Liu SJ, Zhang K. Effect of water-soluble thiourea formaldehyde (WTF) on soil contaminated with high copper (Ⅱ) concentration. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124929. [PMID: 33421878 DOI: 10.1016/j.jhazmat.2020.124929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/02/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
It is very important to seek a heavy metal soil stabilization/solidification (S/S) agent that has less risk of secondary release and has less impact on the soil. This study explored the repair effect of a new resin repair agent water-soluble thiourea-formaldehyde (WTF), and its stability under indigenous biodegradation and compared the repair effect with sodium sulfide (Na2S) and hydroxyapatite (HAP). Diethylene triamine pentaacetic acid leaching experiments show that WTF can effectively solidify/stabilize 97.9-84.7% of Cu. At the same time, heavy metal speciation analysis experiments show that WTF does indeed convert the exchangeable Cu in the soil into a non-exchangeable form. Research on soil organic matter, biological carbon and enzyme activity after remediation shows that WTF has a more positive effect on soil function, compared with HAP and Na2S. Experiments using indigenous microorganisms to decompose the precipitation formed by WTF and Cu show that under the condition of less impact on soil microorganisms, the risk of secondary release of heavy metals caused by soil microorganisms after WTF remediation is less. These findings provide valuable experience for understanding the role of resin structure in preventing the secondary release of heavy metals and restoring soil function.
Collapse
Affiliation(s)
- Chen Miao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shan-Shan Yao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - She-Jiang Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Kai Zhang
- Tianjin TEDA Greening Group Co., Ltd., China
| |
Collapse
|
39
|
Wang M, Liu X. Applications of red mud as an environmental remediation material: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124420. [PMID: 33191032 DOI: 10.1016/j.jhazmat.2020.124420] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Red mud is an alkaline by-product produced by alumina plants. The accumulation of red mud is becoming an increasingly serious problem with the growth of the aluminum industry. Various waste treatment methods utilizing red mud as an environmental remediation material have been developed. Red mud environmental remediation materials (RM-ERMs) are environmental remediation materials prepared by activating red mud, synergistically using red mud and other ingredients, or by extracting effective components from red mud. There are three general categories of use for RM-ERMs: for waste water purification, waste gas purification and soil remediation. As well as providing an opportunity to improve the environment through purification technologies, the highly alkaline red mud is consumed in the production of RM-ERMs. The use of RM-ERMs has been shown to be a promising strategy for the simultaneous treatment of various wastes. In this paper, the developregeneration characteristics of various red mud granularent status of RM-ERMs is described, the physical and chemical properties of red mud are introduced, and the active mechanism of RM-ERMs on target pollutants in waste water, waste gas and soil is summarized. Moreover, a discussion on the current existing problems of RM-ERMs provides important tips and suggestions for future research on RM-ERMs.
Collapse
Affiliation(s)
- Mengfan Wang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoming Liu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
40
|
Soil microbiome manipulation triggers direct and possible indirect suppression against Ralstonia solanacearum and Fusarium oxysporum. NPJ Biofilms Microbiomes 2021; 7:33. [PMID: 33846334 PMCID: PMC8041757 DOI: 10.1038/s41522-021-00204-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/08/2021] [Indexed: 02/01/2023] Open
Abstract
Soil microbiome manipulation can potentially reduce the use of pesticides by improving the ability of soils to resist or recover from pathogen infestation, thus generating natural suppressiveness. We simulated disturbance through soil fumigation and investigated how the subsequent application of bio-organic and organic amendments reshapes the taxonomic and functional potential of the soil microbiome to suppress the pathogens Ralstonia solanacearum and Fusarium oxysporum in tomato monocultures. The use of organic amendment alone generated smaller shifts in bacterial and fungal community composition and no suppressiveness. Fumigation directly decreased F. oxysporum and induced drastic changes in the soil microbiome. This was further converted from a disease conducive to a suppressive soil microbiome due to the application of organic amendment, which affected the way the bacterial and fungal communities were reassembled. These direct and possibly indirect effects resulted in a highly efficient disease control rate, providing a promising strategy for the control of the diseases caused by multiple pathogens.
Collapse
|
41
|
Lebrun M, Nandillon R, Miard F, Le Forestier L, Morabito D, Bourgerie S. Effects of biochar, ochre and manure amendments associated with a metallicolous ecotype of Agrostis capillaris on As and Pb stabilization of a former mine technosol. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1491-1505. [PMID: 32424789 DOI: 10.1007/s10653-020-00592-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Metal(loid) soil pollution is a major environmental and health issue, requiring these areas to be remediated, for example through phytoremediation processes. In order to allow proper plant establishment and growth, amendments must be applied to highly contaminated and poorly fertile soils. Amendments are diverse, but many studies have shown the beneficial effects of biochar, manure and ochre, although studies on their combined use are scarce. Moreover, no studies have evaluated the effect of these combined amendments on endemic plant growth. Endemic plants growing on contaminated soils showed higher tolerance toward pollutants compared to plants coming from unpolluted areas. Therefore, the aim of the present study was to evaluate both the effect of amendments (single or combined) on the physicochemical properties of a former mining technosol, and the growth and metal(loid) accumulation ability of endemic Agrostis capillaris plants. This study revealed an improvement in the soil physicochemical properties following the application of amendments, with combined amendments showing better results than the application of just one. On top of this, Agrostis plants performed better on the amended technosols, especially the ones receiving manure, due to its high nutrient content. Finally, based on soil properties, plant growth and the metal(loid) accumulation profile, the use of biochar combined with manure seems to be the most appropriate treatment. Indeed, this treatment showed an improvement in both soil fertility and plant growth. Moreover, Agrostis plants grown in these conditions were among those showing higher root metal(loid) concentration associated with a lower translocation toward aerial parts.
Collapse
Affiliation(s)
- Manhattan Lebrun
- LBLGC INRA USC1328, Université d'Orléans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090, Pesche, Italy
| | - Romain Nandillon
- LBLGC INRA USC1328, Université d'Orléans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
- IDDEA, Environmental Consulting Engineering, 45160, Olivet, France
- ISTO, UMR 7327, BRGM, BP 36009, 45060, Orléans, France
| | - Florie Miard
- LBLGC INRA USC1328, Université d'Orléans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Lydie Le Forestier
- CNRS, BRGM, ISTO, UMR 7327, Université d'Orléans, 45071, Orléans, France
| | - Domenico Morabito
- LBLGC INRA USC1328, Université d'Orléans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Sylvain Bourgerie
- LBLGC INRA USC1328, Université d'Orléans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France.
| |
Collapse
|
42
|
Li H, Liu Y, Luo Z, Zhou Y, Hou D, Mao Q, Zhi D, Zhang J, Yang Y, Luo L. Effect of RM-based-passivator for the remediation of two kinds of Cd polluted paddy soils and mechanism of Cd(II) adsorption. ENVIRONMENTAL TECHNOLOGY 2021; 42:1623-1633. [PMID: 31580199 DOI: 10.1080/09593330.2019.1675772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the effects of red mud-based-passivator (RM-based-passivator) on rice yield, cadmium (Cd) in brown rice, pH and available Cd in Cd-polluted soil by pot experiments, and to explore the adsorption mechanism of the passivator by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis. The results showed that this passivator obviously improved the pH, reduced the available Cd in soil and the Cd content in brown rice in Changsha Cd polluted soil (CS soil), while had little effect on Hengyang Cd polluted soil (HY soil). Compared with the control, the soil pH increased in the range from 0.31 to 1.37, the available Cd in soil decreased in the range from 13.25% to 52.34%, and the total Cd in brown rice decreased in the range from 46.44% to 84.98% in CS soil. Considering the impacts of RM-based-passivator on the growth of rice, the Cd content in brown rice, and the pH and available Cd in soil, 0.10-0.30% (w/w) of the passivator is recommended to apply in CS soil but not in HY soil. Based on the analysis of SEM, EDX, FTIR and XRD, the mechanism of Cd(II) adsorption by RM-based-passivator included physical adsorption, surface complexation and ion exchange. The present results indicated that the appropriate addition of RM-based-passivator could be an effective strategy for the remediation of acidic Cd-polluted soils.
Collapse
Affiliation(s)
- Hui Li
- College of Resources and Environment, Hunan Agriculture University, Changsha, People's Republic of China
- Hunan Modern Environment Technology Co., LTD, Changsha, People's Republic of China
| | - Yan Liu
- Hunan Modern Environment Technology Co., LTD, Changsha, People's Republic of China
| | - Zirui Luo
- College of Resources and Environment, Hunan Agriculture University, Changsha, People's Republic of China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agriculture University, Changsha, People's Republic of China
| | - Dongmei Hou
- College of Resources and Environment, Hunan Agriculture University, Changsha, People's Republic of China
| | - Qiming Mao
- College of Resources and Environment, Hunan Agriculture University, Changsha, People's Republic of China
| | - Dan Zhi
- College of Resources and Environment, Hunan Agriculture University, Changsha, People's Republic of China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agriculture University, Changsha, People's Republic of China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agriculture University, Changsha, People's Republic of China
| | - Lin Luo
- College of Resources and Environment, Hunan Agriculture University, Changsha, People's Republic of China
| |
Collapse
|
43
|
Kaninga B, Chishala BH, Maseka KK, Sakala GM, Young SD, Lark RM, Tye A, Hamilton EM, Gardner A, Watts MJ. Do soil amendments used to improve agricultural productivity have consequences for soils contaminated with heavy metals? Heliyon 2020; 6:e05502. [PMID: 33251364 PMCID: PMC7679254 DOI: 10.1016/j.heliyon.2020.e05502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Accepted: 11/10/2020] [Indexed: 12/27/2022] Open
Abstract
This study presents an analysis of the effects of manure and lime commonly used to improve agricultural productivity and evaluates the potential for such soil amendments to mobilise/immobilise metal fractions in soils contaminated from nearby mine tailings in the Zambian Copperbelt. Lime and manure were applied at the onset of the study, and their effects were studied over two planting seasons, i.e. 2016-17 and 2017–18. Operationally defined plant-available Cd, Cu, Ni, Pb and Zn in the soil, were determined by extraction with DTPA-TEA (diethylenetriaminepentaacetic acid-triethanolamine) and 0.01 M Ca(NO3)2, before, and after, applying the amendments. In unamended soils, Cd was the most available and Ni the least. Lime application decreased extractable Cd, Cu, Ni, Pb and Zn. The response to lime was greater in soils with an initially acidic pH than in those with approximately neutral pH values. Manure increased DTPA extractable Zn, but decreased DTPA and Ca(NO3)2 extractable Cd, Cu and Pb. Combined lime and manure amendment exhibited a greater reduction in DTPA extractable Cd, Ni, Pb, Zn, as well as for Ca(NO3)2 extractable Cd compared to separate applications of lime and manure. The amendments had a significant residual effect on most of the soil fractions between season 1 and 2. The results obtained in this study showed that soil amendment with minimal lime and manure whilst benefiting agricultural productivity, may significantly reduce the mobility or plant availability of metals from contaminated agricultural soils. This is important in contaminated, typical tropical soils used for crop production by resource poor communities affected by mining or other industrial activities.
Collapse
Affiliation(s)
- Belinda Kaninga
- Zambia Agriculture Research Institute, Mount Makulu Central Research Station, P/B 7, Chilanga, Zambia.,University of Zambia, School of Agricultural Sciences, Great East Road Campus, P.O Box 32379, Lusaka, Zambia
| | - Benson H Chishala
- University of Zambia, School of Agricultural Sciences, Great East Road Campus, P.O Box 32379, Lusaka, Zambia
| | - Kakoma K Maseka
- Copperbelt University, Jambo Drive, P.O. Box 21692, Riverside, Kitwe, Zambia
| | - Godfrey M Sakala
- Zambia Agriculture Research Institute, Mount Makulu Central Research Station, P/B 7, Chilanga, Zambia
| | - Scott D Young
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - R Murray Lark
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Andrew Tye
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey Nottingham, NG12 5GG, UK
| | - Elliott M Hamilton
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey Nottingham, NG12 5GG, UK
| | - Amanda Gardner
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey Nottingham, NG12 5GG, UK
| | - Michael J Watts
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey Nottingham, NG12 5GG, UK
| |
Collapse
|
44
|
Immobilization of Lead and Zinc Leached from Mining Residual Materials in Kabwe, Zambia: Possibility of Chemical Immobilization by Dolomite, Calcined Dolomite, and Magnesium Oxide. MINERALS 2020. [DOI: 10.3390/min10090763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Massive amount of highly contaminated mining residual materials (MRM) has been left unattended and has leached heavy metals, particularly lead (Pb) and zinc (Zn) to the surrounding environments. Thus, the performance of three immobilizers, raw dolomite (RD), calcined dolomite (CD), and magnesium oxide (MO), was evaluated using batch experiments to determine their ability to immobilize Pb and Zn, leached from MRM. The addition of immobilizers increased the leachate pH and decreased the amounts of dissolved Pb and Zn to different extents. The performance of immobilizers to immobilize Pb and Zn followed the following trend: MO > CD > RD. pH played an important role in immobilizing Pb and Zn. Dolomite in RD could slightly raise the pH of the MRM leachate. Therefore, the addition of RD immobilized Pb and Zn via adsorption and co-precipitation, and up to 10% of RD addition did not reduce the concentrations of Pb and Zn to be lower than the effluent standards in Zambia. In contrast, the presence of magnesia in CD and MO significantly contributed to the rise of leachate pH to the value where it was sufficient to precipitate hydroxides of Pb and Zn and decrease their leaching concentrations below the regulated values. Even though MO outperformed CD, by considering the local availability of RD to produce CD, CD could be a potential immobilizer to be implemented in Zambia.
Collapse
|
45
|
Wang F, Pan H, Xu J. Evaluation of red mud based binder for the immobilization of copper, lead and zinc. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114416. [PMID: 32224388 DOI: 10.1016/j.envpol.2020.114416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
In this study, by products such as red mud, phosphorus gypsum and fly ash were used as binders, and are compared with Portland cement (PC) in immobilizing Cu, Pb and Zn. Cu, Pb and Zn -doped pastes and mortars were prepared with a metal to binder ratio at 1%. Samples were cured for 7d, 14d and 28d. The unconfined compressive strength (UCS) test, a batch leaching test along with scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were applied for the testing of Cu, Pb and Zn-doped pastes and mortars. The UCS results show that red mud-phosphorus gypsum treated samples produce higher strength than these treated by red mud-fly ash, or PC. The results of leaching test revealed that the immobilization degree of heavy metals from these pastes depends on the leachate pH of these pastes. With the aid of the cement, red mud-phosphorus gypsum-cement pastes leached less metals compared to that of red mud-phosphorus gypsum pastes. The leachate concentrations of Cu, Pb and Zn from red mud-phosphorus gypsum-cement pastes are 1.5 mg/L, 1 mg/L, and 3 mg/L respectively. They are able to meet the China Ministry of Environment Protection (MEP) regulatory limit. With the increase of the curing time, the unconfined compressive strength and the leaching concentrations of these pastes showed a slightly increasing trend. In addition, SEM and TGA analyses show that the major hydration product is ettringite.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing, 210096, PR China.
| | - Hao Pan
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing, 210096, PR China.
| | - Jian Xu
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing, 210042, PR China.
| |
Collapse
|
46
|
Zang F, Wang S, Nan Z, Zhao C. Geochemistry of potentially hazardous elements in loess-amended mining sediment. CHEMOSPHERE 2020; 252:126516. [PMID: 32217408 DOI: 10.1016/j.chemosphere.2020.126516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Contaminated mining sediment may cause environmental and human health risk due to potentially hazardous elements (PHEs) leaching into groundwater, especially under very acid (pH ≤ 3) conditions. The capability of Chinese loess to immobilise and retain copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) from element contaminated mining sediment was explored by a column leaching experiment. Results showed that loess could effectively reduce Cu geomobility, and their leachate concentrations were lower than the quality standard (1.0 mg L-1) for ground water in China. The sierozem showed strong adsorption for Zn, Cd and Pb. The geomobility of Cu, Zn, Cd and Pb were affected by pH, electrical conductivity, organic matter and carbonate content of sediment/loess-amended sediment and sierozem. The long-term leaching of PHEs in loess-amended sediment may pose a potential risk to sierozem and groundwater in the region. This study highlights the need to develop a remediation technique to minimise the concentration level of hazardous elements in the mining sediment.
Collapse
Affiliation(s)
- Fei Zang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province and Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Shengli Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province and Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Zhongren Nan
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province and Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chuanyan Zhao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
47
|
Effect of microstructure change on permeability of flax-fiber reinforced silty clay soaked with zinc-ion solution. Sci Rep 2020; 10:11296. [PMID: 32647348 PMCID: PMC7347911 DOI: 10.1038/s41598-020-68332-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022] Open
Abstract
With the application of fiber-reinforcement technology, the mechanical properties of silty clay are improved with fiber reinforcement. However, the variation of permeability coefficient and other parameters of flax-fiber reinforced silty clay have not been sufficiently studied. In this study, the permeability of flax-fiber reinforced silty clay soaked with zinc-contaminated solution under different osmotic pressure was tested by a flexible-wall permeameter, and the effects of zinc-ion concentration and confining pressure on the permeability of flax-fiber reinforced silty clay were studied. Genius XRF was employed to detect the types and quantity of metal elements in the specimens, thereafter, the reasons for the change of permeability were explained from chemical and microscopic perspective. The results showed that the permeability coefficient of flax-fiber reinforced silty clay decreased significantly with the increase of zinc-ion concentration in a low concentration (about 1–10 mg L−1). While in a high concentration (about 100 mg L−1), the permeability coefficient of flax-fiber reinforced silty clay changed little with the increase of zinc-ion concentration. While the flax-fiber reinforced silty clay was not soaked with zinc-ion solution, the permeability coefficient of the specimen increased with the increase of confining pressure. However, when the flax-fiber reinforced silty clay was soaked with zinc-contaminated solution, the permeability coefficient first decreased and then tended to be constant with the increase of confining pressure. With the increase of confining pressure, the porosity of flax-fiber reinforced silty clay decreased, and with the increase of zinc-ion concentration, the porosity of flax-fiber reinforced silty clay first increased and then decreased.
Collapse
|
48
|
Lebrun M, Miard F, Scippa GS, Hano C, Morabito D, Bourgerie S. Effect of biochar and redmud amendment combinations on Salix triandra growth, metal(loid) accumulation and oxidative stress response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110466. [PMID: 32200145 DOI: 10.1016/j.ecoenv.2020.110466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/02/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Remediation of metal(loid) polluted soils is an important area of research nowadays. In particular, one remediation technique is much studied, phytomanagement. Phytomanagement combines amendment application and plant growth in order to reduce the risk posed by contaminants. Salicaceae plants showed tolerance towards metal(loid)s and the ability to accumulate high amounts of metal(loid)s in their tissue. Amendments are often applied to counterbalance the reduced soil fertility and high metal(loid) concentrations. Two amendments gathered attention over the last decades, biochar (product of biomass pyrolysis), which can be activated for better effects, and redmud (by-product of alumina production). Those two amendments showed ability to improve soil conditions and thus plant growth, although few studied their combined application. Moreover, since metal(loid)s are known to induce the overproduction of reactive oxygen species, it is important to measure the level of oxidative stress in the plant, to which plants respond using enzymatic and non-enzymatic systems. But no studies evaluate the response of Salicaceae plants to metal(loid) stress and amendment application at the biochemical level in a real soil condition. Therefore, a mesocosm study was set up to evaluate the effect of amending a mine soil with redmud combined to diverse biochars on the soil properties and Salix triandra growth, metal(loid) accumulation and stress marker levels. Results showed that all amendment combinations improved the soil fertility, reduced metal(loid) mobility and thus ameliorated Salix triandra growth, which accumulated metal(loid)s mainly in its roots. Moreover, among the different amendment combinations, Salix triandra plants still suffered from oxidative stress when grown on PG soil amended with redmud and chemical activated carbon, showing elevated levels of phenolic compounds and salicinoids and important antioxidant and enzymatic activities. Finally, one treatment showed levels of these stress markers similar or lower than the control, the combination of redmud with steam activated carbon. In conclusion, this treatment seemed a good solution in a phytomanagement strategy using Salix triandra, improving soil conditions and plant growth and reducing oxidative stress level in the plant roots.
Collapse
Affiliation(s)
- Manhattan Lebrun
- Università degli Studi del Molise, Dipartimento di Bioscienze e Territorio, 86090, Pesche, Italy; Université d'Orléans, LBLGC INRA USC1328, rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Florie Miard
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Gabriella S Scippa
- Università degli Studi del Molise, Dipartimento di Bioscienze e Territorio, 86090, Pesche, Italy
| | - Christophe Hano
- Université d'Orléans, LBLGC INRA, USC 1328- Antenne Scientifique Universitaire de Chartres, 21 Rue de Loigny La Bataille, 28000, Chartres, France
| | - Domenico Morabito
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Sylvain Bourgerie
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France.
| |
Collapse
|
49
|
Liu S, Yang B, Liang Y, Xiao Y, Fang J. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16069-16085. [PMID: 32173779 DOI: 10.1007/s11356-020-08282-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/02/2020] [Indexed: 04/16/2023]
Abstract
Accumulation of heavy metals in agricultural soils due to human production activities-mining, fossil fuel combustion, and application of chemical fertilizers/pesticides-results in severe environmental pollution. As the transmission of heavy metals through the food chain and their accumulation pose a serious risk to human health and safety, there has been increasing attention in the investigation of heavy metal pollution and search for effective soil remediation technologies. Here, we summarized and discussed the basic principles, strengths and weaknesses, and limitations of common standalone approaches such as those based on physics, chemistry, and biology, emphasizing their incompatibility with large-scale applications. Moreover, we explained the effects, advantages, and disadvantages of the combinations of common single repair approaches. We highlighted the latest research advances and prospects in phytoremediation-chemical, phytoremediation-microbe, and phytoremediation-genetic engineering combined with remediation approaches by changing metal availability, improving plant tolerance, promoting plant growth, improving phytoextraction and phytostabilization, etc. We then explained the improved safety and applicability of phytoremediation combined with other repair approaches compared to common standalone approaches. Finally, we established a prospective research direction of phytoremediation combined with multi-technology repair strategy.
Collapse
Affiliation(s)
- Shuming Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Bo Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Yunshan Liang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China.
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China.
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China.
| |
Collapse
|
50
|
Abstract
Heavy metal contamination in soils has become one of the most critical environmental issues. The most efficient in-situ remediation technique is chemical immobilization that uses cost-effective soil amendments such as phosphate compounds to decrease Pb, Cd and Zn accessibility in the contaminated soils. The present study examined the effectiveness of KH2PO4 in immobilizing Pb, Cd and Zn in three samples of contaminated soils collected from ZGH “Bolesław” (Mining and Smelting Plant “Bolesław”). Effectiveness was evaluated using the following methods: a toxicity characteristic leaching procedure (TCLP)-based experiment, sequential extraction, X-ray diffraction analyses (XRD), and scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS). The most efficient percentage reduction of total leachable metal concentration assessed by TCLP was observed for lead (50%–80%), and the least reduction was observed for zinc (1%–17%). The most effective immobilization of stable compounds assessed by sequential extraction was noted for lead, while the weakest immobilization was noted for cadmium. New insoluble mineral phases were identified by SEM-EDS analysis. Cd, Zn, and Pb formed new stable mineral substances with phosphates. The predominant crystal forms were dripstones and groups of needles, which were easily formed by dissolved carbon rock surfaces containing zinc ions. The alkaline nature of the soil and a large number of carbonates mainly influenced the formation of new structures.
Collapse
|