1
|
Zhang D, Chen Q, Xu T, Yin D. Current research status on the distribution and transport of micro(nano)plastics in hyporheic zones and groundwater. J Environ Sci (China) 2025; 151:387-409. [PMID: 39481947 DOI: 10.1016/j.jes.2024.03.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 11/03/2024]
Abstract
Micro(nano)plastics, as an emerging environmental pollutant, are gradually discovered in hyporheic zones and groundwater worldwide. Recent studies have focused on the origin and spatial/temporal distribution of micro(nano)plastics in regional groundwater, together with the influence of their properties and effects of environmental factors on their transport. However, the transport of micro(nano)plastics in the whole hyporheic zone-groundwater system and the behavior of co-existing substances still lack a complete theoretical interpretation. To provide systematic theoretical support for that, this review summarizes the current pollution status of micro(nano)plastics in the hyporheic zone-groundwater system, provides a comprehensive introduction of their sources and fate, and classifies the transport mechanisms into mechanical transport, physicochemical transport and biological processes assisted transport from the perspectives of mechanical stress, physicochemical reactions, and bioturbation, respectively. Ultimately, this review proposes to advance the understanding of the multi-dimensional hydrosphere transport of micro(nano)plastics centered on groundwater, the microorganisms-mediated synergistic transformation and co-transport involving the intertidal circulation. Overall, this review systematically dissects the presence and transport cycles of micro(nano)plastics within the hyporheic zone-groundwater system and proposes prospects for future studies based on the limitations of current studies.
Collapse
Affiliation(s)
- Dongming Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Chen C, Zheng N, Zhu H, An Q, Li X, Peng L, Xiu Z. Polylactic acid microplastics and earthworms drive cadmium bioaccumulation and toxicity in the soil-radish health community. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138391. [PMID: 40286655 DOI: 10.1016/j.jhazmat.2025.138391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Recent studies underscored the toxicity of microplastics (MPs) as vectors for cadmium (Cd) in soil-plant systems, yet the driven potential of soil fauna in real-world environments remains overlooked. This study examined the interactive effects of earthworms and polylactic acid (PLA) MPs (0.5 % w/w) on rhizosphere biochemistry and Cd (2 mg/kg)-induced phytotoxicity in radish. The combined treatment of earthworms and PLA MPs significantly increased the soil available Cd (diethylenetriaminepentaacetic acid -extractable Cd) from 0.79 mg/kg to 1.01 mg/kg compared to the Cd treatment (p < 0.05) and enhanced the bacterial network stability. Cd accumulation in radish was significantly elevated under the combined treatment (roots: 2.04 mg/kg; leaves: 12.31 mg/kg) compared to the Cd treatment (roots: 1.59 mg/kg; leaves: 8.82 mg/kg) (p < 0.05). The combined treatment activated the radish antioxidant system. The combined treatment (roots: 6.08 g; leaves: 1.65 g) significantly reduced radish biomass compared to the Cd treatment (roots: 24.41 g; leaves: 4.45 g) (p < 0.05). Metabolic pathways involving lipid and carbohydrate metabolism, membrane transport, and secondary metabolite biosynthesis were disrupted. Structural equation modeling identified rhizosphere soil properties (pH, SOM, and CEC) as well as Cd and antioxidant systems in the leaf as major contributors to radish growth inhibition.
Collapse
Affiliation(s)
- Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China.
| | - Huicheng Zhu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Liyuan Peng
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| | - Zhifei Xiu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, China
| |
Collapse
|
3
|
Wael H, Vanessa EB, Mantoura N, Antonios DE. Tiny pollutants, big consequences: investigating the influence of nano- and microplastics on soil properties and plant health with mitigation strategies. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:860-877. [PMID: 40111751 DOI: 10.1039/d4em00688g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The impact of nanoplastics (NPs) and microplastics (MPs) on ecosystems and human health has recently emerged as a significant challenge within the United Nations Agenda 2030, drawing global attention. This paper provides a critical analysis of the influence of plastic particles on plants and soils, with the majority of data collected from recent studies, primarily over the past five years. The absorption and translocation mechanisms of NPs/MPs in plants are first described, followed by an explanation of their effects-especially particles like PE, PS, PVC, PLA, and PES, as well as those contaminated with heavy metals-on plant growth, physiology, germination, oxidative stress, and nutrient uptake. The study also links the characteristics of plastics (size, shape, concentration, type, degradability) to changes in the physical, chemical, and microbial properties of soils. Various mitigation strategies, including physical, chemical, and biological processes, are explored to understand how they address these changes. However, further research, including both laboratory and field investigations, is urgently needed to address knowledge gaps, particularly regarding the long-term effects of MPs, their underlying mechanisms, ecotoxicological impacts, and the complex interactions between MPs and soil properties. This research is crucial for advancing sustainability from various perspectives and should contribute significantly toward achieving sustainable development goals (SDGs).
Collapse
Affiliation(s)
- H Wael
- Chemical Engineering Department, Faculty of Engineering, University of Balamand, Koura Campus, Kelhat P.O. Box 33, 1355, Lebanon.
| | - E B Vanessa
- Chemical Engineering Department, Faculty of Engineering, University of Balamand, Koura Campus, Kelhat P.O. Box 33, 1355, Lebanon.
| | - N Mantoura
- FOE Dean's Office, Faculty of Engineering, University of Balamand, Koura Campus, Kelhat P.O. Box 100, Lebanon
| | - D Elie Antonios
- Laboratoire Chimie de la Matière Condensée de Paris LCMCP, Sorbonne Université, UPMC Paris 06, 4 Place Jussieu, 75005 Paris, France
- Solnil, 95 Rue de la République, Marseille 13002, France
| |
Collapse
|
4
|
Liu Y, Wen Y, Cai H, Song X, Wang X, Zhang Z. Stress of polyethylene and polylactic acid microplastics on pakchoi(Brassica rapa subsp. chinensis) and soil bacteria: Biochar mitigation. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137301. [PMID: 39847935 DOI: 10.1016/j.jhazmat.2025.137301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/11/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
It remains essential to investigate the differences in phytotoxic effects between conventional and biodegradable microplastics (MPs). Furthermore, the mechanisms by which biochar mitigates the toxic effects of MPs on crops and soil remain poorly understood. The results of this research indicated that, compared to control treatment (CK), the application of 2 % polyethylene (PE) alone led to a significant reduction in the fresh weight of pakchoi by 36.8 % (P < 0.05). In examining the activities of antioxidant, as well as the concentrations of MDA and GSH in pakchoi, the 2 % PE treatment exhibited the highest levels. In contrast, the treatment that received a mixed application of biochar and MPs did not surpass the levels observed in the microplastic-only application. The combination of 0.2 % polylactic acid (PLA) with biochar resulted in a substantial increase in Chao1 index, with improvements of 46.4 % to CK. The findings also suggested that biochar can significantly impact bacterial diversity in soil with MPs, thereby altering the functions and metabolic pathways. Consequently, this modification partly influences the growth characteristics of pakchoi. Notably, PE demonstrated a higher level of toxicity to both plants and soil microorganisms than PLA at same applied quantity. These findings open avenues for innovative sustainable agricultural practices.
Collapse
Affiliation(s)
- Yuqing Liu
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, China.
| | - Haoxuan Cai
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Xiaochu Wang
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Sichuan 610000, China
| |
Collapse
|
5
|
Leonov VD, Zuev AG, Zueva AI, Sotnikov IV, Tiunov AV. Exposure to mm-scale microplastic particles does not cause weight loss in two earthworm species belonging to different ecological groups. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:11072-11082. [PMID: 40195224 DOI: 10.1007/s11356-025-36357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
The aim of this study was to estimate the effect of relatively large (1-5 mm) fragments of high-density polyethylene films on two widespread earthworm species belonging to different ecological groups-endogeic Aporrectodea caliginosa and epigeic Lumbricus rubellus. In a microcosm experiment lasting 8 weeks, we tested the food dilution hypothesis, which suggests that the adverse effect of microplastic on earthworms is caused by the dilution of food by plastic, which has zero energetic value. Both earthworm species ingested plastic particles, and both species were seemingly limited by the availability of food. In particular, the addition of food substrate (aspen litter) to the soil had a significant positive effect on the weight of A. caliginosa. In contrast to our expectations, microplastic at relatively high concentrations (0.3% and 2.3% w/w in the soil for A. caliginosa, and 33% and 48% w/w in the litter for L. rubellus) had no significant effect on earthworm biomass. This suggests that the food dilution effect is not likely to be the main mechanism of the adverse effect of microplastic on earthworms. Our work adds to the growing evidence that in many cases microplastic does not harm soil animals.
Collapse
Affiliation(s)
| | - Andrey G Zuev
- Severtsov Institute of Ecology and Evolution, Moscow, Russia
- Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
| | - Anna I Zueva
- Severtsov Institute of Ecology and Evolution, Moscow, Russia
- Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
| | - Ivan V Sotnikov
- Severtsov Institute of Ecology and Evolution, Moscow, Russia
| | - Alexei V Tiunov
- Severtsov Institute of Ecology and Evolution, Moscow, Russia
| |
Collapse
|
6
|
Colpaert R, de Vaufleury A, Fritsch C, Rieffel D, Gimbert F. Ecotoxicological impacts of polyethylene, polystyrene and polyamide on the land snail Cantareus aspersus in a life cycle experiment. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137968. [PMID: 40120262 DOI: 10.1016/j.jhazmat.2025.137968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/25/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Small plastic fragments (<5 mm, i.e., microplastics, MPs) accumulate in ecosystems, resulting in increasing concerns about their toxic effects in the terrestrial environment. While studies on MPs in the soil environment are expanding, gaps in knowledge still exist regarding their effects on soil (macro)organisms. Our study aimed to measure the response of Cantareus aspersus snails to long-term exposure to 0.1, 1 and 10 % w/w polyethylene (PE), polyamide (PA) or polystyrene (PS) particles in food. Overall, a concentration-dependent decrease in snail growth was observed, as was a general trend toward earlier maturity at low and middle MP concentrations. Mild (for PS) to severe (for PE and PA) effects on reproduction were detected but without a concentration-dependent trend. The fecundity was affected mainly by PE at 1 % (-32.9 %) and by PA at 1 % (-52.59 %), and their fertility was reduced by 43.9 % and 61.3 %, respectively. This decrease was related to increased survival, suggesting trade-offs in snail energy allocation and/or endocrine regulation. This study revealed that an environmentally relevant life-cycle assessment of toxic effects allows the detection of subtle effects regarding individual responses. These effects allowed us to demonstrate differential impacts on animal health status according to the polymer used and the exposure concentration.
Collapse
Affiliation(s)
- Romain Colpaert
- University Marie et Louis Pasteur, CNRS, Chrono-environnement (UMR 6249), Besançon F-25000, France
| | - Annette de Vaufleury
- University Marie et Louis Pasteur, CNRS, Chrono-environnement (UMR 6249), Besançon F-25000, France
| | - Clémentine Fritsch
- University Marie et Louis Pasteur, CNRS, Chrono-environnement (UMR 6249), Besançon F-25000, France
| | - Dominique Rieffel
- University Marie et Louis Pasteur, CNRS, Chrono-environnement (UMR 6249), Besançon F-25000, France
| | - Frédéric Gimbert
- University Marie et Louis Pasteur, CNRS, Chrono-environnement (UMR 6249), Besançon F-25000, France.
| |
Collapse
|
7
|
Gutiérrez-Rial D, Lagoa A, Villar I, Feijoo P, Mariño F, Garrido J, Soto B, Mato S. Short- and medium-term effects of biodegradable microplastics (PLA and PHB) on earthworm development and reproduction. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02868-x. [PMID: 40095371 DOI: 10.1007/s10646-025-02868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Microplastics derived from biobased and biodegradable materials will increase their presence in soils as their use becomes more widespread. Research into their effects on soil fauna will help to ensure a better understanding of their environmental impacts. The aim of this work was to study the effects on the development of the earthworm Eisenia andrei (ingestion capacity, survival, growth, cocoon, and hatchling production), earthworm lysosomal stability through the neutral red retention time (NRTT), and substrate enzymatic activity of dehydrogenase (DHA) and fluorescein diacetate-hydrolysing activity (FDA) in the presence of polylactic acid (PLA), polyhydroxybutyrate (PHB) and polyethylene (PE) microplastics in laboratory tests. Three different tests were designed, one feeding test of 4 days, and two medium-term tests with 49 and 112 days. The 4-day test and the 49-day growth test were carried out using OECD artificial soil, while in the 112-day growth test, vermicompost was used as the substrate. PLA and PHB particle ingestion was demonstrated. No concentration or polymer-dependent lysosomal damage or effects on earthworm growth were observed. However, reproductive effects, such as a decrease in cocoon production and the number of juveniles, were reported upon exposure to PE and PLA during medium-term assays. These findings indicated that the toxicity of PLA bioplastic exposure is comparable to that of conventional plastic PE concerning the negative effects on the reproductive efficiency of the detritivorous earthworm E. andrei.
Collapse
Affiliation(s)
- David Gutiérrez-Rial
- Department of Ecology and Animal Biology, Faculty of Biology, University of Vigo, Vigo, Spain.
| | - Aarón Lagoa
- Department of Ecology and Animal Biology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Iria Villar
- Department of Ecology and Animal Biology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Pilar Feijoo
- Department of Ecology and Animal Biology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Fuencisla Mariño
- Department of Ecology and Animal Biology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Josefina Garrido
- Department of Ecology and Animal Biology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Benedicto Soto
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Salustiano Mato
- Department of Ecology and Animal Biology, Faculty of Biology, University of Vigo, Vigo, Spain
| |
Collapse
|
8
|
Ali S, Peña AN, Lafazanos YS, Ehrenpreis ED. What Gastroenterologists Should Know About Microplastics and Nanoplastics. J Clin Gastroenterol 2025; 59:105-109. [PMID: 39774594 DOI: 10.1097/mcg.0000000000002085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Global production and widespread use of plastics are increasing dramatically. With current limited recycling and recovery options, microplastics and nanoplastics (MNPs) persist in the natural environment. Due to their ubiquity, human exposure to MNPs is inevitable. In addition to their inherent toxic effects, MNPs can adsorb harmful contaminants and act as vectors for microorganisms, compounding toxicological effects. After entering the body, bioaccumulation occurs in several tissues and organs, including the liver and the gastrointestinal (GI) tract. Proposed clinical effects of MNP absorption include endocrine disruption, alteration of the GI microbiome, and promotion of chronic inflammatory conditions. MNPs can also influence energy metabolism, activate inflammatory pathways, and increase oxidative stress leading to apoptosis. The GI tract is a major site of bioaccumulation for the MNPs in animals and humans. In this editorial, the current understanding of how MNPs are processed is discussed. Discussion on MNP effects on internal microflora, and their proposed role in developing inflammatory bowel diseases, MNP toxicokinetics, and their significance in health and disease are also reviewed. There is a need to understand the impact of MNP exposure on gut health and gut microbiota and identify current research gaps.
Collapse
|
9
|
Ghosh A, Gorain B. Mechanistic insight of neurodegeneration due to micro/nano-plastic-induced gut dysbiosis. Arch Toxicol 2025; 99:83-101. [PMID: 39370473 DOI: 10.1007/s00204-024-03875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Despite offering significant conveniences, plastic materials contribute substantially in developing environmental hazards and pollutants. Plastic trash that has not been adequately managed may eventually break down into fragments caused by human or ecological factors. Arguably, the crucial element for determining the biological toxicities of plastics are micro/nano-forms of plastics (MPs/NPs), which infiltrate the mammalian tissue through different media and routes. Infiltration of MPs/NPs across the intestinal barrier leads to microbial architectural dysfunction, which further modulates the population of gastrointestinal microbes. Thereby, it triggers inflammatory mediators (e.g., IL-1α/β, TNF-α, and IFN-γ) by activating specific receptors located in the gut barrier. Mounting evidence indicates that MPs/NPs disrupt host pathophysiological function through modification of junctional proteins and effector cells. Moreover, the alteration of microbial diversity by MPs/NPs causes the breakdown of the blood-brain barrier and translocation of metabolites (e.g., SCFAs, LPS) through the vagus nerve. Potent penetration affects the neuronal networks, neuronal protein accumulation, acceleration of oxidative stress, and alteration of neurofibrillary tangles, and hinders distinctive communicating pathways. Conclusively, alterations of these neurotoxic factors are possibly responsible for the associated neurodegenerative disorders due to the exposure of MPs/NPs. In this review, the hypothesis on MPs/NPs associated with gut microbial dysbiosis has been interlinked to the distinct neurological impairment through the gut-brain axis.
Collapse
Affiliation(s)
- Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
10
|
Rahman MM, Maniruzzaman M, Saha RK. A green route of antibacterial films production from shrimp (Penaeus monodon) shell waste biomass derived chitosan: Physicochemical, thermomechanical, morphological and antimicrobial activity analysis. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2025; 51:153-169. [DOI: 10.1016/j.sajce.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
|
11
|
Zhai J, Zhou Z, Yan Y, Wang X. Unveiling the impact of polystyrene and low-density polyethylene microplastics on arsenic toxicity in earthworms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123827. [PMID: 39731940 DOI: 10.1016/j.jenvman.2024.123827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/24/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
The high global production combined with low recycling rates of polystyrene (PS) and low-density polyethylene (LDPE) contributes to the abundance of these commonly used plastics in soil, including as microplastics (MPs). However, the combined effects of MPs and heavy metals, such as arsenic (As) on earthworms are poorly understood. Here, we show that neither PS nor LDPE altered the effects of As on the survival, growth, and reproduction of the earthworm Eisenia fetida. As stress, both alone and in combination with the MPs, induced DNA damage in coelomocytes. In As-exposed earthworms, PS and LDPE increased the accumulation of reactive oxygen species while the activities of the antioxidant enzymes peroxidase, superoxide dismutase, and catalase were significantly lower under combined PS/LDPE + As exposure than under As exposure alone. As stress alone reduced cocoon production and the mRNA level of the reproduction-related gene ANN whereas As combined with PS/LDPE reduced the mRNA levels of CYP450, an enzyme involved in detoxification. Integrated biomarker response analysis revealed that PS/LDPE did not significantly impact the overall ecotoxicological effects of As exposure on earthworms. This study provides important insights into the potential ecological risks of MPs in heavy-metal-contaminated soil.
Collapse
Affiliation(s)
- Junjie Zhai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China
| | - Zihan Zhou
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China
| | - Yunxiu Yan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
12
|
Yakkou L, Houida S, El Baaboua A, Bilen S, Chelkha M, Okyay Kaya L, Aasfar A, Ameen F, Ahmad Bhat S, Raouane M, Amghar S, El Harti A. Unveiling resilience: coelomic fluid bacteria's impact on plant metabolism and abiotic stress tolerance. PLANT SIGNALING & BEHAVIOR 2024; 19:2363126. [PMID: 38832593 DOI: 10.1080/15592324.2024.2363126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Earthworms' coelomic fluid (CF) has been discovered to possess properties that promote plant development. In particular, the earthworm's coelomic fluid-associated bacteria (CFB) are the primary factor influencing the plants' response. To investigate this, we used bacteria isolated from the CF and selected based on different plant growth-promoting traits, in a mesocosm ecosystem that includes plants. This experiment aimed to assess their impact on the metabolism of plants growing under abiotic stress environments (alkaline soil and nitrogen (N), phosphate (P), and potassium (K) deficit) and compare the lipid profiles of plants under the various treatments. We used seven different bacterial species isolated from the CF of Aporrectodea molleri and as a plant model Zea mays L. For the metabolomic analysis method, we used gas chromatography-mass spectrometry lipidomic. After observing the metabolomic profiles, we found that a few molecular pathways are involved in how plants react to bacterial biostimulants. The bacterial isolates belonging to Pantoea vagans, Pseudomonas aeruginosa, Bacillus paramycoides, and Bacillus thuringiensis have led to a significant increase in synthesizing several metabolites belonging to various chemical categories. Contrary to predictions, abiotic stress did not cause a drop in the composition and concentration of lipids in plants treated with the CFB, demonstrating the rigidity of the protective mechanisms. The statistical analysis based on the Pearson method revealed a positive significant correlation between plant growth parameters (length of the aerial part, surface of the leaves, and biomass) and some metabolites belonging to fatty acids, carboxylic acids, benzene derivatives, and alkanes. Moreover, the standard metabolic components of all treatments in much higher concentrations during bacterial treatments than the control treatment suggests that the bacteria have stimulated the overexpression of these metabolic components. According to these results, we could assume that plants treated with CFB exhibit an adaptability of abiotic stress defense mechanisms, which may be attributed to the upregulation of genes involved in lipid biosynthesis pathways.
Collapse
Affiliation(s)
- Lamia Yakkou
- Laboratory of Microbial Biotechnologies and Plant Protection (LBVRN), Faculty of Sciences Agadir, University Ibn Zohr, Agadir, Morocco
- Faculty of Applied Sciences- Ait Melloul, University Ibn Zohr, Agadir, Morocco
| | - Sofia Houida
- Laboratory of Mycobacteria and Tuberculosis, Institut Pasteur of Morocco, Casablanca, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | - Serdar Bilen
- Soil Science and Plant Nutrition Department, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Maryam Chelkha
- Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Leyla Okyay Kaya
- Soil Science and Plant Nutrition Department, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Abderrahim Aasfar
- Plant and Microbial Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammed Raouane
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Center "Water, Natural Resources, Environment and Sustainable Development, Ecole Normale Supérieure (ENS), Mohammed V University, Rabat, Morocco
| | - Souad Amghar
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Center "Water, Natural Resources, Environment and Sustainable Development, Ecole Normale Supérieure (ENS), Mohammed V University, Rabat, Morocco
| | - Abdellatif El Harti
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Center "Water, Natural Resources, Environment and Sustainable Development, Ecole Normale Supérieure (ENS), Mohammed V University, Rabat, Morocco
| |
Collapse
|
13
|
Cui L, Liang R, Zhang C, Zhang R, Wang H, Wang XX. Coupling polyethylene microplastics with other pollutants: Exploring their combined effects on plant health and technologies for mitigating toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176657. [PMID: 39362539 DOI: 10.1016/j.scitotenv.2024.176657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The presence of microplastics in agricultural soils has raised concerns regarding their potential impacts on ecosystem health and plant growth. The introduction of microplastics into soil can alter its physicochemical properties, leading to adverse effects on plant development. Furthermore, the adsorption capabilities of microplastics may enhance the toxicity of soil pollutants, potentially resulting in detrimental effects on plant life. Large-sized microplastics may become adhered to root surfaces, impeding stomatal function and restricting nutrient uptake. Conversely, smaller microplastics and nano-plastics may be internalized by plants, causing cellular damage and genotoxicity. In addition, the presence of microplastics in soil can indirectly affect plant growth and development by altering the soil environment. Therefore, it is essential to investigate the potential impacts of microplastics on agricultural ecosystems and develop strategies to mitigate their effects. This review describes the adsorption power between polyethylene microplastics and pollutants (heavy metals, polycyclic aromatic hydrocarbons and antibiotics) commonly found in agricultural fields and the factors affecting the adsorption process. Additionally, the direct and indirect effects of microplastics on plants are summarized. Most of the single or combined microplastic contaminants showed negative effects on plant growth, with a few beneficial effects related to the characteristics of the microplastics and environmental factors. Currently microbial action and the application of soil conditioners or plant growth promoters can alleviate the effects of microplastics on plants to a certain extent. In light of the complex nature of soil environments, future research should concentrate on mitigate and control these interactions and the impact of compound pollution on ecosystems.
Collapse
Affiliation(s)
- Linmei Cui
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| | - Rong Liang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| | - Chi Zhang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China
| | - Ruifang Zhang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China
| | - Hong Wang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China
| | - Xin-Xin Wang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
14
|
Wang Y, Nan X, Sun H, Shi Y, Miao J, Li Y, Han X, Zhang N, Wang H, Ren N, Zhao X, Liu B. From insects to mammals! Tissue accumulation and transgenerational transfer of micro/nano-plastics through the food chain. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136424. [PMID: 39531820 DOI: 10.1016/j.jhazmat.2024.136424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Despite extensive global attention on microplastic pollution, our understanding of the pathways underlying microplastic translocation, accumulation, and their potential impacts on ecosystems and human health through the food chain remains incomplete. To investigate the translocation and accumulation of microplastics from insects to mammals, we developed a novel oral exposure model that Tenebrio molitor larvae (yellow mealworms, invertebrate terrestrial insects) were firstly orally exposed to both micro and nanometer-sized plastics (M/NPs), and subsequently fed as a food source to mice (mammals). Our results provide clear evidence that micro/nanoplastics (M/NPs) do indeed translocate through the food chain, from lower to higher trophic levels. Fluorescence microscopy and tissue quantification revealed the accumulation of M/NPs in the digestive, somatic, and circulatory systems of the larvae. Specifically, the food chain transferred M/NPs were later detected in the digestive, respiratory, and urinary systems of mice, showcasing strong fluorescent signals in vital organs such as the lungs, liver, intestines, brain, and kidneys, as well as in embryos. These findings highlight the intricate dynamics of M/NPs contamination, emphasizing their ability to traverse biological barriers, accumulate in organisms, and potentially impact embryonic development via food chain transfer.
Collapse
Affiliation(s)
- Yijing Wang
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xinrui Nan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Huayang Sun
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yutian Shi
- Clinical Medicine, The Second Clinical Medical School, China Medical University, Shenyang 110122, China
| | - Jixing Miao
- Clinical Medicine, The First Clinical Medical School, China Medical University, Shenyang 110001, China
| | - Yuheng Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Xiaoyu Han
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Ning Zhang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Huaqin Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Zhao
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Baoqin Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
15
|
Zhao B, Chen F, Zhou K, Lin M, Shi L, Mi S, Pan H, Yao Q, Zhao X. Polyethylene nanoplastics, tebuconazole and cadmium affect soil-wheat system by altering rhizosphere microenvironment under single or combined exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135843. [PMID: 39305587 DOI: 10.1016/j.jhazmat.2024.135843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 12/01/2024]
Abstract
Microplastics and nanoplastics (NPs) are pollutants of global concern. However, the understanding of the combined effects of NPs and other pollutants in the soil-plant system remains limited, particularly for polyethylene (PE), the primary component of agricultural films. This study investigated the effects of PE NPs (0.5 %, w/w), fungicide tebuconazole (Te, 10 mg·kg-1), and cadmium (Cd, 4.0 mg·kg-1) on the soil-wheat system under single and combined exposures. The synergistic toxicity observed between NPs and Te impacted the nutritional conditions and antioxidant mechanisms of the soil-wheat system. The NPs increased the concentration of Cd in roots and the proportion of bioavailable Cd, exacerbating oxidative stress in wheat and inhibiting biomass. The soil-wheat system responded to stress by upregulating or downregulating pathways related to carbohydrate, amino acid, and sugar metabolism under various treatments. Sixteen functional genes associated with carbohydrate metabolism, amino acid metabolism, energy utilization, and gene repair at KEGG level 3 were employed to sustain microenvironmental homeostasis. Correlation analysis between microorganisms and environmental factors showed that various PGPG played roles in maintaining the health of the soil-wheat system. These results help to elucidate the comprehensive effects of NPs with other pollutants on the soil-plant system and provide new perspectives for toxic mechanisms.
Collapse
Affiliation(s)
- Bo Zhao
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Fang Chen
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Kexin Zhou
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Manfeng Lin
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Lihu Shi
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Shican Mi
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Haixia Pan
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Qiang Yao
- Ocean College, Hebei Agriculture University, Qinhuangdao 066004, China.
| | - Xin Zhao
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
16
|
Liu Y, Wang W, He J. Microplastic effects on carbon cycling in terrestrial soil ecosystems: Storage, formation, mineralization, and microbial mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176658. [PMID: 39370001 DOI: 10.1016/j.scitotenv.2024.176658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Soil is the largest environmental reservoir of microplastics (MPs) on the earth. Incremental accumulation of MPs in the soil can cause significant changes in soil physicochemical and microbial traits, which may in turn interfere with soil biogeochemical processes such as carbon cycling. With published research regarding MPs impacts on soil carbon cycling growing rapidly, a systematic review summarizing the current knowledge and highlighting future research needs is warranted. As carbon-rich polymers, MPs can contribute to soil organic carbon (SOC) storage via degradation and leaching. MPs can also affect the humification of dissolved organic matters (DOM), consequently influencing the stability of SOC. Exposure to MPs can cause substantial impacts on the growth performance, litter decomposition, and root secretion of terrestrial plants as well as soil microbial carbon turnover, inducing changes in the formation of SOC. The presence of MPs has contrasting effects on the emissions of both CO2 and CH4 from the soil. The diverse effects of MPs on soil carbon metabolism could be partly attributed to the varying changes in soil microbial community structure, functional gene expression, and enzyme activity under MPs exposure. Further research is still highly needed to clarify the pathways of MPs impacts on soil carbon cycling and the driving biological and physicochemical factors behind these processes.
Collapse
Affiliation(s)
- Yan Liu
- College of Geographic Sciences, Changchun Normal University, Changchun 130032, China
| | - Wenfeng Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China.
| | - Jianzhou He
- Department of Biochemistry, Chemistry & Physics, Georgia Southern University, Savannah, GA 31419, USA
| |
Collapse
|
17
|
Fei J, Bai X, Jiang C, Yin X, Ni BJ. A state-of-the-art review of environmental behavior and potential risks of biodegradable microplastics in soil ecosystems: Comparison with conventional microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176342. [PMID: 39312976 DOI: 10.1016/j.scitotenv.2024.176342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/03/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
As the use of biodegradable plastics becomes increasingly widespread, their environmental behaviors and impacts warrant attention. Unlike conventional plastics, their degradability predisposes them to fragment into microplastics (MPs) more readily. These MPs subsequently enter the terrestrial environment. The abundant functional groups of biodegradable MPs significantly affect their transport and interactions with other contaminants (e.g., organic contaminants and heavy metals). The intermediates and additives released from depolymerization of biodegradable MPs, as well as coexisting contaminants, induce alterations in soil ecosystems. These processes indicate that the impacts of biodegradable MPs on soil ecosystems might significantly diverge from conventional MPs. However, an exhaustive and timely comparison of the environmental behaviors and effects of biodegradable and conventional MPs within soil ecosystems remains scarce. To address this gap, the Web of Science database and bibliometric software were utilized to identify publications with keywords containing biodegradable MPs and soil. Moreover, this review comprehensively summarizes the transport behavior of biodegradable MPs, their role as contaminant carriers, and the potential risks they pose to soil physicochemical properties, nutrient cycling, biota, and CO2 emissions as compared with conventional MPs. Biodegradable MPs, due to their great transport and adsorption capacity, facilitate the mobility of coexisting contaminants, potentially inducing widespread soil and groundwater contamination. Additionally, these MPs and their depolymerization products can disrupt soil ecosystems by altering physicochemical properties, increasing microbial biomass, decreasing microbial diversity, inhibiting the development of plants and animals, and increasing CO2 emissions. Finally, some perspectives are proposed to outline future research directions. Overall, this study emphasizes the pronounced effects of biodegradable MPs on soil ecosystems relative to their conventional counterparts and contributes to the understanding and management of biodegradable plastic contamination within the terrestrial ecosystem.
Collapse
Affiliation(s)
- Jiao Fei
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Xue Bai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
18
|
Kajal S, Thakur S. Coexistence of microplastics and heavy metals in soil: Occurrence, transport, key interactions and effect on plants. ENVIRONMENTAL RESEARCH 2024; 262:119960. [PMID: 39251180 DOI: 10.1016/j.envres.2024.119960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Microplastics (MPs) pollution has raised serious environmental concerns due to its widespread generation and discharge across global ecosystems. It is estimated that approximately 400 million metric tons of plastic are produced annually, with 54% ending up as waste. The MPs account for a significant portion of this pollution. These MPs interact with heavy metals (HMs) in terrestrial ecosystems, such as cadmium (Cd), lead (Pb), and arsenic (As), which are introduced through various industrial activities at rates of thousands of tons per year. Such interactions may cause synergistic or antagonistic effects on plants. Recent studies suggest that MPs and HMs exposure impacts various physiological and biochemical pathways in plants, thereby increasing the toxicity symptoms. However, the existing scholarly understanding of the coupled effect of HMs and MPs on plants is limited, highlighting the need to explore these complex dynamics further. Through a comprehensive analysis of current research, this review underscores various pathways of MPs and HMs infiltration mechanisms, detailing their penetration, translocation, and bioaccumulation within plants. The physiological and biochemical effects of both pollutants on plants are deliberated individually and in combination. The review reveals that the co-existence of these contaminants results in a multifaceted environmental challenge, affecting overall plant growth, yield, and quality in ways that differ from individual exposure. Building on recent advancements, this article is expected to delineate the complex interactions between MPs, HMs, and plants and enhance the current understanding of the intricate interplay between them.
Collapse
Affiliation(s)
- Sanjay Kajal
- Department of Biosciences, Himachal Pradesh University, Shimla, 171005, India
| | - Sveta Thakur
- Department of Biosciences, Himachal Pradesh University, Shimla, 171005, India.
| |
Collapse
|
19
|
En-Nejmy K, El Hayany B, Al-Alawi M, Jemo M, Hafidi M, El Fels L. Microplastics in soil: A comprehensive review of occurrence, sources, fate, analytical techniques and potential impacts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117332. [PMID: 39616787 DOI: 10.1016/j.ecoenv.2024.117332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/21/2024] [Accepted: 11/10/2024] [Indexed: 12/09/2024]
Abstract
Through their accumulation in soils, microplastics have recently become a matter of concern. The aim of this review is to assemble and investigate the recent studies about microplastics in soil by focusing on their sources, occurrence, fate in soil, and analytical methods. The objective is also to clarify and elucidate their potential impacts on soil fauna, plants and microorganisms. In this paper, articles reporting the quantity of microplastics and their characteristics in soil at 62 sites situated across 17 countries were reviewed. The land type, microplastic abundances, types and sizes were compared. We summarized and discussed the sampling and analytical methods used and the variation of microplastic concentration according to their sources. The data showed that microplastic in soil from available global studies ranged from 0 to 3573×103 particles kg-1, with major dominance of polyethylene, polystyrene and polypropylene found in 50, 37 and 32 studies, respectively. The data analysis showed the high migration of small particles, spherical shape with high polymer density in the major studies. We also described the mechanisms controlling the vertical transport of microplastics: agricultural activity (plowing: at a depth between 10 cm (very shallow plowing) and 40 cm (deeper soil tillage)), bioturbation by soil organisms and plants, and leaching that can lead to the contamination of the groundwater. This review elucidated the behavior and fate of microplastics within the soil, serving as a reference for upcoming studies aimed at devising solutions to mitigate the toxicity associated with microplastics in soil.
Collapse
Affiliation(s)
- Khaoula En-Nejmy
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, (BioMAgE) Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University Marrakech, Morocco
| | - Bouchra El Hayany
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, (BioMAgE) Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University Marrakech, Morocco; Higher Institute of Nursing Professions and Health Techniques, Essaouira-Marrakech, Morocco
| | - Mutaz Al-Alawi
- Prince Faisal Center for Dead Sea, Environmental and Energy Research (PFC-DSEER), Mutah University, Mutah 61710, Jordan
| | - Martin Jemo
- AgroBiosciences Program, College of Agriculture & Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Mohamed Hafidi
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, (BioMAgE) Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University Marrakech, Morocco; African Sustainable Agriculture Research Institute (ASARI), College of Agriculture & Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Laâyoune, Morocco.
| | - Loubna El Fels
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, (BioMAgE) Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University Marrakech, Morocco.
| |
Collapse
|
20
|
Najibzadeh M, Kazemi A, Hassan HU, Esmaeilbeigi M. Hazard assessment of microplastics and heavy metals contamination in Levant frogs (Pelophylax bedriagae): A bioindicator in Western Iran. ENVIRONMENTAL RESEARCH 2024; 262:119774. [PMID: 39151558 DOI: 10.1016/j.envres.2024.119774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
The increasing pollution of aquatic ecosystems caused by microplastics (MPs) and heavy metal ions worldwide threatens the life of aquatic organisms, including amphibians. In this study, we investigated the presence and accumulation of MPs and heavy metal ions in the upper gastrointestinal tract (GIT) of the Levant frog (Pelophylax bedriagae) as a bioindicator in contaminated sites of Western Iran. A total of 192 adult frogs from 16 locations in the west and northwest of Iran were collected. We measured the accumulation of MPs and heavy metal ions in the collected frogs and determined the characteristics of MPs in the samples. Our findings revealed widespread MPs and heavy metal ions contamination in the frog GIT across all sampled stations. We found 742 MP particles in the digestive system of frogs, with the highest (7.09 MP/individual) and lowest (2.37 MP/individual) number observed in stations 10 and 9, respectively. Fibers were the most common MPs and polyester (PES) (42.5%) and polyethylene terephthalate (PET) (17.2%) were found to be the most common polymers in the GIT of frogs. The average accumulation of heavy metal ions showed significant differences (P < 0.05) among 16 sampling stations, and zinc (II) and mercury (II) showed the highest and lowest concentrations in frogs. We also found moderate to strong positive correlations between the detected MPs and heavy metal ions in the frog samples across all sampling stations. Our findings confirm the contamination of frogs by MPs and heavy metal ions and the potential capacity of MPs to increase the toxicity of heavy metals in P. bedriagae as a bioindicator in contaminated sites.
Collapse
Affiliation(s)
- Masoumeh Najibzadeh
- Department of Biology, Faculty of Science, Arak University, Arak, 384817758, Iran.
| | - Ali Kazemi
- Department of Environmental Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, Iran.
| | - Habib Ul Hassan
- Department of Zoology, University of Karachi, Karachi, 75270, Pakistan.
| | - Milad Esmaeilbeigi
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia.
| |
Collapse
|
21
|
Shi L, Feng Y, Wang J, Xiao R, Wang L, Tian P, Jin X, Zhao J, Wang G. Innovative mechanisms of micro- and nanoplastic-induced brain injury: Emphasis on the microbiota-gut-brain axis. Life Sci 2024; 357:123107. [PMID: 39369844 DOI: 10.1016/j.lfs.2024.123107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Micro- and nanoplastics (MNPs), emerging environmental pollutants, infiltrate marine, terrestrial, and freshwater systems via diverse pathways, culminating in their accumulation in the human body through food chain transmission, posing potential health risks. Researches have demonstrated that MNPs disrupt gut microbiota equilibrium and compromise intestinal barrier integrity, as well as traverse the blood-brain barrier, leading to brain damage. Moreover, the complex interaction between the gut and the nervous system, facilitated by the "gut-brain axis," indicates an additional pathway for MNPs-induced brain damage. This has intensified scientific interest in the intercommunication between MNPs and the gut-brain axis. While existing studies have documented microbial imbalances and metabolic disruptions subsequent to MNPs exposure, the precise mechanisms by which the microbiota-gut-brain axis contributes to MNPs-induced central nervous system damage remain unclear. This review synthesizes current knowledge on the microbiota-gut-brain axis, elucidating the pathogenesis of MNPs-induced gut microbiota dysbiosis and its consequent brain injury. It emphasizes the complex interrelation between MNPs and the microbiota-gut-brain axis, advocating for the gut microbiota as a novel therapeutic target to alleviate MNP-induced brain harm.
Collapse
Affiliation(s)
- Liuting Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | - Jialiang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Rui Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing People's Hospital, Jiangsu, Wuxi 214200, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China.
| |
Collapse
|
22
|
Hoang VH, Nguyen MK, Hoang TD, Ha MC, Huyen NTT, Bui VKH, Pham MT, Nguyen CM, Chang SW, Nguyen DD. Sources, environmental fate, and impacts of microplastic contamination in agricultural soils: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175276. [PMID: 39102948 DOI: 10.1016/j.scitotenv.2024.175276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The pervasive presence of microplastics has emerged as a pressing global environmental concern, posing threats to food security and human health upon infiltrating agricultural soils. These microplastics primarily originate from agricultural activities, including fertilizer inputs, compost-based soil remediation, irrigation, and atmospheric deposition. Their remarkable durability and resistance to biodegradation contribute to their persistent presence in the environment. Microplastics within agricultural soils have prompted concerns regarding their potential impacts on agricultural practices. Functioning as significant pollutants and carriers of microcontaminants within agricultural ecosystems, microplastics and their accompanying contaminants represent ongoing challenges. Within these soil ecosystems, the fate and transportation of microplastics can detrimentally affect plant growth, microbial communities, and, subsequently, human health via the food chain. Specifically, microplastics interact with soil factors, impacting soil health and functionality. Their high adsorption capacity for hazardous microcontaminants exacerbates soil contamination, leading to increased adverse effects on organisms and human health. Due to their tiny size, microplastic debris is easily ingested by soil organisms and can transfer through the food chain, causing physiological and/or mechanical damage. Additionally, microplastics can affect plant growth and have the potential to accumulate and be transported within plants. Efforts to mitigate these impacts are crucial to safeguarding agricultural sustainability and environmental health. Future research should delve into the long-term impacts of environmental aging processes on microplastic debris within agricultural soil ecosystems from various sources, primarily focusing on food security and human beings.
Collapse
Affiliation(s)
- Van-Hiep Hoang
- Vietnam National University, Hanoi - School of Interdisciplinary Sciences and Arts, 144 Xuan Thuy Street, Cau Giay District, Hanoi 100000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam.
| | - Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Viet Nam; Vietnam National University, Hanoi, VNU Town, Hoa Lac, Thach That District, Hanoi 155500, Viet Nam
| | - Minh Cuong Ha
- School of Aerospace Engineering (SAE), University of Engineering and Technology (UET), Vietnam National University (VNU), Hanoi 100000, Viet Nam
| | - Nguyen Thi Thanh Huyen
- Faculty of International Economics, Foreign Trade University, Vietnam, Dong Da District, Hanoi, Viet Nam
| | - Vu Khac Hoang Bui
- Laboratory for Advanced Nanomaterials and Sustainable Energy Technologies, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Minh-Thuan Pham
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan; Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Cong-Manh Nguyen
- Department of Aquatic and Atmospheric Environment Research, Research Institute of Biotechnology and Environment, Nong Lam University, Ho Chi Minh City 700000, Viet Nam
| | - S Woong Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
23
|
Nath S, Enerijiofi KE, Astapati AD, Guha A. Microplastics and nanoplastics in soil: Sources, impacts, and solutions for soil health and environmental sustainability. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:1048-1072. [PMID: 39246015 DOI: 10.1002/jeq2.20625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024]
Abstract
The present review discusses the growing concern of microplastics (MPs) and nanoplastics (NPs) in soil, together with their sources, concentration, distribution, and impact on soil microorganisms, human health, and ecosystems. MPs and NPs can enter the soil through various pathways, such as agricultural activities, sewage sludge application, and atmospheric deposition. Once in the soil, they can accumulate in the upper layers and affect soil structure, water retention, and nutrient availability. The presence of MPs and NPs in soil can also have ecological consequences, acting as carriers for pollutants and contaminants, such as heavy metals and persistent organic pollutants. Additionally, the leaching of chemicals and additives from MPs and NPs can pose public health risks through the food web and groundwater contamination. The detection and analyses of MPs and NPs in soil can be challenging, and methods involve spectroscopic and microscopy techniques, such as Fourier-transform infrared spectroscopy and scanning electron microscopy. To mitigate the presence and effects of MPs and NPs in soil, it is essential to reduce plastic waste production, improve waste management practices, and adopt sustainable agricultural practices. Effective mitigation measures include implementing stricter regulations on plastic use, promoting biodegradable alternatives, and enhancing recycling infrastructure. Additionally, soil amendments, such as biochar and compost, can help immobilize MPs and NPs, reducing their mobility and bioavailability. This review article aims to provide a comprehensive understanding of these emerging environmental issues and identify potential solutions to alleviate their impact on soil health, ecosystem functioning, and community health.
Collapse
Affiliation(s)
- Soumitra Nath
- Department of Biotechnology, Gurucharan College, Silchar, Assam, India
| | - Kingsley Erhons Enerijiofi
- Department of Biological Sciences, College of Basic and Applied Sciences, Glorious Vision University, Ogwa, Edo State, Nigeria
| | | | - Anupam Guha
- Michael Madhusudan Dutta College, Sabroom, Tripura, India
| |
Collapse
|
24
|
van Loon S, de Jeu L, Hurley R, Kernchen S, Fenner M, van Gestel CAM. Multigenerational toxicity of microplastics derived from two types of agricultural mulching films to Folsomia candida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175097. [PMID: 39074756 DOI: 10.1016/j.scitotenv.2024.175097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Degradation and fragmentation of mulching films represents an increasing source of microplastics (MPs, plastic particles 1 μm to 5 mm in size) to agricultural soils. MPs have been shown to affect many soil invertebrates, including springtails. However, these studies typically use test materials representing less environmentally relevant particle types, such as pristine uniform MPs, which do not represent the large range of particle sizes and morphologies found in the field. This study aimed at providing insight into the adverse effects of MPs originating from agricultural mulching films, by using artificially aged MPs derived from both biodegradable (starch-polybutadiene adipate terephthalate (PBAT)) blend, as well as conventional (linear low-density polyethylene (LLDPE)) plastic polymers. The soil dwelling springtail Folsomia candida was exposed to these MPs for five generations in order to elucidate population effects due to possible reproduction toxicity, endocrine disruption, mutagenesis or developmental toxicity. F. candida were exposed to 0, 0.0016, 0.008, 0.04, 0.2, 1, 2, 3, 4 and 5 % (w/w dry soil) MPs in Lufa 2.2 soil, which includes concentrations within the range of environmental relevance. Juveniles produced at each concentration were transferred to the next generation, with the parental, F2 and F4 generations being exposed for four weeks and F1 and F3 generations for five weeks. No concentration-dependent effects on F. candida survival or reproduction were observed in exposures to either of the MPs, in any of the generations. These results suggest that the particular MPs used in this study, derived from mulching films used on agricultural soils, may not be potent toxicants to F. candida, even after long-term exposure and at elevated concentrations.
Collapse
Affiliation(s)
- Sam van Loon
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| | - Lotte de Jeu
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Rachel Hurley
- Norwegian Institute for Water Research (NIVA), Oslo 0579, Norway
| | - Sarmite Kernchen
- Animal Ecology I, University of Bayreuth, Bayreuth 95440, Germany
| | - Marlon Fenner
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Forsell V, Saartama V, Turja R, Haimi J, Selonen S. Reproduction, growth and oxidative stress in earthworm Eisenia andrei exposed to conventional and biodegradable mulching film microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174667. [PMID: 38992384 DOI: 10.1016/j.scitotenv.2024.174667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Plastic contamination in agricultural soils has become increasingly evident. Plastic mulching films are widely used in agricultural practices. However, the increased use of biodegradable plastics has, to some extent, replaced their non-degradable counterparts. The fragmentation of plastics generates microplastics (MPs), posing risk to soil functions and organisms. In this study the effects of low-density polyethylene microplastics (PE-MP) and polybutylene adipate terephthalate biodegradable microplastics (PBAT-BD-MP) originating from mulching films on the earthworm Eisenia andrei were studied. The earthworms were exposed to seven concentrations (0, 0.005, 0.05, 0.1, 0.5, 1, and 5 % w/w) based on environmentally relevant levels and worst-case scenarios on soil contamination. Survival, growth, reproduction, and biomarkers for oxidative stress [superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), glutathione (GSH), and lipid peroxidation (LPO)] were analysed. Additionally, the Integrated Biomarker Response Index (IBR) was calculated to assess the overall oxidative stress status of the earthworms. Results showed that PE-MP exposure slightly decreased the biomass of the earthworms towards higher concentrations, whereas PBAT-BD-MPs induced growth at lower concentrations. MPs did not have a significant effect on Eisenia andrei reproduction; however, a slight negative trend was observed in juvenile production with increasing PE-MP concentrations. Both PE-MP and PBAT-BD-MP affected antioxidant system, PE-MPs with changes in CAT and GR levels and PBAT-BD-MPs inducing effects on SOD and LPO levels. Additionally, both MPs exhibited effects on soil parameters, resulting in increased soil pH and water-holding capacity at 5 % concentration. Changes in soil parameters can further affect soil organisms such as earthworms. This study provides understanding of the ecotoxicological effects of conventional and biodegradable microplastics on the earthworm Eisenia andrei. It also shows that MP particles of both conventional and biodegradable mulching films induce oxidative stress, considered as an early-warning indicator for adverse ecological effects, in environmentally relevant concentrations.
Collapse
Affiliation(s)
- Venla Forsell
- Finnish Environmental Institute Syke, Latokartanonkaari 11, 00790 Helsinki, Finland; University of Helsinki, Faculty of Biological and Environmental Sciences, P.O. Box 4, 00014 University of Helsinki, Helsinki, Finland
| | - Vili Saartama
- Finnish Environmental Institute Syke, Latokartanonkaari 11, 00790 Helsinki, Finland; University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, 40014 University of Jyväskylä, Jyväskylä, Finland
| | - Raisa Turja
- Finnish Environmental Institute Syke, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Jari Haimi
- University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, 40014 University of Jyväskylä, Jyväskylä, Finland
| | - Salla Selonen
- Finnish Environmental Institute Syke, Latokartanonkaari 11, 00790 Helsinki, Finland.
| |
Collapse
|
26
|
Jemec Kokalj A, Nagode A, Drobne D, Dolar A. Effects of agricultural microplastics in multigenerational tests with insects; mealworms Tenebrio molitor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174490. [PMID: 38969109 DOI: 10.1016/j.scitotenv.2024.174490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Mulching films, widely used in agriculture, are a large source of microplastics (MPs) to soil. However, there is little knowledge on the long-term effects of agricultural MPs on soil invertebrates. We investigated the effects of MPs from conventional non-biodegradable, fossil-based, low-density polyethylene (PE) and biodegradable fossil-based poly(butylene adipate-coterephthalate) (starch-PBAT blend) mulching films on two generations of the mealworm Tenebrio molitor. No effects of MPs (0.005 %-5 %, w/w dry food) on mealworm development and survival were observed until the end of the experiments (12 weeks for the first generation, nine weeks for the second generation), but effects on their moulting and growth were observed. These were most evident for PE MPs (5 %, w/w), where a decrease in larval growth and moulting was noted in the first generation. On the contrary, PBAT MPs (5 %, w/w) significantly induced the growth of mealworms in the second generation. In addition, there was a non-significant trend towards increased growth at all other PBAT MP exposure concentrations. Increased growth is most likely due to the biodegradation of starch PBAT MPs by mealworms. Overall, these data suggest that PE and PBAT MPs do not induce significant effects on mealworms at environmentally relevant concentrations, but rather only at very high exposure concentrations (5 %).
Collapse
Affiliation(s)
- Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia.
| | - Ana Nagode
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Andraž Dolar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| |
Collapse
|
27
|
Tiwari E, Sistla S. Agricultural plastic pollution reduces soil function even under best management practices. PNAS NEXUS 2024; 3:pgae433. [PMID: 39440019 PMCID: PMC11495371 DOI: 10.1093/pnasnexus/pgae433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Soil plastic contamination is considered a threat to environmental health and food security. Plastic films-which are widely used as soil mulches-are the largest single source of agricultural plastic pollution. Growing evidence indicates that high concentrations of plastic negatively affect critical soil functions. However, the relationships between agricultural plastic accumulation and its biogeochemical consequences in regions with relatively low levels of soil plastic pollution remain poorly characterized. We sampled farms across the California Central Coast (a region of global agricultural importance with extensive plastic mulch-based production) to assess the degree and biogeochemical consequences of plastic pollution in fields subject to "best practice" plastic mulching application and removal practices over multiple years. All farms exhibited surface soil plastic contamination, macroplastic positively correlated with microplastic contamination levels, and macroplastic accumulation was negatively correlated with soil moisture, microbial activity, available phosphate, and soil carbon pool size. These effects occurred at less than 10% of the contamination levels reported to degrade field soils, but were relatively subtle, with no detectable relationship to microplastic concentration. Identifying declines in soil quality with low levels of macroplastic fragment accumulation suggests that we must improve best management plasticulture practices to limit the threat to soil health and agricultural productivity of unabated plastic accumulation.
Collapse
Affiliation(s)
- Ekta Tiwari
- Department of Natural Resources Management and Environmental Sciences, College of Agriculture, Food and Environmental Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Seeta Sistla
- Department of Natural Resources Management and Environmental Sciences, College of Agriculture, Food and Environmental Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
28
|
Rahman MM, Maniruzzaman M, Zaman MN. Fabrication and characterization of environmentally friendly biopolymeric nanocomposite films from cellulose nanocrystal of banana M. Oranta (Sagar kala) tree rachis fibers and poly lactic acid: A new route. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2024; 50:451-465. [DOI: 10.1016/j.sajce.2024.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
|
29
|
Lara-Topete GO, Castanier-Rivas JD, Bahena-Osorio MF, Krause S, Larsen JR, Loge FJ, Mahlknecht J, Gradilla-Hernández MS, González-López ME. Compounding one problem with another? A look at biodegradable microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173735. [PMID: 38857803 DOI: 10.1016/j.scitotenv.2024.173735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Environmental concerns about microplastics (MPs) have motivated research of their sources, occurrence, and fate in aquatic and soil ecosystems. To mitigate the environmental impact of MPs, biodegradable plastics are designed to naturally decompose, thus reducing the amount of environmental plastic contamination. However, the environmental fate of biodegradable plastics and the products of their incomplete biodegradation, especially micro-biodegradable plastics (MBPs), remains largely unexplored. This comprehensive review aims to assess the risks of unintended consequences associated with the introduction of biodegradable plastics into the environment, namely, whether the incomplete mineralization of biodegradable plastics could enhance the risk of MBPs formation and thus, exacerbate the problem of their environmental dispersion, representing a potentially additional environmental hazard due to their presumed ecotoxicity. Initial evidence points towards the potential for incomplete mineralization of biodegradable plastics under both controlled and uncontrolled conditions. Rapid degradation of PLA in thermophilic industrial composting contrasts with the degradation below 50 % of other biodegradables, suggesting MBPs released into the environment through compost. Moreover, degradation rates of <60 % in anaerobic digestion for polymers other than PLA and PHAs suggest a heightened risk of MBPs in digestate, risking their spread into soil and water. This could increase MBPs and adsorbed pollutants' mobilization. The exact behavior and impacts of additive leachates from faster-degrading plastics remain largely unknown. Thus, assessing the environmental fate and impacts of MBPs-laden by-products like compost or digestate is crucial. Moreover, the ecotoxicological consequences of shifting from conventional plastics to biodegradable ones are highly uncertain, as there is insufficient evidence to claim that MBPs have a milder effect on ecosystem health. Indeed, literature shows that the impact may be worse depending on the exposed species, polymer type, and the ecosystem complexity.
Collapse
Affiliation(s)
- Gary Ossmar Lara-Topete
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - Juan Daniel Castanier-Rivas
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - María Fernanda Bahena-Osorio
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | - Joshua R Larsen
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | - Frank J Loge
- Department of Civil & Environmental Engineering, University of California - Davis, Davis, CA, United States of America; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Misael Sebastián Gradilla-Hernández
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - Martín Esteban González-López
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico.
| |
Collapse
|
30
|
Weltmeyer A, Roß-Nickoll M. Different mulch films, consistent results: soil fauna responses to microplastic. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:943. [PMID: 39289215 PMCID: PMC11408579 DOI: 10.1007/s10661-024-13096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Agricultural activities contribute to plastic pollution, with unintentional introduction and intentional use of plastic mulch films leading to the accumulation of microplastic particles in soils. The lack of removal techniques and scarce information on the effects on soil organisms, especially for biodegradable mulch films, necessitate an assessment of potential effects. This study aimed to elucidate the effects of mulch film microplastic on soil fauna by investigating reproduction output and subcellular responses before and after recovery from exposure. Two common soil organisms, Folsomia candida and Eisenia fetida, were exposed to petroleum-based polyethylene (PE) and biodegradable polylactic acid/polybutylene adipate terephthalate (PLA/PBAT) microplastic for 28 days, according to OECD guidelines 232 and 222, respectively. Juvenile numbers revealed no polymer- or concentration-dependent effects on E. fetida and F. candida reproduction after exposure to up to 5 and 10 g/kgdw soil, respectively. To provide a more sensitive and early indication of sublethal effects, subcellular responses in E. fetida were analyzed. Glutathione S-transferase (GST) activity increased with rising microplastic concentration; however, catalase (CAT), acetylcholine esterase (AChE) activity, and reactive oxygen species (ROS) did not differ from control levels. Further, the more environmentally relevant PE polymer was chosen for in-depth assessment of subcellular response after 28-day microplastic exposure and subsequent 28 days in uncontaminated soil with E. fetida. No significant differences in biomarker activity and stress levels were observed. We conclude that mulch film-derived microplastic did not adversely affect earthworm and collembolan species in this scenario, except for a slight induction in the detoxification enzyme glutathione S-transferase.
Collapse
Affiliation(s)
- Antonia Weltmeyer
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany.
| | - Martina Roß-Nickoll
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
31
|
Wang Y, Li X, Yang H, Wu Y, Pu Q, He W, Li X. A review of tire wear particles: Occurrence, adverse effects, and control strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116782. [PMID: 39059345 DOI: 10.1016/j.ecoenv.2024.116782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/16/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Tire wear particles (TWPs), common mixed particulate emerging contaminants in the environment, have global per capita emissions accounting for 0.23-1.9 kg/year, attracting global attention recently due to their wide detection, small size, mobility, and high toxicity. This review focuses on the occurrence characteristics of TWPs in multiple environmental media, adverse effects on organisms, potential toxicity mechanisms, and environmental risk prevention and control strategies of TWPs. The environmental fate of TWPs throughout the entire process is systematically investigated by the bibliometric analysis function of CiteSpace. This review supplements the gap in the joint toxicity and related toxicity mechanisms of TWPs with other environmental pollutants. Based on the risks review of TWPs and their additives, adverse impacts have been found in organisms from aquatic environments, soil, and humans, such as the growth inhibition effect on Chironomus dilutes. A multi-faceted and rationalized prevention and control treatment of "source-process-end" for the whole process can be achieved by regulating the use of studded tires, improving the tire additive formula, growing plants roadside, encouraging micro-degradation, and other methods, which are first reviewed. By addressing the current knowledge gaps and exploring prospects, this study contributes to developing strategies for reducing risks and assessing the fate of TWPs in multiple environmental media.
Collapse
Affiliation(s)
- Yu Wang
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China.
| | - Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yang Wu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Wei He
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Xixi Li
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's A1B 3X5, Canada.
| |
Collapse
|
32
|
Richard CMC, Dejoie E, Wiegand C, Gouesbet G, Colinet H, Balzani P, Siaussat D, Renault D. Plastic pollution in terrestrial ecosystems: Current knowledge on impacts of micro and nano fragments on invertebrates. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135299. [PMID: 39067293 DOI: 10.1016/j.jhazmat.2024.135299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
The increasing accumulation of small plastic particles, in particular microplastics (>1 µm to 5 mm) and nanoplastics (< 1 µm), in the environment is a hot topic in our rapidly changing world. Recently, studies were initiated to better understand the behavior of micro- and nanoplastics (MNP) within complex matrices like soil, as well as their characterization, incorporation and potential toxicity to terrestrial biota. However, there remains significant knowledge gaps in our understanding of the wide-extent impacts of MNP on terrestrial invertebrates. We first summarized facts on global plastic pollution and the generation of MNP. Then, we focused on compiling the existing literature examining the consequences of MNP exposure in terrestrial invertebrates. The diversity of investigated biological endpoints (from molecular to individual levels) were compiled to get a better comprehension of the effects of MNP according to different factors such as the shape, the polymer type, the organism, the concentration and the exposure duration. The sublethal effects of MNP are acknowledged in the literature, yet no general conclusion was drawn as their impacts are highly dependent on their characteristic and experimental design. Finally, the synthesis highlighted some research gaps and remediation strategies, as well as a protocol to standardize ecotoxicological studies.
Collapse
Affiliation(s)
- Chloé M C Richard
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Elsa Dejoie
- Groupe de Recherche en Écologie de la MRC Abitibi, Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, Amos, Québec J9T 2L8, Canada
| | - Claudia Wiegand
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Gwenola Gouesbet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Hervé Colinet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Paride Balzani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic
| | - David Siaussat
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France
| | - David Renault
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France.
| |
Collapse
|
33
|
Shirin J, Chen Y, Hussain Shah A, Da Y, Zhou G, Sun Q. Micro plastic driving changes in the soil microbes and lettuce growth under the influence of heavy metals contaminated soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1427166. [PMID: 39323532 PMCID: PMC11422782 DOI: 10.3389/fpls.2024.1427166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/27/2024]
Abstract
Microplastics (MPs) have garnered global attention as emerging contaminants due to their adaptability, durability, and robustness in various ecosystems. Still, studies concerning their combination with heavy metals (HMs), their interactions with soil biota, and how they affect soil physiochemical properties and terrestrial plant systems are limited. Our study was set to investigate the combined effect of HMs (cadmium, arsenic, copper, zinc and lead) contaminated soil of Tongling and different sizes (T1 = 106 µm, T2 = 50 µm, and T3 = 13 µm) of polystyrene microplastics on the soil physiochemical attributes, both bacterial and fungal diversity, compositions, AMF (arbuscular mycorrhizal fungi), plant pathogens in the soil, and their effect on Lactuca sativa by conducting a greenhouse experiment. According to our results, the combination of HMs and polystyrene microplastic (PS-MPs), especially the smaller PS-MPs (T3), was more lethal for the lettuce growth, microbes and soil. The toxicity of combined contaminants directly reduced the physio-biochemical attributes of lettuce, altered the lettuce's antioxidant activity and soil health. T3 at the final point led to a significant increase in bacterial and fungal diversity. In contrast, overall bacterial diversity was higher in the rhizosphere, and fungal diversity was higher in the bulk soil. Moreover, the decrease in MPs size played an important role in decreasing AMF and increasing both bacterial and fungal pathogens, especially in the rhizosphere soil. Functional prediction was found to be significantly different in the control treatment, with larger MPs compared to smaller PS-MPs. Environmental factors also played an important role in the alteration of the microbial community. This study also demonstrated that the varied distribution of microbial populations could be an ecological indicator for tracking the environmental health of soil. Overall, our work showed that the combination of HMs and smaller sizes of MPs was more lethal for the soil biota and lettuce and also raised many questions for further studying the ecological risk of PS-MPs and HMs.
Collapse
Affiliation(s)
- Jazbia Shirin
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Yongjing Chen
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Azhar Hussain Shah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Yanmei Da
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Guowei Zhou
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Qingye Sun
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| |
Collapse
|
34
|
Dogra K, Kumar M, Deoli Bahukhandi K, Zang J. Traversing the prevalence of microplastics in soil-agro ecosystems: Origin, occurrence, and pollutants synergies. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104398. [PMID: 39032427 DOI: 10.1016/j.jconhyd.2024.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
The ubiquity of plastics in modern life has made them a significant environmental concern and a marker of the Anthropocene era. The degradation of plastics results in the formation of microplastics (MPs), which measure 5 mm or less. The coexistence of MPs with other pollutants found in sludge, water treatment plant effluents, surface water, and groundwater, shapes the environmental landscape together. Despite extensive investigation, the long-term implications of MPs in soils remain uncertain, underscoring the importance of delving into their transportation and interactions with soil biota and other contaminants. The present article provides a comprehensive overview of MPs contamination in soil, encompassing its sources, prevalence, features, and interactions with soil flora and fauna, heavy metals, and organic compounds. The sources of MPs in soil agroecosystems are mulching, composting, littering, sewage sludge, irrigation water, and fertilizer application. The concentration of MPs reported in plastic mulch, littering, and sewage sludge is 503 ± 2760 items per kg-1, 4483 ± 2315 MPs/kg, and 11,100 ± 570 per/kg. The transport of MPs in soil agroecosystems is due to their horizontal and vertical migration including biotic and abiotic mobility. The article also highlighted the analytical process, which includes sampling planning, collection, purification, extraction, and identification techniques of MPs in soil agroecosystems. The mechanism in the interaction of MPs and organic pollutants includes surface adsorption or adhesion cation bridging, hydrogen bonding, charge transfer, ligand exchange, van der Waals interactions, and ion exchange.
Collapse
Affiliation(s)
- Kanika Dogra
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India; Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, Mexico.
| | - Kanchan Deoli Bahukhandi
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Jian Zang
- Joint International Research Laboratory of Green Buildings and Built Environments, School of Civil Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
35
|
Wang Y, Fu Z, Guan D, Zhao J, Zhang Q, Liu Q, Xie J, Sun Y, Guo L. Occurrence Characteristics and Ecotoxic Effects of Microplastics in Environmental Media: a Mini Review. Appl Biochem Biotechnol 2024; 196:5484-5507. [PMID: 38158486 DOI: 10.1007/s12010-023-04832-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The issue of environmental pollution caused by the widespread presence of microplastics (MPs) in environmental media has garnered significant attention. However, research on MPs pollution has mainly focused on aquatic ecosystems in recent years. The sources and pollution characteristics of MPs in the environment, especially in solid waste, have not been well-described. Additionally, there are few reports on the ecotoxicity of MPs, which highlights the need to fill this gap. This review first summarizes the occurrence characteristics of MPs in water, soil, and marine environments, and then provides an overview of their toxic effects on organisms and the relevant mechanisms. This paper also provides an outlook on the hotspots of research on pollution characterization and ecotoxicity of MPs. Finally, this review aims to provide insights for future ecotoxicity control of MPs. Overall, this paper expands our understanding of the pollution characteristics and ecological toxicity of MPs in current environmental media, providing forward-looking guidance for future research.
Collapse
Affiliation(s)
- Yuxin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Zhou Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Dezheng Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Qi Zhang
- School of Environmental Science and Engineering, Qingdao Jiebao Ecological Technology Co., Ltd., Qingdao, 266000, China
| | - Qingxin Liu
- School of Environmental Science and Engineering, Qingdao Jiebao Ecological Technology Co., Ltd., Qingdao, 266000, China
| | - Jingliang Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Liang Guo
- China Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
36
|
Ferreira-Filipe DA, Oliveira L, Paço A, Fernandes AJS, Costa FM, Duarte AC, Rocha-Santos T, Patrício Silva AL. Biodegradation of e-waste microplastics by Penicillium brevicompactum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173334. [PMID: 38763191 DOI: 10.1016/j.scitotenv.2024.173334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Electronic and electric waste (e-waste) management strategies often fall short in dealing with the plastic constituents of printed circuit boards (PCB). Some plastic materials from PCB, such as epoxy resins, may release contaminants, but neither potential environmental impact has been assessed nor mitigation strategies have been put forward. This study assessed the biodegradation of microplastics (1-2 mm in size) from PCB by the fungus Penicillium brevicompactum over 28 days, thus contributing to the discussion of mitigation strategies for decreasing the environmental impact of such plastics in the environment. The capacity of P. brevicompactum to induce microplastic fragmentation and degradation has been determined by the increased the number of smaller-sized particles and microplastic mass reduction (up to 75 % within 14 days), respectively. The occurrence of chain scission and oxidation of microplastics exposed to P. brevicompactum when compared with the control conditions (which occurred only after 28 days of exposure) can be observed. Furthermore, Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy performed in dried biomass put in evidence an increase in the absorption intensities in regions that could be attributed to functional groups associated with carbohydrates. The results underline the potential role of the genus Penicillium, particularly P. brevicompactum, in the biodegradation of microplastics from PCB, thus providing the basis for further exploration of its potential for e-waste bioremediation and research on the underlying mechanisms for sustainable approaches to mitigate e-waste pollution.
Collapse
Affiliation(s)
- Diogo A Ferreira-Filipe
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, Portugal.
| | | | - Ana Paço
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, Portugal
| | | | | | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, Portugal
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
37
|
Jiang X, Wang X, Kah M, Li M. Environmentally relevant concentrations of microplastics from agricultural mulch and cadmium negatively impact earthworms by triggering neurotoxicity and disrupting homeostasis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135158. [PMID: 39002475 DOI: 10.1016/j.jhazmat.2024.135158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/26/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Recent research has highlighted the ecological risk posed by microplastics (MPs) from mulching film and heavy metals to soil organisms. However, most studies overlooked real environmental levels of MPs and heavy metals. To address this gap, pristine and aged polyethylene (PE) mulching film-derived MPs (PMPs, 500 mg/kg; AMPs, 500 mg/kg) were combined with cadmium (Cd, 0.5 mg/kg) to assess the acute toxicity to earthworms and investigate associated molecular mechanisms (oxidative stress, osmoregulation pressure, gut microbiota, and metabolic responses) at environmentally relevant concentrations. Compared to Cd alone and Cd + PMPs treatments (11.15 ± 4.19 items/g), Cd + AMPs treatment resulted in higher MPs bioaccumulation (23.73 ± 13.14 items/g), more severe tissue lesions, and increased cell membrane osmotic pressure in earthworms' intestines. Cd + AMPs induced neurotoxicity through elevated levels of glutamate and acetylcholinesterase. Earthworm intestines (0.98 ± 0.49 to 3.33 ± 0.37 mg/kg) exhibited significantly higher Cd content than soils (0.19 ± 0.01 to 0.51 ± 0.06 mg/kg) and casts (0.15 ± 0.01 to 0.25 ± 0.05 mg/kg), indicating PE-MPs facilitated Cd transport in earthworms' bodies. Metabolomic analysis showed Cd + AMPs exposure depleted energy and nucleotide metabolites, disrupted cell homeostasis more profoundly than Cd and Cd + PMPs treatments. Overall, co-exposure to AMPs + Cd induced more severe neurotoxicity and disruption of homeostasis in earthworm than Cd and PMPs + Cd treatments. Our study, using Cd and MPs with environmental relevance, underscores MPs' role in amplifying Cd accumulation and toxicity in earthworms.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Melanie Kah
- School of Environment, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
38
|
Sucharitakul P, Wu WM, Zhang Y, Peng BY, Gao J, Wang L, Hou D. Exposure Pathways and Toxicity of Microplastics in Terrestrial Insects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11887-11900. [PMID: 38885123 DOI: 10.1021/acs.est.4c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The detrimental effects of plastics on aquatic organisms, including those of macroplastics, microplastics, and nanoplastics, have been well established. However, knowledge on the interaction between plastics and terrestrial insects is limited. To develop effective strategies for mitigating the impact of plastic pollution on terrestrial ecosystems, it is necessary to understand the toxicity effects and influencing factors of plastic ingestion by insects. An overview of current knowledge regarding plastic ingestion by terrestrial insects is provided in this Review, and the factors influencing this interaction are identified. The pathways through which insects interact with plastics, which can lead to plastic accumulation and microplastic transfer to higher trophic levels, are also discussed using an overview and a conceptual model. The diverse impacts of plastic exposure on insects are discussed, and the challenges in existing studies, such as a limited focus on certain plastic types, are identified. Further research on standardized methods for sampling and analysis is crucial for reliable research, and long-term monitoring is essential to assess plastic trends and ecological impacts in terrestrial ecosystems. The mechanisms underlying these effects need to be uncovered, and their potential long-term consequences for insect populations and ecosystems require evaluation.
Collapse
Affiliation(s)
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305-4020, United States
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
39
|
Wang D, Xiong F, Wu L, Liu Z, Xu K, Huang J, Liu J, Ding Q, Zhang J, Pu Y, Sun R. A progress update on the biological effects of biodegradable microplastics on soil and ocean environment: A perfect substitute or new threat? ENVIRONMENTAL RESEARCH 2024; 252:118960. [PMID: 38636648 DOI: 10.1016/j.envres.2024.118960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Conventional plastics are inherently difficult to degrade, causing serious plastic pollution. With the development of society, biodegradable plastics (BPs) are considered as an alternative to traditional plastics. However, current research indicated that BPs do not undergo complete degradation in natural environments. Instead, they may convert into biodegradable microplastics (BMPs) at an accelerated rate, thereby posing a significant threat to environment. In this paper, the definition, application, distribution, degradation behaviors, bioaccumulation and biomagnification of BPs were reviewed. And the impacts of BMPs on soil and marine ecosystems, in terms of physicochemical property, nutrient cycling, microorganisms, plants and animals were comprehensively summarized. The effects of combined exposure of BMPs with other pollutants, and the mechanism of ecotoxicity induced by BMPs were also addressed. It was found that BMPs reduced pH, increased DOC content, and disrupted the nitrification of nitrogen cycle in soil ecosystem. The shoot dry weight, pod number and root growth of soil plants, and reproduction and body length of soil animals were inhibited by BMPs. Furthermore, the growth of marine plants, and locomotion, body length and survival of marine animals were suppressed by BMPs. Additionally, the ecotoxicity of combined exposure of BMPs with other pollutants has not been uniformly concluded. Exposure to BMPs induced several types of toxicity, including neurotoxicity, gastrointestinal toxicity, reproductive toxicity, immunotoxicity and genotoxicity. The future calls for heightened attention towards the regulation of the degradation of BPs in the environment, and pursuit of interventions aimed at mitigating their ecotoxicity and potential health risks to human.
Collapse
Affiliation(s)
- Daqin Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Fei Xiong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lingjie Wu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Zhihui Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jinyan Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qin Ding
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
40
|
Seo Y, Zhou Z, Lai Y, Chen G, Pembleton K, Wang S, He JZ, Song P. Micro- and nanoplastics in agricultural soils: Assessing impacts and navigating mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172951. [PMID: 38703838 DOI: 10.1016/j.scitotenv.2024.172951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Micro-/nanoplastic contamination in agricultural soils raises concerns on agroecosystems and poses potential health risks. Some of agricultural soils have received significant amounts of micro-/nanoplastics (MNPs) through plastic mulch film and biosolid applications. However, a comprehensive understanding of the MNP impacts on soils and plants remains elusive. The interaction between soil particles and MNPs is an extremely complex issue due to the different properties and heterogeneity of soils and the diverse characteristics of MNPs. Moreover, MNPs are a class of relatively new anthropogenic pollutants that may negatively affect plants and food. Herein, we presented a comprehensive review of the impacts of MNPs on the properties of soil and the growth of plants. We also discussed different strategies for mitigating or eliminating MNP contamination. Moreover, perspectives for future research on MNP contamination in the agricultural soils are also highlighted.
Collapse
Affiliation(s)
- Yoonjung Seo
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia
| | - Zhezhe Zhou
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia; Centre for Future Materials, University of Southern Queensland, Springfield, Australia
| | - Yunru Lai
- Centre for Sustainable Agricultural Systems, University of Southern Queensland, Springfield, Australia.
| | - Guangnan Chen
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia.
| | - Keith Pembleton
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ji-Zheng He
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pingan Song
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia; Centre for Future Materials, University of Southern Queensland, Springfield, Australia.
| |
Collapse
|
41
|
Xiong Z, Zhang Y, Chen X, Sha A, Xiao W, Luo Y, Han J, Li Q. Soil Microplastic Pollution and Microbial Breeding Techniques for Green Degradation: A Review. Microorganisms 2024; 12:1147. [PMID: 38930528 PMCID: PMC11205638 DOI: 10.3390/microorganisms12061147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Microplastics (MPs), found in many places around the world, are thought to be more detrimental than other forms of plastics. At present, physical, chemical, and biological methods are being used to break down MPs. Compared with physical and chemical methods, biodegradation methods have been extensively studied by scholars because of their advantages of greenness and sustainability. There have been numerous reports in recent years summarizing the microorganisms capable of degrading MPs. However, there is a noticeable absence of a systematic summary on the technology for breeding strains that can degrade MPs. This paper summarizes the strain-breeding technology of MP-degrading strains for the first time in a systematic way, which provides a new idea for the breeding of efficient MP-degrading strains. Meanwhile, potential techniques for breeding bacteria that can degrade MPs are proposed, providing a new direction for selecting and breeding MP-degrading bacteria in the future. In addition, this paper reviews the sources and pollution status of soil MPs, discusses the current challenges related to the biodegradation of MPs, and emphasizes the safety of MP biodegradation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jialiang Han
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, No. 2025, Chengluo Avenue, Longquanyi District, Chengdu 610106, China; (Z.X.); (Y.Z.); (X.C.); (A.S.); (W.X.); (Y.L.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, No. 2025, Chengluo Avenue, Longquanyi District, Chengdu 610106, China; (Z.X.); (Y.Z.); (X.C.); (A.S.); (W.X.); (Y.L.)
| |
Collapse
|
42
|
Marchellina A, Soegianto A, Irawan B, Indriyasari KN, Rahmatin NM, Mukholladun W, Irnidayanti Y, Payus CM, Hartl MGJ. The presence and physico-chemical properties of microplastics in seawater, sediment, and several organs of the spotted scat fish (Scatophagus argus, Linnaeus, 1766) collected from different locations along the East Java coast in Indonesia. CHEMOSPHERE 2024; 358:142214. [PMID: 38701863 DOI: 10.1016/j.chemosphere.2024.142214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
A comprehensive study was undertaken to examine the contamination of spotted scat fish (Scatophagus argus) with microplastics (MP) in various locations along the East Java coast of Indonesia. The purpose of this study was to collect detailed information regarding the abundance, color, shape, size, type of polymer, and chemical components of the MP. The findings of this study indicated that MP exhibiting distinct attributes-including a specific fiber type, black coloration, and a size range of 1000- <5000 μm-was most abundant in the gill, stomach, and intestines of spotted scat fish of varying lengths. And MP with a size range of 100-<500 μm was prevalent in the sediment. MP with black fragments measuring less than 100 μm in diameter were found primarily in seawater. A positive correlation was identified between fish length and MP abundance in the intestines, as indicated by the Spearman correlation coefficient. Conversely, a negative correlation was detected between fish length and MP abundance in the gills. The findings of the Fourier transform infrared spectroscopy and Gas chromatography-mass spectrometry analyses, which indicate the presence of various polymers and chemical substances including plasticizers (e.g., diethyl phthalate, decane, and eicosane), stabilizers (2-piperidinone, hexadecanoic acid, mesitylene, and 2,4-Di-tert-butylphenol), and flame retardant (cyclododecene), in fish, are of the utmost importance. These substances have the potential to endanger the health of both animals and humans if they are ingested through the food chain.
Collapse
Affiliation(s)
- Ary Marchellina
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
| | - Agoes Soegianto
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
| | - Bambang Irawan
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
| | | | - Nailul Muthiati Rahmatin
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
| | - Wildanun Mukholladun
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
| | - Yulia Irnidayanti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta, Indonesia.
| | - Carolyn Melissa Payus
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| | - Mark G J Hartl
- Institute for Life and Earth Sciences, Centre for Marine Biodiversity and Biotechnology, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton, Edinburgh, Scotland, UK.
| |
Collapse
|
43
|
Bauri S, Shekhar H, Sahoo H, Mishra M. Investigation of the effects of nanoplastic polyethylene terephthalate on environmental toxicology using model Drosophila melanogaster. Nanotoxicology 2024; 18:354-372. [PMID: 38958196 DOI: 10.1080/17435390.2024.2368004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Plastic pollution has become a major environmental concern, and various plastic polymers are used daily. A study was conducted to examine the toxic effects of polyethylene terephthalate (PET) nanoplastics (NPLs) on Drosophila melanogaster. We have successfully synthesized PET NPLs and characterized using DLS, Zeta potential, TEM, HRTEM, SAED, XRD, FTIR, and Raman spectroscopy to gain crucial insights into the structure and properties. We fed PET NPLs to Drosophila to assess toxicity. ROS was quantified using DCFH-DA and NBT, and the nuclear degradation was checked by DAPI staining. Quantification of protein and activity of antioxidant enzymes like SOD, catalase depicted the adverse consequences of PET NPLs exposure. The dorsal side of the abdomens, eyes, and wings were also defective when phenotypically analyzed. These results substantiate the genotoxic and cytotoxic impact of nanoplastics. Notably, behavioral observations encompassing larval crawling and climbing of adults exhibit normal patterns, excluding the presence of neurotoxicity. Adult Drosophila showed decreased survivability, and fat accumulation enhanced body weight. These findings contribute to unraveling the intricate mechanisms underlying nanoplastic toxicity and emphasize its potential repercussions for organismal health and ecological equilibrium.
Collapse
Affiliation(s)
- Samir Bauri
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, India
| | - Himanshu Shekhar
- Department of Chemistry, Biophysical and Protein Chemistry Lab, National Institute of Technology, Rourkela, India
| | - Harekrushna Sahoo
- Department of Chemistry, Biophysical and Protein Chemistry Lab, National Institute of Technology, Rourkela, India
| | - Monalisa Mishra
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, India
| |
Collapse
|
44
|
Bhat SA, Han ZM, Dewi SK, Wei Y, Li F. Effect of conventional and biodegradable microplastics on earthworms during vermicomposting process. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:189. [PMID: 38695970 DOI: 10.1007/s10653-024-01974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/28/2024] [Indexed: 06/17/2024]
Abstract
The potential effect of microplastics is an increasingly growing environmental issue. However, very little is known regarding the impact of microplastics on the vermicomposting process. The present study explored the effect of non-biodegradable (low density polyethylene; LDPE) and biodegradable (polybutylene succinate-co-adipate; PBSA) microplastics on earthworm Eisenia fetida during vermicomposting of cow dung. For this, earthworms were exposed to different concentrations (0, 0.5, 1 and 2%) of LDPE and PBSA of 2 mm size. The cow dung supported the growth and hatchlings of earthworms, and the toxicity effect of both LDPE and PBSA microplastics on Eisenia fetida was analyzed. Microplastics decreased the body weight of earthworms and there was no impact on hatchlings. The body weight of earthworm decreased from 0 to 60th day by 18.18% in 0.5% of LDPE treatment, 5.42% in 1% of LDPE, 20.58% in 2% of LDPE, 19.99% in 0.5% of PBSA, 15.09% in 1% of PBSA and 16.36% in 2% of PBSA. The physico-chemical parameters [pH (8.55-8.66), electrical conductivity (0.93-1.02 (S/m), organic matter (77.6-75.8%), total nitrogen (3.95-4.25 mg/kg) and total phosphorus (1.16-1.22 mg/kg)] do not show much significant changes with varying microplastics concentrations. Results of SEM and FTIR-ATR analysis observed the surface damage of earthworms, morphological and biochemical changes at higher concentrations of both LDPE and PBSA. The findings of the present study contribute to a better understanding of microplastics in vermicomposting system.
Collapse
Affiliation(s)
- Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Zaw Min Han
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Shiamita Kusuma Dewi
- United Graduated School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yongfen Wei
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
45
|
Parolini M, De Felice B, Gazzotti S, Sugni M, Ortenzi MA. Comparison of the potential toxicity induced by microplastics made of polyethylene terephthalate (PET) and polylactic acid (PLA) on the earthworm Eiseniafoetida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123868. [PMID: 38556148 DOI: 10.1016/j.envpol.2024.123868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
A growing number of studies have demonstrated that microplastic (MP) contamination is widespread in terrestrial ecosystems. A wide array of MPs made of conventional, fossil-based polymers differing in size and shape has been detected in soils worldwide. Recently, also MPs made of bioplastics have been found in soils, but there is a dearth of information concerning their toxicity on soil organisms. This study aimed at exploring the potential toxicity induced by the exposure for 28 days to irregular shaped and differently sized MPs made of a fossil-based (polyethylene terephthalate - PET) and a bioplastic (polylactic acid - PLA) polymer on the earthworm Eisenia foetida. Two amounts (1 g and 10 g/kg of soil, corresponding to 0.1% and 1% of soil weight) of both MP types were administered to the earthworms. A multi-level approach was used to investigate the MP-induced effects at sub-individual and individual level. Changes in the activity of antioxidant and detoxifying enzymes, as well as in lipid peroxidation levels, were investigated at specific time-points (i.e., 7, 14, 21 and 28 days) as sub-individual responses. Histological analyses were performed to assess effects at tissue level, while the change in digging activity was considered as a proxy of behavioral effects. Earthworms ingested MPs made of both the polymers. MPs made of PET did not induce any adverse effect at none of the biological levels. In contrast, MPs made of PLA caused the modulation of earthworms' oxidative status as showed by a bell-shaped activity of superoxide dismutase coupled with an increase in glutathione peroxidase activity. However, neither oxidative and tissue damage, nor behavioral alteration occurred. These findings suggest that the exposure to bio-based MPs can cause higher toxicity compared to fossil-based MPs.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy.
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Stefano Gazzotti
- Department of Chemistry, University of Milan, via Golgi 19, I-20133, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Marco Aldo Ortenzi
- Department of Chemistry, University of Milan, via Golgi 19, I-20133, Milan, Italy
| |
Collapse
|
46
|
Gautam K, Dwivedi S, Verma R, Vamadevan B, Patnaik S, Anbumani S. Combined effects of polyethylene microplastics and carbendazim on Eisenia fetida: A comprehensive ecotoxicological study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123854. [PMID: 38527586 DOI: 10.1016/j.envpol.2024.123854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Microplastic (MP) pollution is becoming an emerging environmental concern across aquatic and terrestrial ecosystems. Plastic mulching and the use of pesticides in agriculture can lead to microplastics and agrochemicals in soil, which can result in unintended exposure to non-target organisms. The combined toxicity of multiple stressors represents a significant paradigm shift within the field of ecotoxicology, and its exploration within terrestrial ecosystems involving microplastics is still relatively limited. The present study investigated the combined effects of polyethylene MP (PE-MP) and the agrochemical carbendazim (CBZ) on the earthworm Eisenia fetida at different biological levels of organization. While E. fetida survival and reproduction did not exhibit significant effects following PE-MP treatment, there was a reduction in cocoon and hatchling numbers. Notably, prolonged exposure revealed delayed toxicity, leading to substantial growth impairment. Exposure to CBZ led to significant alterations in the endpoints mentioned above. While there was a decrease in cocoon and hatchling numbers, the combined treatment did not yield significant effects on earthworm reproduction except at higher concentrations. However, lower concentrations of PE-MP alongside CBZ induced a noteworthy decline in biomass content, signifying a form of potentiation interaction. In addition, concurrent exposure led to synergistic effects, from oxidative stress to modifications in vital organs such as the body wall, intestines, and reproductive structures (spermathecae, seminal vesicles, and ovarian follicles). The comparison of multiple endpoints revealed that seminal vesicles and ovarian follicles were the primary targets during the combined exposure. The research findings suggest that there are variable and complex responses to microplastic toxicity in terrestrial ecosystems, especially when combined with other chemical stressors like agrochemicals. Despite these difficulties, the study implies that microplastics can alter earthworms' responses to agrochemical exposure, posing potential ecotoxicological risks to soil fauna.
Collapse
Affiliation(s)
- Krishna Gautam
- Ecotoxicology Laboratory, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow, 226 008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shreya Dwivedi
- Ecotoxicology Laboratory, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow, 226 008, Uttar Pradesh, India
| | - Rahul Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Water Analysis Laboratory, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Beena Vamadevan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Central Pathology Laboratory, ASSIST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Water Analysis Laboratory, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow, 226 008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
47
|
Bao X, Wang Z, Liu L, Wang D, Gu Y, Chen L, Chen X, Meng Z. The combined effects of azoxystrobin and different aged polyethylene microplastics on earthworms (Eisenia fetida): A systematic evaluation based on oxidative damage and intestinal function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171494. [PMID: 38453077 DOI: 10.1016/j.scitotenv.2024.171494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Pesticides and microplastics are common pollutants in soil environments, adversely affecting soil organisms. However, the combined toxicological effects of aged microplastics and pesticides on soil organisms are still unclear. In this study, we systematically studied the toxicological effects of azoxystrobin and four different aged polyethylene (PE) microplastics on earthworms (Eisenia fetida). The purpose was to evaluate the effects of aging microplastics on the toxicity of microplastics-pesticides combinations on earthworms. The results showed that different-aged PE microplastics promoted azoxystrobin accumulation in earthworms. Meanwhile, combined exposure to azoxystrobin and aged PE microplastics decreased the body weight of earthworms. Besides, both single and combined exposure to azoxystrobin and aged PE microplastics could lead to oxidative damage in earthworms. Further studies revealed that azoxystrobin and aged PE microplastics damage the intestinal structure and function of earthworms. Additionally, the combination of different aged PE microplastics and azoxystrobin was more toxic on earthworms than single exposures. The PE microplastics subjected to mechanical wear, ultraviolet radiation, and acid aging exhibited the strongest toxicity enhancement effects on earthworms. This high toxicity may be related to the modification of PE microplastics caused by aging. In summary, these results demonstrated the enhancing effects of aged PE microplastics on the toxicity of pesticides to earthworms. More importantly, aged PE microplastics exhibited stronger toxicity-enhancing effects in the early exposure stages. This study provides important data supporting the impact of different aged PE microplastics on the environmental risks of pesticides.
Collapse
Affiliation(s)
- Xin Bao
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zijian Wang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Li Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Dengwei Wang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuntong Gu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Long Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaojun Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiyuan Meng
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
48
|
De Felice B, Gazzotti S, Roncoli M, Conterosito E, Gianotti V, Ortenzi MA, Parolini M. Exposure to Microplastics Made of Plasmix-Based Materials at Low Amounts Did Not Induce Adverse Effects on the Earthworm Eisenia foetida. TOXICS 2024; 12:300. [PMID: 38668523 PMCID: PMC11054649 DOI: 10.3390/toxics12040300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/23/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
The implementation of recycling techniques represents a potential solution to the plastic pollution issue. To date, only a limited number of plastic polymers can be efficiently recycled. In the Italian plastic waste stream, the residual, non-homogeneous fraction is called 'Plasmix' and is intended for low-value uses. However, Plasmix can be used to create new materials through mechanical recycling, which need to be tested for their eco-safety. This study aimed to investigate the potential toxicity of two amounts (0.1% and 1% MPs in soil weight) of microplastics (MPs) made of naïve and additivated Plasmix-based materials (Px and APx, respectively) on the earthworm Eisenia foetida. Changes in oxidative status and oxidative damage, survival, gross growth rate and reproductive output were considered as endpoints. Although earthworms ingested both MP types, earthworms did not suffer an oxidative stress condition or growth and reproductive impairments. The results suggested that exposure to low amounts of both MPs can be considered as safe for earthworms. However, further studies testing a higher amount or longer exposure time on different model species are necessary to complete the environmental risk assessment of these new materials.
Collapse
Affiliation(s)
- Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, I-20133 Milan, Italy;
| | - Stefano Gazzotti
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milan, Italy; (S.G.); (M.A.O.)
| | - Maddalena Roncoli
- Department of Sustainable Development and Ecological Transition, University of Piemonte Orientale, Via T. Michel 11, I-13100 Vercelli, Italy; (M.R.); (E.C.); (V.G.)
| | - Eleonora Conterosito
- Department of Sustainable Development and Ecological Transition, University of Piemonte Orientale, Via T. Michel 11, I-13100 Vercelli, Italy; (M.R.); (E.C.); (V.G.)
| | - Valentina Gianotti
- Department of Sustainable Development and Ecological Transition, University of Piemonte Orientale, Via T. Michel 11, I-13100 Vercelli, Italy; (M.R.); (E.C.); (V.G.)
| | - Marco Aldo Ortenzi
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milan, Italy; (S.G.); (M.A.O.)
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, I-20133 Milan, Italy;
| |
Collapse
|
49
|
Redondo-Hasselerharm PE, Rico A, Huerta Lwanga E, van Gestel CAM, Koelmans AA. Source-specific probabilistic risk assessment of microplastics in soils applying quality criteria and data alignment methods. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133732. [PMID: 38350316 DOI: 10.1016/j.jhazmat.2024.133732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/15/2024]
Abstract
The risk characterization of microplastics (MP) in soil is challenging due to the non-alignment of existing exposure and effect data. Therefore, we applied data alignment methods to assess the risks of MP in soils subject to different sources of MP pollution. Our findings reveal variations in MP characteristics among sources, emphasizing the need for source-specific alignments. To assess the reliability of the data, we applied Quality Assurance/Quality Control (QA/QC) screening tools. Risk assessment was carried out probabilistically, considering uncertainties in data alignments and effect thresholds. The Hazardous Concentrations for 5% (HC5) of the species were significantly higher compared to earlier studies and ranged between 4.0 × 107 and 2.3 × 108 particles (1-5000 µm)/kg of dry soil for different MP sources and ecologically relevant metrics. The highest risk was calculated for soils with MP entering via diffuse and unspecified local sources, i.e., "background pollution". However, the source with the highest proportion of high-risk values was sewage, followed by background pollution and mulching. Notably, locations exceeding the risk threshold obtained low scores in the QA/QC assessment. No risks were observed for soils with compost. To improve future risk assessments, we advise to primarily test environmentally relevant MP mixtures and adhere to strict quality criteria.
Collapse
Affiliation(s)
- Paula E Redondo-Hasselerharm
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain.
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/ Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Esperanza Huerta Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081H Amsterdam, the Netherlands
| | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
50
|
Arif Y, Mir AR, Zieliński P, Hayat S, Bajguz A. Microplastics and nanoplastics: Source, behavior, remediation, and multi-level environmental impact. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120618. [PMID: 38508005 DOI: 10.1016/j.jenvman.2024.120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Plastics introduced into the natural environment persist, degrade, and fragment into smaller particles due to various environmental factors. Microplastics (MPs) (ranging from 1 μm to 5 mm) and nanoplastics (NPs) (less than 1 μm) have emerged as pollutants posing a significant threat to all life forms on Earth. Easily ingested by living organisms, they lead to ongoing bioaccumulation and biomagnification. This review summarizes existing studies on the sources of MPs and NPs in various environments, highlighting their widespread presence in air, water, and soil. It primarily focuses on the sources, fate, degradation, fragmentation, transport, and ecotoxicity of MPs and NPs. The aim is to elucidate their harmful effects on marine organisms, soil biota, plants, mammals, and humans, thereby enhancing the understanding of the complex impacts of plastic particles on the environment. Additionally, this review highlights remediation technologies and global legislative and institutional measures for managing waste associated with MPs and NPs. It also shows that effectively combating plastic pollution requires the synergization of diverse management, monitoring strategies, and regulatory measures into a comprehensive policy framework.
Collapse
Affiliation(s)
- Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Anayat Rasool Mir
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Piotr Zieliński
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland.
| |
Collapse
|