1
|
Maciel-Ruiz JA, Reynoso-Noverón N, Rodríguez-Moreno DA, Petrosyan P, Limón-Pacheco JH, Nepomuceno-Hernández AE, Ayala-Yañez R, Robles-Morales R, Osorio-Yáñez C, García-Cuellar CM, Gonsebatt ME. Geographical approach analysis of the impact of air pollution on newborn intrauterine growth and cord blood DNA damage in Mexico City. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:907-916. [PMID: 38086972 PMCID: PMC11446826 DOI: 10.1038/s41370-023-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 10/04/2024]
Abstract
BACKGROUND Few epidemiologic studies have focused on the specific source of ambient air pollution and adverse health effects in early life. Here, we investigated whether air pollutants from different emission sources were associated with decreased birth anthropometry parameters and increased DNA adduct formation in mother-child pairs residing in the Mexico City Metropolitan Area (MCMA). METHODS This cross-sectional study included 190 pregnant women recruited during their last trimester of pregnancy from two hospitals at MCMA, and a Modeling Emissions Inventory (MEI) to calculate exposure to ambient air pollutants from different emissions sources (area, point, mobile, and natural) for two geographical buffers 250 and 750 m radii around the participants households. RESULTS Contaminants were positively correlated with umbilical cord blood (UCB) adducts, but not with maternal blood (MB) adducts. PM10 emissions (area and point sources, overall emissions), PM2.5 (point sources), volatile organic compounds (VOC), total organic compounds (TOC) from point sources were positively correlated with UCB adducts. Air pollutants emitted from natural sources were correlated with a decrease in MB and UCB adducts. PM10 and PM2.5 were correlated (p < 0.05) with a decrease in birth weight (BW), birth length (BL) and gestational age at term (GA). In multivariate analyses adjusted for potential confounders, PM10 was associated with an increase in UCB adducts. PM10 and PM2.5 from overall emissions were associated with a decrease in BW, BL and GA at term. IMPACT Results suggested higher susceptibility of newborns compared to mothers to damage related to ambient air pollution. PMs are associated with birth anthropometry parameters and DNA damage in adjusted models, highlighting the need for more strict regulation of PM emissions.
Collapse
Affiliation(s)
- Jorge A Maciel-Ruiz
- Laboratorio de Carcinogénesis y Medio Ambiente, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Nancy Reynoso-Noverón
- Centro de Investigación en Prevención, Instituto Nacional de Cancerología-Universidad Nacional Autónoma de México, México City, México
| | - David A Rodríguez-Moreno
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonóma de México, Ciudad de México, México
| | - Pavel Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonóma de México, Ciudad de México, México
| | - Jorge H Limón-Pacheco
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Andrés E Nepomuceno-Hernández
- Centro de Investigación Materno Infantil del Grupo de Estudios al Nacimiento, Asociación Hispano Mexicana, Ciudad de México, México
| | - Rodrigo Ayala-Yañez
- Centro de Investigación Materno Infantil del Grupo de Estudios al Nacimiento, Asociación Hispano Mexicana, Ciudad de México, México
| | - Rogelio Robles-Morales
- División de Investigación de la Unidad Médica de Alta Especialidad, Hospital de Gineco-Obstetricia 3 "Dr. Víctor Manuel Espinosa de los Reyes Sánchez", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Citlalli Osorio-Yáñez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonóma de México, Ciudad de México, México
- Laboratorio de Fisiología y Transplante Renal, Unidad de Investigación en Medicina Traslacional, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cardiología Ignacio Chávez, México City, 14080, México
| | - Claudia María García-Cuellar
- Laboratorio de Carcinogénesis y Medio Ambiente, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, México
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonóma de México, Ciudad de México, México.
| |
Collapse
|
2
|
Santibáñez-Andrade M, Quezada-Maldonado EM, Quintana-Belmares R, Morales-Bárcenas R, Rosas-Pérez I, Amador-Muñoz O, Miranda J, Sánchez-Pérez Y, García-Cuellar CM. Sampling, composition, and biological effects of Mexico City airborne particulate matter from multiple periods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171933. [PMID: 38522535 DOI: 10.1016/j.scitotenv.2024.171933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Air pollution is a worldwide environmental problem with an impact on human health. Particulate matter of ten micrometers or less aerodynamic diameter (PM10) as well as its fine fraction (PM2.5) is related to multiple pulmonary diseases. The impact of air pollution in Mexico City, and importantly, particulate matter has been studied and considered as a risk factor for two decades ago. Previous studies have reported the composition of Mexico City particulate matter, as well as the biological effects induced by this material. However, material collected and used in previous studies is a limited resource, and sampling and particle recovery techniques have been improved. In this study, we describe the methods used in our laboratory for Mexico City airborne particulate matter PM10 and PM2.5 sampling, considering the years 2017, 2018 and 2019. We also analyzed the PM10 and PM2.5 samples obtained to determine their composition. Finally, we exposed lung cell line cultures to PM10 and PM2.5 to evaluate the biological effect of the material in terms of cell viability, cell death, inflammatory response, and cytogenetic alterations. Our results showed that PM10 composition includes inorganic, organic and biological compounds, while PM2.5 is a mixture of more enriched organic compounds. PM10 and PM2.5 treatment in lung cells does not significantly impact cell viability/cell death. However, PM10 and PM2.5 increase the secretion levels of IL-6. Moreover, PM10 as well as PM2.5 induce cytogenetic alterations, such as micronuclei, anaphase bridges, trinucleated cells and apoptotic cells in lung cells. Our results update the evidence of the composition and biological effects of Mexico City particulate matter and provide us a reliable basis for future approaches.
Collapse
Affiliation(s)
- Miguel Santibáñez-Andrade
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico
| | - Ericka Marel Quezada-Maldonado
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico
| | - Raúl Quintana-Belmares
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico
| | - Rocío Morales-Bárcenas
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico
| | - Irma Rosas-Pérez
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Circuito Investigación Científica S/N, Ciudad Universitaria, 04510 Coyoacán, CDMX, Mexico
| | - Omar Amador-Muñoz
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Circuito Investigación Científica S/N, Ciudad Universitaria, 04510 Coyoacán, CDMX, Mexico
| | - Javier Miranda
- Instituto de Física, Universidad Nacional Autónoma de México. Circuito Investigación Científica S/N, Ciudad Universitaria, 04510 Coyoacán, CDMX, Mexico
| | - Yesennia Sánchez-Pérez
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico.
| | - Claudia M García-Cuellar
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico.
| |
Collapse
|
3
|
Morales-Bárcenas R, Sánchez-Pérez Y, Santibáñez-Andrade M, Chirino YI, Soto-Reyes E, García-Cuellar CM. Airborne particulate matter (PM 10) induces cell invasion through Aryl Hydrocarbon Receptor and Activator Protein 1 (AP-1) pathway deregulation in A549 lung epithelial cells. Mol Biol Rep 2023; 50:107-119. [PMID: 36309615 DOI: 10.1007/s11033-022-07986-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Particulate matter with an aerodynamic size ≤ 10 μm (PM10) is a risk factor for lung cancer development, mainly because some components are highly toxic. Polycyclic aromatic hydrocarbons (PAHs) are present in PM10, such as benzo[a]pyrene (BaP), which is a well-known genotoxic and carcinogenic compound to humans, capable of activating AP-1 transcription factor family genes through the Aryl Hydrocarbon Receptor (AhR). Because effects of BaP include metalloprotease 9 (MMP-9) activation, cell invasion, and other pathways related to carcinogenesis, we aimed to demonstrate that PM10 (10 µg/cm2) exposure induces the activation of AP-1 family members as well as cell invasion in lung epithelial cells, through AhR pathway. METHODS AND RESULTS The role of the AhR gene in cells exposed to PM10 (10 µg/cm2) and BaP (1µM) for 48 h was evaluated using AhR-targeted interference siRNA. Then, the AP-1 family members (c-Jun, Jun B, Jun D, Fos B, C-Fos, and Fra-1), the levels/activity of MMP-9, and cell invasion were analyzed. We found that PM10 increased AhR levels and promoted its nuclear localization in A549 treated cells. Also, PM10 and BaP deregulated the activity of AP-1 family members. Moreover, PM10 upregulated the secretion and activity of MMP-9 through AhR, while BaP had no effect. Finally, we found that cell invasion in A549 cells exposed to PM10 and BaP is modulated by AhR. CONCLUSION Our results demonstrated that PM10 exposure induces upregulation of the c-Jun, Jun B, and Fra-1 activity, the expression/activity of MMP-9, and the cell invasion in lung epithelial cells, effects mediated through the AhR. Also, the Fos B and C-Fos activity were downregulated. In addition, the effects induced by PM10 exposure were like those induced by BaP, which highlights the potentially toxic effects of the PM10 mixture in lung epithelial cells.
Collapse
Affiliation(s)
- Rocío Morales-Bárcenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México
| | - Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, CP 54090, Tlalnepantla de Baz, Estado de México, México
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Ciudad de México, México
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México.
| |
Collapse
|
4
|
Kwack MH, Ha NG, Lee WJ. Dieckol Inhibits the Effects of Particulate Matter 10 on Sebocytes, Outer Root Sheath Cells, and Cutibacterium Acnes-Pretreated Mice. Ann Dermatol 2022; 34:182-190. [PMID: 35721332 PMCID: PMC9171178 DOI: 10.5021/ad.2022.34.3.182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/30/2021] [Accepted: 01/12/2022] [Indexed: 11/28/2022] Open
Abstract
Background Particulate matter (PM) is an air pollutant that can impair the human skin. Antioxidants have been tested to improve PM-induced skin inflammation. Objective In this study, we investigated the effects of dieckol on PM-induced inflammation on cultured human sebocytes, outer root sheath (ORS) cells, and mice pretreated with Cutibacterium acnes. Methods We cultured and treated the sebocytes and ORS cells with 5 µM of dieckol and 100 µg/ml of PM10 for 24 h. The C. acnes-pretreated mice received 5 µM of dieckol and 100 µg/ml of PM10. We measured cell viability using MTT assay. Real-time PCR and measurement of reactive oxygen species (ROS) and sebum production analyzed the effects. Results Dieckol inhibited the upregulation of the gene expression of the inflammatory cytokines, matrix metalloproteinase (MMP), aryl hydrocarbon receptor, and nuclear factor kappa-light-chain-enhancer of activated B cells by PM10 in the cultured sebocytes and ORS cells and inhibited an increase in ROS production by PM10 in the cultured sebocytes. In addition, dieckol decreased the inflammatory cytokines, MMP, and sebum production in C. acnes-pretreated mice. Conclusion Dieckol effectively reduced the expression of inflammatory biomarkers and the production of sebum in cultured sebocytes, ORS cells, and C. acnes-pretreated mice.
Collapse
Affiliation(s)
- Mi Hee Kwack
- Department of Immunology and BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Nam Gyoung Ha
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Weon Ju Lee
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
5
|
Pulliero A, Iodice S, Pesatori AC, Vigna L, Khalid Z, Bollati V, Izzotti A. The Relationship between Exposure to Airborne Particulate and DNA Adducts in Blood Cells in an Urban Population of Subjects with an Unhealthy Body Mass Index. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095761. [PMID: 35565154 PMCID: PMC9105958 DOI: 10.3390/ijerph19095761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023]
Abstract
Bulky DNA adducts are a combined sign of aromatic chemical exposure, as well as an individual's ability to metabolically activate carcinogens and repair DNA damage. The present study aims to investigate the association between PM exposure and DNA adducts in blood cells, in a population of 196 adults with an unhealthy BMI (≥25). For each subject, a DNA sample was obtained for quantification of DNA adducts by sensitive32P post-labelling methods. Individual PM10 exposure was derived from daily mean concentrations measured by single monitors in the study area and then assigned to each subject by calculating the mean of the 30 days (short-term exposure), and of the 365 (long-term exposure) preceding enrolment. Multivariable linear regression models were used to study the association between PM10 and DNA adducts. The majority of analysed samples had bulky DNA adducts, with an average value of 3.7 ± 1.6 (mean ± SD). Overall, the findings of the linear univariate and multiple linear regression showed an inverse association between long-term PM10 exposure and adduct levels; this unexpected result might be since the population consists of subjects with an unhealthy BMI, which might show an atypical reaction to airborne urban pollutants; a hermetic response which happens when small amounts of pollutants are present. Pollutants can linger for a long time in the adipose tissue of obese persons, contributing to an increase in oxidative DNA damage, inflammation, and thrombosis when exposure is sustained.
Collapse
Affiliation(s)
- Alessandra Pulliero
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy;
- Correspondence: ; Tel.: +39-010-3538509
| | - Simona Iodice
- Epiget Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (S.I.); (A.C.P.); (V.B.)
| | - Angela Cecilia Pesatori
- Epiget Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (S.I.); (A.C.P.); (V.B.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Luisella Vigna
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Zumama Khalid
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Valentina Bollati
- Epiget Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (S.I.); (A.C.P.); (V.B.)
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
6
|
Santibáñez-Andrade M, Sánchez-Pérez Y, Chirino YI, Morales-Bárcenas R, Quintana-Belmares R, García-Cuellar CM. Particulate matter (PM 10) destabilizes mitotic spindle through downregulation of SETD2 in A549 lung cancer cells. CHEMOSPHERE 2022; 295:133900. [PMID: 35134396 DOI: 10.1016/j.chemosphere.2022.133900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Air pollution represents an environmental problem, impacting negatively in human health. Particulate matter of 10 μm or less in diameter (PM10) is related to pulmonary diseases, including lung cancer. Mitotic spindle is made up by chromosome-microtubule (MT) interactions, where SETD2 plays an important role in MT stability. SETD2 binds and activates α-TUBULIN sub-unit and promotes MT polymerization. Alongside this mechanism, the spindle assembly checkpoint (SAC) senses the adequate mitotic progression through proteins such as BUBR1, AURORA B and SURVIVIN. Alterations in MT dynamics as well as in SAC cause aneuploidy and chromosomal instability, a common phenotype in cancer cells. In this study, we evaluated the effect of PM10 in the expression and protein levels of SETD2, as well as the effect in the expression and protein levels of SAC and mitotic components involved in chromosomal segregation/mitosis, using the A549 lung cancer cell line. A549 cell cultures were exposed to PM10 (10 μg/cm2) for 24 h to evaluate the expression and protein levels of SETD2 (SETD2), TUBA1A (α-TUBULIN), CCNB1 (CYCLIN B1), BUB1B (BUBR1), AURKB (AURORA B) and BIRC5 (SURVIVIN). We observed that PM10 decreases the expression and protein levels of SETD2, α-TUBULIN and BUBR1 and increases the levels of AURORA B and SURVIVIN in A549 cells, compared with non-treated cells. PM10 also caused a decrease in mitotic index and in the percentage of cells in G2/M when compared with control group. Co-localization of SETD2/α -TUB was lower in PM10-treated cells in comparison with non-treated cells. Finally, micronuclei (MN) frequency was higher in PM10-treated cells in contrast with non-treated cells, being whole chromosomes more common in PM10-treated MN than in non-treated MN. Our results suggest that PM10 causes missegregation and aneuploidy through downregulation of SETD2 and SAC components, inducing aneuploidy and predisposing to the generation of chromosomal instability in transformed cells.
Collapse
Affiliation(s)
- Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan CP, 14080, Ciudad de México, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan CP, 14080, Ciudad de México, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla CP, 54090, Estado de México, Mexico
| | - Rocío Morales-Bárcenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan CP, 14080, Ciudad de México, Mexico
| | - Raúl Quintana-Belmares
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan CP, 14080, Ciudad de México, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan CP, 14080, Ciudad de México, Mexico.
| |
Collapse
|
7
|
Nucleotide Excision Repair Pathway Activity Is Inhibited by Airborne Particulate Matter (PM10) through XPA Deregulation in Lung Epithelial Cells. Int J Mol Sci 2022; 23:ijms23042224. [PMID: 35216341 PMCID: PMC8878008 DOI: 10.3390/ijms23042224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Airborne particulate matter with a diameter size of ≤10 µm (PM10) is a carcinogen that contains polycyclic aromatic hydrocarbons (PAH), which form PAH–DNA adducts. However, the way in which these adducts are managed by DNA repair pathways in cells exposed to PM10 has been partially described. We evaluated the effect of PM10 on nucleotide excision repair (NER) activity and on the levels of different proteins of this pathway that eliminate bulky DNA adducts. Our results showed that human lung epithelial cells (A549) exposed to 10 µg/cm2 of PM10 exhibited PAH–DNA adducts as well as an increase in RAD23 and XPD protein levels (first responders in NER). In addition, PM10 increased the levels of H4K20me2, a recruitment signal for XPA. However, we observed a decrease in total and phosphorylated XPA (Ser196) and an increase in phosphatase WIP1, aside from the absence of XPA–RPA complex, which participates in DNA-damage removal. Additionally, an NER activity assay demonstrated inhibition of the NER functionality in cells exposed to PM10, indicating that XPA alterations led to deficiencies in DNA repair. These results demonstrate that PM10 exposure induces an accumulation of DNA damage that is associated with NER inhibition, highlighting the role of PM10 as an important contributor to lung cancer.
Collapse
|
8
|
Zaragoza-Ojeda M, Torres-Flores U, Rodríguez-Leviz A, Arenas-Huertero F. Benzo[ghi]perylene induces cellular dormancy signaling and endoplasmic reticulum stress in NL-20 human bronchial epithelial cells. Toxicol Appl Pharmacol 2022; 439:115925. [PMID: 35182551 DOI: 10.1016/j.taap.2022.115925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 12/22/2022]
Abstract
Benzo[ghi]perylene (BghiP) is produced by the incomplete combustion of gasoline and it is a marker of high vehicular flow in big cities. Nowadays, it is known that BghiP functions as ligand for the aryl hydrocarbon receptor (AhR), which can cause several molecular responses. For this reason, the aim of the present study was to assess the in vitro effects of the exposure to BghiP, specifically, the induction of cellular dormancy and endoplasmic reticulum stress (ER stress) in NL-20 human cells. Our results proved that a 24 h exposure of BghiP, increased the expression of NR2F1 (p < 0.05). NR2F1 is the main activator of cell dormancy, therefore, we analyzed the expression of its target genes SOX9 and p27 showing an increase of the transcripts (p < 0.05), suggesting a pathway that could produce a cell cycle arrest. Interestingly, this effect was only observed with BghiP exposure, and not with a classic AhR ligand: benzo[a]pyrene. Moreover, in the presence of the AhR antagonist, CH223191, or when the expression of AhR was knock-down using dsiRNAs, the cellular dormancy signaling pathway was blocked. Morphological and ultrastructure analysis demonstrated that BghiP also induces ER stress, characterized by the dilated ER cisternae and the overexpression of PERK and CHOP genes (p < 0.05). Moreover, the halt of cell proliferation and the ER stress are both associated to the increase of pro-inflammatory cytokines (IL-6 and IL-8) and the cell survival in response to microenvironmental cues. These responses induced by BghiP on bronchial cells open new horizons on the research of other biological effects induced by environmental pollutants.
Collapse
Affiliation(s)
- Montserrat Zaragoza-Ojeda
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Ulises Torres-Flores
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Alejandra Rodríguez-Leviz
- Laboratorio de Microscopía Electrónica, Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico.
| |
Collapse
|
9
|
Particulate Matter (PM 10) Promotes Cell Invasion through Epithelial-Mesenchymal Transition (EMT) by TGF-β Activation in A549 Lung Cells. Int J Mol Sci 2021; 22:ijms222312632. [PMID: 34884446 PMCID: PMC8657922 DOI: 10.3390/ijms222312632] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/17/2023] Open
Abstract
Air pollution presents a major environmental problem, inducing harmful effects on human health. Particulate matter of 10 μm or less in diameter (PM10) is considered an important risk factor in lung carcinogenesis. Epithelial-mesenchymal transition (EMT) is a regulatory program capable of inducing invasion and metastasis in cancer. In this study, we demonstrated that PM10 treatment induced phosphorylation of SMAD2/3 and upregulation of SMAD4. We also reported that PM10 increased the expression and protein levels of TGFB1 (TGF-β), as well as EMT markers SNAI1 (Snail), SNAI2 (Slug), ZEB1 (ZEB1), CDH2 (N-cadherin), ACTA2 (α-SMA), and VIM (vimentin) in the lung A549 cell line. Cell exposed to PM10 also showed a decrease in the expression of CDH1 (E-cadherin). We also demonstrated that expression levels of these EMT markers were reduced when cells are transfected with small interfering RNAs (siRNAs) against TGFB1. Interestingly, phosphorylation of SMAD2/3 and upregulation of SMAD induced by PM10 were not affected by transfection of TGFB1 siRNAs. Finally, cells treated with PM10 exhibited an increase in the capacity of invasiveness because of EMT induction. Our results provide new evidence regarding the effect of PM10 in EMT and the acquisition of an invasive phenotype, a hallmark necessary for lung cancer progression.
Collapse
|
10
|
Quezada-Maldonado EM, Sánchez-Pérez Y, Chirino YI, García-Cuellar CM. Airborne particulate matter induces oxidative damage, DNA adduct formation and alterations in DNA repair pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117313. [PMID: 34022687 DOI: 10.1016/j.envpol.2021.117313] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/12/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Air pollution, which includes particulate matter (PM), is classified in group 1 as a carcinogen to humans by the International Agency for Research in Cancer. Specifically, PM exposure has been associated with lung cancer in patients living in highly polluted cities. The precise mechanism by which PM is linked to cancer has not been completely described, and the genotoxicity induced by PM exposure plays a relevant role in cell damage. In this review, we aimed to analyze the types of DNA damage and alterations in DNA repair pathways induced by PM exposure, from both epidemiological and toxicological studies, to comprehend the contribution of PM exposure to carcinogenesis. Scientific evidence supports that PM exposure mainly causes oxidative stress by reactive oxygen species (ROS) and the formation of DNA adducts, specifically by polycyclic aromatic hydrocarbons (PAH). PM exposure also induces double-strand breaks (DSBs) and deregulates the expression of some proteins in DNA repair pathways, precisely, base and nucleotide excision repairs and homologous repair. Furthermore, specific polymorphisms of DNA repair genes could lead to an adverse response in subjects exposed to PM. Nevertheless, information about the effects of PM on DNA repair pathways is still limited, and it has not been possible to conclude which pathways are the most affected by exposure to PM or if DNA damage is repaired properly. Therefore, deepening the study of genotoxic damage and alterations of DNA repair pathways is needed for a more precise understanding of the carcinogenic mechanism of PM.
Collapse
Affiliation(s)
- Ericka Marel Quezada-Maldonado
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, CDMX, Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Unidad de Posgrado Edificio B, Primer Piso, Ciudad Universitaria, Coyoacán, CP 04510, Ciudad de México, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, CDMX, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, CDMX, Mexico.
| |
Collapse
|
11
|
Santibáñez-Andrade M, Sánchez-Pérez Y, Chirino YI, Morales-Bárcenas R, García-Cuellar CM. Long non-coding RNA NORAD upregulation induced by airborne particulate matter (PM 10) exposure leads to aneuploidy in A549 lung cells. CHEMOSPHERE 2021; 266:128994. [PMID: 33250223 DOI: 10.1016/j.chemosphere.2020.128994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/18/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Air pollution is a worldwide problem that affects human health predominantly in the largest cities. Particulate matter of 10 μm or less in diameter (PM10) is considered a risk factor for multiple diseases, including lung cancer. The long non-coding RNA NORAD and the components of the spindle assembly checkpoint (SAC) ensure proper chromosomal segregation. Alterations in the SAC cause aneuploidy, a feature associated with carcinogenesis. In this study, we demonstrated that PM10 treatment increased the expression levels of NORAD as well as those of SAC components mitotic arrest deficient 1 (MAD1L1), mitotic arrest deficient 2 (MAD2L1), BubR1 (BUB1B), aurora B (AURKB), and survivin (BIRC5) in the lung A549 cell line. We also demonstrated that MAD1L1, MAD2L1, and BUB1B expression levels were reduced when cells were transfected with small interfering RNAs (siRNAs) against NORAD. Interestingly, the expression levels of AURKB and BIRC5 (survivin) were not affected by transfection with NORAD siRNAs. Cells treated with PM10 exhibited a decrease in mitotic arrest and an increase in micronuclei frequency in synchronized A549 cells. PM10 exposure induced aneuploidy events as a result of SAC deregulation. We also observed a reduction in the protein levels of Pumilio 1 after PM10 treatment. Our results provide novel clues regarding the effect of PM10 in the generation of chromosomal instability, a phenotype observed in lung cancer cells.
Collapse
Affiliation(s)
- Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, Ciudad de México, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, Ciudad de México, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla, CP 54090, Estado de México, Mexico
| | - Rocío Morales-Bárcenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, Ciudad de México, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, Ciudad de México, Mexico.
| |
Collapse
|
12
|
AHR Signaling Interacting with Nutritional Factors Regulating the Expression of Markers in Vascular Inflammation and Atherogenesis. Int J Mol Sci 2020; 21:ijms21218287. [PMID: 33167400 PMCID: PMC7663825 DOI: 10.3390/ijms21218287] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
There is strong evidence that exposure to fine particulate matter (PM2.5) and a high-fat diet (HFD) increase the risk of mortality from atherosclerotic cardiovascular diseases. Recent studies indicate that PM2.5 generated by combustion activates the Aryl Hydrocarbon Receptor (AHR) and inflammatory cytokines contributing to PM2.5-mediated atherogenesis. Here we investigate the effects of components of a HFD on PM-mediated activation of AHR in macrophages. Cells were treated with components of a HFD and AHR-activating PM and the expression of biomarkers of vascular inflammation was analyzed. The results show that glucose and triglyceride increase AHR-activity and PM2.5-mediated induction of cytochrome P450 (CYP)1A1 mRNA in macrophages. Cholesterol, fructose, and palmitic acid increased the PM- and AHR-mediated induction of proinflammatory cytokines in macrophages. Treatment with palmitic acid significantly increased the expression of inflammatory cytokines and markers of vascular injury in human aortic endothelial cells (HAEC) after treatment with PM2.5. The PM2.5-mediated activation of the atherogenic markers C-reactive protein (CRP) and S100A9, a damage-associated molecular pattern molecule, was found to be AHR-dependent and involved protein kinase A (PKA) and a CCAAT/enhancer-binding protein (C/EBP) binding element. This study identified nutritional factors interacting with AHR signaling and contributing to PM2.5-induced markers of atherogenesis and future cardiovascular risk.
Collapse
|
13
|
Duan S, Zhang M, Sun Y, Fang Z, Wang H, Li S, Peng Y, Li J, Li J, Tian J, Yin H, Yao S, Zhang L. Mechanism of PM 2.5-induced human bronchial epithelial cell toxicity in central China. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122747. [PMID: 32339879 DOI: 10.1016/j.jhazmat.2020.122747] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 05/05/2023]
Abstract
Exposure to PM2.5 has been linked to respiratory disorders, yet knowledge of the molecular mechanism is limited. Here, PM2.5 was monitored and collected in central China, and its cytotoxicity mechanism on human bronchial epithelial cells (BEAS-2B) was investigated. With the average concentration of 109 ± 69 μg/m3, PM2.5 was rich in heavy metals and organic pollutants. After exposure to PM2.5, the viability of BEAS-2B cells decreased, where 510 dysregulated genes were predicted to induce necroptosis via inhibiting ATP synthesis through the oxidative phosphorylation signaling pathway. Cellular experiments demonstrated that the content of ATP was downregulated, while the expression of RIP3, a necroptosis indicator, was upregulated. Besides, four enzymes in charge of ATP synthesis were downregulated, including ATP5F, NDUF, COX7A, and UQCR, while two genes of RELA and CAPN1 responsible for necroptosis were upregulated. Furthermore, N-acetylcysteine was applied as an enhancer for ATP synthesis, which reversed the downregulation of ATP5F, NDUF, and COX7A, and consequently alleviated the elevation of RELA, CAPN1, and RIP3. In conclusion, PM2.5 exposure downregulates ATP5F, NDUF, COX7A, and UQCR, and that inhibits ATP synthesis via the oxidative phosphorylation signaling pathway, which subsequently upregulates RELA and CAPN1 and ultimately leads to necroptosis of BEAS-2B cells.
Collapse
Affiliation(s)
- Shuyin Duan
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; Department of Occupational and Environmental Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Yaqiong Sun
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Hefeng Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Shuxian Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Yanze Peng
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Junxia Li
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Weifang Medical University, Weifang 261042, China
| | - Jiaqi Tian
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Weifang Medical University, Weifang 261042, China
| | - Haoyu Yin
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Weifang Medical University, Weifang 261042, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China.
| |
Collapse
|
14
|
Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol 2020; 34:101530. [PMID: 32354640 PMCID: PMC7327980 DOI: 10.1016/j.redox.2020.101530] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor regulating the expression of genes, for instance encoding the monooxygenases cytochrome P450 (CYP) 1A1 and CYP1A2, which are important enzymes in metabolism of xenobiotics. The AHR is activated upon binding of polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs), and related ubiquitous environmental chemicals, to mediate their biological and toxic effects. In addition, several endogenous and natural compounds can bind to AHR, thereby modulating a variety of physiological processes. In recent years, ambient particulate matter (PM) associated with traffic related air pollution (TRAP) has been found to contain significant amounts of PAHs. PM containing PAHs are of increasing concern as a class of agonists, which can activate the AHR. Several reports show that PM and AHR-mediated induction of CYP1A1 results in excessive generation of reactive oxygen species (ROS), causing oxidative stress. Furthermore, exposure to PM and PAHs induce inflammatory responses and may lead to chronic inflammatory diseases, including asthma, cardiovascular diseases, and increased cancer risk. In this review, we summarize findings showing the critical role that the AHR plays in mediating effects of environmental pollutants and stressors, which pose a risk of impacting the environment and human health. PAHs present on ambient air pollution particles are ligands of the cellular AHR. AHR-dependent induction of CYP1, AKR, NOX and COX-2 genes can be a source of ROS generation. AHR signaling and NRF2 signaling interact to regulate the expression of antioxidant genes. Air pollution and ROS can affect inflammation, which is partially triggered by AHR and associated immune responses. Skin, lung, and the cardiovascular system are major target sites for air pollution-induced inflammation.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; School of Veterinary Medicine Department of Anatomy, University of California, One Shields Avenue, Davis, CA, 5616, USA
| | - Charlotte Esser
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | | |
Collapse
|
15
|
Santibáñez-Andrade M, Sánchez-Pérez Y, Chirino YI, Morales-Bárcenas R, Herrera LA, García-Cuellar CM. Airborne particulate matter induces mitotic slippage and chromosomal missegregation through disruption of the spindle assembly checkpoint (SAC). CHEMOSPHERE 2019; 235:794-804. [PMID: 31280048 DOI: 10.1016/j.chemosphere.2019.06.232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
Particulate matter (PM) is a risk factor for lung cancer development and chromosomal missegregation and cell cycle disruptions are key cellular events that trigger tumorigenesis. We aimed to study the effect of PM10 (PM with an aerodynamic diameter ≤10 μm) on mitotic arrest and chromosomal segregation, evaluating the spindle assembly checkpoint (SAC) protein dynamics in the human lung A549 adenocarcinoma cell line. For this purpose, synchronized cells were exposed to PM10 for 24 h to obtain the frequency of micronucleated (MN) and trinucleated (TN) cells. Then, the efficiency of the mitotic arrest after PM10 exposure was analyzed. To elucidate the effect of PM10 in chromosomal segregation, the levels and subcellular localization of essential SAC proteins were evaluated. Results indicated that A549 cells exposed to PM10 exhibited an increase in MN and TN cells and a decrease in mitotic indexes and G2/M phase. A549 cells treated with PM10 showed reduced protein levels of MDC1 and NEK2 (38% and 35% respectively), which is required for MAD2 recruitment to kinetochores, MAD2 and BUBR1, effectors of the SAC (25% and 18% respectively), and CYCLIN B1, required during G2/M phase (35%). Besides, PM10 exposure increase the levels of AURORA B and SURVIVIN, required for SAC activation through chromosome-microtubule attachment errors (85% and 74% respectively). We suggest that PM10 causes mitotic slippage due to alterations in MAD2 localization. Thus, PM10 causes inadequate chromosomal segregation and deficient mitotic arrest by altering SAC protein levels, predisposing A549 cells to chromosomal instability, a common feature observed in cancer.
Collapse
Affiliation(s)
- Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080 México, DF, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080 México, DF, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, CP 54090, Tlalnepantla, Estado de México, Mexico
| | - Rocío Morales-Bárcenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080 México, DF, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080 México, DF, Mexico.
| |
Collapse
|
16
|
Castro-Gálvez Z, Garrido-Armas M, Palacios-Arreola MI, Torres-Flores U, Rivera-Torruco G, Valle-Rios R, Amador-Muñoz O, Hernández-Hernández A, Arenas-Huertero F. Cytotoxic and genotoxic effects of Benzo[ghi]perylene on the human bronchial cell line NL-20. Toxicol In Vitro 2019; 61:104645. [PMID: 31518672 DOI: 10.1016/j.tiv.2019.104645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/26/2019] [Accepted: 09/07/2019] [Indexed: 10/26/2022]
Abstract
Benzo[ghi]perylene is the most abundant polycyclic aromatic hydrocarbon in the atmosphere of highly polluted cities with high altitudes like Mexico City. We evaluated the in vitro cytotoxic and genotoxic effects that Benzo[ghi]perylene could induce to the bronchial cell line NL-20 after 3 h of exposure. Furthermore, exposed cells were washed and maintained for 24 h without the treatment (recovery time), in order to evaluate a persistent damage to the cells. We found that at 3 h of exposure, 20% and 47% of the cells displayed cytoplasmic vesicles (p <0.05) and ɣH2AX foci in the nuclei (p <0.05), respectively. Furthermore, 27% of cells showed translocation of the factor inductor apoptosis into the nuclei (p <0.05) and an increase of proliferating cells was also observed (21%, p <0.05). The cells after recovery time continued displaying morphological changes and ɣH2AX foci, despite of the increased expression (> 2-times fold change) of some DNA repair genes (p <0.05) found before the recovery time. We also found that the cell nuclei contained Benzo[ghi]perylene after the exposure and it remains there after the recovery time (p <0.01). Therefore, hereby we report the cytotoxic and genotoxic effects that Benzo[ghi]perylene is capable to induce to NL-20 cells.
Collapse
Affiliation(s)
- Zelmy Castro-Gálvez
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico
| | - Mónika Garrido-Armas
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico
| | - Margarita Isabel Palacios-Arreola
- Laboratorio de Especiación Química de Aerosoles Orgánicos Atmosféricos y Desarrollo de Tecnologías Verdes, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Ulises Torres-Flores
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico
| | - Guadalupe Rivera-Torruco
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Colonia Doctores, 06720 Ciudad de México, Mexico; Unidad Universitaria de Investigación, División de Investigación, Facultad de Medicina de la Universidad Nacional Autónoma de México (UNAM), Mexico; Departamento de Fisiología y Neurociencias, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico
| | - Ricardo Valle-Rios
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Colonia Doctores, 06720 Ciudad de México, Mexico; Unidad Universitaria de Investigación, División de Investigación, Facultad de Medicina de la Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Omar Amador-Muñoz
- Laboratorio de Especiación Química de Aerosoles Orgánicos Atmosféricos y Desarrollo de Tecnologías Verdes, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Abrahan Hernández-Hernández
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico; Unidad de Biología de Células Individuales (Biocelin), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico.
| |
Collapse
|
17
|
Maciel-Ruiz JA, López-Rivera C, Robles-Morales R, Veloz-Martínez MG, López-Arellano R, Rodríguez-Patiño G, Petrosyan P, Govezensky T, Salazar AM, Ostrosky-Wegman P, Montero-Montoya R, Gonsebatt ME. Prenatal exposure to particulate matter and ozone: Bulky DNA adducts, plasma isoprostanes, allele risk variants, and neonate susceptibility in the Mexico City Metropolitan Area. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:428-442. [PMID: 30706525 DOI: 10.1002/em.22276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/27/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Mexico City's Metropolitan Area (MCMA) includes Mexico City and 60 municipalities of the neighbor states. Inhabitants are exposed to emissions from over five million vehicles and stationary sources of air pollutants such as particulate matter (PM) and ozone. MCMA PM contains elemental carbon and organic carbon (OC). OCs include polycyclic aromatic hydrocarbons (PAHs), many of which induce mutagenic and carcinogenic DNA adducts. Gestational exposure to air pollution has been associated with increased risk of intrauterine growth restriction, preterm birth or low birth weight risk, and PAH-DNA adducts. These effects also depend on the presence of risk alleles. We investigated the presence of bulky PAH-DNA adducts, plasma 8-iso-PGF2α (8-iso-prostaglandin F2α ) and risk allele variants in neonates cord blood and their non-smoking mothers' leucocytes from families that were living in a highly polluted area during 2014-2015. The presence of adducts was significantly associated with both PM2.5 and PM10 levels, mainly during the last trimester of gestation in both neonates and mothers, while the last month of pregnancy was significant for the association between ozone levels and maternal plasma 8-iso-PGF2α . Fetal CYP1B1*3 risk allele was associated with increased adduct levels in neonates while the presence of the maternal allele significantly reduced the levels of fetal adducts. Maternal NQO1*2 was associated with lower maternal levels of adducts. Our findings suggest the need to reduce actual PM limits in MCMA. We did not observe a clear association between PM and/or adduct levels and neonate weight, length, body mass index, Apgar or Capurro score. Environ. Mol. Mutagen. 60:428-442, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jorge A Maciel-Ruiz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Cristina López-Rivera
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rogelio Robles-Morales
- División de Investigación de la Unidad Médica de Alta Especialidad, Hospital de Gineco-Obstetricia 3 "Dr. Victor Manuel Espinosa de los Reyes Sánchez", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Maria G Veloz-Martínez
- División de Investigación de la Unidad Médica de Alta Especialidad, Hospital de Gineco-Obstetricia 3 "Dr. Victor Manuel Espinosa de los Reyes Sánchez", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Raquel López-Arellano
- LEDEFAR, Facultad de Estudios Superiores Cuatitlán, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gabriela Rodríguez-Patiño
- LEDEFAR, Facultad de Estudios Superiores Cuatitlán, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Pavel Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Tzipe Govezensky
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ana M Salazar
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Regina Montero-Montoya
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maria E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
18
|
Sordo M, Maciel-Ruiz JA, Salazar AM, Robles-Morales R, Veloz-Martínez MG, Pacheco-Limón JH, Nepomuceno-Hernández AE, Ayala-Yáñez R, Gonsebatt ME, Ostrosky-Wegman P. Particulate matter-associated micronuclei frequencies in maternal and cord blood lymphocytes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:421-427. [PMID: 30702784 DOI: 10.1002/em.22275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Studies associate particulate matter (PM) exposure with pulmonary, cardiovascular, and neurologic diseases. Elevated levels of coarse (PM10) and fine (PM2.5) PM have been reported in the Mexico City metropolitan area during the last two decades. There is limited information if these conditions affect newborns. We associated maternal exposure to PM reported by the monitoring stations considering the place of residence of each participant with the presence of genotoxic damage (cytome analysis) in maternal and umbilical cord blood (UCB) lymphocytes. Eighty-four healthy women in their last quarter of pregnancy met the inclusion criteria. Each volunteer exposure was estimated according to the average PM2.5 and PM10 levels during the last month of gestation. The micronuclei (MN) frequencies in UCB lymphocyte cultures ranged between 0 and 9. They also showed lower cell proliferation indexes than their mothers. There was a strong correlation between the maternal and the UCB MN frequency (ρ = 0.3767, P = 0.0002). Multiple regression analysis including PM10 and PM2.5 levels, maternal age, and occupation, showed a significant and positive association between UCB MN frequency and PM2.5. A statistically significant increase in the MN frequency in both maternal and UCB lymphocytes was observed in samples obtained during the dry season (higher PM levels) as compared with the MN frequency in blood samples obtained during the rainy season (lower PM levels). These results suggest that PM, mainly PM2.5 , can cross the placenta causing DNA damage in fetal cells which may increase the potential for diseases during childhood or adult life. Environ. Mol. Mutagen. 60:421-427, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Monserrat Sordo
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge Alfonso Maciel-Ruiz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana María Salazar
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rogelio Robles-Morales
- División de Investigación de la Unidad Médica de Alta Especialidad, Hospital de Gineco-Obstetricia 3 "Dr. Victor Manuel Espinosa de los Reyes Sánchez", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - María Guadalupe Veloz-Martínez
- División de Investigación de la Unidad Médica de Alta Especialidad, Hospital de Gineco-Obstetricia 3 "Dr. Victor Manuel Espinosa de los Reyes Sánchez", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Jorge H Pacheco-Limón
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Andrés E Nepomuceno-Hernández
- Centro de Investigación Materno Infantil del Grupo de Estudios al Nacimiento, Asociación Hispano Mexicana, Ciudad de México, Mexico
| | - Rodrigo Ayala-Yáñez
- Centro de Investigación Materno Infantil del Grupo de Estudios al Nacimiento, Asociación Hispano Mexicana, Ciudad de México, Mexico
| | - Maria E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
19
|
Martínez-Ramírez OC, Pérez-Morales R, Castro-Hernández C, Gonsebatt ME, Casas-Ávila L, Valdés-Flores M, Petrosyan P, de León-Suárez VP, Rubio J. Association of the Promoter Methylation and the rs12917 Polymorphism of MGMT with Formation of DNA Bulky Adducts and the Risk of Lung Cancer in Mexican Mestizo Population. DNA Cell Biol 2019; 38:307-313. [DOI: 10.1089/dna.2018.4526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Rebeca Pérez-Morales
- Departamento de Biología Molecular, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Clementina Castro-Hernández
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Maria Eugenia Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Leonora Casas-Ávila
- Departamento de Genética, Instituto Nacional de Rehabilitación, Ciudad de México, Mexico
| | | | - Pavel Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Julieta Rubio
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
20
|
Li Y, Fu S, Li E, Sun X, Xu H, Meng Y, Wang X, Chen Y, Xie C, Geng S, Wu J, Zhong C, Xu P. Modulation of autophagy in the protective effect of resveratrol on PM2.5-induced pulmonary oxidative injury in mice. Phytother Res 2018; 32:2480-2486. [PMID: 30238534 DOI: 10.1002/ptr.6187] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/17/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
Abstract
Ambient fine particulate matter (PM2.5) is capable of inducing pulmonary oxidative injury. Autophagy maintains basal cellular homeostasis and plays a critical role in the pathogenesis of lung diseases. Resveratrol, a natural polyphenol, is an effective antioxidant agent against particulate matter (PM)-induced injuries. The current study was designed to investigate whether resveratrol can regulate autophagy in the process of PM2.5-mediated pulmonary oxidative injury. In the mice model of PM2.5 exposure, we found that PM2.5 increased the contents of malondialdehyde (MDA) and nitric oxide (NO) while decreased the expression of nuclear factor erythroid-2-related factor 2 in the lungs. The levels of 8-hydroxydeoxyguanosine and inflammatory cytokines were increased following PM2.5 exposure. Histological analysis of the lungs revealed inflammatory change in PM2.5 group. Meanwhile, PM2.5 triggered autophagy, as evidenced by the elevated expression of microtubule-associated proteins light chain 3II, Beclin1 and p62. Transmission electron microscopy images showed that autophagosomes accumulated in the lungs after PM2.5 exposure. Furthermore, resveratrol intervention suppressed autophagy and attenuated the oxidative injury resulting from PM2.5 exposure. Our findings provided a valuable insight into the underlying mechanism for the protective effects of resveratrol against PM2.5-induced lung injury, which involves suppression of the autophagic process.
Collapse
Affiliation(s)
- Yuan Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Suming Fu
- Center for Disease Control and Prevention, Chengdu Railway Bureau, Chengdu, China
| | - Enlai Li
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xianchao Sun
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haie Xu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yu Meng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoqian Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ping Xu
- Department of Clinical Nutrition, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
21
|
Li Y, Qian W, Wang D, Meng Y, Wang X, Chen Y, Li X, Xie C, Zhong C, Fu S. Resveratrol relieves particulate matter (mean diameter < 2.5 μm)-induced oxidative injury of lung cells through attenuation of autophagy deregulation. J Appl Toxicol 2018; 38:1251-1261. [PMID: 29781141 DOI: 10.1002/jat.3636] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Oxidative stress and inflammation are critically implicated in ambient fine particulate matter (mean diameter < 2.5 μm; PM2.5 )-induced lung injury. Autophagy, playing a crucial role in various physiopathological conditions, modulates cellular homeostasis and stress adaptation. Resveratrol is a phytoalexin that exerts potent antioxidant effects on cardiopulmonary diseases. To date, the mechanisms by which resveratrol protects against PM2.5 remain to be elucidated. In the present study, we investigated the effect of resveratrol on PM2.5 -induced oxidative injury. The potential role of nuclear factor erythroid-2-related factor 2 and autophagy in this progress was explored. Human bronchial epithelial cells were treated with PM2.5 and the cytotoxicity and oxidative stress markers were determined. The results showed that PM2.5 decreased cell viability and elevated the level of lactate dehydrogenase. The levels of malondialdehyde and reactive oxygen species were increased by PM2.5 exposure. PM2.5 also induced a significant increase of the inflammatory cytokines including interleukin (IL)-6, IL-8, IL-1β and tumor necrosis factor α. Meanwhile, PM2.5 triggered autophagy formation and alteration of the nuclear factor erythroid-2-related factor 2 pathway. Furthermore, human bronchial epithelial cells were co-treated with PM2.5 and resveratrol in the presence or absence of 3-methylamphetamine, an inhibitor of autophagic formation. It was revealed that resveratrol intervention abolished PM2.5 -induced oxidative injury partially through the suppression of autophagy deregulation. Findings from this study could provide new insights into the molecular mechanisms of pulmonary intervention during PM2.5 exposure.
Collapse
Affiliation(s)
- Yuan Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Qian
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dengdian Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yu Meng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoqian Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Suming Fu
- Center for Disease Control and Prevention, Chengdu Railway Bureau, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Peixoto MS, de Oliveira Galvão MF, Batistuzzo de Medeiros SR. Cell death pathways of particulate matter toxicity. CHEMOSPHERE 2017; 188:32-48. [PMID: 28865791 DOI: 10.1016/j.chemosphere.2017.08.076] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Humans are exposed to various complex mixtures of particulate matter (PM) from different sources. Long-term exposure to high levels of these particulates has been linked to a diverse range of respiratory and cardiovascular diseases that have resulted in hospital admission. The evaluation of the effects of PM exposure on the mechanisms related to cell death has been a challenge for many researchers. Therefore, in this review, we have discussed the effects of airborne PM exposure on mechanisms related to cell death. For this purpose, we have compiled literature data on PM sources, the effects of exposure, and the assays and models used for evaluation, in order to establish comparisons between various studies. The analysis of this collected data suggested divergent responses to PM exposure that resulted in different cell death types (apoptosis, autophagy, and necrosis). In addition, PM induced oxidative stress within cells, which appeared to be an important factor in the determination of cell fate. When the levels of reactive oxygen species were overpowering, the cellular fate was directed toward cell death. This may be the underlying mechanism of the development or exacerbation of respiratory diseases, such as emphysema and chronic obstructive pulmonary diseases. In addition, PM was shown to cause DNA damage and the resulting mutations increased the risk of cancer. Furthermore, several conditions should be considered in the assessment of cell death in PM-exposed models, including the cell culture line, PM composition, and the interaction of the different cells types in in vivo models.
Collapse
Affiliation(s)
- Milena Simões Peixoto
- Graduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Marcos Felipe de Oliveira Galvão
- Graduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | | |
Collapse
|
23
|
Song X, Yang S, Shao L, Fan J, Liu Y. PM10 mass concentration, chemical composition, and sources in the typical coal-dominated industrial city of Pingdingshan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:1155-63. [PMID: 27450962 DOI: 10.1016/j.scitotenv.2016.07.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/16/2016] [Accepted: 07/16/2016] [Indexed: 05/17/2023]
Abstract
The atmospheric pollution created by coal-dominated industrial cities in China cannot be neglected. This study focuses on the atmospheric PM10 in the typical industrial city of Pingdingshan City in North China. A total of 44 PM10 samples were collected from three different sites (power plant, mining area, and roadside) in Pingdingshan City during the winter of 2013, and were analyzed gravimetrically and chemically. The Pingdingshan PM10 samples were composed of mineral matter (average of 118.0±58.6μg/m(3), 20.6% of the total PM10 concentration), secondary crystalline particles (338.7±122.0μg/m(3), 59.2%), organic matter (77.3±48.5μg/m(3), 13.5%), and elemental carbon (38.0±28.3μg/m(3), 6.6%). Different sources had different proportions of these components in PM10. The power plant pollutant source was characterized by secondary crystalline particles (377.1μg/m(3)), elemental carbon (51.5μg/m(3)), and organic matter (90.6μg/m(3)) due to coal combustion. The mining area pollutant source was characterized by mineral matter (124.0μg/m(3)) due to weathering of waste dumps. The roadside pollutant source was characterized by mineral matter (130.0μg/m(3)) and organic matter (81.0μg/m(3)) due to road dust and vehicle exhaust, respectively. A positive matrix factorization (PMF) analysis was performed for PM10 source apportionment to identify major anthropogenic sources of PM10 in Pingdingshan. Six factors-crustal matter, coal combustion, vehicle exhaust and abrasion, local burning, weathering of waste dumps, and industrial metal smelting-were identified and their contributions to Pingdingshan PM10 were 19.0%, 31.6%, 7.4%, 6.3%, 9.8%, and 25.9%, respectively. Compared to other major cities in China, the source of PM10 in Pingdingshan was characterized by coal combustion, weathering of waste dumps, and industrial metal smelting.
Collapse
Affiliation(s)
- Xiaoyan Song
- School of Resources & Environment, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, China
| | - Shushen Yang
- School of Energy & Environment Engineering, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| | - Longyi Shao
- College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083, China.
| | - Jingsen Fan
- Collaborative Innovation Center of the Comprehensive Development and Utilization of Coal Resource, Hebei Province, The Resources Surveying and Researching Laboratory of HeBei Province, Hebei University of Engineering, Handan 056038, China
| | - Yanfei Liu
- College of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, Heilongjiang, China
| |
Collapse
|
24
|
Reyes-Zárate E, Sánchez-Pérez Y, Gutiérrez-Ruiz MC, Chirino YI, Osornio-Vargas ÁR, Morales-Bárcenas R, Souza-Arroyo V, García-Cuellar CM. Atmospheric particulate matter (PM10) exposure-induced cell cycle arrest and apoptosis evasion through STAT3 activation via PKCζ and Src kinases in lung cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:646-656. [PMID: 27131825 DOI: 10.1016/j.envpol.2016.04.072] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
Atmospheric particulate matter with aerodynamic diameter ≤10 μm (PM10) is a risk factor for the development of lung cancer, but cellular pathways are not completely understood. STAT3 is a p21(Waf1/Cip1) transcription factor and is associated with proliferation and cell survival and is upregulated in lung cancer. PM10 exposure induces p21(Waf1/Cip1) expression, which could be related to STAT3 activation. The aims of this work were to investigate whether STAT3 was activated on lung epithelial cells after PM10 exposure and to determine whether or not STAT3 could have an impact on cell cycle distribution and cell survival. Our results showed that PM10 induced STAT3 activation through Src and PKCζ kinases, and it is partially responsible for the p21(Waf1/Cip1) induction that was also observed. Moreover, PM10 induced G1-G0 cell cycle arrest. The inhibition of STAT3 phosphorylation prevented cell cycle arrest and triggered apoptosis. These results suggest that PM10 exposure might activate a survival pathway related to STAT3 activation, similar to what has been described as part of the immune system and apoptosis evasion during tumor promotion and development.
Collapse
Affiliation(s)
- Elizabeth Reyes-Zárate
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico; Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, México DF, Mexico
| | - Yesennia Sánchez-Pérez
- Instituto Nacional de Cancerología, Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, 14080, México DF, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, México DF, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, 54059, Estado de México, Mexico
| | | | - Rocío Morales-Bárcenas
- Instituto Nacional de Cancerología, Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, 14080, México DF, Mexico
| | - Verónica Souza-Arroyo
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, México DF, Mexico.
| | - Claudia María García-Cuellar
- Instituto Nacional de Cancerología, Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, 14080, México DF, Mexico.
| |
Collapse
|
25
|
Øvrevik J, Refsnes M, Låg M, Holme JA, Schwarze PE. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms. Biomolecules 2015; 5:1399-440. [PMID: 26147224 PMCID: PMC4598757 DOI: 10.3390/biom5031399] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022] Open
Abstract
Inflammation is considered to play a central role in a diverse range of disease outcomes associated with exposure to various types of inhalable particulates. The initial mechanisms through which particles trigger cellular responses leading to activation of inflammatory responses are crucial to clarify in order to understand what physico-chemical characteristics govern the inflammogenic activity of particulate matter and why some particles are more harmful than others. Recent research suggests that molecular triggering mechanisms involved in activation of proinflammatory genes and onset of inflammatory reactions by particles or soluble particle components can be categorized into direct formation of reactive oxygen species (ROS) with subsequent oxidative stress, interaction with the lipid layer of cellular membranes, activation of cell surface receptors, and direct interactions with intracellular molecular targets. The present review focuses on the immediate effects and responses in cells exposed to particles and central down-stream signaling mechanisms involved in regulation of proinflammatory genes, with special emphasis on the role of oxidant and non-oxidant triggering mechanisms. Importantly, ROS act as a central second-messenger in a variety of signaling pathways. Even non-oxidant mediated triggering mechanisms are therefore also likely to activate downstream redox-regulated events.
Collapse
Affiliation(s)
- Johan Øvrevik
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Magne Refsnes
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Jørn A Holme
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Per E Schwarze
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| |
Collapse
|