1
|
Gonçalves LC, Roberto MM, Peixoto PVL, Viriato C, da Silva AFC, de Oliveira VJA, Nardi MCC, Pereira LC, de Angelis DDF, Marin-Morales MA. Toxicity of Beauty Salon Effluents Contaminated with Hair Dye on Aquatic Organisms. TOXICS 2023; 11:911. [PMID: 37999563 PMCID: PMC10674561 DOI: 10.3390/toxics11110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 11/25/2023]
Abstract
Cosmetic residues have been found in water resources, especially trace elements of precursors, couplers, and pigments of hair dyes, which are indiscriminately disposed of in the sewage system. These contaminants are persistent, bioactive, and bioaccumulative, and may pose risks to living beings. Thus, the present study assessed the ecotoxicity of two types of effluents generated in beauty salons after the hair dyeing process. The toxicity of effluent derived from capillary washing with water, shampoo, and conditioner (complete effluent-CE) and effluent not associated with these products (dye effluent-DE) was evaluated by tests carried out with the aquatic organisms Artemia salina, Daphnia similis, and Danio rerio. The bioindicators were exposed to pure samples and different dilutions of both effluents. The results showed toxicity in D. similis (CE50 of 3.43% and 0.54% for CE and DE, respectively); A. salina (LC50 8.327% and 3.874% for CE and DE, respectively); and D. rerio (LC50 of 4.25-4.59% and 7.33-8.18% for CE and DE, respectively). Given these results, we can infer that hair dyes, even at low concentrations, have a high toxic potential for aquatic biota, as they induced deleterious effects in all tested bioindicators.
Collapse
Affiliation(s)
- Letícia C. Gonçalves
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; (L.C.G.); (A.F.C.d.S.); (V.J.A.d.O.); (D.d.F.d.A.)
- University Center of Hermínio Ometto Foundation (FHO), Av. Dr. Maximiliano Baruto, 500, Jardim Universitário, Araras 13607-339, SP, Brazil;
| | - Matheus M. Roberto
- University Center of Hermínio Ometto Foundation (FHO), Av. Dr. Maximiliano Baruto, 500, Jardim Universitário, Araras 13607-339, SP, Brazil;
| | - Paloma V. L. Peixoto
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu Medical School, São Paulo State University (Unesp), Av. Prof. Mário Rubens Guimarães Montenegro, s/n, Rubião Júnior, Botucatu 18618-687, SP, Brazil; (P.V.L.P.); (C.V.); (L.C.P.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (Unesp), Av. Prof. Mário Rubens Guimarães Montenegro, s/n, Rubião Júnior, Botucatu 18618-687, SP, Brazil
| | - Cristina Viriato
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu Medical School, São Paulo State University (Unesp), Av. Prof. Mário Rubens Guimarães Montenegro, s/n, Rubião Júnior, Botucatu 18618-687, SP, Brazil; (P.V.L.P.); (C.V.); (L.C.P.)
- Department of Bioprocesses and Biotechnology, São Paulo State University (Unesp), R. Dr. José Barbosa de Barros, 1780, Fazenda Experimental Lageado, Botucatu 18610-307, SP, Brazil
| | - Adriana F. C. da Silva
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; (L.C.G.); (A.F.C.d.S.); (V.J.A.d.O.); (D.d.F.d.A.)
| | - Valdenilson J. A. de Oliveira
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; (L.C.G.); (A.F.C.d.S.); (V.J.A.d.O.); (D.d.F.d.A.)
| | - Mariza C. C. Nardi
- University Center of Hermínio Ometto Foundation (FHO), Av. Dr. Maximiliano Baruto, 500, Jardim Universitário, Araras 13607-339, SP, Brazil;
| | - Lilian C. Pereira
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu Medical School, São Paulo State University (Unesp), Av. Prof. Mário Rubens Guimarães Montenegro, s/n, Rubião Júnior, Botucatu 18618-687, SP, Brazil; (P.V.L.P.); (C.V.); (L.C.P.)
- School of Agriculture (FCA), São Paulo State University (Unesp), Av. Universitária, 3780, Fazenda Experimental Lageado, Botucatu 18610-034, SP, Brazil
| | - Dejanira de F. de Angelis
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; (L.C.G.); (A.F.C.d.S.); (V.J.A.d.O.); (D.d.F.d.A.)
| | - Maria A. Marin-Morales
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; (L.C.G.); (A.F.C.d.S.); (V.J.A.d.O.); (D.d.F.d.A.)
| |
Collapse
|
2
|
Rastgar S, Alijani Ardeshir R, Segner H, Tyler CR, J G M Peijnenburg W, Wang Y, Salati AP, Movahedinia A. Immunotoxic effects of metal-based nanoparticles in fish and bivalves. Nanotoxicology 2022; 16:88-113. [PMID: 35201945 DOI: 10.1080/17435390.2022.2041756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a global research interest in metal nanoparticles (MNPs) due to their diverse applications, rapidly increasing use, and increased presence in the aquatic environment. Currently, most MNPs in the environment are at levels unlikely to cause overt toxicity. Sub-lethal effects that MNPs may induce, notable immunotoxicity, could however have significant health implications. Thus, deciphering the immunological interactions of MNPs with aquatic organisms constitutes a much-needed area of research. In this article, we critically assess the evidence for immunotoxic effects of MNPs in bivalves and fish, as key wildlife sentinels with widely differing ecological niches that are used as models in ecotoxicology. The first part of this review details the properties, fate, and fundamental physicochemical behavior of MNPs in the aquatic ecosystem. We then consider the toxicokinetics of MNP uptake, accumulation, and deposition in fish and bivalves. The main body of the review then focuses on immune reactions in response to MNPs exposure in bivalves and fish illustrating their immunotoxic potential. Finally, we identify major knowledge gaps in our current understanding of the implications of MNPs exposure for immunological functions and the associated health consequences for bivalves and fish, as well as the general lessons learned on the immunotoxic properties of the emerging class of nanoparticulate contaminants in fish and bivalves.
Collapse
Affiliation(s)
- Sara Rastgar
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.,Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, UK
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.,Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, PR China
| | - Amir Parviz Salati
- Department of Fisheries, Faculty of Marine Natural resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Abdolali Movahedinia
- Department of Marine Biology, Faculty of Marine Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
3
|
Chen J, Lei L, Mo W, Dong H, Li J, Bai C, Huang K, Truong L, Tanguay RL, Dong Q, Huang C. Developmental titanium dioxide nanoparticle exposure induces oxidative stress and neurobehavioral changes in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105990. [PMID: 34673465 DOI: 10.1016/j.aquatox.2021.105990] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 09/01/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
The widespread commercial application of titanium dioxide nanoparticles (TiO2 NPs) leads to ubiquitous presence of TiO2 NPs in the aquatic environment, which highlights the necessity to determine their potential adverse effects on aquatic organisms. The developing nerve system is particularly susceptible to environment perturbation. However, few studies have explored the developmental neurobehavioral toxicity of TiO2 NPs, especially at smaller particle size ranges (≤20 nm) that have relatively longer retention time in the water column. In this study, zebrafish embryos were exposed to non-teratogenic concentrations of 0.1 and 1 mg/L TiO2 NPs (average size of 14-20 nm) from 8 to 108 h post-fertilization (hpf) followed by various assessments at different time points up to 12 days post-fertilization (dpf). Our findings revealed that 1 mg/L TiO2 NPs perturbed the motor and social behaviors in larval zebrafish. These behavioral changes were characterized by decreased swimming speed in a locomotor response test at 5 dpf, increased travel distance in a flash stimulus test at 5 dpf, increased preference to the light zone in a light/dark preference test at 10 dpf, and increased mirror attack and percent time spent in the mirror zone in a mirror stimulus response assay at 12 dpf. Mechanistic examinations at 5 dpf revealed elevated cell apoptosis and oxidative stress. Cell apoptosis was characterized by increased acridine orange (AO) positive cells in the olfactory region and neuromasts of the lateral line system. Oxidative stress was characterized by increased lipid peroxidation, increased ROS production, and upregulated catalase (cat) gene expression. In addition, TiO2 NP exposure also upregulated genes associated with the developmental nervous system such as the growth associated protein 43 (gap43) and proliferating cell nuclear antigen (pcna). Our results suggest that the neurobehavioral changes in larvae exposed to 1 mg/L TiO2 NPs during early development may result from cell apoptosis and oxidative stress induced neuronal damages.
Collapse
Affiliation(s)
- Jiangfei Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Lei Lei
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Wen Mo
- Zhejiang Rehabilitation Medical Center, Hangzhou 310051, China
| | - Haojia Dong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiani Li
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Chenglian Bai
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Kaiyu Huang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Lisa Truong
- Department of Environmental & Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, 28645 East Highway 34, Corvallis, OR 97333, United States
| | - Robyn L Tanguay
- Department of Environmental & Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, 28645 East Highway 34, Corvallis, OR 97333, United States
| | - Qiaoxiang Dong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China; The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Changjiang Huang
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
4
|
Patsiou D, Del Rio-Cubilledo C, Catarino AI, Summers S, Mohd Fahmi A, Boyle D, Fernandes TF, Henry TB. Exposure to Pb-halide perovskite nanoparticles can deliver bioavailable Pb but does not alter endogenous gut microbiota in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136941. [PMID: 32041050 DOI: 10.1016/j.scitotenv.2020.136941] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 05/24/2023]
Abstract
Lead-halide perovskite nanoparticles (NPs) are a new technology, and investigation of toxicity is of considerable importance due to the potential lead (Pb) release into the environment. The aim of the study was to investigate aqueous and dietary toxicity of Pb-halide perovskite NP and Pb in zebrafish Danio rerio. Perovskite NP toxicity was evaluated in zebrafish by mortality, gene expression, histopathology, and phylogenetic analysis of gut microbiota. Zebrafish larvae were exposed to five Pb-halide perovskite NPs in parallel with Pb(NO3)2 exposures, and zebrafish adults were exposed to the three perovskite NPs that caused the strongest effect and Pb(NO3)2. No median lethal concentration (LC50) was observed for zebrafish larvae exposed to up to 200 mg/L of perovskite NPs for 96 h. Mortality, metallothionein 2 (mt2) and δ-aminolevulinic acid dehydratase (ala-d) gene expression (24-h exposure) in zebrafish larvae after aqueous perovskite NPs exposures did not differ from total Pb concentration - response curves. The lack of differences in mortality and gene expression between perovskite NPs and soluble Pb after aqueous exposure suggest that toxicity from perovskite NPs can be attributed to bioavailable Pb rather than nano-specific effects. Induction of mt2 and reduction of ala-d expression levels in liver tissues showed Pb bioavailability after 2-d and 4-d dietary exposure to perovskite-spiked feeds. Changes in gut microbiota of adult zebrafish were detected after 14-d exposure to Pb-spiked food, but no changes were detected from perovskite-NP spiked food. The phylogenetic analysis identified different microbiome profiles of Pb-fed fish compared to perovskite-fed fish suggesting a different mechanism of toxicity. Exposure to Pb-halide perovskite NPs led to absorption of Pb likely from release of Pb ions rather than absorption of NPs. Pb-halide perovskite NPs can release bioavailable Pb and this needs to be considered during the development of this technology.
Collapse
Affiliation(s)
- Danae Patsiou
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK; Institute of Oceanography, Hellenic Centre for Marine Research, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece.
| | - Cristina Del Rio-Cubilledo
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Ana Isabel Catarino
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK; Vlaams Instituut voor de Zee, Flanders Marine Institute InnovOcean site, Wandelaarkaai 7, 8400 Oostende, Belgium.
| | - Stephen Summers
- Institute of Mechanical Process and Energy Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, 637551, Singapore
| | - Afiq Mohd Fahmi
- Institute of Mechanical Process and Energy Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; Fakulti Sains Sekitaran dan Marin, Universiti Malaysia Terengganu, Kuala Nerus, 21300, Malaysia
| | - David Boyle
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK; School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Teresa F Fernandes
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Theodore B Henry
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK; Department of Forestry Wildlife and Fisheries, and Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
5
|
Carmo TLL, Siqueira PR, Azevedo VC, Tavares D, Pesenti EC, Cestari MM, Martinez CBR, Fernandes MN. Overview of the toxic effects of titanium dioxide nanoparticles in blood, liver, muscles, and brain of a Neotropical detritivorous fish. ENVIRONMENTAL TOXICOLOGY 2019; 34:457-468. [PMID: 30604913 DOI: 10.1002/tox.22699] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 05/28/2023]
Abstract
The toxicity of titanium dioxide nanoparticles (TiO2 -NP) in the blood, liver, muscle, and brain of a Neotropical detritivorous fish, Prochilodus lineatus, was tested. Juvenile fish were exposed to 0, 1, 5, 10, and 50 mg L-1 of TiO2 -NP for 48 hours (acute exposure) or 14 days (subchronic exposure) to evaluate changes in hematology, red blood cell (RBC) genotoxicity/mutagenicity, liver function (reactive oxygen species (ROS) production, antioxidant responses, detoxification, and histopathology), acetylcholinesterase (AChE) activity in muscles and brain, and Ti bioaccumulation. TiO2 -NP did not cause genetic damage to RBC, but acutely decreased white blood cells (WBC) and increased monocytes. Subchronically, RBC decreased, mean cell volume and hemoglobin increased, and WBC and lymphocytes decreased. Therefore, NP has the potential to affect immune system and increase energy expenditure, reducing the fish's ability to avoid predator and to resist pathogens. In the liver, acute exposure decreased ROS and increased glutathione (GSH) content, while subchronic exposure decreased superoxide dismutase activity and increased glutathione-S-transferase (GST) activity and GSH content. GSH and GST seem to play an essential role in metabolizing NP and ROS, likely increasing hepatocytes' metabolic rate, which may be the cause of observed cell hypertrophy, disarrangement of hepatic cords and degenerative morphological alterations. Although most studies indicate that the kidney is responsible for metabolizing and/or eliminating TiO2 -NP, this study shows that the liver also has a main role in these processes. Nevertheless, Ti still accumulated in the liver, muscle, and brain and decreased muscular AChE activity after acute exposure, showing neurotoxic potential. More studies are needed to better understand the biochemical pathways TiO2 -NP are metabolized and how its bioaccumulation may affect fish homeostasis and survival in the environment.
Collapse
Affiliation(s)
- Talita L L Carmo
- Interinstitutional Post-graduation Program in Physiological Sciences, Physiological Sciences Department, Federal University of São Carlos/São Paulo State University, São Carlos, Brazil
| | - Priscila R Siqueira
- Post-graduation Program in Ecology and Natural Resources, Physiological Sciences Department, Federal University of São Carlos, São Carlos, Brazil
| | - Vinícius C Azevedo
- Interinstitutional Post-graduation Program in Physiological Sciences, Physiological Sciences Department, Federal University of São Carlos/São Paulo State University, São Carlos, Brazil
| | - Driele Tavares
- Interinstitutional Post-graduation Program in Physiological Sciences, Physiological Sciences Department, Federal University of São Carlos/São Paulo State University, São Carlos, Brazil
| | - Emanuele C Pesenti
- Genetics Department, Federal University of Paraná, Curitiba, Puerto Rico, Brazil
| | - Marta M Cestari
- Genetics Department, Federal University of Paraná, Curitiba, Puerto Rico, Brazil
| | - Cláudia B R Martinez
- Physiological Sciences Department, State University of Londrina, Londrina, Puerto Rico, Brazil
| | - Marisa N Fernandes
- Physiological Sciences Department, Federal University of São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
6
|
Vassallo J, Besinis A, Boden R, Handy RD. The minimum inhibitory concentration (MIC) assay with Escherichia coli: An early tier in the environmental hazard assessment of nanomaterials? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:633-646. [PMID: 30033160 DOI: 10.1016/j.ecoenv.2018.06.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
There are now over a thousand nano-containing products on the market and the antibacterial properties of some nanomaterials has created interest in their use as cleaning agents, biocides and disinfectants. Engineered nanomaterials (ENMs) are being released into the environment and this raises concerns about their effects on microbes in the receiving ecosystems. This study evaluated the bacterial toxicity of a wide range of nanomaterials with different surface coatings on Escherichia coli K-12 MG1655. The minimum inhibitory concentration (MIC) assay, which quantifies the threshold for growth inhibition in suspensions of bacteria, was used to rank the toxicity of silver (Ag), cupric oxide (CuO), cadmium telluride (CdTe) quantum dots, titanium dioxide (TiO2), nanodiamonds and multi-walled carbon nanotubes (MWCNTs). Bacteria were exposed for 12 h at 37 °C to a dilution series of the test suspensions in 96-well plates. The precision and accuracy of the method was good with coefficients of variation < 10%. In terms of the measured MIC values, the toxicity order of the ENMs was as follows: CdTe quantum dots ammonium-coated, 6 mg L-1 > Ag nanoparticles, 12 mg L-1 > CdTe quantum dots carboxylate-coated, 25 mg L-1 > CdTe quantum dots polyethylene glycol-coated, 100 mg L-1. The MIC values were above the highest test concentration used (100 mg L-1) for CuO, TiO2, nanodiamonds and MWCNTs, indicating low toxicity. The MIC assay can be a useful tool for the initial steps of ENMs hazard assessment.
Collapse
Affiliation(s)
- J Vassallo
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; Sustainable Earth Institute, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - A Besinis
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; School of Engineering, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; Plymouth University Peninsula Schools of Medicine and Dentistry, University of Plymouth, John Bull Building, Tamar Science Park, Plymouth PL6 8BU, UK
| | - R Boden
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; Sustainable Earth Institute, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - R D Handy
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; Sustainable Earth Institute, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
7
|
do Carmo TLL, Azevedo VC, de Siqueira PR, Galvão TD, Dos Santos FA, Dos Reis Martinez CB, Appoloni CR, Fernandes MN. Reactive oxygen species and other biochemical and morphological biomarkers in the gills and kidneys of the Neotropical freshwater fish, Prochilodus lineatus, exposed to titanium dioxide (TiO 2) nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22963-22976. [PMID: 29858996 DOI: 10.1007/s11356-018-2393-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the action of titanium dioxide nanoparticles (TiO2-NPs), on the gills and kidneys of Neotropical freshwater fish, Prochilodus lineatus, with emphasis on reactive oxygen species (ROS) production, antioxidant responses, and morphological changes. Fish were exposed to 1, 5, 10, and 50 mg L-1 nominal TiO2-NPs suspended into water for 2 or 14 days. In gills, ROS decreased and glutathione (GSH) increased after 2 days, while ROS and GSH increased and superoxide dismutase activity decreased after 14 days. In kidneys, GSH and lipoperoxidation increased after 2 days and catalase activity decreased after 14 days. Common histopathologies in gills were epithelium hyperplasia, cellular hypertrophy, proliferation of mitochondria-rich cells (MRC), and lamellar stasis; in kidneys, there were cellular and nuclear hypertrophy, focal tubule degeneration, necrosis, and melanomacrophage (MM) proliferation. Although environmentally unlikely, high-dose exposures clarified biological effects of TiO2-NPs, such as ROS formation and MRC responses in the gills, which may impair ionic balance. It was also found that MM are likely responsible for eliminating NPs in the kidney. These findings will help to regulate TiO2-NP disposal, but longer-term studies are still needed.
Collapse
Affiliation(s)
- Talita Laurie Lustosa do Carmo
- Physiological Sciences Department, Federal University of São Carlos, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Vinicius Cavicchioli Azevedo
- Physiological Sciences Department, Federal University of São Carlos, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Priscila Rodrigues de Siqueira
- Physiological Sciences Department, Federal University of São Carlos, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Tiago Dutra Galvão
- Physics Department, State University of Londrina, Rodovia Celso Garcia Cid | Pr 445 Km 380, Londrina, PR, 86055-900, Brazil
| | - Fabrício Aparecido Dos Santos
- Physics Institute of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP, 13566-970, Brazil
| | - Cláudia Bueno Dos Reis Martinez
- Physiological Sciences Department, State University of Londrina, Rodovia Celso Garcia Cid | Pr 445 Km 380, Londrina, PR, 86055-990, Brazil
| | - Carlos Roberto Appoloni
- Physics Department, State University of Londrina, Rodovia Celso Garcia Cid | Pr 445 Km 380, Londrina, PR, 86055-900, Brazil
| | - Marisa Narciso Fernandes
- Physiological Sciences Department, Federal University of São Carlos, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
8
|
Castro VL, Clemente Z, Jonsson C, Silva M, Vallim JH, de Medeiros AMZ, Martinez DST. Nanoecotoxicity assessment of graphene oxide and its relationship with humic acid. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1998-2012. [PMID: 29608220 DOI: 10.1002/etc.4145] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/02/2017] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
The risk assessment of nanomaterials is essential for regulatory purposes and for sustainable nanotechnological development. Although the application of graphene oxide has been widely exploited, its environmental risk is not well understood because several environmental conditions can affect its behavior and toxicity. In the present study, the graphene oxide effect from aquatic ecosystems was assessed considering the interaction with humic acid on 9 organisms: Raphidocelis subcapitata (green algae), Lemna minor (aquatic plant), Lactuca sativa (lettuce), Daphnia magna (planktonic microcrustacean), Artemia salina (brine shrimp), Chironomus sancticaroli (Chironomidae), Hydra attenuata (freshwater polyp), and Caenorhabditis elegans and Panagrolaimus sp. (nematodes). The no-observed-effect concentration (NOEC) was calculated for each organism. The different criteria used to calculate NOEC values were transformed and plotted as a log-logistic function. The hypothetical 5 to 50% hazardous concentration values were, respectively, 0.023 (0.005-0.056) and 0.10 (0.031-0.31) mg L-1 for graphene oxide with and without humic acid, respectively. The safest scenario associated with the predicted no-effect concentration values for graphene oxide in the aquatic compartment were estimated as 20 to 100 μg L-1 (in the absence of humic acid) and 5 to 23 μg L-1 (in the presence of humic acid). Finally, the present approach contributed to the risk assessment of graphene oxide-based nanomaterials and the establishment of nano-regulations. Environ Toxicol Chem 2018;37:1998-2012. © 2018 SETAC.
Collapse
Affiliation(s)
- Vera L Castro
- Laboratory of Ecotoxicology and Biosafety, Embrapa Environment, Jaguariúna, São Paulo, Brazil
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Zaira Clemente
- Laboratory of Ecotoxicology and Biosafety, Embrapa Environment, Jaguariúna, São Paulo, Brazil
- Brazilian National Nanotechnology Laboratory (LNNano), Brazilian Center for Research on Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Claudio Jonsson
- Laboratory of Ecotoxicology and Biosafety, Embrapa Environment, Jaguariúna, São Paulo, Brazil
| | - Mariana Silva
- Laboratory of Aquatic Ecosystems, Embrapa Environment, Jaguariúna, São Paulo, Brazil
| | - José Henrique Vallim
- Laboratory of Ecotoxicology and Biosafety, Embrapa Environment, Jaguariúna, São Paulo, Brazil
| | - Aline Maria Zigiotto de Medeiros
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
- Brazilian National Nanotechnology Laboratory (LNNano), Brazilian Center for Research on Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Diego Stéfani T Martinez
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
- Brazilian National Nanotechnology Laboratory (LNNano), Brazilian Center for Research on Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| |
Collapse
|
9
|
Carmo TLL, Azevedo VC, Siqueira PR, Galvão TD, Santos FA, Martinez CBR, Appoloni CR, Fernandes MN. Mitochondria-rich cells adjustments and ionic balance in the Neotropical fish Prochilodus lineatus exposed to titanium dioxide nanoparticles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:168-177. [PMID: 29772474 DOI: 10.1016/j.aquatox.2018.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Manufactured titanium dioxide nanoparticles (TiO2-NP) have been intensely applied in numerous industrial products and may be a risk for aquatic systems as they are not completely removed from domestic and industrial wastes after water treatment. This study evaluated the osmo- and ionic balance, Na+/K+-ATPase, H+-ATPase and carbonic anhydrase activities and the mitochondria-rich cells (MRC) in the gills and kidney of the Neotropical fish Prochilodus lineatus after 2 (acute) and 14 (subchronic) days of exposure to nominal 0, 1, 5, 10 and 50 mg L-1 TiO2-NP. The nominal concentrations corresponded to 0.0, 0.6, 1.6, 2.7 and 18.1 mg L-1 suspended TiO2-NP, respectively, in the water column one hour after NP introduction and were maintained for at least 24 h. Acute exposure to TiO2-NP decreased plasma osmolality and Ca2+ levels. Na+/K+-ATPase, H+-ATPase and carbonic anhydrase activities were inhibited in the gills, but not in the kidney. Total MRC density did not change in gills and kidneys. At gill surface, total MRC density decreased in fish exposed to 50 mg L-1 TiO2-NP and the total MRC fractional surface area unchanged although, there were some changes in the fractional area of MRC with apical microvilli (MRCm) and MRC with apical sponge-like structure (MRCs). MRCm was more abundant than MRCs. After subchronic exposure, there was no change in plasma osmolality, ionic balance and enzyme activities. Total gill MRC density increased in the filament epithelium and renal tubules. In the gills, MRC contacting water exhibited some adjustments. Total MRC and fractional surface area unchanged, but there was an increase of MRCs contacting water at gill surface after exposure to10 and 50 mg L-1 TiO2-NP. MRC proliferation in filament epithelium and in renal tubules as well as the increasing MRCs at gill surface may have contributed to avoid change in plasma osmolality, ionic balance and enzyme activities and suggested a cellular physiological and morphological response to restore and maintain osmotic and ionic homeostasis after subchronic exposure.
Collapse
Affiliation(s)
- Talita L L Carmo
- Physiological Sciences Department, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Vinícius C Azevedo
- Physiological Sciences Department, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Priscila R Siqueira
- Physiological Sciences Department, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Tiago D Galvão
- Physics Department, State University of Londrina, Londrina, PR, 86055-900, Brazil
| | - Fabrício A Santos
- Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, 13566-970, Brazil
| | - Cláudia B R Martinez
- Physiological Sciences Department, State University of Londrina, Londrina, PR, 86055-990, Brazil
| | - Carlos R Appoloni
- Physics Department, State University of Londrina, Londrina, PR, 86055-900, Brazil
| | - Marisa N Fernandes
- Physiological Sciences Department, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
10
|
Clark NJ, Shaw BJ, Handy RD. Low hazard of silver nanoparticles and silver nitrate to the haematopoietic system of rainbow trout. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 152:121-131. [PMID: 29407778 DOI: 10.1016/j.ecoenv.2018.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Silver nanoparticles (Ag NPs) are known for their antibacterial properties and are used in a growing number of nano-enabled products, with inevitable concerns for releases to the environment. Nanoparticles may also be antigenic and toxic to the haematopoietic system, but the immunotoxic effect of Ag NPs on non-target species such as fishes is poorly understood. This study aimed to assess the effect of Ag NP exposure via the water on the haematopoietic system of rainbow trout, Oncorhynchus mykiss, and to determine whether or not the hazard from Ag NPs was different from that of AgNO3. Fish were exposed for 7 days to a control (dechlorinated Plymouth freshwater), dispersant control, 1µgl-1 Ag as AgNO3 or 100µgl-1 Ag NPs. Animals were sampled on days 0, 4 and 7 for haematology, tissue trace metal concentration, biochemistry for evidence of oxidative stress/inflammation in the spleen and histopathology of the blood cells and spleen. The Ag NP treatment significantly increased the haematocrit, but the haematological changes were within the normal physiological range of the animal. Thrombocytes in spleen prints at day 4, and melanomacrophage deposits at day 7 in the spleen, of Ag NP exposed-fish displayed significant increases compared to all the other treatments within the time point. A dialysis experiment confirmed that dissolution rates were very low and any pathology observed is likely from the NP form rather than dissolved metal released from it. Overall, the data showed subtle differences in the effects of Ag NPs compared to AgNO3 on the haematopoietic system. The lack of pathology in the circulating blood cells and melanomacrophage deposits in the spleen suggests a compensatory physiological effort by the spleen to maintain normal circulating haematology during Ag NP exposure.
Collapse
Affiliation(s)
- Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Benjamin J Shaw
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom.
| |
Collapse
|
11
|
Boyle D, Sutton PA, Handy RD, Henry TB. Intravenous injection of unfunctionalized carbon-based nanomaterials confirms the minimal toxicity observed in aqueous and dietary exposures in juvenile rainbow trout (Oncorhynchus mykiss). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:191-199. [PMID: 28941714 DOI: 10.1016/j.envpol.2017.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Numerous ecotoxicology studies of carbon-based nanomaterials (CNMs) have been conducted in fishes; however, different approaches have been used to make CNM dispersions and dose tanks for aqueous exposures, and to prepare food containing CNMs for dietary studies. This diversity of experimental methods has led to conflicting results and difficulties in comparing studies. The objective of the present study was to evaluate intravenous injection of unfunctionalized CNMs in rainbow trout (Oncorhynchus mykiss), as a means of delivering a known internal dose, on tissue biochemistry and histopathological lesions; then, subsequently, to compare the results with our previous work on aqueous and dietary exposures of rainbow trout to CNMs. Rainbow trout were injected in the caudal vein with corn oil dispersions of 200 μg (approximately 1 μg g-1) of either the fullerene C60, single-walled carbon nanotubes (SWCNTs), or amorphous carbon black. After 96 h, injected fish were euthanized and tissue samples collected for biochemistry and histology. Histological examination of the kidney of fish injected intravenously indicated the presence of black material consistent with the injected carbon treatments. However, there were no additional lesions associated with CNM exposure compared to controls. There were also no significant changes in haematology, or ionoregulatory disturbance in blood plasma among the intravenously injected fish. Significant elevation in lipid peroxidation (thiobarbituric acid reactive substances TBARS) was detected only in kidney and spleen of fish injected with SWCNTs, but not the other carbon treatments. The elevated TBARS following injection contrasted with CNMs delivered via aqueous or dietary routes in our previous studies, suggesting that the latter exposure routes may not lead to absorption and toxicity in the internal tissues. Comparison of the effects of injected CNMs with aqueous and dietary CNMs exposures indicates that these materials are of minimal environmentally-relevant toxicity in rainbow trout.
Collapse
Affiliation(s)
- David Boyle
- School of Biological and Marine Sciences, Plymouth University, Devon, PL4 8AA, UK.
| | - Paul A Sutton
- Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, Plymouth University, Devon, PL4 8AA, UK.
| | - Richard D Handy
- School of Biological and Marine Sciences, Plymouth University, Devon, PL4 8AA, UK.
| | - Theodore B Henry
- School of Biological and Marine Sciences, Plymouth University, Devon, PL4 8AA, UK; School of Life Sciences, Heriot-Watt University, Edinburgh, EH10 5ES, UK; Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, Knoxville, TN, 37996, USA; Department of Forestry, Wildlife and Fisheries, Center for Environmental Biotechnology, 676 Dabney Hall, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
12
|
The effect of hydraulic flowback and produced water on gill morphology, oxidative stress and antioxidant response in rainbow trout (Oncorhynchus mykiss). Sci Rep 2017; 7:46582. [PMID: 28425455 PMCID: PMC5397866 DOI: 10.1038/srep46582] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/20/2017] [Indexed: 12/05/2022] Open
Abstract
Hydraulic fracturing fluid are complex mixtures containing high concentrations of salts (up to 330,000 ppm), organic, and metal contaminants. However, little data exist on the potential mechanisms of toxicity of these flowback and produced wastewaters (FPW) on aquatic biota. Juvenile rainbow trout were exposed to either control, FPW (2.5 or 7.5%), FPW that had been treated with activated charcoal (AC), or a custom salt-matched control (SW; replicating only the salt content of FPW) for 48 hours. Gill histology revealed decreases in interlamellar cell mass (ILCM) and mean lamellar length in all treatments (FPW, AC and SW) compared to control, indicative of hyperosmotic stress. Liver CYP1A1 activity was significantly elevated by 7.5-fold in the FPW 7.5% treatment only, indicative of Phase I metabolism. Superoxide dismutase activity significantly decreased in the gills to all treatments with the lowest activity occurring in the 7.5% FPW group. Catalase activity increased in liver with the highest values noted in fish exposed to 7.5% FPW. No changes were observed with respect to glutathione-S-transferase, while increased lipid peroxidation was only observed in both FPW treatments (2.5, 7.5%). These data suggest a characteristic signature of FPW impact which may help in risk assessment and biomonitoring of FPW spills.
Collapse
|
13
|
Ates M, Demir V, Arslan Z, Kaya H, Yılmaz S, Camas M. Chronic exposure of tilapia (Oreochromis niloticus) to iron oxide nanoparticles: Effects of particle morphology on accumulation, elimination, hematology and immune responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:22-32. [PMID: 27232508 PMCID: PMC4967404 DOI: 10.1016/j.aquatox.2016.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 05/06/2023]
Abstract
Effects of chronic exposure to alpha and gamma iron oxide nanoparticles (α-Fe2O3 and γ-Fe2O3 NPs) were investigated through exposure of tilapia (Oreochromis niloticus) to 0.1, 0.5 and 1.0mg/L (9.2×10(-4), 4.6×10(-3) and 9.2×10(-3)mM) aqueous suspensions for 60days. Fish were then transferred to NP-free freshwater and allowed to eliminate ingested NPs for 30days. The organs, including gills, liver, kidney, intestine, brain, spleen, and muscle tissue of the fish were analyzed to determine the accumulation, physiological distribution and elimination of the Fe2O3 NPs. Largest accumulation occurred in spleen followed by intestine, kidney, liver, gills, brain and muscle tissue. Fish exposed to γ-Fe2O3 NPs possessed significantly higher Fe in all organs. Accumulation in spleen was fast and independent of NP concentration reaching to maximum levels by the end of the first sampling period (30th day). Dissolved Fe levels in water were very negligible ranging at 4-6μg/L for α-Fe2O3 and 17-21μg/L for γ-Fe2O3 NPs (for 1mg/L suspensions). Despite that, Fe levels in gills and brain reflect more dissolved Fe accumulation from metastable γ-Fe2O3 polymorph. Ingested NPs cleared from the organs completely within 30-day elimination period, except the liver and spleen. Liver contained about 31% of α- and 46% of γ-Fe2O3, while spleen retained about 62% of α- and 35% of the γ-polymorph. No significant disturbances were observed in hematological parameters, including hemoglobin, hematocrit, red blood cell and white blood cell counts (p>0.05). Serum glucose (GLU) levels decreased in treatments exposed to 1.0mg/L of γ-Fe2O3 NPs at day 30 (p<0.05). In contrast, GLU levels increased during the elimination period for 1.0mg/L α-Fe2O3 NPs treatments (p<0.05). Transient increases occurred in glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and lactate dehydrogenase (LDH). Serum Fe levels did not change during exposure (p>0.05), but increased significantly within elimination period due to mobilization of ingested NPs from liver and spleen to blood. Though respiratory burst activity was not affected (p>0.05), lysozyme activity (LA) was suppressed suggesting an immunosuppressive effects from both Fe2O3 NPs (p<0.05). In contrast, myeloperoxidase (MPO) levels increased significantly in treatments exposed to α-Fe2O3 NPs (p<0.05), and the effect from γ-polymorph was marginal (p≥0.05). The results indicate that morphological differences of Fe2O3 NPs could induce differential uptake, assimilation and immunotoxic effects on O. niloticus under chronic exposure.
Collapse
Affiliation(s)
- Mehmet Ates
- Department of Bioengineering, Tunceli University, Faculty of Engineering, Tunceli, 62000, Turkey
| | - Veysel Demir
- Tunceli University, Faculty of Engineering, Department of Environmental Engineering, Tunceli, 62000, Turkey
| | - Zikri Arslan
- Department of Biochemistry and Chemistry, Jackson State University, Jackson, MS 39217 USA.
| | - Hasan Kaya
- Faculty of Marine Sciences and Technology, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Sevdan Yılmaz
- Faculty of Marine Sciences and Technology, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Mustafa Camas
- Department of Bioengineering, Tunceli University, Faculty of Engineering, Tunceli, 62000, Turkey
| |
Collapse
|
14
|
Boran H, Boyle D, Altinok I, Patsiou D, Henry TB. Aqueous Hg(2+) associates with TiO2 nanoparticles according to particle size, changes particle agglomeration, and becomes less bioavailable to zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:242-246. [PMID: 26970871 DOI: 10.1016/j.aquatox.2016.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/16/2016] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
Engineered nanoparticles (NPs) have unique physicochemistry and potential to interact with other substances in the aqueous phase. Here, gene [metallothionein 2 (mt2)] expression changes in larval zebrafish were used to evaluate the association between aqueous Hg(2+) and TiO2 (NPs and bulk particle size control) to investigate the relationship between changes in Hg(2+) behavior and TiO2 size. During 24h exposures, TiO2 agglomerates increased in size and in the presence of 25μg Hg(2+)/L, greater increases in size were observed. The concentration of Hg(2+) in suspension also decreased in the presence of TiO2-NPs. Mercury increased expression of mt2 in larval zebrafish, but this response was lessened when zebrafish were exposed to Hg(2+) in the presence of TiO2-NPs, and which suggests that TiO2-NPs alter the bioavailability of Hg(2+) to zebrafish larvae. This ameliorative effect of TiO2 was also likely due to surface binding of Hg(2+) because a greater decrease in mt2 expression was observed in the presence of 1mg/L TiO2-NPs than 1mg/L TiO2-bulk. In conclusion, the results show that Hg(2+) will associate with TiO2-NPs, TiO2-NPs that have associated Hg(2+) will settle out of the aqueous phase more rapidly, and agglomerates will deliver associated Hg(2+) to sediment surfaces.
Collapse
Affiliation(s)
- Halis Boran
- Recep Tayyip Erdoğan University, Faculty of Fisheries, 53100 Rize, Turkey; Karadeniz Technical University, Department of Fisheries Technology Engineering, Faculty of Marine Science, 61530 Surmene, Trabzon, Turkey; School of Biological Sciences, Plymouth University, Plymouth PL4 8AA, UK
| | - David Boyle
- School of Biological Sciences, Plymouth University, Plymouth PL4 8AA, UK.
| | - Ilhan Altinok
- Karadeniz Technical University, Department of Fisheries Technology Engineering, Faculty of Marine Science, 61530 Surmene, Trabzon, Turkey
| | - Danae Patsiou
- School of Life Sciences, Heriot-Watt University, Edinburgh, Lothian EH14 4AS, UK
| | - Theodore B Henry
- School of Biological Sciences, Plymouth University, Plymouth PL4 8AA, UK; School of Life Sciences, Heriot-Watt University, Edinburgh, Lothian EH14 4AS, UK; Department of Forestry, Wildlife and Fisheries, Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
15
|
Sheng L, Wang L, Su M, Zhao X, Hu R, Yu X, Hong J, Liu D, Xu B, Zhu Y, Wang H, Hong F. Mechanism of TiO2 nanoparticle-induced neurotoxicity in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY 2016; 31:163-175. [PMID: 25059219 DOI: 10.1002/tox.22031] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/07/2014] [Accepted: 07/13/2014] [Indexed: 06/03/2023]
Abstract
Zebrafish (Danio rerio) has been used historically for evaluating the toxicity of environmental and aqueous toxicants, and there is an emerging literature reporting toxic effects of manufactured nanoparticles (NPs) in zebrafish embryos. Few researches, however, are focused on the neurotoxicity on adult zebrafish after subchronic exposure to TiO2 NPs. This study was designed to evaluate the morphological changes, alterations of neurochemical contents, and expressions of memory behavior-related genes in zebrafish brains caused by exposures to 5, 10, 20, and 40 μg/L TiO2 NPs for 45 consecutive days. Our data indicated that spatial recognition memory and levels of norepinephrine, dopamine, and 5-hydroxytryptamine were significantly decreased and NO levels were markedly elevated, and over proliferation of glial cells, neuron apoptosis, and TiO2 NP aggregation were observed after low dose exposures of TiO2 NPs. Furthermore, the low dose exposures of TiO2 NPs significantly activated expressions of C-fos, C-jun, and BDNF genes, and suppressed expressions of p38, NGF, CREB, NR1, NR2ab, and GluR2 genes. These findings imply that low dose exposures of TiO2 NPs may result in the brain damages in zebrafish, provide a developmental basis for evaluating the neurotoxicity of subchronic exposure, and raise the caution of aquatic application of TiO2 NPs.
Collapse
Affiliation(s)
- Lei Sheng
- Medical College of Soochow University, Suzhou, 215123, China
| | - Ling Wang
- Libary of Soochow University, Suzhou, 215021, China
| | - Mingyu Su
- Medical College of Soochow University, Suzhou, 215123, China
- Suzhou Environmental Monitor Center, Suzhou, 215004, China
| | - Xiaoyang Zhao
- Medical College of Soochow University, Suzhou, 215123, China
| | - Renping Hu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Xiaohong Yu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Jie Hong
- Medical College of Soochow University, Suzhou, 215123, China
| | - Dong Liu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Bingqing Xu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Yunting Zhu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Han Wang
- Medical College of Soochow University, Suzhou, 215123, China
| | - Fashui Hong
- Medical College of Soochow University, Suzhou, 215123, China
| |
Collapse
|
16
|
Qiang L, Pan X, Zhu L, Fang S, Tian S. Effects of nano-TiO2on perfluorooctanesulfonate bioaccumulation in fishes living in different water layers: Implications for enhanced risk of perfluorooctanesulfonate. Nanotoxicology 2015; 10:471-9. [DOI: 10.3109/17435390.2015.1084058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Qiang L, Shi X, Pan X, Zhu L, Chen M, Han Y. Facilitated bioaccumulation of perfluorooctanesulfonate in zebrafish by nano-TiO2 in two crystalline phases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:644-651. [PMID: 26319509 DOI: 10.1016/j.envpol.2015.08.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 06/04/2023]
Abstract
Zebrafish were placed in the upper layer of aquariums to investigate the impacts of anatase and rutile nano-TiO2 on perfluorooctanesulfonate (PFOS) bioaccumulation in zebrafish. Both variations of particle hydrodynamic size and concentration in water column suggest that anatase was better dispersed than rutile. PFOS could be significantly adsorbed on nano-TiO2 to form TiO2-PFOS complexes, leading to reduced concentration of PFOS in upper layer. Due to enhanced exposure to PFOS by ingestion and adhesion of TiO2-PFOS complexes, the whole-body PFOS concentration in zebrafish was enhanced by 59.0% (95% CI: 55.9%, 61.9%) and 25.4% (95% CI: 24.8%, 25.6%) in the presence of anatase and rutile nano-TiO2 after equilibrium compared with the control with PFOS alone. The bioaccumulation of PFOS was much more promoted by anatase, which was attributed by greater adsorption capacity of PFOS to anatase, slower migration of their complex in water column, and slower elimination rate of anatase from fish.
Collapse
Affiliation(s)
- Liwen Qiang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, 300071, PR China
| | - Xiaomei Shi
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, 300071, PR China
| | - Xiaoyu Pan
- College of Marine Science of Engineering, Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, 300071, PR China.
| | - Meng Chen
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, 300071, PR China
| | - Yuwei Han
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
18
|
Jovanović B, Whitley EM, Kimura K, Crumpton A, Palić D. Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 203:153-164. [PMID: 25884347 DOI: 10.1016/j.envpol.2015.04.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 05/26/2023]
Abstract
Nano-TiO2 is immunotoxic to fish and reduces the bactericidal function of fish neutrophils. Here, fathead minnows (Pimephales promelas) were exposed to low and high environmentally relevant concentration of nano-TiO2 (2 ng g(-1) and 10 μg g(-1) body weight, respectively), and were challenged with common fish bacterial pathogens, Aeromonas hydrophila or Edwardsiella ictaluri. Pre-exposure to nano-TiO2 significantly increased fish mortality during bacterial challenge. Nano-TiO2 concentrated in the kidney and spleen. Phagocytosis assay demonstrated that nano-TiO2 has the ability to diminish neutrophil phagocytosis of A. hydrophila. Fish injected with TiO2 nanoparticles displayed significant histopathology when compared to control fish. The interplay between nanoparticle exposure, immune system, histopathology, and infectious disease pathogenesis in any animal model has not been described before. By modulating fish immune responses and interfering with resistance to bacterial pathogens, manufactured nano-TiO2 has the potential to affect fish survival in a disease outbreak.
Collapse
Affiliation(s)
- Boris Jovanović
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany; Center for Nanoscience (CeNS), LMU, Munich, Germany.
| | | | - Kayoko Kimura
- Center for Food Security and Public Health, Iowa State University, Ames, IA, USA
| | - Adam Crumpton
- College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany.
| |
Collapse
|
19
|
Mu L, Gao Y, Hu X. l-Cysteine: A biocompatible, breathable and beneficial coating for graphene oxide. Biomaterials 2015; 52:301-11. [DOI: 10.1016/j.biomaterials.2015.02.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 10/23/2022]
|
20
|
Son J, Vavra J, Li Y, Seymour M, Forbes V. Interactions between suspension characteristics and physicochemical properties of silver and copper oxide nanoparticles: a case study for optimizing nanoparticle stock suspensions using a central composite design. CHEMOSPHERE 2015; 124:136-142. [PMID: 25550107 DOI: 10.1016/j.chemosphere.2014.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 06/04/2023]
Abstract
The preparation of a stable nanoparticle stock suspension is the first step in nanotoxicological studies, but how different preparation methods influence the physicochemical properties of nanoparticles in a solution, even in Milli-Q water, is often under-appreciated. In this study, a systematic approach using a central composite design (CCD) was employed to investigate the effects of sonication time and suspension concentration on the physicochemical properties (i.e. hydrodynamic diameter, zeta potential and ion dissolution) of silver (Ag) and copper oxide (CuO) nanoparticles (NPs) and to identify optimal conditions for suspension preparation in Milli-Q water; defined as giving the smallest particle sizes, highest suspension stability and lowest ion dissolution. Indeed, all the physicochemical properties of AgNPs and CuONPs varied dramatically depending on how the stock suspensions were prepared and differed profoundly between nanoparticle types, indicating the importance of suspension preparation. Moreover, the physicochemical properties of AgNPs and CuONPs, at least in simple media (Milli-Q water), behaved in predictable ways as a function of sonication time and suspension concentration, confirming the validity of our models. Overall, the approach allows systematic assessment of the influence of various factors on key properties of nanoparticle suspensions, which will facilitate optimization of the preparation of nanoparticle stock suspensions and improve the reproducibility of nanotoxicological results. We recommend that further attention be given to details of stock suspension preparation before conducting nanotoxicological studies as these can have an important influence on the behavior and subsequent toxicity of nanoparticles.
Collapse
Affiliation(s)
- Jino Son
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Janna Vavra
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yusong Li
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Megan Seymour
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA; HDR, Inc., 8404 Indian Hills Dr, Omaha, NE 68114, USA
| | - Valery Forbes
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
21
|
Boyle D, Boran H, Atfield AJ, Henry TB. Use of an exposure chamber to maintain aqueous phase nanoparticle dispersions for improved toxicity testing in fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:583-588. [PMID: 25545389 DOI: 10.1002/etc.2840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/19/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
A novel chamber for maintaining aqueous phase dispersions of nanoparticles (NPs) to enable improved toxicity testing in larval zebrafish was developed. Aqueous concentrations were within 80% of initial NP concentrations, and the 96-h median lethal concentration (LC50) values were highly reproducible (coefficient of variation <0.16, n = 3 tests). Significantly lower toxicity for each NP tested (Ag, Cu, and TiO2 NPs) in static beakers suggested that traditional acute toxicity tests may underestimate aqueous phase toxicity of NPs.
Collapse
Affiliation(s)
- David Boyle
- School of Biomedical and Biological Sciences, Plymouth University, Plymouth, Devon, United Kingdom
| | | | | | | |
Collapse
|
22
|
Bourgeault A, Cousin C, Geertsen V, Cassier-Chauvat C, Chauvat F, Durupthy O, Chanéac C, Spalla O. The challenge of studying TiO2 nanoparticle bioaccumulation at environmental concentrations: crucial use of a stable isotope tracer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2451-2459. [PMID: 25587677 DOI: 10.1021/es504638f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ecotoxicity of nanoparticles (NPs) is a growing area of research with many challenges ahead. To be relevant, laboratory experiments must be performed with well-controlled and environmentally realistic (i.e., low) exposure doses. Moreover, when focusing on the intensively manufactured titanium dioxide (TiO2) NPs, sample preparations and chemical analysis are critical steps to meaningfully assay NP's bioaccumulation. To deal with these imperatives, we synthesized for the first time TiO2 NPs labeled with the stable isotope (47)Ti. Thanks to the (47)Ti labeling, we could detect the bioaccumulation of NPs in zebra mussels (Dreissena polymorpha) exposed for 1 h at environmental concentrations via water (7-120 μg/L of (47)TiO2 NPs) and via their food (4-830 μg/L of (47)TiO2 NPs mixed with 1 × 10(6) cells/mL of cyanobacteria) despite the high natural Ti background, which varied in individual mussels. The assimilation efficiency (AE) of TiO2 NPs by mussels from their diet was very low (AE = 3.0 ± 2.7%) suggesting that NPs are mainly captured in mussel gut, with little penetration in their internal organs. Thus, our methodology is particularly relevant in predicting NP's bioaccumulation and investigating the factors influencing their toxicokinetics in conditions mimicking real environments.
Collapse
Affiliation(s)
- Adeline Bourgeault
- CEA Saclay, DSM/IRAMIS/NIMBE/LIONS, UMR CEA-CNRS 3299, 91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mu X, Wang K, Chai T, Zhu L, Yang Y, Zhang J, Pang S, Wang C, Li X. Sex specific response in cholesterol level in zebrafish (Danio rerio) after long-term exposure of difenoconazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 197:278-286. [PMID: 25483594 DOI: 10.1016/j.envpol.2014.11.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/27/2014] [Accepted: 11/09/2014] [Indexed: 06/04/2023]
Abstract
Difenoconazole is a widely used triazole fungicide, its extensive application may potentially cause toxic effects on non-target organisms. To investigate the effect of difenoconazole on cholesterol content and related mechanism, adult zebrafish were exposed to environmental related dosage (0.1, 10 and 500 μg/L) difenoconazole. The body weight and hepatic total cholesterol (TCHO) level was tested at 7, 15 and 30 days post exposure (dpe). The expressions of eight cholesterol synthesis genes and one cholesterol metabolism gene were assessed via Quantitative PCR method. The significant decrease of TCHO level in male zebrafish liver was observed at 15 and 30 dpe, which was accompanied by apparent hepatic cholesterol-genesis genes expression decline. In comparison with males, female zebrafish showed different transcription modification of tested genes, and the cholesterol content maintain normal level during the whole exposure.
Collapse
Affiliation(s)
- Xiyan Mu
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Kai Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Tingting Chai
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Lizhen Zhu
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Yang Yang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jie Zhang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Sen Pang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China.
| | - Xuefeng Li
- College of Sciences, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
24
|
McNeil PL, Boyle D, Henry TB, Handy RD, Sloman KA. Effects of metal nanoparticles on the lateral line system and behaviour in early life stages of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:318-23. [PMID: 24813264 DOI: 10.1016/j.aquatox.2014.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/04/2014] [Accepted: 04/19/2014] [Indexed: 05/20/2023]
Abstract
The unique physicochemistry and potential toxicity of manufactured nanoparticles (NPs) requires innovative approaches for the assessment of toxicity to aquatic organisms. Here, the toxicity of Cu-NPs, Ag-NPs and TiO2-NPs on the lateral line system of free-swimming zebrafish embryos was investigated and compared to appropriate metal salts or bulk material controls. Fish were exposed for 4h at 96-h post-fertilization. Metal salt (CuSO4 and AgNO3) controls reduced the number of functional lateral line neuromasts (LLN) to <5% of unexposed controls, but no effect on LLN was observed for TiO2-NPs or Ag-NPs. Exposure to Cu-NPs caused only a 15% reduction in LLN. Performance of positive rheotaxis was reduced by Cu-NPs, Ag-NPs, and the metal salt controls. The data show that some metal NPs can affect LLN and fish behaviour (rheotaxis) important for survival, and that effects were different from those of comparable metal ion controls. Capsule: We demonstrate that behaviour is a particularly sensitive indicator of metal NP exposure in fish and highlight the interaction between behaviour and external tissue surfaces.
Collapse
Affiliation(s)
- Paul L McNeil
- Institute of Biomedical and Environmental Health Research, School of Science, University of the West of Scotland, Paisley, UK.
| | - David Boyle
- Ecotoxicology Research and Innovation Centre, School of Biomedical and Biological, Sciences, University of Plymouth, Devon, UK
| | - Theodore B Henry
- School of Life Sciences, Heriot-Watt University, Edinburgh, UK; Department of Forestry Wildlife and Fisheries, and Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Richard D Handy
- Ecotoxicology Research and Innovation Centre, School of Biomedical and Biological, Sciences, University of Plymouth, Devon, UK
| | - Katherine A Sloman
- Institute of Biomedical and Environmental Health Research, School of Science, University of the West of Scotland, Paisley, UK
| |
Collapse
|
25
|
Petersen EJ, Henry TB, Zhao J, MacCuspie RI, Kirschling T, Dobrovolskaia MA, Hackley V, Xing B, White JC. Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4226-46. [PMID: 24617739 PMCID: PMC3993845 DOI: 10.1021/es4052999] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/04/2014] [Accepted: 03/11/2014] [Indexed: 05/05/2023]
Abstract
Novel physicochemistries of engineered nanomaterials (ENMs) offer considerable commercial potential for new products and processes, but also the possibility of unforeseen and negative consequences upon ENM release into the environment. Investigations of ENM ecotoxicity have revealed that the unique properties of ENMs and a lack of appropriate test methods can lead to results that are inaccurate or not reproducible. The occurrence of spurious results or misinterpretations of results from ENM toxicity tests that are unique to investigations of ENMs (as opposed to traditional toxicants) have been reported, but have not yet been systemically reviewed. Our objective in this manuscript is to highlight artifacts and misinterpretations that can occur at each step of ecotoxicity testing: procurement or synthesis of the ENMs and assessment of potential toxic impurities such as metals or endotoxins, ENM storage, dispersion of the ENMs in the test medium, direct interference with assay reagents and unacknowledged indirect effects such as nutrient depletion during the assay, and assessment of the ENM biodistribution in organisms. We recommend thorough characterization of initial ENMs including measurement of impurities, implementation of steps to minimize changes to the ENMs during storage, inclusion of a set of experimental controls (e.g., to assess impacts of nutrient depletion, ENM specific effects, impurities in ENM formulation, desorbed surface coatings, the dispersion process, and direct interference of ENM with toxicity assays), and use of orthogonal measurement methods when available to assess ENMs fate and distribution in organisms.
Collapse
Affiliation(s)
- Elijah J. Petersen
- Biosystems
and Biomaterials Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Theodore B. Henry
- School
of Life Sciences, Heriot-Watt University, Edinburgh, United Kingdom
- Center
for Environmental Biotechnology, University
of Tennessee, Knoxville, Tennessee, United States
- Department
of Forestry, Wildlife and Fisheries, University
of Tennessee, Knoxville, Tennessee, United States
| | - Jian Zhao
- Stockbridge
School of Agriculture, University of Massachusetts, Amherst, Massacusetts 01003, United States
| | - Robert I. MacCuspie
- Materials
Measurement Science Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Nanotechnology
Program, Florida Polytechnic University, Lakeland, Florida 33801, United States
| | - Teresa
L. Kirschling
- Applied
Chemicals and Materials Division, NIST, Boulder, Colorado 80305, United States
| | - Marina A. Dobrovolskaia
- Nanotechnology
Characterization Laboratory, Cancer Research Technology Program, Leidos
Biomedical Research Inc., Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Vincent Hackley
- Materials
Measurement Science Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Baoshan Xing
- Stockbridge
School of Agriculture, University of Massachusetts, Amherst, Massacusetts 01003, United States
| | - Jason C. White
- Department
of Analytical Chemistry, The Connecticut
Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| |
Collapse
|
26
|
Clemente Z, Castro VLSS, Moura MAM, Jonsson CM, Fraceto LF. Toxicity assessment of TiO₂ nanoparticles in zebrafish embryos under different exposure conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 147:129-39. [PMID: 24418748 DOI: 10.1016/j.aquatox.2013.12.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/13/2013] [Accepted: 12/18/2013] [Indexed: 05/25/2023]
Abstract
The popularity of TiO2 nanoparticles (nano-TiO2) lies in their wide range of nanotechnological applications, together with low toxicity. Meanwhile, recent studies have shown that the photocatalytic properties of this material can result in alterations in their behavior in the environment, causing effects that have not yet been fully elucidated. The objective of this study was to evaluate the toxicity of two formulations of nano-TiO2 under different illumination conditions, using an experimental model coherent with the principle of the three Rs of alternative animal experimentation (reduction, refinement, and replacement). Embryos of the fish Danio rerio were exposed for 96h to different concentrations of nano-TiO2 in the form of anatase (TA) or an anatase/rutile mixture (TM), under either visible light or a combination of visible and ultraviolet light (UV). The acute toxicity and sublethal parameters evaluated included survival rates, malformation, hatching, equilibrium, and overall length of the larvae, together with biochemical biomarkers (specific activities of catalase (CAT), glutathione S-transferase (GST), and acid phosphatase (AP)). Both TA and TM caused accelerated hatching of the larvae. Under UV irradiation, there was greater mortality of the larvae of the groups exposed to TM, compared to those exposed to TA. Exposure to TM under UV irradiation altered the equilibrium of the larvae. Alterations in the activities of CAT and GST were indicative of oxidative stress, although no clear dose-response relationship was observed. The effects of nano-TiO2 appeared to depend on both the type of formulation and the illumination condition. The findings contribute to elucidation of the factors involved in the toxicity of these nanoparticles, as well as to the establishment of protocols for risk assessments of nanotechnology.
Collapse
Affiliation(s)
- Z Clemente
- Laboratório de Ecotoxicologia e Biossegurança, Embrapa CNPMA, Jaguariúna, SP, Brazil; Programa de Pós-graduação em Biologia Funcional e Molecular, UNICAMP, Campinas, SP, Brazil.
| | - V L S S Castro
- Laboratório de Ecotoxicologia e Biossegurança, Embrapa CNPMA, Jaguariúna, SP, Brazil
| | - M A M Moura
- Laboratório da Ciência das Plantas Daninhas, Instituto Biológico, APTA/SAA, Campinas, SP, Brazil
| | - C M Jonsson
- Laboratório de Ecotoxicologia e Biossegurança, Embrapa CNPMA, Jaguariúna, SP, Brazil
| | - L F Fraceto
- Programa de Pós-graduação em Biologia Funcional e Molecular, UNICAMP, Campinas, SP, Brazil; Departamento de Engenharia Ambiental, UNESP, Sorocaba, SP, Brazil
| |
Collapse
|
27
|
Boyle D, Fox JE, Akerman JM, Sloman KA, Henry TB, Handy RD. Minimal effects of waterborne exposure to single-walled carbon nanotubes on behaviour and physiology of juvenile rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 146:154-164. [PMID: 24308918 DOI: 10.1016/j.aquatox.2013.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/09/2013] [Accepted: 11/09/2013] [Indexed: 06/02/2023]
Abstract
Fish behaviours are often considered to be sensitive endpoints of waterborne contaminants, but little attention has been given to engineered nanomaterials. The present study aimed to determine the locomotor and social behaviours of rainbow trout (Oncorhynchus mykiss) during waterborne exposure to single-walled carbon nanotubes (SWCNTs), and to ascertain the physiological basis for any observed effects. Dispersed stock suspensions of SWCNTs were prepared by stirring in sodium dodecyl sulphate (SDS), an anionic surfactant, on an equal w/w basis. Trout were exposed to control (no SWCNT or SDS), 0.25 mg L(-1) SDS (dispersant control), or 0.25 mg L(-1) of SWCNT for 10 days. Video tracking analysis of spontaneous locomotion of individual fish revealed no significant effects of SWCNT on mean velocity when active, total distance moved, or the distribution of swimming speeds. Hepatic glycogen levels were also unaffected. Fish exposed to SWCNTs retained competitive fitness when compelled to compete in energetically costly aggressive interactions with fish from both control groups. Assessment of the respiratory physiology of the fish revealed no significant changes in ventilation rate or gill injuries. Haematocrit and haemoglobin concentrations in the blood were unaffected by SWCNT exposure; and the absence of changes in the red and white pulp of the spleen excluded a compensatory haematopoietic response to protect the circulation. Despite some minor histological changes in the kidneys of fish exposed to SWCNT compared to controls, plasma ion concentrations and tissue electrolytes were largely unaffected. Direct neurotoxicity of SWCNT was unlikely with the brains showing mostly normal histology, and with no effects on acetylcholinesterase or Na(+)/K(+)-ATPase activities in whole brain homogenates. The minimal effects of waterborne exposure to SWCNT observed in this study are in contrast to our previous report of SWCNT toxicity in trout, suggesting that details of the dispersion method and co-exposure concentration of the dispersing agent may alter toxicity.
Collapse
Affiliation(s)
- David Boyle
- Ecotoxicology Research and Innovation Centre, School of Biomedical and Biological Sciences, University of Plymouth, Devon, UK
| | - James E Fox
- Ecotoxicology Research and Innovation Centre, School of Biomedical and Biological Sciences, University of Plymouth, Devon, UK
| | - Jane M Akerman
- Ecotoxicology Research and Innovation Centre, School of Biomedical and Biological Sciences, University of Plymouth, Devon, UK
| | | | - Theodore B Henry
- School of Life Sciences, Heriot-Watt University, Edinburgh, UK; Department of Forestry Wildlife and Fisheries, and Center for Environmental Biotechnology, The University of Tennessee, Knoxville TN 37996, USA
| | - Richard D Handy
- Ecotoxicology Research and Innovation Centre, School of Biomedical and Biological Sciences, University of Plymouth, Devon, UK.
| |
Collapse
|
28
|
Ortega VA, Katzenback BA, Stafford JL, Belosevic M, Goss GG. Effects of polymer-coated metal oxide nanoparticles on goldfish (Carassius auratus L.) neutrophil viability and function. Nanotoxicology 2013; 9:23-33. [PMID: 24313973 DOI: 10.3109/17435390.2013.861943] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Exposure effects from polyacrylic acid (PAA) metal-oxide nanoparticles (TiO2, CeO2, Fe2O3, ZnO) on fish neutrophil viability and effector functions (degranulation, respiratory burst, inflammatory gene expression) were investigated using primary kidney goldfish (Carassius auratus L.) neutrophils as a model. Several studies have reported cytotoxic effects of NPs but there are limited reports on their potential to perturb the innate immune system of aquatic organisms. PAA-TiO2 significantly decreased neutrophil viability in a time and dose-dependent manner at all measured time points (0-48 h) and concentrations (0-200 µg/mL). Maximum viability decreased by (mean ± SEM): 67.1 ± 3.3%, 78.4 ± 4.2% and 74.9 ± 5.0% when exposed to 50, 100 and 200 µg/mL for 48 h, respectively. PAA-ZnO also significantly decreased neutrophil viability but only at 48 h exposures at higher concentrations. Neutrophil degranulation increased by approximately 3% after 30 min and by 8% after 4 h when exposed to sublethal doses (10 µg/mL) of PAA-CeO2 or PAA-Fe2O3. All PAA-NPs induced an increase in neutrophil respiratory burst when exposed to 10 µg/mL for 30 and 60 min, however, PAA-Fe2O3 was the only NP where the response was significant. Lastly, NPs altered the expression of a number of pro-inflammatory and immune genes, where PAA-TiO2 most significantly increased the mRNA levels of pro-inflammatory genes (il-1b, ifng) in neutrophils by 3 and 2.5 times, respectively. Together, these data demonstrate that goldfish neutrophils can be negatively affected from exposures to PAA-coated NPs and are functionally responsive to specific core-material properties at sublethal doses. These changes could perturb the innate response and affect the ability of fish to respond to pathogens.
Collapse
|