1
|
Di Y, Li L, Xu J, Liu A, Zhao R, Li S, Li Y, Ding J, Chen S, Qu M. MAPK signaling pathway enhances tolerance of Mytilus galloprovincialis to co-exposure of sulfamethoxazole and polyethylene microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125007. [PMID: 39307337 DOI: 10.1016/j.envpol.2024.125007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Microplastics (MPs) and antibiotics often coexist in complex marine environments, yet their combined detrimental effects on marine organisms remain underexplored. This study evaluated the effects of polyethylene microplastics (PE, 200 μg/L) and sulfamethoxazole (SMX, 50 μg/L), both individually and in combination, on Mytilus galloprovincialis. The exposure lasted 6 days, followed by a 6-day recovery period. Bioaccumulation, DNA damage, pollutants transport/metabolism related responses and responding alterations of mitogen-activated protein kinase (MAPK) signaling pathway were detected in gills and digestive glands. Bioaccumulation of SMX/PE in mussels occurred in a tissue-specific manner, co-exposure altered SMX contents in investigated tissues. Co-exposure did not induce extra DNA damage, elevated DNA damage was alleviated during the recovery period in all treated groups. The exposure of SMX/PE exerted different alterations in pollutants transport/metabolism related responses, characterized by multixenobiotic resistance and relative expression of key genes (cytochrome P450 monooxygenase, glutathione S-transferase, ATP-binding cassette transporters). Key molecules (p38 MAPK, c-jun N-terminal kinase, extracellular regulated protein kinase, nuclear factor-κB and tumor protein p53) in MAPK signaling pathway were activated at transcriptional and translational levels after SMX/PE and co-exposure. Co-regulation between MAPK members and pollutants transport/metabolism related factors was revealed, suggesting MAPK signaling pathway served as a regulating hub in exposed mussels to conquer SMX/PE stress. Overall, this study provides new insights on SMX/PE induced health risks in marine mussels and potential mechanism through MAPK cascades regulation.
Collapse
Affiliation(s)
- Yanan Di
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Liya Li
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Jianzhou Xu
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Ao Liu
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Ruoxuan Zhao
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Shuimei Li
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Yichen Li
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Jiawei Ding
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Siyu Chen
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Mengjie Qu
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China.
| |
Collapse
|
2
|
Adewoyin M, Hamarsha A, Akinsola R, Teoh SL, Azmai MNA, Abu Bakar N, Nasruddin NS. Intraperitoneal Injection of the Porphyromonas gingivalis Outer Membrane Vesicle (OMV) Stimulated Expressions of Neuroinflammatory Markers and Histopathological Changes in the Brains of Adult Zebrafish. Int J Mol Sci 2024; 25:11025. [PMID: 39456807 PMCID: PMC11506875 DOI: 10.3390/ijms252011025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Porphyromonas gingivalis is the major pathogenic bacteria found in the subgingival plaque of patients with periodontitis, which leads to neuroinflammation. The bacteria destroy periodontal tissue through virulence factors, which are retained in the bacteria's outer membrane vesicles (OMV). This study aimed to determine the real-time effect of an intraperitoneal injection of P. gingivalis OMV on the production and expression of inflammatory markers and histopathological changes in adult zebrafishes' central nervous systems (CNS). Following the LD50 (21 µg of OMV), the zebrafish were injected intraperitoneally with 18 µg of OMVs, and the control group were injected with normal saline at seven different time points. Brains of experimental zebrafish were dissected at desired time points for colorimetric assays, ELISA, and histology. This study discovered that nitric oxide and PGE2 were significantly increased at 45 min, while IL-1β and IL-6 were expressed at subsequent 12 h and 24 h time points, respectively. Histopathological changes such as blood coagulation, astrocytosis, edema, spongiosis, and necrosis were observed between the 6hour and 24 h time points. The two apoptotic enzymes, caspases 3 and 9, were not expressed at any point. In summary, the OMV-induced neuroinflammatory responses and histopathological changes in adult zebrafish were time-point dependent. This study will enrich our understanding of the mechanism of P. gingivalis OMVs in neuroinflammation in a zebrafish model, most especially the timing of the expression of inflammatory mediators in relation to observable changes in brain tissues.
Collapse
Affiliation(s)
- Malik Adewoyin
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (M.A.); (A.H.)
| | - Ahmed Hamarsha
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (M.A.); (A.H.)
| | - Rasaq Akinsola
- Department of Medicine, Division of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Mohammad Noor Amal Azmai
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Noraini Abu Bakar
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Nurrul Shaqinah Nasruddin
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (M.A.); (A.H.)
| |
Collapse
|
3
|
Wu XQ, Chen XM, Pan YY, Sun C, Tian JX, Qian AD, Niu XT, Kong YD, Li M, Wang GQ. Changes of intestinal barrier in the process of intestinal inflammation induced by Aeromonas hydrophila in snakehead (Channa argus). FISH & SHELLFISH IMMUNOLOGY 2024; 152:109775. [PMID: 39019126 DOI: 10.1016/j.fsi.2024.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Bacterial intestinal inflammation frequently occurs in cultured fish. Nevertheless, research on intestinal barrier dysfunction in the process of intestinal inflammation is deficient. In this study, we explored the changes of intestinal inflammation induced by Aeromonas hydrophila (A. hydrophila) in snakehead and the relationship between intestinal barrier and inflammation. Snakehead [(13.05 ± 2.39) g] were infected via anus with A. hydrophila. Specimens were collected for analysis at 0, 1, 3, 7 and 21 d post-injection. The results showed that with the increase of exposure time, the hindgut underwent stages of normal function, damage, damage deterioration, repair and recovery. Relative to 0 d, the levels of IL-1β and TNF-α in serum, and the expression of nod1, tlr1, tlr5, nf-κb, tnf-α and il-1β in intestine were significantly increased, and showed an upward then downward pattern over time. However, the expression of tlr2 and il-10 were markedly decreased, and showed the opposite trend. In addition, with the development of intestinal inflammation, the diversity and richness of species, and the levels of phylum and genus in intestine were obviously altered. The levels of trypsin, LPS, AMS, T-SOD, CAT, GPx, AKP, LZM and C3 in intestine were markedly reduced, and displayed a trend of first decreasing and then rebounding. The ultrastructure observation showed that the microvilli and tight junction structure of intestinal epithelial cells experienced normal function initially, then damage, and finally recovery over time. The expression of claudin-3 and zo-1 in intestine were significantly decreased, and showed a trend of first decreasing and then rebounding. Conversely, the expression of mhc-i, igm, igt and pigr in intestine were markedly increased, and displayed a trend of increasing first and then decreasing. The above results revealed the changes in intestinal barrier during the occurrence and development of intestinal inflammation, which provided a theoretical basis for explaining the relationship between the two.
Collapse
Affiliation(s)
- Xue-Qin Wu
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiu-Mei Chen
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Yi-Yu Pan
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chuang Sun
- Fisheries Technology Extension Station of Baicheng, Jilin Province, Baicheng, 137000, China
| | - Jia-Xin Tian
- College of Life Sciences, Tonghua Normal University, Tonghua, 134002, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Tian Niu
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yi-di Kong
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Min Li
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Gui-Qin Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
4
|
Ding L, Zhang CM. Occurrence, ecotoxicity and ecological risks of psychoactive substances in surface waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171788. [PMID: 38499097 DOI: 10.1016/j.scitotenv.2024.171788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Psychoactive substances (PSs) represent a subset of emerging contaminants. Their widespread production and utilization contribute to a growing ecological burden and risk on a global scale. Conventional wastewater treatment methods have proven insufficient in adequately removing psychoactive substances, leading to their occurrence in surface water ecosystems worldwide. As of present, however, a thorough understanding of their geographical prevalence and distribution patterns remains elusive. Further, in the existing literature, there is a scarcity of comprehensive overviews that systematically summarize the toxicity of various psychoactive substances towards aquatic organisms. Through summarizing almost 140 articles, the present study provides an overview of the sources, pollution status, and biotoxicity of psychoactive substances in surface waters, as well as an assessment of their ecological risks. Concentrations of several psychoactive substances in surface waters were found to be as high as hundreds or even thousands of ng·L-1. In parallel, accumulation of psychoactive substances in the tissues or organs of aquatic organisms was found to potentially cause certain adverse effects, including behavioral disorders, organ damage, and DNA changes. Oxidative stress was found to be a significant factor in the toxic effects of psychoactive substances on organisms. The application of the risk quotient approach indicated that psychoactive substances posed a medium to high risk in certain surface water bodies, as well as the need for sustained long-term attention and management strategies.
Collapse
Affiliation(s)
- Lin Ding
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
5
|
Stoeltje L, Luc JK, Haddad T, Schrankel CS. The roles of ABCB1/P-glycoprotein drug transporters in regulating gut microbes and inflammation: insights from animal models, old and new. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230074. [PMID: 38497255 PMCID: PMC10945405 DOI: 10.1098/rstb.2023.0074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Commensal enteric bacteria have evolved systems that enable growth in the ecologic niche of the host gastrointestinal tract. Animals evolved parallel mechanisms to survive the constant exposure to bacteria and their metabolic by-products. We propose that drug transporters encompass a crucial system to managing the gut microbiome. Drug transporters are present in the apical surface of gut epithelia. They detoxify cells from small molecules and toxins (xenobiotics) in the lumen. Here, we review what is known about commensal structure in the absence of the transporter ABCB1/P-glycoprotein in mammalian models. Knockout or low-activity alleles of ABCB1 lead to dysbiosis, Crohn's disease and ulcerative colitis in mammals. However, the exact function of ABCB1 in these contexts remain unclear. We highlight emerging models-the zebrafish Danio rerio and sea urchin Lytechinus pictus-that are poised to help dissect the fundamental mechanisms of ATP-binding cassette (ABC) transporters in the tolerance of commensal and pathogenic communities in the gut. We and others hypothesize that ABCB1 plays a direct role in exporting inflammatory bacterial products from host epithelia. Interdisciplinary work in this research area will lend novel insight to the transporter-mediated pathways that impact microbiome community structure and accelerate the pathogenesis of inflammatory bowel disease when perturbed. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Lauren Stoeltje
- Department of Biology, San Diego State University, 5500 Campanile Drive, Life Sciences North, Room 321, San Diego, CA 92182, USA
| | - Jenna K. Luc
- Department of Biology, San Diego State University, 5500 Campanile Drive, Life Sciences North, Room 321, San Diego, CA 92182, USA
| | - Timothaus Haddad
- Department of Biology, San Diego State University, 5500 Campanile Drive, Life Sciences North, Room 321, San Diego, CA 92182, USA
| | - Catherine S. Schrankel
- Department of Biology, San Diego State University, 5500 Campanile Drive, Life Sciences North, Room 321, San Diego, CA 92182, USA
| |
Collapse
|
6
|
Luckner B, Essfeld F, Ayobahan SU, Richling E, Eilebrecht E, Eilebrecht S. Transcriptomic profiling of TLR-7-mediated immune-challenge in zebrafish embryos in the presence and absence of glucocorticoid-induced immunosuppression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115570. [PMID: 37844410 DOI: 10.1016/j.ecoenv.2023.115570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
Although numerous studies imply a correlation between chemical contamination and an impaired immunocompetence of wildlife populations, the assessment of immunomodulatory modes of action is currently not covered in the regulatory requirements for the approval of new substances. This is not least due to the complexity of the immune system and a lack of standardised methods and validated biomarkers. To tackle this issue, in this study, the transcriptomic profiles of zebrafish embryos were analysed in response to the immunosuppressive compound clobetasol propionate, a synthetic glucocorticoid, and/or the immunostimulatory compound imiquimod (IMQ), a TLR-7 agonist. Using IMQ, known for its potential to induce psoriasis-like effects in mice and human, this study additionally aimed at evaluating the usability of the zebrafish embryo model as an alternative and 3R conform system for the IMQ-induced psoriasis mouse model. Our study substantiates the suitability of previously proposed genes as possible biomarkers for immunotoxicity, such as socs3, nfkbia, anxa1c, fkbp5 and irg1l. Likewise, however, our findings indicate that these genes may be less suitable to distinguish a suppressive from stimulating fashion of action. In contrast, based on a differential regulation in opposite direction in response to both compounds, krt17, rtn4a, and1, smhyc1 and gmpr were identified as potential novel biomarkers with said power to differentiate. Observed IMQ-induced alterations in the expression of genes previously associated with the pathogenesis of psoriasis such as krt17, nfkbia, parp1, pparg, nfil3-6, per2, stat4, klf2, rtn4a, anxa1c and nr1d2 indicate the inducibility of psoriatic effects in the zebrafish embryo. Our work contributes to the establishment of an approach for a 3R-compliant investigation of immunotoxic mechanisms of action in aquatic vertebrates. The validated and newly identified biomarker candidates of specific immunotoxic effects can be used in future studies in the context of environmental hazard assessment of substances or also for human-relevant immunotoxicological questions.
Collapse
Affiliation(s)
- Benedikt Luckner
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Fabian Essfeld
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Computational Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Steve U Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Elke Richling
- Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Germany
| | - Elke Eilebrecht
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
7
|
Zhao X, Zhang Y, Gao T, Song N. Spleen Transcriptome Profiling Reveals Divergent Immune Responses to LPS and Poly (I:C) Challenge in the Yellow Drum ( Nibea albiflora). Int J Mol Sci 2023; 24:ijms24097735. [PMID: 37175446 PMCID: PMC10178140 DOI: 10.3390/ijms24097735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The yellow drum (Nibea albiflora) is a marine teleost fish with strong disease resistance, yet the understanding of its immune response and key functional genes is fragmented. Here, RNA-Seq was used to investigate the regulation pathways and genes involved in the immune response to infection with lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (poly (I:C)) on the spleen of the yellow drum. There were fewer differentially expressed genes (DEGs) in the LPS-infected treatment group at either 6 or 48 h. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these DEGs were mainly significantly enriched in c5-branching dibasic acid metabolic and complement and coagulation cascades pathways. The yellow drum responded more strongly to poly (I:C) infection, with 185 and 521 DEGs obtained under 6 and 48 h treatments, respectively. These DEGs were significantly enriched in the Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, Jak-STAT signaling pathway, NOD-like signaling pathway, and cytokine-cytokine receptor interaction. The key functional genes in these pathways played important roles in the immune response and maintenance of immune system homeostasis in the yellow drum. Weighted gene co-expression network analysis (WGCNA) revealed several important hub genes. Although the functions of some genes have not been confirmed, our study still provides significant information for further investigation of the immune system of the yellow drum.
Collapse
Affiliation(s)
- Xiang Zhao
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Yuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou 510301, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Na Song
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China
| |
Collapse
|
8
|
Kotlyarov S, Kotlyarova A. Clinical Significance of Lipid Transport Function of ABC Transporters in the Innate Immune System. MEMBRANES 2022; 12:1083. [PMID: 36363640 PMCID: PMC9698216 DOI: 10.3390/membranes12111083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
ABC transporters are a large family of proteins that transport a variety of substrates across cell plasma membranes. Because of this, they are involved in many physiological processes. It is of interest to note that many ABC transporters are involved in the transport of various lipids. In addition, this function may be related to the innate immune system. The evidence that ABC transporters are involved in the regulation of the innate immune system through the transport of various substances greatly enhances the understanding of their clinical significance. ABC transporters are involved in the cellular homeostasis of cholesterol as well as in the regulation of its content in lipid rafts. Through these mechanisms, they can regulate the function of membrane proteins, including receptors of the innate immune system. By regulating lipid transport, some members of ABC transporters are involved in phagocytosis. In addition, ABC transporters are involved in the transport of lipopolysaccharide, lipid mediators of inflammation, and perform other functions in the innate immune system.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
9
|
Zhang L, Hong X, Yan S, Zha J. Environmentally relevant concentrations of fenvalerate induces immunotoxicity and reduces pathogen resistance in Chinese rare minnow (Gobiocypris rarus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156347. [PMID: 35671856 DOI: 10.1016/j.scitotenv.2022.156347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Fenvalerate is a broadly used type II pyrethroid with a potential toxic effect in fish. However, information on the immunotoxicity of fenvalerate in fish is scarce. Here, to discover the immunotoxicity of fenvalerate and its underlying mechanism in fish, adult Chinese rare minnow was exposed to fenvalerate at 0, 0.3, 1, and 3 μg/L for 28 days and then subjected to Pseudomonas fluorescens (P. fluorescens) challenge. Fenvalerate induced significant pathological changes, with disintegration of cell boundaries in the intestine, epithelial hyperplasia in gills, and vacuolation of hepatocytes at 3 μg/L treatment. Additionally, the pathological characteristics were more serious during P. fluorescens infection after fenvalerate exposure. A significant increase in neutrophil counts was observed after 3 μg/L fenvalerate exposure for 28 days (p < 0.05), whereas significantly increased monocyte and neutrophil counts and greatly decreased lymphocyte counts were detected at 24 h post-injection (hpi) with P. fluorescens (p < 0.05). Furthermore, obvious decreases in LYS, IgM, ALP, and C3 levels were detected in plasma after 3 μg/L fenvalerate exposure for 28 days, which was consistent with the results at 24 and 48 hpi. Notably, fish exposed to fenvalerate suppressed the transcription of TLR-NF-κB signaling pathway-relevant genes in response to P. fluorescens, accompanied by high mortalities and bacterial loads. Therefore, our results demonstrate that fenvalerate at environmentally relevant concentrations caused immunotoxicity in fish. This study highlights the importance of considering the combined effects of chemicals and pathogens to refine our ability to predict the effects of environmental contaminants on aquatic organisms.
Collapse
Affiliation(s)
- Le Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Li P, Zhang J, Liu X, Gan L, Xie Y, Zhang H, Si J. The Function and the Affecting Factors of the Zebrafish Gut Microbiota. Front Microbiol 2022; 13:903471. [PMID: 35722341 PMCID: PMC9201518 DOI: 10.3389/fmicb.2022.903471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota has become a topical issue in unraveling the research mechanisms underlying disease onset and progression. As an important and potential "organ," gut microbiota plays an important role in regulating intestinal epithelial cell differentiation, proliferation, metabolic function and immune response, angiogenesis and host growth. More recently, zebrafish models have been used to study the interactions between gut microbiota and hosts. It has several advantages, such as short reproductive cycle, low rearing cost, transparent larvae, high genomic similarity to humans, and easy construction of germ-free (GF) and transgenic zebrafish. In our review, we reviewed a large amount of data focusing on the close relationship between gut microbiota and host health. Moreover, we outlined the functions of gut microbiota in regulating intestinal epithelial cell differentiation, intestinal epithelial cell proliferation, metabolic function, and immune response. More, we summarized major factors that can influence the composition, abundance, and diversity of gut microbiota, which will help us to understand the significance of gut microbiota in regulating host biological functions and provide options for maintaining the balance of host health.
Collapse
Affiliation(s)
- Pingping Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinhua Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyi Liu
- College of Life Science, Lanzhou University, Lanzhou, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| |
Collapse
|
11
|
Gillies S, Verdon R, Stone V, Brown DM, Henry T, Tran L, Tucker C, Rossi AG, Tyler CR, Johnston HJ. Transgenic zebrafish larvae as a non-rodent alternative model to assess pro-inflammatory (neutrophil) responses to nanomaterials. Nanotoxicology 2022; 16:333-354. [PMID: 35797989 DOI: 10.1080/17435390.2022.2088312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hazard studies for nanomaterials (NMs) commonly assess whether they activate an inflammatory response. Such assessments often rely on rodents, but alternative models are needed to support the implementation of the 3Rs principles. Zebrafish (Danio rerio) offer a viable alternative for screening NM toxicity by investigating inflammatory responses. Here, we used non-protected life stages of transgenic zebrafish (Tg(mpx:GFP)i114) with fluorescently-labeled neutrophils to assess inflammatory responses to silver (Ag) and zinc oxide (ZnO) NMs using two approaches. Zebrafish were exposed to NMs via water following a tail fin injury, or NMs were microinjected into the otic vesicle. Zebrafish were exposed to NMs at 3 days post-fertilization (dpf) and neutrophil accumulation at the injury or injection site was quantified at 0, 4, 6, 8, 24, and 48 h post-exposure. Zebrafish larvae were also exposed to fMLF, LTB4, CXCL-8, C5a, and LPS to identify a suitable positive control for inflammation induction. Aqueous exposure to Ag and ZnO NMs stimulated an enhanced and sustained neutrophilic inflammatory response in injured zebrafish larvae, with a greater response observed for Ag NMs. Following microinjection, Ag NMs stimulated a time-dependent neutrophil accumulation in the otic vesicle which peaked at 48 h. LTB4 was identified as a positive control for studies investigating inflammatory responses in injured zebrafish following aqueous exposure, and CXCL-8 for microinjection studies that assess responses in the otic vesicle. Our findings support the use of transgenic zebrafish to rapidly screen the pro-inflammatory effects of NMs, with potential for wider application in assessing chemical safety (e.g. pharmaceuticals).
Collapse
Affiliation(s)
| | | | | | | | | | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, UK
| | - Carl Tucker
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
12
|
Essfeld F, Reinwald H, Salinas G, Schäfers C, Eilebrecht E, Eilebrecht S. Transcriptomic profiling of clobetasol propionate-induced immunosuppression in challenged zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113346. [PMID: 35228030 DOI: 10.1016/j.ecoenv.2022.113346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
In the ecotoxicological hazard assessment of chemicals, the detection of immunotoxicity is currently neglected. This is mainly due to the complexity of the immune system and the consequent lack of standardized procedures and markers for the comprehensive assessment of immunotoxic modes of action. In this study, we present a new approach applying transcriptome profiling to an immune challenge with a mixture of pathogen-associated molecular patterns (PAMPs) in zebrafish embryos, analyzing differential gene expression during acute infection with and without prior exposure to the immunosuppressive drug clobetasol propionate (CP). While PAMP injection itself triggered biological processes associated with immune activation, some of these genes were more differentially expressed upon prior exposure to CP than by immune induction alone, whereas others showed weaker or no differential regulation in response to the PAMP stimulus. All of these genes responding differently to PAMP after prior CP exposure showed additivity of PAMP- and CP-induced effects, indicating independent regulatory mechanisms. The transcriptomic profiles suggest that CP impaired innate immune induction by attenuating the response of genes involved in antigen processing, TLR signaling, NF-КB signaling, and complement activation. We propose this approach as a powerful method for detecting gene biomarkers for immunosuppressive modes of action, as it was able to identify alternatively regulated processes and pathways in a sublethal, acute infection zebrafish embryo model. This allowed to define biomarker candidates for immune-mediated effects and to comprehensively characterize immunosuppression. Ultimately, this work contributes to the development of molecular biomarker-based environmental hazard assessment of chemicals in the future.
Collapse
Affiliation(s)
- Fabian Essfeld
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany; Computational Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Hannes Reinwald
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Elke Eilebrecht
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany.
| |
Collapse
|
13
|
Bieczynski F, Painefilú JC, Venturino A, Luquet CM. Expression and Function of ABC Proteins in Fish Intestine. Front Physiol 2021; 12:791834. [PMID: 34955897 PMCID: PMC8696203 DOI: 10.3389/fphys.2021.791834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
In fish, the intestine is fundamental for digestion, nutrient absorption, and other functions like osmoregulation, acid-base balance, and excretion of some metabolic products. These functions require a large exchange surface area, which, in turn, favors the absorption of natural and anthropogenic foreign substances (xenobiotics) either dissolved in water or contained in the food. According to their chemical nature, nutrients, ions, and water may cross the intestine epithelium cells' apical and basolateral membranes by passive diffusion or through a wide array of transport proteins and also through endocytosis and exocytosis. In the same way, xenobiotics can cross this barrier by passive diffusion or taking advantage of proteins that transport physiological substrates. The entry of toxic substances is counterbalanced by an active efflux transport mediated by diverse membrane proteins, including the ATP binding cassette (ABC) proteins. Recent advances in structure, molecular properties, and functional studies have shed light on the importance of these proteins in cellular and organismal homeostasis. There is abundant literature on mammalian ABC proteins, while the studies on ABC functions in fish have mainly focused on the liver and, to a minor degree, on the kidney and other organs. Despite their critical importance in normal physiology and as a barrier to prevent xenobiotics incorporation, fish intestine's ABC transporters have received much less attention. All the ABC subfamilies are present in the fish intestine, although their functionality is still scarcely studied. For example, there are few studies of ABC-mediated transport made with polarized intestinal preparations. Thus, only a few works discriminate apical from basolateral transport activity. We briefly describe the main functions of each ABC subfamily reported for mammals and other fish organs to help understand their roles in the fish intestine. Our study considers immunohistochemical, histological, biochemical, molecular, physiological, and toxicological aspects of fish intestinal ABC proteins. We focus on the most extensively studied fish ABC proteins (subfamilies ABCB, ABCC, and ABCG), considering their apical or basolateral location and distribution along the intestine. We also discuss the implication of fish intestinal ABC proteins in the transport of physiological substrates and aquatic pollutants, such as pesticides, cyanotoxins, metals, hydrocarbons, and pharmaceutical products.
Collapse
Affiliation(s)
- Flavia Bieczynski
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue – Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Julio C. Painefilú
- Instituto Patagónico de Tecnologías Biológicas y Geoambientales, Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional del Comahue, Bariloche, Argentina
| | - Andrés Venturino
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue – Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Carlos M. Luquet
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET – UNCo), Junín de los Andes, Argentina
| |
Collapse
|
14
|
Interaction of Opioids with TLR4-Mechanisms and Ramifications. Cancers (Basel) 2021; 13:cancers13215274. [PMID: 34771442 PMCID: PMC8582379 DOI: 10.3390/cancers13215274] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Recent evidence indicates that opioids can be active at a receptor that is abundantly expressed on innate immune cells as well as cancer cells: the receptor is termed toll-like receptor 4 (TLR4). TLR4 is increasingly recognised as playing key roles in tumour biology and anticancer defences. However, the issue of whether TLR4 mediates some of the effects of opioids on tumour growth and metastasis is entirely unknown. We review existing evidence, mechanisms, and functional consequences of the action of opioids at TLR4. This opens new avenues of research on the role of opioids in cancer. Abstract The innate immune receptor toll-like receptor 4 (TLR4) is known as a sensor for the gram-negative bacterial cell wall component lipopolysaccharide (LPS). TLR4 activation leads to a strong pro-inflammatory response in macrophages; however, it is also recognised to play a key role in cancer. Recent studies of the opioid receptor (OR)-independent actions of opioids have identified that TLR4 can respond to opioids. Opioids are reported to weakly activate TLR4, but to significantly inhibit LPS-induced TLR4 activation. The action of opioids at TLR4 is suggested to be non-stereoselective, this is because OR-inactive (+)-isomers of opioids have been shown to activate or to inhibit TLR4 signalling, although there is some controversy in the literature. While some opioids can bind to the lipopolysaccharide (LPS)-binding cleft of the Myeloid Differentiation factor 2 (MD-2) co-receptor, pharmacological characterisation of the inhibition of opioids on LPS activation of TLR4 indicates a noncompetitive mechanism. In addition to a direct interaction at the receptor, opioids affect NF-κB activation downstream of both TLR4 and opioid receptors and modulate TLR4 expression, leading to a range of in vivo outcomes. Here, we review the literature reporting the activity of opioids at TLR4, its proposed mechanism(s), and the complex functional consequences of this interaction.
Collapse
|
15
|
Chen L, Guo C, Sun Z, Xu J. Occurrence, bioaccumulation and toxicological effect of drugs of abuse in aquatic ecosystem: A review. ENVIRONMENTAL RESEARCH 2021; 200:111362. [PMID: 34048744 DOI: 10.1016/j.envres.2021.111362] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 05/23/2023]
Abstract
Drugs of abuse are a group of emerging contaminants. As the prevalence of manufacture and consumption, there is a growing global environmental burden and ecological risk from the continuous release of these contaminants into environment. The widespread occurrence of drugs of abuse in waste wasters and surface waters is due to the incomplete removal through traditional wastewater treatment plants in different regions around the world. Although their environmental concentrations are not very high, they can potentially influence the aquatic organisms and ecosystem function. This paper reviews the occurrence of drugs of abuse and their metabolites in waste waters and surface waters, their bioaccumulation in aquatic plants, fishes and benthic organisms and even top predators, and the toxicological effects such as genotoxic effect, cytotoxic effect and even behavioral effect on aquatic organisms. In summary, drugs of abuse occur widely in aquatic environment, and may exert adverse impact on aquatic organisms at molecular, cellular or individual level, and even on aquatic ecosystem. It necessitates the monitoring and risk assessment of these compounds on diverse aquatic organisms in the further study.
Collapse
Affiliation(s)
- Like Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhenyu Sun
- Jiangsu Rainfine Environmental Science and Technology Co.,Ltd, Henan Branch Zhengzhou, 450000, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
16
|
Hering I, Eilebrecht E, Parnham MJ, Weiler M, Günday-Türeli N, Türeli AE, Modh H, Heng PWS, Böhmer W, Schäfers C, Fenske M, Wacker MG. Microparticle formulations alter the toxicity of fenofibrate to the zebrafish Danio rerio embryo. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105798. [PMID: 33799113 DOI: 10.1016/j.aquatox.2021.105798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
A wide variety of active pharmaceutical ingredients are released into the environment and pose a threat to aquatic organisms. Drug products using micro- and nanoparticle technology can lower these emissions into the environment by their increased bioavailability to the human patients. However, due to this enhanced efficacy, micro- and nanoscale drug delivery systems can potentially display an even higher toxicity, and thus also pose a risk to non-target organisms. Fenofibrate is a lipid-regulating agent and exhibits species-related hazards in fish. The ecotoxic effects of a fenofibrate formulation embedded into a hydroxypropyl methylcellulose microparticle matrix, as well as those of the excipients used in the formulation process, were evaluated. To compare the effects of fenofibrate without a formulation, fenofibrate was dispersed in diluted ISO water alone or dissolved in the solvent DMF and then added to diluted ISO water. The effects of these various treatments were assessed using the fish embryo toxicity test, acridine orange staining and gene expression analysis assessed by quantitative RT polymerase chain reaction. Exposure concentrations were assessed by chemical analysis. The effect threshold concentrations of fenofibrate microparticle precipitates were higher compared to the formulation. Fenofibrate dispersed in 20%-ISO-water displayed the lowest toxicity. For the fenofibrate formulation as well as for fenofibrate added as a DMF solution, greater ecotoxic effects were observed in the zebrafish embryos. The chemical analysis of the solutions revealed that more fenofibrate was present in the samples with the fenofibrate formulation as well as fenofibrate added as a DMF solution compared to fenofibrate dispersed in diluted ISO water. This could explain the higher ecotoxicity. The toxic effects on the zebrafish embryo thus suggested that the formulation as well as the solvent increased the bioavailability of fenofibrate.
Collapse
Affiliation(s)
- Indra Hering
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt/Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392, Schmallenberg, Germany; Goethe University Frankfurt am Main, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | - Elke Eilebrecht
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392, Schmallenberg, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt/Main, Germany
| | - Marc Weiler
- MyBiotech GmbH, Industriestraße 1B, 66802, Überherrn, Germany
| | | | | | - Harshvardhan Modh
- National University of Singapore, Department of Pharmacy, Faculty of Science, Wet Science Building (S9), 5 Science Drive 2, 117546, Singapore, Singapore
| | - Paul W S Heng
- National University of Singapore, GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, Faculty of Science, 18 Science Drive 4, 117543, Singapore, Singapore
| | - Walter Böhmer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392, Schmallenberg, Germany
| | - Christoph Schäfers
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392, Schmallenberg, Germany
| | - Martina Fenske
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt/Main, Germany.
| | - Matthias G Wacker
- National University of Singapore, Department of Pharmacy, Faculty of Science, Wet Science Building (S9), 5 Science Drive 2, 117546, Singapore, Singapore
| |
Collapse
|
17
|
Zebrafish early life stages as alternative model to study 'designer drugs': Concordance with mammals in response to opioids. Toxicol Appl Pharmacol 2021; 419:115483. [PMID: 33722667 DOI: 10.1016/j.taap.2021.115483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
The number of new psychoactive substances (NPS) on the illicit drug market increases fast, posing a need to urgently understand their toxicity and behavioural effects. However, with currently available rodent models, NPS assessment is limited to a few substances per year. Therefore, zebrafish (Danio rerio) embryos and larvae have been suggested as an alternative model that would require less time and resources to perform an initial assessment and could help to prioritize substances for subsequent evaluation in rodents. To validate this model, more information on the concordance of zebrafish larvae and mammalian responses to specific classes of NPS is needed. Here, we studied toxicity and behavioural effects of opioids in zebrafish early life stages. Synthetic opioids are a class of NPS that are often used in pain medication but also frequently abused, having caused multiple intoxications and fatalities recently. Our data shows that fentanyl derivatives were the most toxic among the tested opioids, with toxicity in the zebrafish embryo toxicity test decreasing in the following order: butyrfentanyl>3-methylfentanyl>fentanyl>tramadol> O-desmethyltramadol>morphine. Similar to rodents, tramadol as well as fentanyl and its derivatives led to hypoactive behaviour in zebrafish larvae, with 3-methylfentanyl being the most potent. Physico-chemical properties-based predictions of chemicals' uptake into zebrafish embryos and larvae correlated well with the effects observed. Further, the biotransformation pattern of butyrfentanyl in zebrafish larvae was reminiscent of that in humans. Comparison of toxicity and behavioural responses to opioids in zebrafish and rodents supports zebrafish as a suitable alternative model for rapidly testing synthetic opioids.
Collapse
|
18
|
Campos-Sánchez JC, Esteban MÁ. Review of inflammation in fish and value of the zebrafish model. JOURNAL OF FISH DISEASES 2021; 44:123-139. [PMID: 33236349 DOI: 10.1111/jfd.13310] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 05/28/2023]
Abstract
Inflammation is a crucial step in the development of chronic diseases in humans. Understanding the inflammation environment and its intrinsic mechanisms when it is produced by harmful stimuli may be a key element in the development of human disease diagnosis. In recent decades, zebrafish (Danio rerio) have been widely used in research, due to their exceptional characteristics, as a model of various human diseases. Interestingly, the mediators released during the inflammatory response of both the immune system and nervous system, after its integration in the hypothalamus, could also facilitate the detection of injury through the register of behavioural changes in the fish. Although there are many studies that give well-defined information separately on such elements as the recruitment of cells, the release of pro- and anti-inflammatory mediators or the type of neurotransmitters released against different triggers, to the best of our knowledge there are no reviews that put all this knowledge together. In the present review, the main available information on inflammation in zebrafish is presented in order to facilitate knowledge about this important process of innate immunity, as well as the stress responses and behavioural changes derived from it.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Department of Cell Biology and Histology, Faculty of Biology, Immunobiology for Aquaculture Group, University of Murcia, Murcia, Spain
| | - María Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Immunobiology for Aquaculture Group, University of Murcia, Murcia, Spain
| |
Collapse
|
19
|
Fasolo JMMA, Vizuete AFK, Rico EP, Rambo RBS, Toson NSB, Santos E, de Oliveira DL, Gonçalves CAS, Schapoval EES, Heriques AT. Anti-inflammatory effect of rosmarinic acid isolated from Blechnum brasiliense in adult zebrafish brain. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108874. [PMID: 32805443 DOI: 10.1016/j.cbpc.2020.108874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/28/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Neuroinflammation has been associated to neurodegenerative disease development, with evidence suggesting that high levels of proinflammatory cytokines promote neuronal dysfunction and death. Therefore, it is necessary to study new compounds that may be used as adjuvant treatments of neurodegenerative diseases by attenuating the inflammatory response in the central nervous system (CNS). The aim of this study was to utilize the lipopolysaccharide (LPS) induction model of neuroinflammation to evaluate the modulation of inflammation by rosmarinic acid (RA) isolated from Blechnum brasiliense in adult zebrafish. First, we investigated the toxicity and antioxidant properties of fractionated B. brasiliense extract (ethyl acetate fraction- EAF) and the isolated RA in zebrafish embryos. Next, we developed a model of neuroinflammation induction by intraperitoneal (i.p.) injection of LPS to observe the RA modulation of proinflammatory cytokines. The median lethal concentration (LC50) calculated was 185.2 ± 1.24 μg/mL for the ethyl acetate fraction (EAF) and 296.0 ± 1.27 μM for RA. The EAF showed free radical inhibition ranging from 23.09% to 63.44% at concentrations of 10-250 μg/mL. The RA presented a concentration-dependent response ranging from 18.24% to 47.63% at 10-250 μM. Furthermore, the RA reduced LPS induction of TNF-α and IL-1β levels, with the greatest effect observed 6 h after LPS administration. Thus, the data suggested an anti-inflammatory effect of RA isolated from B. brasiliense and reinforced the utility of the new model of neuroinflammation to test the possible neuroprotective effects of novel drugs or compounds.
Collapse
Affiliation(s)
- Juliana M M A Fasolo
- Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, (UFRGS), Porto Alegre, RS, Brazil
| | | | - Eduardo P Rico
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Renata B S Rambo
- Departamento do Medicamento, Faculdade de Farmácia, Universidade Federal da Bahia (UFBA), Salvador, BA, Brazil
| | - Natally S B Toson
- Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, (UFRGS), Porto Alegre, RS, Brazil
| | - Emerson Santos
- Departamento de Bioquímica, UFRGS, Porto Alegre, RS, Brazil
| | | | | | - Elfrides E S Schapoval
- Laboratório de Controle de Qualidade de Medicamentos, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Amélia T Heriques
- Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
20
|
Kong L, Wu L, Guo Z, Mu L, Yang Y, Bian X, Li B, Pan X, Fu S, Ye J. A Siglec-1-like lectin from Nile tilapia (Oreochromis niloticus) possesses functions of agglutination and mediation of macrophage phagocytic activity. FISH & SHELLFISH IMMUNOLOGY 2020; 102:203-210. [PMID: 32330627 DOI: 10.1016/j.fsi.2020.04.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Siglec-1, one of the sialic acid-binding immunoglobulin-type lectins, is closely related to the recognition of host-pathogen and cell-cell interactions in the adaptive and innate immune systems. In this communication, a Siglec-1-like gene (OnSiglec-1-like) from Nile tilapia (Oreochromis niloticus) was analyzed. Relative expression revealed that the OnSiglec-1-like was expressed in all tested tissues, and the highest expression was found in the anterior kidney. Upon Streptococcus agalactiae (S. agalactiae) infection, the expression of OnSiglec-1-like was up-regulated in anterior kidney and spleen significantly in vivo. Additionally, the same phenomenon was observed in anterior kidney leukocytes upon LPS and S. agalactiae challenges as well in vitro. Western-blotting and ELISA analyses revealed that recombinant OnSiglec-1-like protein possessed high binding activity to LTA, LPS and S. agalactiae. Further, the recombinant OnSiglec-1-like was able to agglutinate S. agalactiae. Moreover, with the digestion of specific sialidase, the phagocytic ability of macrophages to S. agalactiae was greatly enhanced. Taken together, these results indicated that the Siglec-1-like possesses conserved functions of agglutination and promotion of macrophage phagocytic activity in Nile tilapia.
Collapse
Affiliation(s)
- Linghe Kong
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| | - Liangliang Mu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Yanjian Yang
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Xia Bian
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Bingxi Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Xunbin Pan
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Shengli Fu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| |
Collapse
|
21
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
22
|
Félix L, Coimbra AM, Valentim AM, Antunes L. Review on the use of zebrafish embryos to study the effects of anesthetics during early development. Crit Rev Toxicol 2019; 49:357-370. [PMID: 31314655 DOI: 10.1080/10408444.2019.1617236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the years, the potential toxicity of anesthetics has raised serious concerns about its safe use during pregnancy. As evidence emerged from research in animal models, showing that some anesthetic drugs are potential teratogenic, the determination of the risk of exposures to anesthetic drugs at early life stages became mandatory. However, due to inaccessibility and ethical constrains related to experimental conditions, the use of early life stages in mammalian models is limited. In this regard, some animal and nonanimal models have been suggested to surpass mammalian use in experimentation. Among them, the zebrafish embryo test has been recognized as a promising alternative in toxicology research, as well as an inexpensive and practical test. Substantial information collected from developmental research following compounds exposure, has contributed to the application of zebrafish assays in research, although only a few studies have focused on the use of early life stages of zebrafish to evaluate the developmental effects of anesthetics. Based on the recent advances of science and technology, there is a clear potential for zebrafish early life stages to provide new insights into anesthetics teratogenicity. This review provides an overview of recent anesthesia research using zebrafish embryos, demonstrating its usefulness to the anesthesia field, discussing the recent findings on various aspects related to the effects of anesthetics during early life development and the strengths and limitations of this model system.
Collapse
Affiliation(s)
- Luís Félix
- Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto , Porto , Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| | - Ana Maria Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| | - Ana Maria Valentim
- Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto , Porto , Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| | - Luís Antunes
- Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto , Porto , Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| |
Collapse
|
23
|
Wang X, Wei L, Wang Y, He B, Kong B, Zhu J, Jin Y, Fu Z. Evaluation of development, locomotor behavior, oxidative stress, immune responses and apoptosis in developing zebrafish (Danio rerio) exposed to TBECH (tetrabromoethylcyclohexane). Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:106-113. [PMID: 30528700 DOI: 10.1016/j.cbpc.2018.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 12/21/2022]
Abstract
Tetrabromoethylcyclohexane (TBECH), as one emerging brominated flame retardants, is ubiquitous in the environment, including water and aquatic organisms. TBECH was found to exhibit endocrine-disrupting effects in different models, whereas a survey of comprehensive toxic effects of TBECH on zebrafish is limited. In the present study, zebrafish (Danio rerio) were waterborne exposed continuously to TBECH from embryonic stage (3 h post-fertilization (hpf)) to the time when the respective parameters were evaluated. Exposure to TBECH reduced hatchability of zebrafish embryos at 72 and 96 hpf, diminished heart rate of zebrafish larvae at 48 hpf, and increased malformation in zebrafish larvae at 96 hpf. In addition, exposure to TBECH diminished free swimming distance both in the light and under a photoperiod of 10 min light/10 min dark cycles in zebrafish larvae at 6 days post-fertilization (dpf). Moreover, exposure to TBECH elevated activities of superoxide dismutase (SOD) and catalase (CAT), malondialdehyde (MDA) content, whereas it reduced glutathione (GSH) content, in zebrafish larvae at 6 dpf. Accordingly, RT-qPCR analysis demonstrated that TBECH exposure increased the mRNA levels of sod1, sod2, cat, and gpx1 in zebrafish larvae at 6 dpf. With respect to the immune aspect, the mRNA levels of pro-inflammatory genes, including il-1b, il-6, il-8, and tnfa, in larval zebrafish at 6 dpf were increased by exposure to TBECH, while pretreatment with TBECH inhibited 24 h of exposure to LPS-stimulated elevation in the mRNA levels of the abovementioned four pro-inflammatory genes in zebrafish larvae at 6 dpf. Furthermore, TBECH treatment increased caspase-3 enzyme activities and regulated apoptosis-related genes in larval zebrafish at 6 dpf. Taken together, the data obtained in this study demonstrated that TBECH caused developmental and locomotor behavioral toxicity, immunotoxicity, oxidative stress and proapoptotic effects in early life zebrafish. The present study will help to understand the comprehensive toxicity of TBECH in zebrafish.
Collapse
Affiliation(s)
- Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lai Wei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Baida Kong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
24
|
Li MY, Sun L, Niu XT, Chen XM, Tian JX, Kong YD, Wang GQ. Astaxanthin protects lipopolysaccharide-induced inflammatory response in Channa argus through inhibiting NF-κB and MAPKs signaling pathways. FISH & SHELLFISH IMMUNOLOGY 2019; 86:280-286. [PMID: 30448447 DOI: 10.1016/j.fsi.2018.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
The present study was conducted to evaluate the protective effects of astaxanthin against lipopolysaccharide (LPS)-induced inflammatory responses in Channa argus in vivo and ex vivo. Primary hepatocytes were exposed to different concentrations of LPS for 24 h to induce an inflammatory response, and the protective effects of astaxanthin against LPS-induced inflammation were studied ex vivo and in vivo. Hepatocytes exposed to LPS (5-20 μg mL-1) alone for 24 h resulted in a significant increase in lactate dehydrogenase release (LDH), Nitric oxide (NO) production and Malondialdehyde (MDA) content, 10 μg mL-1 LPS could induced inflammatory response in hepatocytes. Gene expression of TLR4, NFkBp65, MAPKp38, TNF-α, IL-6 and IL-1β mRNA expression were also enhanced ex vivo (p < 0.05). In vivo test demonstrated that pretreatment with astaxanthin prevented the LPS-induced upregulation of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β. Besides, astaxanthin blocked the expression of Toll-like receptor 4 (TLR4) and then suppressed the phosphorylation of nuclear transcription factor-kappa B (NF-κB) p65 and degradation inhibitor of NF-κBα (IκBα). Further study showed that astaxanthin could suppress the phosphorylation of p38, extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK) in mitogen-activated protein kinase (MAPK) signal pathway. In conclusion, our results suggest that astaxanthin played an anti-inflammatory role by regulating TLR4 and the NF-κB and MAPK signaling pathways in C. argus.
Collapse
Affiliation(s)
- Mu-Yang Li
- College of Animal Science and Technology, Jilin Agriculture University, 2888 Xincheng Road, Changchun, Jilin, China
| | - Li Sun
- College of Animal Science and Technology, Jilin Agriculture University, 2888 Xincheng Road, Changchun, Jilin, China; Changchun Testing Center of Quality and Safety in Aquatic Product, 777 CaiYu Road, Changchun, Jilin, China
| | - Xiao-Tian Niu
- College of Animal Science and Technology, Jilin Agriculture University, 2888 Xincheng Road, Changchun, Jilin, China
| | - Xiu-Mei Chen
- College of Animal Science and Technology, Jilin Agriculture University, 2888 Xincheng Road, Changchun, Jilin, China
| | - Jia-Xin Tian
- College of Animal Science and Technology, Jilin Agriculture University, 2888 Xincheng Road, Changchun, Jilin, China
| | - Yi-Di Kong
- College of Animal Science and Technology, Jilin Agriculture University, 2888 Xincheng Road, Changchun, Jilin, China
| | - Gui-Qin Wang
- College of Animal Science and Technology, Jilin Agriculture University, 2888 Xincheng Road, Changchun, Jilin, China.
| |
Collapse
|
25
|
Bao W, Volgin AD, Alpyshov ET, Friend AJ, Strekalova TV, de Abreu MS, Collins C, Amstislavskaya TG, Demin KA, Kalueff AV. Opioid Neurobiology, Neurogenetics and Neuropharmacology in Zebrafish. Neuroscience 2019; 404:218-232. [PMID: 30710667 DOI: 10.1016/j.neuroscience.2019.01.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/28/2023]
Abstract
Despite the high prevalence of medicinal use and abuse of opioids, their neurobiology and mechanisms of action are not fully understood. Experimental (animal) models are critical for improving our understanding of opioid effects in vivo. As zebrafish (Danio rerio) are increasingly utilized as a powerful model organism in neuroscience research, mounting evidence suggests these fish as a useful tool to study opioid neurobiology. Here, we discuss the zebrafish opioid system with specific focus on opioid gene expression, existing genetic models, as well as its pharmacological and developmental regulation. As many human brain diseases involve pain and aberrant reward, we also summarize zebrafish models relevant to opioid regulation of pain and addiction, including evidence of functional interplay between the opioid system and central dopaminergic and other neurotransmitter mechanisms. Additionally, we critically evaluate the limitations of zebrafish models for translational opioid research and emphasize their developing utility for improving our understanding of evolutionarily conserved mechanisms of pain-related, addictive, affective and other behaviors, as well as for fostering opioid-related drug discovery.
Collapse
Affiliation(s)
- Wandong Bao
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China
| | - Andrey D Volgin
- Military Medical Academy, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Erik T Alpyshov
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China
| | - Ashton J Friend
- Tulane University School of Science and Engineering, New Orleans, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Tatyana V Strekalova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia; Department of Neuroscience, Maastricht University, Maastricht, Netherlands; Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Murilo S de Abreu
- The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA; Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Christopher Collins
- ZENEREI Research Center, Slidell, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Ural Federal University, Ekaterinburg, Russia; Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; ZENEREI Research Center, Slidell, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA.
| |
Collapse
|
26
|
Li JJ, Zhang Y, Han LW, Tian QP, He QX, Wang XM, Sun C, Han J, Liu KC. Tenacissoside H exerts an anti-inflammatory effect by regulating the nf-κb and p38 pathways in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2018; 83:205-212. [PMID: 30213642 DOI: 10.1016/j.fsi.2018.09.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 08/26/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Marsdenia tenacissima exhibits biological activity with heat-clearing and detoxifying properties, relieving coughs and asthma and exerting anticancer and anti-HIV effects. Tenacissioside H (TH) is a Chinese medicine monomer extracted from the dried stem of Marsdenia tenacissima. We investigated the in vivo anti-inflammatory activity of TH using three different zebrafish inflammation models: local inflammation induced by tail cutting, acute inflammation induced by CuSO4, and systemic inflammation induced by lipopolysaccharide (LPS). Real time-polymerase chain reaction (RT-PCR) was used to elucidate the mechanism of TH action against LPS-induced inflammatory responses. Our results showed TH significantly reduced the number of macrophages in the injured zebrafish tail, inhibited CuSO4-induced migration of macrophages toward the neural mound, and decreased the distribution of macrophages in tail fin compared to LPS-treated group. Furthermore, TH inhibits LPS-induced inflammation responses in zebrafish by modulating the nuclear factor κB (nf-κb) and p38 pathways to regulate inflammatory cytokines, such as tumor necrosis factor-α (tnf-α), cyclooxygenase (cox-2), interleukin-1b (il-1b), interleukin-8 (il-8), interleukin-10 (il-10), nitric oxide synthase (nos2b) and prostaglandin E synthase (ptges). In conclusion, TH possesses anti-inflammation activity via the regulation of the nf-κb and p38 pathways. This finding provides a reference for the clinical application of Xiaoaiping (the trade name of Marsdenia tenacissima extract).
Collapse
Affiliation(s)
- Juan-Juan Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China; Shanxi Medical University, 56 Xinjiannan Road, Yingze District, Taiyuan, 030001, Shanxi Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboaratory for Biosensor of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| | - Li-Wen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboaratory for Biosensor of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Qing-Ping Tian
- Shanxi Medical University, 56 Xinjiannan Road, Yingze District, Taiyuan, 030001, Shanxi Province, PR China
| | - Qiu-Xia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboaratory for Biosensor of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Xi-Min Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboaratory for Biosensor of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboaratory for Biosensor of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Jian Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboaratory for Biosensor of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Ke-Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboaratory for Biosensor of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| |
Collapse
|
27
|
Lu XJ, Ning YJ, Liu H, Nie L, Chen J. A Novel Lipopolysaccharide Recognition Mechanism Mediated by Internalization in Teleost Macrophages. Front Immunol 2018; 9:2758. [PMID: 30542348 PMCID: PMC6277787 DOI: 10.3389/fimmu.2018.02758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/09/2018] [Indexed: 01/02/2023] Open
Abstract
Macrophages in teleosts are less sensitive to lipopolysaccharide (LPS) compared to mammals. The functional equivalent of the mammalian LPS surface receptor in teleost macrophages for the pro-inflammatory response is either non-existent or replaced by negative regulation. LPS signaling in teleost macrophages remains unclear. Here, we found a scavenger receptor class B 2a (PaSRB2a) that played a crucial role in LPS signaling in teleost macrophages. The internalization of LPS and subsequent pro-inflammatory responses in macrophages were mediated by PaSRB2a, which is a novel isoform of the mammalian SRB2 gene. LPS internalization by PaSRB2a is dependent on its C-terminal intracellular domain. Following LPS internalization, it interacts with the ayu intracellular receptors nucleotide-binding oligomerization domain protein 1 (PaNOD1) and PaNOD2. Moreover, LPS pre-stimulation with sub-threshold concentrations reduced the effect of secondary LPS treatment on pro-inflammatory responses that were mediated by PaSRB2a. The pro-inflammatory responses in LPS-treated ayu were down-regulated upon PaSRB2a knockdown by lentivirus siRNA delivery. In grass carp and spotted green pufferfish, SRB2a also mediated LPS internalization and pro-inflammatory responses. Our work identifies a novel LPS signaling pathway in teleosts that differs from those in mammals, and contributes to our understanding of the evolution of pathogen recognition in vertebrates.
Collapse
Affiliation(s)
- Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Ying-Jun Ning
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China
| | - He Liu
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China
| | - Li Nie
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
28
|
Abstract
Fish welfare is still a relatively new field. As such, regulations and protocols to ensure fish welfare are currently limited and vary considerably in different jurisdictions. This is in part because of the ongoing controversy as to whether or not fish feel pain. This controversy has persisted for several years, yet veterinarians have been mostly absent from the discussion so far. This essay aims to address this issue. Here, it is argued that while this controversy has its place, it is unlikely to be resolved in the near future. Fish welfare could instead be improved by pursuing more clinically applicable research to increase knowledge of fishes' behavior and physiology. Such research would assist in learning the optimal environment for their specific needs, as well as compiling some verified indicators of pain in fish. This would then lead to improved studies that could help to determine if and when analgesic drugs can be beneficial in fish, as they are in many other species.
Collapse
Affiliation(s)
- Frederic Chatigny
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island , Charlottetown , Canada
| |
Collapse
|
29
|
Zhang XY, Liang YX, Yan Y, Dai Z, Chu HC. Morphine: double-faced roles in the regulation of tumor development. Clin Transl Oncol 2017; 20:808-814. [DOI: 10.1007/s12094-017-1796-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/05/2017] [Indexed: 12/31/2022]
|
30
|
Hidasi AO, Groh KJ, Suter MJF, Schirmer K. Clobetasol propionate causes immunosuppression in zebrafish (Danio rerio) at environmentally relevant concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:16-24. [PMID: 27987419 DOI: 10.1016/j.ecoenv.2016.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Synthetic glucocorticoids (GCs) are potential endocrine disrupting compounds that have been detected in the aquatic environment around the world in the low ng/L (nanomolar) range. GCs are used as immunosuppressants in medicine. It is of high interest whether clobetasol propionate (CP), a highly potent GC, suppresses the inflammatory response in fish after exposure to environmentally relevant concentrations. Bacterial lipopolysaccharide (LPS) challenge was used to induce inflammation and thus mimic pathogen infection. Zebrafish embryos were exposed to ≤1000nM CP from ~1h post fertilization (hpf) to 96 hpf, and CP uptake, survival after LPS challenge, and expression of inflammation-related genes were examined. Our initial experiments were carried out using 0.001% DMSO as a solvent vehicle, but we observed that DMSO interfered with the LPS challenge assay, and thus masked the effects of CP. Therefore, DMSO was not used in the subsequent experiments. The internal CP concentration was quantifiable after exposure to ≥10nM CP for 96h. The bioconcentration factor (BCF) of CP was determined to be between 16 and 33 in zebrafish embryos. CP-exposed embryos showed a significantly higher survival rate in the LPS challenge assay after exposure to ≥0.1nM in a dose dependent manner. This effect is an indication of immunosuppression. Furthermore, the regulation pattern of several genes related to LPS challenge in mammals supported our results, providing evidence that LPS-mediated inflammatory pathways are conserved from mammals to teleost fish. Anxa1b, a GC-action related anti-inflammatory gene, was significantly down-regulated after exposure to ≥0.05nM CP. Our results show for the first time that synthetic GCs can suppress the innate immune system of fish at environmentally relevant concentrations. This may reduce the chances of fish to survive in the environment, as their defense against pathogens is weakened.
Collapse
Affiliation(s)
- Anita O Hidasi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland; EPFL, School of Architecture, Civil and Environmental Engineering, Lausanne 1015, Switzerland
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland
| | - Marc J-F Suter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland; ETHZ, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland; EPFL, School of Architecture, Civil and Environmental Engineering, Lausanne 1015, Switzerland; ETHZ, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092, Switzerland.
| |
Collapse
|