1
|
Zhang X, Liu Z, Chen B, Shi F. Haze episodes elevate PM 2.5-bound PAH and BFR loads without increasing bioaccessibility: Toward improved inhalation risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 982:179640. [PMID: 40359834 DOI: 10.1016/j.scitotenv.2025.179640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/09/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025]
Abstract
Inhalation bioaccessibility is critical for accurate health risk assessment of airborne pollutants. This study systematically investigated PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and brominated flame retardants (BFRs) during haze episodes and normal periods in northern China, focusing on their concentration profiles, bioaccessibility (via artificial lysosomal fluid [ALF] and Gamble's solution [GS] models), and inhalation risks. Results revealed haze-driven elevations in PAHs (4.93 vs. 3.14 ng/m3, 1.57 times) and BFRs (1566 vs. 926 pg/m3, 1.69 times). Despite elevated concentrations, bioaccessibility showed no significant haze-normal differences for PAHs (22.3-95.3 % vs. 25.9-83.9 %, p > 0.05) or BFRs (12.7-56.6 % vs. 14.9-74.1 %, p > 0.05). Total concentration-based incremental lifetime carcinogenic risks (ILCRinh) overestimated hazards by 5.71-20.6 times compared to bioaccessibility-adjusted risks (9.57 × 10-9-1.28 × 10-8 for haze; 5.33 × 10-9-6.27 × 10-9 for normal), though all values remained below safety thresholds (ILCRinh < 10-6). Our results emphasize the importance of inhalation bioaccessibility in risk assessment for PM2.5-bound PAHs and BFRs.
Collapse
Affiliation(s)
- Xian Zhang
- Hebei Key Laboratory of Public Health Safety, Hebei University, Baoding 071002, PR China; School of Public Health, Hebei University, Baoding 071002, PR China
| | - Zijuan Liu
- Hebei Key Laboratory of Public Health Safety, Hebei University, Baoding 071002, PR China; School of Public Health, Hebei University, Baoding 071002, PR China
| | - Bianjie Chen
- Hebei Key Laboratory of Public Health Safety, Hebei University, Baoding 071002, PR China; School of Public Health, Hebei University, Baoding 071002, PR China
| | - Fengqiong Shi
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, PR China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
2
|
Zhang P, Li S, Zeng H, Sun Y. Exposure to polycyclic aromatic hydrocarbons and bone mineral density in children and adolescents: results from the 2011-2016 National Health and Nutrition Examination Survey. Front Public Health 2025; 13:1428772. [PMID: 40313492 PMCID: PMC12043670 DOI: 10.3389/fpubh.2025.1428772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction Identifying factors that hinder bone development in children and adolescents is crucial for preventing osteoporosis. Exposure to polycyclic aromatic hydrocarbons (PAHs) has been linked to reduced bone mineral density (BMD), although available data, especially in children and adolescents, are limited. We examined the associations between urinary hydroxylated-PAHs (OH-PAHs) and lumbar spine BMD, pelvic BMD, and total BMD among 8-19 years participants (N = 1,332) of the 2011-2016 National Health and Nutrition Examination Survey. Methods Weighted linear regressions were employed to assess the associations between urinary OH-PAHs and BMD. Additionally, Bayesian kernel machine regression (BKMR) and quantile g-computation (Qgcomp) models were utilized to investigate the effect of co-exposure of PAHs on BMD. Results Several urinary OH-PAHs exhibited negative associations with lumbar spine BMD, pelvic BMD, and total BMD in children and adolescents. For instance, an increase of one unit in the natural log-transformed levels of urinary 1-hydroxypyrene and 2&3-Hydroxyphenanthrene was linked with a decrease of -0.014 g/cm2 (95% CI: -0.026, -0.002) and -0.018 g/cm2 (95% CI: -0.032, -0.004) in lumbar spine BMD, a decrease of -0.021 g/cm2 (95% CI: -0.039, -0.003) and -0.017 g/cm2 (95% CI: -0.033, -0.001) in pelvic BMD, and a decrease of -0.013 g/cm2 (95% CI: -0.023, -0.002) and -0.016 g/cm2 (95% CI: -0.026, -0.006) in total BMD. The body mass index modified the associations between urinary OH-PAHs and BMD, revealing negative effects on BMD primarily significant in overweight/obese individuals but not significant in underweight/normal individuals. Both the BKMR model and the Qgcomp model indicated a significant negative correlation between the overall effects of seven urinary OH-PAHs and lumbar spine BMD, pelvic BMD, and total BMD. Conclusion Our findings revealed that exposure to PAHs might hinder bone development in children and adolescents, potentially impacting peak bone mass-an essential factor influencing lifelong skeletal health.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopedics, Huaihe Hospital Affiliated to Henan University, Kaifeng, Henan, China
| | - Shuailei Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, Henan, China
| | - Hao Zeng
- Department of Medical Insurance, Huaihe Hospital Affiliated to Henan University, Kaifeng, Henan, China
| | - Yongqiang Sun
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, Henan, China
| |
Collapse
|
3
|
Li J, Zhou M, Chen Z, Guo J, Fang F, Schäffer A, Shao Y. Identification of pollutant markers in rural mountainous areas of China by combining non-targeted analysis with zebrafish embryo toxicity tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178625. [PMID: 39892231 DOI: 10.1016/j.scitotenv.2025.178625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Emerging pollutants (EPs) are increasingly found around the world, yet their composition and the risks pose to soil environments remain unclear, making a challenge to EP management, particularly in mountainous rural areas. In this study, we collected soils from three types of mountainous villages, each representing different levels of economic development: an industrial village, an ecotourism village, and an agricultural village. We analyzed these samples using non-target analysis and Danio rerio embryotoxicity test (ZET). A total of 216 compounds (level 2) were identified by matching with mzCloud database, with 149, 107, and 157 found in YY (industrial village), DX (ecotourism village) and LH (agricultural village), respectively. Interestingly, 78 compounds were present in all three villages, while the number of unique substances ranged from 7 to 47 in each village, serving as potential pollution markers. The most prevalent substances identified were aliphatics, heterocyclics, and aromatics. The ZET results showed that all soil extracts had significant acute toxic effects. Further analysis revealed a correlation between the toxic substances and the economic types of the villages. Specifically, linear chain dicarboxylic acids, drugs, and oxygenated polycyclic aromatic hydrocarbons (OPAHs) were the primary toxicants in the industrial village, whereas phthalate esters dominated in the other two villages. These findings provide valuable insights for effective monitoring of EPs in mountainous rural areas.
Collapse
Affiliation(s)
- Jiaqi Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045 Chongqing, China
| | - Min Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045 Chongqing, China
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045 Chongqing, China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045 Chongqing, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045 Chongqing, China
| | - Andreas Schäffer
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045 Chongqing, China; Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210093 Nanjing, China
| | - Ying Shao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045 Chongqing, China.
| |
Collapse
|
4
|
Zhang X, Wang J, Wu Y, Li X, Zheng D, Sun L. Personal exposure to polycyclic aromatic hydrocarbons-bound particulate matter during pregnancy and umbilical inflammation and oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117896. [PMID: 39955870 DOI: 10.1016/j.ecoenv.2025.117896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs), particularly when bound to fine particulate matter (PM2.5), is an emerging concern for adverse prenatal health outcomes. This study investigates the associations between prenatal exposure to PAHs-bound PM2.5 and markers of inflammation and oxidative stress in umbilical cord blood. We conducted a prospective study of 450 mother-infant pairs, assessing PAHs-bound PM2.5 levels during pregnancy using personal air sampling. Inflammatory and oxidative stress biomarkers, including TNF-α, IL-6, IL-8, TGF-β, and Pro-oxidant Antioxidant Balance (PAB), were measured in umbilical cord blood. Multivariable linear regression was used to examine associations between individual PAHs and these biomarkers, while mixture effects were evaluated using quantile g-computation and Bayesian Kernel Machine Regression (BKMR) to assess the combined influence of 15 PAH congeners. Our findings revealed significant associations between prenatal exposure to specific PAHs and increased levels of TNF-α, IL-6, and PAB. Mixture analysis indicated that each one-quartile increase in PAH exposure was associated with a 0.31 pg/mL (95 % CI: 0.05-0.60, p = 0.01), 1.26 pg/mL (95 % CI: 0.43-2.08, p < 0.01), and 26.02 pg/mL (95 % CI: 2.98-49.07, p = 0.02) increase in TNF-α, IL-8, and TGF-β, respectively. However, IL-6 and PAB showed no significant associations. BKMR analysis further confirmed a dose-response relationship between prenatal PAH exposure and elevated inflammatory and oxidative stress markers. These findings highlight the potential health risks associated with prenatal exposure to PAHs-bound PM2.5, emphasizing the need for further research to mitigate adverse developmental effects.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yan Wu
- The first department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiang Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Dongming Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Lei Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Craze AM, Bartle C, Roper C. Impact of PM 2.5 filter extraction solvent on oxidative potential and chemical analysis. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2025; 75:52-71. [PMID: 39436942 DOI: 10.1080/10962247.2024.2417736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Fine particulate matter (PM2.5) is hypothesized to induce oxidative stress, and has been linked to acute and chronic adverse health effects. To better understand the risks and underlying mechanisms following exposure, PM2.5 is collected onto filters but prior to toxicological analysis, particles must be removed from filters. There is no standard method for filter extraction, which creates the possibility that the methods of extraction selected can alter the chemical composition and ultimately the biological implications. In this study, comparisons were made between extraction solvents (methanol (MeOH), dichloromethane (DCM), 0.9% saline, and Milli-Q water) and the results of oxidative potential and elemental concentration analysis of PM2.5 collected across sites in Arkansas, USA. Significant differences were observed between solvents, with DCM having significantly different results compared to all other extraction solvents (p ≤ 0.001). Significant correlations between element, black carbon, and PM2.5 concentrations and oxidative potential were observed. The observed correlations were extraction solvent dependent. For example, in saline extracted samples, oxidative potential had significant negative correlations with: Ba, Cd, Ce, Co, Ga, Mn and significant positive correlations with: Cr, Ni, Th, U. While in MeOH extracted samples, significant positive correlations were only between oxidative potential and Ga, U and significant negative correlations with V. This indicates that PM2.5 samples extracted with different solvents will yield different conclusions about the causal components. This study highlights the importance of filter extraction methods in interpretation of oxidative potential results and comparisons between studies.Implications: While there is no standard method for PM2.5 filter extraction, variation of extraction methods impact analytical results. This project identifies that extraction method variation, particularly extraction solvent selection, leads to discrepancies in chemical and toxicological analysis for PM2.5 collected on the same filter. This work highlights the need for methods standardization to support accurate comparisons between PM2.5 research studies, thus providing better understanding of PM2.5 across the globe.
Collapse
Affiliation(s)
- Amelia M Craze
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - Christopher Bartle
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - Courtney Roper
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| |
Collapse
|
6
|
Tsiodra I, Grivas G, Bougiatioti A, Tavernaraki K, Parinos C, Paraskevopoulou D, Papoutsidaki K, Tsagkaraki M, Kozonaki FA, Oikonomou K, Nenes A, Mihalopoulos N. Source apportionment of particle-bound polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and their associated long-term health risks in a major European city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175416. [PMID: 39142411 DOI: 10.1016/j.scitotenv.2024.175416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Many studies have drawn attention to the associations of oxygenated polycyclic aromatic hydrocarbons (OPAHs) with harmful health effects, advocating for their systematic monitoring alongside simple PAHs to better understand the aerosol carcinogenic potential in urban areas. To address this need, this study conducted an extensive PM2.5 sampling campaign in Athens, Greece, at the Thissio Supersite of the National Observatory of Athens, from December 2018 to July 2021, aiming to characterize the levels and variability of polycyclic aromatic compounds (PACs), perform source apportionment, and assess health risk. Cumulative OPAH concentrations (Σ-OPAHs) were in the same range as Σ-PAHs (annual average 4.2 and 5.6 ng m-3, respectively). They exhibited a common seasonal profile with enhanced levels during the heating seasons, primarily attributed to residential wood burning (RWB). The episodic impact of biomass burning was also observed during a peri-urban wildfire event in May 2021, when PAH and OPAH concentrations increased by a factor of three compared to the monthly average. The study period also included the winter 2020-2021 COVID-19 lockdown, during which PAH and OPAH levels decreased by >50 % compared to past winters. Positive matrix factorization (PMF) source apportionment, based on a carbonaceous aerosol speciation dataset, identified PAC sources related to RWB, local traffic (gasoline vehicles) and urban traffic (including diesel emissions), as well as an impact of regional organic aerosol. Despite its seasonal character, RWB accounted for nearly half of Σ-PAH and over two-thirds of Σ-OPAH concentrations. Using the estimated source profiles and contributions, the source-specific carcinogenic potency of the studied PACs was calculated, revealing that almost 50 % was related to RWB. These findings underscore the urgent need to regulate domestic biomass burning at a European level, which can provide concrete benefits for improving urban air quality, towards the new stricter EU standards, and reducing long-term health effects.
Collapse
Affiliation(s)
- Irini Tsiodra
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece; Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece
| | - Georgios Grivas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece
| | - Aikaterini Bougiatioti
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece
| | - Kalliopi Tavernaraki
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Constantine Parinos
- Hellenic Centre for Marine Research, Institute of Oceanography, 190 13 Anavyssos, Attiki, Greece
| | - Despina Paraskevopoulou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Kyriaki Papoutsidaki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Maria Tsagkaraki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Faidra-Aikaterini Kozonaki
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | | | - Athanasios Nenes
- Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece; Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Nikolaos Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece.
| |
Collapse
|
7
|
Lei D, Chen T, Fan C, Xie Q. Exposure to BaA inhibits trophoblast cell invasion and induces miscarriage by regulating the DEC1/ARHGAP5 axis and promoting ubiquitination-mediated degradation of MMP2. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135594. [PMID: 39191013 DOI: 10.1016/j.jhazmat.2024.135594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Benz[a]anthracene (BaA), a hazardous polycyclic aromatic hydrocarbon classified by the EPA, is a probable reproductive toxicant. Epidemiological studies suggest that BaA exposure may be a risk factor for recurrent miscarriage (RM). However, the underlying mechanisms are not well understood. This study identified DEC1 as a key gene through RNA-seq and single-cell RNA sequencing analysis. DEC1 expression was found to be downregulated in villous tissues from women with RM and in primary extravillous trophoblasts (EVTs) exposed to BaA. BaA suppressed DEC1 expression by promoting abnormal methylation patterns. Further analysis revealed that ARHGAP5 is a direct target of DEC1 in EVTs, where DEC1 inhibits trophoblast invasion by directly regulating ARHGAP5 transcription. Additionally, BaA destabilized matrix metalloproteinase 2 (MMP2) by activating the aryl hydrocarbon receptor (AhR) and promoting E3 ubiquitin ligase MID1-mediated degradation. In a mouse model, BaA induced miscarriage by modulating the DEC1/ARHGAP5 and MID1/MMP2 axes. Notably, BaA-induced miscarriage in mice was prevented by DEC1 overexpression or MID1 knockdown. These findings indicate that BaA exposure leads to miscarriage by suppressing the DEC1/ARHGAP5 pathway and enhancing the MID1/MMP2 pathway in human EVTs.
Collapse
Affiliation(s)
- Di Lei
- Centre for Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan 430000, China; Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Tingting Chen
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Cuifang Fan
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Qingzhen Xie
- Centre for Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| |
Collapse
|
8
|
Le Provost B, Parent MÉ, Villeneuve PJ, Waddingham CM, Brook JR, Lavigne E, Dugandzic R, Harris SA. Residential exposure to ambient fine particulate matter (PM 2.5) and nitrogen dioxide (NO 2) and incident breast cancer among young women in Ontario, Canada. Cancer Epidemiol 2024; 92:102606. [PMID: 38986354 DOI: 10.1016/j.canep.2024.102606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Air pollution has been classified as a human carcinogen based largely on findings for respiratory cancers. Emerging, but limited, evidence suggests that it increases the risk of breast cancer, particularly among younger women. We characterized associations between residential exposure to ambient fine particulate matter (PM2.5) and nitrogen dioxide (NO2) and breast cancer. Analyses were performed using data collected in the Ontario Environmental Health Study (OEHS). METHODS The OEHS, a population-based case-control study, identified incident cases of breast cancer in Ontario, Canada among women aged 18-45 between 2013 and 2015. A total of 465 pathologically confirmed primary breast cancer cases were identified from the Ontario Cancer Registry, while 242 population-based controls were recruited using random-digit dialing. Self-reported questionnaires were used to collect risk factor data and residential histories. Land-use regression and remote-sensing estimates of NO2 and PM2.5, respectively, were assigned to the residential addresses at interview, five years earlier, and at menarche. Logistic regression was used to estimate odds ratios (OR) and their 95 % confidence intervals (CI) in relation to an interquartile range (IQR) increase in air pollution, adjusting for possible confounders. RESULTS PM2.5 and NO2 were positively correlated with each other (r = 0.57). An IQR increase of PM2.5 (1.9 µg/m3) and NO2 (6.6 ppb) at interview residence were associated with higher odds of breast cancer and the adjusted ORs and 95 % CIs were 1.37 (95 % CI = 0.98-1.91) and 2.33 (95 % CI = 1.53-3.53), respectively. An increased odds of breast cancer was observed with an IQR increase in NO2 at residence five years earlier (OR = 2.16, 95 % CI: 1.41-3.31), while no association was observed with PM2.5 (OR = 0.96, 95 % CI 0.64-1.42). CONCLUSIONS Our findings support the hypothesis that exposure to ambient air pollution, especially those from traffic sources (i.e., NO2), increases the risk of breast cancer in young women.
Collapse
Affiliation(s)
- Blandine Le Provost
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED), École de Santé Publique, Université de Bordeaux, Bordeaux, France
| | - Marie-Élise Parent
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, Laval, Québec, Canada; Department of Social and Preventive Medicine, School of Public Health, Université de Montréal, Montreal, Quebec, Canada; Centre de recherche du CHUM, Montréal, Québec, Canada
| | - Paul J Villeneuve
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.
| | | | - Jeffrey R Brook
- Divisions of Epidemiology and Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Eric Lavigne
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Population Studies Division, Health Canada, Ottawa, Ontario, Canada
| | - Rose Dugandzic
- Office of Environmental Health, Health Canada, Ottawa, Ontario, Canada
| | - Shelley A Harris
- Divisions of Epidemiology and Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Li D, Shi T, Meng L, Zhang X, Li R, Wang T, Zhao X, Zheng H, Ren X. An association between PM 2.5 components and respiratory infectious diseases: A China's mainland-based study. Acta Trop 2024; 254:107193. [PMID: 38604327 DOI: 10.1016/j.actatropica.2024.107193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
The particulate matter with diameter of less than 2.5 µm (PM2.5) is an important risk factor for respiratory infectious diseases, such as scarlet fever, tuberculosis, and similar diseases. However, it is not clear which component of PM2.5 is more important for respiratory infectious diseases. Based on data from 31 provinces in mainland China obtained between 2013 and 2019, this study investigated the effects of different PM2.5 components, i.e., sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), and organic matter (OM), and black carbon (BC), on respiratory infectious diseases incidence [pulmonary tuberculosis (PTB), scarlet fever (SF), influenza, hand, foot, and mouth disease (HFMD), and mumps]. Geographical probes and the Bayesian kernel machine regression (BKMR) model were used to investigate correlations, single-component effects, joint effects, and interactions between components, and subgroup analysis was used to assess regional and temporal heterogeneity. The results of geographical probes showed that the chemical components of PM2.5 were associated with the incidence of respiratory infectious diseases. BKMR results showed that the five components of PM2.5 were the main factors affecting the incidence of respiratory infectious diseases (PIP>0.5). The joint effect of influenza and mumps by co-exposure to the components showed a significant positive correlation, and the exposure-response curve for a single component was approximately linear. And single-component modelling revealed that OM and BC may be the most important factors influencing the incidence of respiratory infections. Moreover, respiratory infectious diseases in southern and southwestern China may be less affected by the PM2.5 component. This study is the first to explore the relationship between different components of PM2.5 and the incidence of five common respiratory infectious diseases in 31 provinces of mainland China, which provides a certain theoretical basis for future research.
Collapse
Affiliation(s)
- Donghua Li
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, Gansu Province 730000, China
| | - Tianshan Shi
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, Gansu Province 730000, China
| | - Lei Meng
- Gansu Provincial Center for Disease Control and Prevention, Chengguan District, Lanzhou City, Gansu Province 730000, China
| | - Xiaoshu Zhang
- Gansu Provincial Center for Disease Control and Prevention, Chengguan District, Lanzhou City, Gansu Province 730000, China
| | - Rui Li
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, Gansu Province 730000, China
| | - Tingrong Wang
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, Gansu Province 730000, China
| | - Xin Zhao
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, Gansu Province 730000, China
| | - Hongmiao Zheng
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, Gansu Province 730000, China
| | - Xiaowei Ren
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, Gansu Province 730000, China.
| |
Collapse
|
10
|
Deng W, Wen M, Xiong J, Wang C, Huang J, Guo Z, Wang W, An T. Atmospheric occurrences and bioavailability health risk of PAHs and their derivatives surrounding a non-ferrous metal smelting plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134200. [PMID: 38593661 DOI: 10.1016/j.jhazmat.2024.134200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Non-ferrous metal smelting emits large amounts of organic compounds into the atmosphere. Herein, 20 parent polycyclic aromatic hydrocarbons (PPAHs), 9 nitrated PAHs (NPAHs), 14 chlorinated PAHs (ClPAHs), and 6 alkylated PAHs (APAHs) in atmospheric samples from a typical non-ferrous metal smelting plant (NMSP) and residential areas were detected. In NMSP, benzo[a]pyrene, dibenz[a,h]anthracene, 6-nitrochrysene, 9-chlorofluorene, and 1-methylfluorene were the predominant compounds in the particulate phase, while phenanthrene constituted 57.3% in the gaseous phase. The concentration of PAHs in residential areas around NMSP was 1.8 times higher than that in the control area. Additionally, there was a significant negative correlation between the concentration and the distance from the NMSP. In terms of health risks, although the skin penetration coefficient of PM2.5 is smaller than that of the gaseous phase, dermal absorption of PM2.5 posed a greater threat to the population, the incremental lifetime cancer risk (ILCR) of NMSP was 1.8 × 10-4. After considering bioavailability, BILCR decreased by 1-2 orders of magnitude in different regions, and dermal absorption decreased more than inhalation intake. Nevertheless, the dermal absorption of PM2.5 in NMSP still presents a probable carcinogenic risk. This study provides a necessary reference for the subsequent control of NMSP contamination.
Collapse
Affiliation(s)
- Weiqiang Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Meicheng Wen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jukun Xiong
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jin Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhizhao Guo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
Smoot J, Padilla S, Kim YH, Hunter D, Tennant A, Hill B, Lowery M, Knapp BR, Oshiro W, Hazari MS, Hays MD, Preston WT, Jaspers I, Gilmour MI, Farraj AK. Burn pit-related smoke causes developmental and behavioral toxicity in zebrafish: Influence of material type and emissions chemistry. Heliyon 2024; 10:e29675. [PMID: 38681659 PMCID: PMC11053193 DOI: 10.1016/j.heliyon.2024.e29675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Combustion of mixed materials during open air burning of refuse or structural fires in the wildland urban interface produces emissions that worsen air quality, contaminate rivers and streams, and cause poor health outcomes including developmental effects. The zebrafish, a freshwater fish, is a useful model for quickly screening the toxicological and developmental effects of agents in such species and elicits biological responses that are often analogous and predictive of responses in mammals. The purpose of this study was to compare the developmental toxicity of smoke derived from the burning of 5 different burn pit-related material types (plywood, cardboard, plastic, a mixture of the three, and the mixture plus diesel fuel as an accelerant) in zebrafish larvae. Larvae were exposed to organic extracts of increasing concentrations of each smoke 6-to-8-hr post fertilization and assessed for morphological and behavioral toxicity at 5 days post fertilization. To examine chemical and biological determinants of toxicity, responses were related to emissions concentrations of polycyclic hydrocarbons (PAH). Emissions from plastic and the mixture containing plastic caused the most pronounced developmental effects, including mortality, impaired swim bladder inflation, pericardial edema, spinal curvature, tail kinks, and/or craniofacial deformities, although all extracts caused concentration-dependent effects. Plywood, by contrast, altered locomotor responsiveness to light changes to the greatest extent. Some morphological and behavioral responses correlated strongly with smoke extract levels of PAHs including 9-fluorenone. Overall, the findings suggest that material type and emissions chemistry impact the severity of zebrafish developmental toxicity responses to burn pit-related smoke.
Collapse
Affiliation(s)
- Jacob Smoot
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | | | - Yong Ho Kim
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Deborah Hunter
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Alan Tennant
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Bridgett Hill
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Morgan Lowery
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Bridget R. Knapp
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Wendy Oshiro
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mehdi S. Hazari
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Michael D. Hays
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | - M. Ian Gilmour
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Aimen K. Farraj
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
12
|
Zhang N, Maung MW, Wang S, Aruffo E, Feng J. Characterization and health risk assessment of PM 2.5-bound polycyclic aromatic hydrocarbons in Yangon and Mandalay of Myanmar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170034. [PMID: 38220015 DOI: 10.1016/j.scitotenv.2024.170034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
To better understand the potential adverse health effects of atmospheric fine particles in the Southeast Asian developing countries, PM2.5 samples were collected at two urban sites in Yangon and Mandalay, representing coastal and inland cities in Myanmar, in winter and summer during 2016 and 2017. The concentrations of 21 polycyclic aromatic hydrocarbons (PAHs) in PM2.5 were determined using a gas chromatography-mass spectrometry (GC-MS). The concentrations of PAHs in PM2.5 in Yangon and Mandalay ranged from 7.6 to 180 ng m-3, with an average of 72 ng m-3. The PAHs were significantly higher in winter than in summer, and significantly higher in Mandalay than in Yangon. The health risk analysis of PAHs, based on the toxic equivalent quantity (TEQ) calculation, and the incremental lifetime cancer risk (ILCR) assessment indicated that PM2.5 in Myanmar has significant health risks with higher health risks in Mandalay compared to Yangon. Diagnostic ratios of PAHs, correlation of PAHs with other species in PM2.5 and the positive matrix factorization (PMF) analysis showed that TEQ is strongly affected by biomass burning and vehicular emissions in Myanmar. Additionally, it was found that the aging degree of aerosols and air mass trajectories had great influences on the concentration and composition of PAHs in PM2.5 in Myanmar, thereby affecting the toxicity of PM2.5.
Collapse
Affiliation(s)
- Ning Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Myo Win Maung
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shunyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Eleonora Aruffo
- Department of Advanced Technologies in Medicine & Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti 66100, Italy; Center for Advanced Studies and Technology-CAST, Chieti 66100, Italy
| | - Jialiang Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
13
|
Park M, Lee S, Lee H, Denna MCFJ, Jang J, Oh D, Bae MS, Jang KS, Park K. New health index derived from oxidative potential and cell toxicity of fine particulate matter to assess its potential health effect. Heliyon 2024; 10:e25310. [PMID: 38356560 PMCID: PMC10864913 DOI: 10.1016/j.heliyon.2024.e25310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Toxicological data and exposure levels of fine particulate matters (PM2.5) are necessary to better understand their health effects. Simultaneous measurements of PM2.5 oxidative potential (OP) and cell toxicity in urban areas (Beijing, China and Gwangju, Korea) reveal their dependence on chemical composition. Notably, acids (Polar), benzocarboxylic acids, and Pb were the chemical components that affected both OP and cell toxicity. OP varied more significantly among different locations and seasons (winter and summer) than cell toxicity. Using the measured OP, cell toxicity, and PM2.5 concentration, a health index was developed to better assess the potential health effects of PM2.5. The health index was related to the sources of PM2.5 derived from the measured chemical components. The contributions of secondary organic aerosols and dust to the proposed health index were more significant than their contributions to PM2.5 mass. The developed regression equation was used to predict the health effect of PM2.5 without further toxicity measurements. This new index could be a valuable health metric that provides information beyond just the PM2.5 concentration level.
Collapse
Affiliation(s)
- Minhan Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Seunghye Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Haebum Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Ma. Cristine Faye J. Denna
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jiho Jang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Dahye Oh
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Kihong Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|
14
|
Nordberg K, Björk G, Abrahamsson K, Josefsson S, Lundin L. Historic distribution of Polycyclic Aromatic Compounds (PAC) in a Skagerrak fjord, Swedish west coast as reflected in a high-resolution sediment record and compared to the Environmental Quality Standards (EQS). MARINE POLLUTION BULLETIN 2024; 199:116014. [PMID: 38183834 DOI: 10.1016/j.marpolbul.2023.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
We present the historic distribution of Polycyclic Aromatic Compounds (PAC) in a Skagerrak fjord, a relatively unexploited area, on the Swedish west coast. PACs encompass various compounds, including PAHs, alkyl-PAHs, nitro-PAHs, and oxy-PAHs. These compounds, have environmental implications due to their harmful properties. Using a high-resolution sediment record, PAC variations including standard PAHs, nitro-PAHs and oxy-PAHs were investigated over the last approximately 170 years, comparing them with other European records. The sediment record reveals a significant increase in PAC levels during the 1940s-1950s, followed by peaks in the 1960s and 1970s, and a subsequent decrease in the 1980s. These trends align with industrial growth and evolving stronger environmental regulations in the region. The highest recorded concentration of PACs (1950-1970) reached levels comparable to present-day polluted urban environments. The study also compared PAH levels with EQS values. Results indicated that PAH levels exceeded EQS standards, potentially posing risks to sediment-dwelling organisms.
Collapse
Affiliation(s)
- Kjell Nordberg
- Dept. of Marine Sciences, University of Gothenburg, PO Box 461, SE 40530 Gothenburg, Sweden.
| | - Göran Björk
- Dept. of Marine Sciences, University of Gothenburg, PO Box 461, SE 40530 Gothenburg, Sweden
| | - Katarina Abrahamsson
- Dept. of Marine Sciences, University of Gothenburg, PO Box 461, SE 40530 Gothenburg, Sweden
| | - Sarah Josefsson
- Geological Survey of Sweden, PO Box 670, SE 75128 Uppsala, Sweden
| | - Lisa Lundin
- Dept. of Chemistry, Umeå Univ., Linneus väg 6, SE 90187 Umeå, Sweden
| |
Collapse
|
15
|
Gao R, Jiang Z, Wu X, Cai Z, Sang N. Metabolic regulation of tumor cells exposed to different oxygenated polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167833. [PMID: 37839476 DOI: 10.1016/j.scitotenv.2023.167833] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are a class of polycyclic aromatic derivatives with oxygen-containing functional groups that induce oxidative stress and mutations. However, studies of the carcinogenic and metabolic effects of OPAHs are limited. In this study, we analyzed the carcinogenic effects of four different OPAHs and found that 9-fluorenone (FLO), 9,10-anthraquinone (AQ), and 7,12-benz(a)anthraquinone (BAQ) promoted cell invasion and metastasis via epithelial-mesenchymal transition (EMT) and induced endothelial cell angiogenesis by affecting the expression of vascular endothelial growth factor (VEGF), angiopoietin (ANG), and platelet-derived growth factor (PDGF), whereas 1,8-naphthalic anhydride (NAD) did not show significant carcinogenic effects. In addition, combined with metabolomic analysis, we found that the tumor-promoting effects of different OPAHs were related to their effects on the metabolome, especially the metabolism of glutathione related to oxidative stress. These results provide an experimental basis for studying the carcinogenic and metabolic effects of OPAHs, and an important reference for comprehensively assessing the ecological and health risks of this compounds.
Collapse
Affiliation(s)
- Rui Gao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, PR China; College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Zihao Jiang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, PR China
| | - Xiuyu Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Zhihong Cai
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
16
|
Craig NA, Scruggs AM, Berens JP, Deng F, Chen Y, Dvonch JT, Huang SK. Promotion of myofibroblast differentiation through repeated treatment of fibroblasts to low concentrations of PM 2.5. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104329. [PMID: 38036232 PMCID: PMC11010492 DOI: 10.1016/j.etap.2023.104329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Exposure to particulate matter ≤ 2.5 µm (PM2.5) is a risk factor for many lung diseases. Although the toxicologic effects of PM2.5 on airway epithelium are well-described, the effects of PM2.5 on fibroblasts in the lung are less studied. Here, we sought to examine the effects of PM2.5 on the differentiation of fibroblasts into myofibroblasts. Although a single treatment of fibroblasts did not result in a change in collagen or the myofibroblast marker α-SMA, exposing fibroblasts to sequential treatments with PM2.5 at low concentrations caused a robust increase in these proteins. Treatment of fibroblasts with IMD0354, an inhibitor to nuclear factor κB, but not with an antagonist to aryl hydrocarbon receptor, abolished the ability of PM2.5 to induce myofibroblast differentiation. These data demonstrate that potential impact of PM2.5 to fibroblast activation and fibrosis and support the importance of utilizing low concentrations and varying exposure protocols to toxicologic studies.
Collapse
Affiliation(s)
- Nathan A Craig
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Anne M Scruggs
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jack P Berens
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Yahong Chen
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China
| | - J Timothy Dvonch
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Yan Z, Ge P, Lu Z, Liu X, Cao M, Chen W, Chen M. The Cytotoxic Effects of Fine Particulate Matter (PM 2.5) from Different Sources at the Air-Liquid Interface Exposure on A549 Cells. TOXICS 2023; 12:21. [PMID: 38250977 PMCID: PMC10821317 DOI: 10.3390/toxics12010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
The health of humans has been negatively impacted by PM2.5 exposure, but the chemical composition and toxicity of PM2.5 might vary depending on its source. To investigate the toxic effects of particulate matter from different sources on lung epithelial cells (A549), PM2.5 samples were collected from residential, industrial, and transportation areas in Nanjing, China. The chemical composition of PM2.5 was analyzed, and toxicological experiments were conducted. The A549 cells were exposed using an air-liquid interface (ALI) exposure system, and the cytotoxic indicators of the cells were detected. The research results indicated that acute exposure to different sources of particulate matter at the air-liquid interface caused damage to the cells, induced the production of ROS, caused apoptosis, inflammatory damage, and DNA damage, with a dose-effect relationship. The content of heavy metals and PAHs in PM2.5 from the traffic source was relatively high, and the toxic effect of the traffic-source samples on the cells was higher than that of the industrial- and residential-source samples. The cytotoxicity of particulate matter was mostly associated with water-soluble ions, carbon components, heavy metals, PAHs, and endotoxin, based on the analysis of the Pearson correlation. Oxidative stress played an important role in PM2.5-induced biological toxicity.
Collapse
Affiliation(s)
- Zhansheng Yan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.Y.); (P.G.); (X.L.); (W.C.)
| | - Pengxiang Ge
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.Y.); (P.G.); (X.L.); (W.C.)
| | - Zhenyu Lu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.Y.); (P.G.); (X.L.); (W.C.)
| | - Xiaoming Liu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.Y.); (P.G.); (X.L.); (W.C.)
| | - Maoyu Cao
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China;
| | - Wankang Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.Y.); (P.G.); (X.L.); (W.C.)
| | - Mindong Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (Z.Y.); (P.G.); (X.L.); (W.C.)
| |
Collapse
|
18
|
Xu J, Zhang N, Zhang Y, Li P, Han J, Gao S, Wang X, Geng C, Yang W, Zhang L, Han B, Bai Z. Personal Exposure to Source-Specific Particulate Polycyclic Aromatic Hydrocarbons and Systemic Inflammation: A Cross-Sectional Study of Urban-Dwelling Older Adults in China. GEOHEALTH 2023; 7:e2023GH000933. [PMID: 38124775 PMCID: PMC10731620 DOI: 10.1029/2023gh000933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Environmental exposure to ambient polycyclic aromatic hydrocarbons (PAHs) can disturb the immune response. However, the evidence on adverse health effects caused by exposure to PAHs emitted from specific sources among different vulnerable subpopulations is limited. In this cross-sectional study, we aimed to evaluate whether exposure to source-specific PAHs could increase systemic inflammation in older adults. The present study included community-dwelling older adults and collected filter samples of personal exposure to PM2.5 during the winter of 2011. Blood samples were collected after the PM2.5 sample collection. We analyzed PM2.5 bound PAHs and serum inflammatory cytokines (interleukin (IL)1β, IL6, and tumor necrosis factor alpha levels. The Positive Matrix Factorization model was used to identify PAH sources. We used a linear regression model to assess the relative effects of source-specific PM2.5 bound PAHs on the levels of measured inflammatory cytokines. After controlling for confounders, exposure to PAHs emitted from biomass burning or diesel vehicle emission was significantly associated with increased serum inflammatory cytokines and systemic inflammation. These findings highlight the importance of considering exposure sources in epidemiological studies and controlling exposures to organic materials from specific sources.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
| | - Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
| | - Yujuan Zhang
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
- Department of Family PlanningThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Penghui Li
- School of Environmental Science and Safety EngineeringTianjin University of TechnologyTianjinChina
| | - Jinbao Han
- School of Quality and Technical SupervisionHebei UniversityBaodingChina
| | - Shuang Gao
- School of Geographic and Environmental SciencesTianjin Normal UniversityTianjinChina
| | - Xinhua Wang
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
| | - Chunmei Geng
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
| | - Liwen Zhang
- Department of Occupational and Environmental HealthSchool of Public HealthTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Environment, Nutrition, and Public HealthTianjin Medical UniversityTianjinChina
- Center for International Collaborative Research on EnvironmentNutrition and Public HealthTianjinChina
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
| |
Collapse
|
19
|
Peng B, Dong Q, Li F, Wang T, Qiu X, Zhu T. A Systematic Review of Polycyclic Aromatic Hydrocarbon Derivatives: Occurrences, Levels, Biotransformation, Exposure Biomarkers, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15314-15335. [PMID: 37703436 DOI: 10.1021/acs.est.3c03170] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) derivatives constitute a significant class of emerging contaminants that have been ubiquitously detected in diverse environmental matrixes, with some even exhibiting higher toxicities than their corresponding parent PAHs. To date, compared with parent PAHs, fewer systematic summaries and reanalyses are available for PAH derivatives with great environmental concerns. This review summarizes the current knowledge on the chemical species, levels, biotransformation patterns, chemical analytical methods, internal exposure routes with representative biomarkers, and toxicity of PAH derivatives, primarily focusing on nitrated PAHs (NPAHs), oxygenated PAHs (OPAHs), halogenated PAHs (XPAHs), and alkylated PAHs (APAHs). A collection of 188 compounds from four categories, 44 NPAHs, 36 OPAHs, 56 APAHs, and 52 XPAHs, has been compiled from 114 studies that documented the environmental presence of PAH derivatives. These compounds exhibited weighted average air concentrations that varied from a lower limit of 0.019 pg/m3 to a higher threshold of 4060 pg/m3. Different analytical methods utilizing comprehensive two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry (GC × GC-TOF-MS), gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF-MS), comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry (GC × GC-QQQ-MS), and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), that adopted untargeted strategies for the identification of PAH derivatives are also reviewed here. Additionally, an in-depth analysis of biotransformation patterns for each category is provided, including the likelihood of specific biotransformation reaction types. For the toxicity, we primarily summarized key metabolic activation pathways, which could result in the formation of reactive metabolites capable of covalently bonding with DNA and tissue proteins, and potential health outcomes such as carcinogenicity and genotoxicity, oxidative stress, inflammation and immunotoxicity, and developmental toxicity that might be mediated by the aryl hydrocarbon receptor (AhR). Finally, we pinpoint research challenges and emphasize the need for further studies on identifying PAH derivatives, tracking external exposure levels, evaluating internal exposure levels and associated toxicity, clarifying exposure routes, and considering mixture exposure effects. This review aims to provide a broad understanding of PAH derivatives' identification, environmental occurrence, human exposure, biotransformation, and toxicity, offering a valuable reference for guiding future research in this underexplored area.
Collapse
Affiliation(s)
- Bo Peng
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Qianli Dong
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Fangzhou Li
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Teng Wang
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tong Zhu
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Li B, Lin Y, Wang T, Jiang W, Wang X. Atmospheric benzo[a]pyrene in the Yangtze River Delta, China: pollution level and lung cancer risk in 2016 and future predictions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4719-4735. [PMID: 36920584 DOI: 10.1007/s10653-023-01529-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The Yangtze River Delta (YRD) has undergone widespread polycyclic aromatic hydrocarbon (PAH) pollution. In this study, we simulated the spatial distribution of atmospheric benzo[a]pyrene (BaP, the most carcinogenic PAH) in the YRD in 2016 and 2030 under different emission scenarios using a 3-D atmospheric transport model and evaluated the lung cancer risks posed by BaP during the study years. The purpose of this study is to suggest targeted policy recommendations for policy-makers to mitigate BaP pollution through numerical simulation. Our results showed that the average BaP concentration in the YRD was 0.30 ng/m3 in 2016; however, a significant spatial variation was observed, with the highest BaP concentration in Shanghai (0.59 ng/m3). The population-weighted incremental lifetime lung cancer risk (PILCR) was 6.67 × 10-6 in 2016, whereas it ranged from 2.70 × 10-6 to 1.05 × 10-5 in 2030 under the five emission scenarios. A higher future population density in the YRD region could increase lung cancer risk. In all scenarios, Shanghai had the highest number of lung cancer cases (range: 208-476). The results suggest that BaP pollution could be effectively improved through the synergistic effect of reducing activity levels and improving technology. Finally, we provide specific suggested pollution control strategies (e.g., accelerating the use of clean energy in rural areas) for atmospheric BaP in the YRD.
Collapse
Affiliation(s)
- Baojie Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yingzhen Lin
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Teng Wang
- College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Wanyanhan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaorui Wang
- Jiangsu Provincial Land Development and Consolidation Center, Nanjing, 210017, China
| |
Collapse
|
21
|
Han L, Wang Q. Urinary polycyclic aromatic hydrocarbon metabolites were associated with short sleep duration and self-reported trouble sleeping in US adults: data from NHANES 2005-2016 study population. Front Public Health 2023; 11:1190948. [PMID: 37427274 PMCID: PMC10325832 DOI: 10.3389/fpubh.2023.1190948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Background The aim of the current study was to investigate the link between human exposure to PAHs with short sleep duration (SSD) and self-reported trouble sleeping. Methods A total of 9,754 participants and 9,777 participants obtained from NHANES 2005-2016 were included in this cross-sectional study about SSD and self-reported trouble sleeping, respectively. The association between urinary PAHs metabolites with the prevalence of SSD and self-reported trouble sleeping by the weighted multivariate logistic regression model, restricted cubic spline (RCS) curves, and weighted quantile sum (WQS) regression. Results After adjusting for all covariates, 1-hydroxynapthalene, 2-hydroxynapthalene, 3-hydroxyfluorene, 2-hydroxyfluorene, 1-hydroxyphenanthrene, and 1-hydroxyphenanthrene demonstrated positive associations with SSD prevalence. Besides, 1-hydroxynapthalene, 2-hydroxynapthalene, 3-hydroxyfluorene, 2-hydroxyfluorene, 1-hydroxyphenanthrene, and 1-hydroxyphenanthrene exhibited positive associations with the prevalence of self-reported trouble sleeping following the adjustment for all covariates. RCS curves confirmed the non-linear associations between 1-hydroxynapthalene, 2-hydroxynapthalene, 3-hydroxyfluorene, 2-hydroxyfluorene, and 1-hydroxyphenanthrene with the prevalence of SSD, and 1-hydroxynapthalene, 3-hydroxyfluorene, and 2-hydroxyfluorene with the prevalence of self-reported trouble sleeping. The WQS results showed that mixed exposure to PAH metabolites had a significant positive association with the prevalence of SSD (OR: 1.087, 95% CI: 1.026, 1.152, p = 0.004) and self-reported trouble sleeping (OR: 1.190, 95% CI: 1.108, 1.278, p < 0.001). Conclusion Urinary concentrations of PAH metabolites exhibited a close association with the prevalence of SSD and self-reported trouble sleeping in US adults. More emphasis should be placed on the importance of environmental effects on sleep health.
Collapse
|
22
|
Li Q, Zeng Y, Fan Y, Fu S, Guan Y, Sun Y, Chen S. PM-bound polycyclic aromatic compounds (PACs) in two large-scale petrochemical bases in South China: Spatial variations, sources, and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60994-61004. [PMID: 37042915 DOI: 10.1007/s11356-023-26477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/12/2023] [Indexed: 05/10/2023]
Abstract
Polycyclic aromatic compounds (PACs) are potential pollutants emitted from the petrochemical industry, whereas their occurrence and sources in petrochemical regions are still poorly known. The present study revealed the spatial variations, compositional profiles, sources and contributions, and health risks of PM-bound PACs in two large-scale petrochemical bases (GDPB and HNPB) in South China. The concentrations of parent polycyclic aromatic hydrocarbons (PAHs) were 7.14 ± 3.16 ng/m3 for ∑18PAHs and 0.608 ± 0.294 ng/m3 for the PAHs with molecular weight of 302 amu (MW302 PAHs) in the GDPB base and 2.55 ± 1.26 ng/m3 and 0.189 ± 0.088 ng/m3 in the HNPB base. Oxygenated PAHs (OPAHs) showed comparable concentrations to the parent PAHs in both the bases and nitrated PAHs (NPAHs) had the lowest mean levels (260 pg/m3 and 59.4 pg/m3 in the two regions). Coronene, 2,8-dinitrodibenzothiophene, and dibenzo[a,e]fluoranthene showed remarkably higher contributions to the PAC and can be PAC markers of the petrochemical industry source. Five sources of PACs were identified respectively in both petrochemical bases by the positive matrix factorization (PMF) model. The vehicle (and ship) traffic exhaust was the primary source of PACs (contributed 33% to the ∑PACs), and the sources related to the coking of coal and heavy petroleum and refinery exhaust were identified in both bases, with contributions of 10-20%. PACs in GDPB also contributed from secondary atmospheric reactions (17.3%) and the usage of sulfur-containing fuels (20.9%), while the aromatics industry made a significant contribution (20.1%) to the PACs in the HNPB region. The cumulative incremental lifetime cancer risks (ILCRs) induced by inhalation of PM-bound PACs in both petrochemical bases were low (10-8-10-6). For the sources related to the petrochemical industry, coking activities and the aromatic industry were the significant contributors to the ∑ILCRs in GDPB and HNPB, respectively. This research has implications for further source-targeted control and health risk reduction of PACs in petrochemical regions.
Collapse
Affiliation(s)
- Qiqi Li
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China.
| | - Yun Fan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Siqi Fu
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yufeng Guan
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yuxin Sun
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Shejun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
23
|
Niu X, Liu X, Zhang B, Zhang Q, Xu H, Zhang H, Sun J, Ho KF, Chuang HC, Shen Z, Cao J. Health benefits from substituting raw biomass fuels for charcoal and briquette fuels: In vitro toxicity analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161332. [PMID: 36596416 DOI: 10.1016/j.scitotenv.2022.161332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
PM2.5 (particulate matters with diameter ≤ 2.5 μm) from biomass fuel combustion has been identified as a major cause of cardiopulmonary diseases. Briquette and charcoal are two representative processed fuels that exhibit different emission characteristics. This study compared three types of biomass fuels (maize straw, wheat straw, and wood branches) and their respective processed fuels in terms of their emission factors (EFs). The bioreactivity of human alveolar epithelial (A549) cells to exposure to various fuel-emitted PM2.5 was assessed. The EFs of lactic dehydrogenase (LDH) and interleukin-6 (IL-6) were calculated to compare actual cytotoxicity. The PM2.5 EFs of maize and wheat straw were higher than those of wood branches, and following the processes of briquetting and carbonization, the EFs of PM2.5 and chemical components were effectively reduced. Cell membrane damage and inflammatory responses were observed after A549 cell exposure to PM2.5 extracts. The expression of bioreactivity to briquettes and charcoals was lower than that to raw fuels. The EFs of LDH and IL-6 were also significantly reduced after briquetting and carbonization. This underscores the necessity of fuel treatment for reducing cytotoxicity. The crucial chemical components that contributed to cell oxidative and inflammatory responses were identified, including organic and elemental carbon, water-soluble ions (e.g., K+, Mg2+, and Ca2+), metals (e.g., Fe, Cr, and Ni), and high-molecular-weight PAHs. This study elucidated the similarities and differences of PM2.5 emissions and cytotoxicity of three types of biomass fuel and demonstrated the positive effects of fuel treatment on reducing adverse pulmonary effects.
Collapse
Affiliation(s)
- Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xinyao Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Bin Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Qian Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongai Zhang
- Department of Neonatology, Shanghai General Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
24
|
Qiu W, He H, Wang B, Wang D, Mu G, Xu T, Zhou M, Ye Z, Ma J, Chen W. Short-term impacts of air pollution on the platelet-lymphocyte ratio and neutrophil-lymphocyte ratio among urban adults in China. J Environ Sci (China) 2023; 125:101-111. [PMID: 36375897 DOI: 10.1016/j.jes.2021.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 06/16/2023]
Abstract
The short-term impacts of urban air pollution on the platelet-lymphocyte ratio (PLR) and neutrophil-lymphocyte ratio (NLR) remain obscure. In this study, we included 3487 urban adults from the Wuhan-Zhuhai cohort. Individual inhalation exposure to air pollutants was estimated by combining participants' daily breath volume and ambient concentrations of six air pollutants (including fine particulate matter (PM2.5), inhalable particulate matter (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO) and ozone (O3)). The cumulative impacts were assessed by applying lag structures of up to 7 days before the survey date. Associations of air pollutants with PLR and NLR were assessed using a linear mixed model and Bayesian kernel machine regression (BKMR) model. We found that PLR was negatively related to PM2.5 (lag02-lag06), PM10 (lag02-lag07), NO2 (lag02-lag07), and SO2 (lag03-lag05) and NLR was negatively related to PM10 (lag05 and lag07). In the BKMR model, a negative joint association between the six-air-pollutant mixture and PLR and NLR was observed, whereas PM10 and NO2 appeared to be more important than the other pollutants in the mixture. The negative impact of air pollutants was stronger in males, participants with lower body mass index (< 24 kg/m2), those cooking meals at home, drinkers, and non-exercisers. In conclusion, short-term exposure to air pollutants is significantly related to PLR and NLR in peripheral blood. PLR and NLR may provide new insight into the molecular mechanism underlying the adverse health impact of air pollutants.
Collapse
Affiliation(s)
- Weihong Qiu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Heng He
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Xu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
25
|
Pietrogrande MC, Demaria G, Russo M. Determination of particulate polycyclic aromatic hydrocarbons in ambient air by gas chromatography-mass spectrometry after molecularly imprinted polymer extraction. J Environ Sci (China) 2023; 124:644-654. [PMID: 36182170 DOI: 10.1016/j.jes.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 06/16/2023]
Abstract
A solid phase extraction procedure (SPE) is described for the quantitative analysis of polycyclic aromatic hydrocarbons (PAHs) in atmospheric particulate matter (PM), as ubiquitous environmental pollutants routinely measured in air quality monitoring. A SPE cartridge was used based on a molecular imprinted polymer (MIP-SPE) properly tailored for selective retention of PAHs with 4 and more benzene fused rings. The performance of the clean-up procedure was evaluated with the specific concern of selective purification towards saturated hydrocarbons, which are the PM components mostly interfering GC analysis of target PAHs. Under optimized operative conditions, the MIP-SPE provided analyte recovery close to 95% for heavier PAHs, from benzo(α)pyrene to benzo(ghi)perylene, and close to 90% for four benzene rings PAHs, with good reproducibility (RSDs: 2.5%-5.9%). Otherwise, C17-C32n-alkanes were nearly completely removed. The proposed method was critically compared with Solid Phase Micro Extraction (SPME) using a polyacrylate fiber. Both methods were successfully applied to the analysis of ambient PM2.5 samples collected at an urban polluted site. Between the two procedures, the MIP-SPE provided the highest recovery (R% ≥ 93%) for PAHs with 5 and more benzene rings, but lower for lighter PAHs. In contrast, SPME showed a mean acceptable R% value (∼ 80%) for all the investigated PAHs, except for the heaviest PAHs in the most polluted samples (R%: 110%-138%), suggesting an incomplete purification from the interfering n-hydrocarbons.
Collapse
Affiliation(s)
- Maria Chiara Pietrogrande
- Department of Chemical, Pharmaceutical and Agraricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy.
| | - Giorgia Demaria
- Department of Chemical, Pharmaceutical and Agraricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Mara Russo
- Department of Chemical, Pharmaceutical and Agraricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| |
Collapse
|
26
|
Yang R, Ge P, Liu X, Chen W, Yan Z, Chen M. Chemical Composition and Transgenerational Effects on Caenorhabditis elegans of Seasonal Fine Particulate Matter. TOXICS 2023; 11:116. [PMID: 36850991 PMCID: PMC9964627 DOI: 10.3390/toxics11020116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
While numerous studies have demonstrated the adverse effects of fine particulate matter (PM) on human health, little attention has been paid to its impact on offspring health. The multigenerational toxic effects on Caenorhabditis elegans (C. elegans) were investigated by acute exposure. PM2.5 and PM1 samples were collected and analysed for their chemical composition (inorganic ions, metals, OM, PAHs) in different seasons from April 2019 to January 2020 in Lin'an, China. A higher proportion of organic carbon components (34.3%, 35.9%) and PAHs (0.0144%, 0.0200%) occupied the PM2.5 and PM1 samples in winter, respectively. PM1 in summer was enriched with some metal elements (2.7%). Exposure to fine PM caused developmental slowing and increased germ cell apoptosis, as well as inducing intestinal autofluorescence and reactive oxygen species (ROS) production. PM1 caused stronger toxic effects than PM2.5. The correlation between PM component and F0 generation toxicity index was analysed. Body length, germ cell apoptosis and intestinal autofluorescence were all highly correlated with Cu, As, Pb, OC and PAHs, most strongly with PAHs. The highest correlation coefficients between ROS and each component are SO42- (R = 0.743), Cd (R = 0.816) and OC (R = 0.716). The results imply that OC, PAHs and some transition metals play an important role in the toxicity of fine PM to C. elegans, where the organic fraction may be the key toxicogenic component. The multigenerational studies show that PM toxicity can be passed from parent to offspring, and gradually returns to control levels in the F3-F4 generation with germ cell apoptosis being restored in the F4 generation. Therefore, the adverse effects of PM on reproductive damage are more profound.
Collapse
|
27
|
Lau YS, Poon HY, Organ B, Chuang HC, Chan MN, Guo H, Ho SSH, Ho KF. Toxicological effects of fresh and aged gasoline exhaust particles in Hong Kong. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129846. [PMID: 36063712 DOI: 10.1016/j.jhazmat.2022.129846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Exhaust emissions from gasoline vehicles are one of the major contributors to aerosol particles observed in urban areas. It is well-known that these tiny particles are associated with air pollution, climate forcing, and adverse health effects. However, their toxicity and bioreactivity after atmospheric ageing are less constrained. The aim of the present study was to investigate the chemical and toxicological properties of fresh and aged particulate matter samples derived from gasoline exhaust emissions. Chemical analyses showed that both fresh and aged PM samples were rich in organic carbon, and the dominating chemical species were n-alkane and polycyclic aromatic hydrocarbons. Comparisons between fresh and aged samples revealed that the latter contained larger amounts of oxygenated compounds. In most cases, the bioreactivity induced by the aged PM samples was significantly higher than that induced by the fresh samples. Moderate to weak correlations were identified between chemical species and the levels of biomarkers in the fresh and aged PM samples. The results of the stepwise regression analysis suggested that n-alkane and alkenoic acid were major contributors to the increase in lactate dehydrogenase (LDH) levels in the fresh samples, while polycyclic aromatic hydrocarbons (PAHs) and monocarboxylic acid were the main factors responsible for such increase in the aged samples.
Collapse
Affiliation(s)
- Yik-Sze Lau
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Now at: International Laboratory of Air Quality and Health (ILAQR), Queensland University of Technology, Australia
| | - Hon-Yin Poon
- Earth System Science Programme, The Chinese University of Hong Kong, Hong Kong
| | - Bruce Organ
- Jockey Club Heavy Vehicle Emissions Testing and Research Centre, Hong Kong, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - Man-Nin Chan
- Earth System Science Programme, The Chinese University of Hong Kong, Hong Kong
| | - Hai Guo
- Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Steven Sai Hang Ho
- Division of Atmosphere Sciences, Desert Research Institute, Reno, NV 89512, United States; Hong Kong Premium Services and Research Laboratory, Cheung Sha Wan, Kowloon, Hong Kong, China
| | - Kin-Fai Ho
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
28
|
Ma X, Wu S. Oxygenated polycyclic aromatic hydrocarbons in food: toxicity, occurrence and potential sources. Crit Rev Food Sci Nutr 2022; 64:4882-4903. [PMID: 36384378 DOI: 10.1080/10408398.2022.2146652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are polycyclic aromatic hydrocarbons (PAHs) functionalized with at least one carbonyl group and are generally thought to be more toxic than PAHs. In this review, the physical-chemical properties, toxicity, occurrence, and potential sources of OPAHs in food were comprehensively discussed. The toxicities of 1,2-naphthoquinone, 1,4-naphthoquinone, 6H-benzo[cd]pyren-6-one, benzo[a]anthracene-7,12-quinone and 9,10-phenanthrenequinone were prominent among the OPAHs. Both 1,4-naphthoquinone and 1,2-naphthoquinone exhibited strong genotoxicity, cytotoxicity, and developmental toxicity. 6H-benzo[cd]pyren-6-one and benzo[a]anthracene-7,12-quinone showed high genotoxicity and cardiovascular toxicity. Although 9,10-phenanthrenequinone showed no genotoxicity, it exhibited almost the strongest cytotoxicity. For the majority of foods, the concentrations of OPAHs and PAHs were on the same order of magnitude. OPAHs tend to be positively correlated with the corresponding PAH concentrations in oil and fried food, while for barbequed food and seafood, no obvious correlation was found. In addition, 9-fluorenone, 9,10-anthraquinone, benzanthrone and 1,2-acenaphthenequinone had high abundance in food. Environmental pollution, food composition, storage conditions, heating methods, and other treatments influence the accumulation of OPAHs in food. Furthermore, oxygen and water played an important role in the transformation from PAHs to OPAHs. In short, this review guides the evaluation and further reduction of OPAH-related health risks in food.
Collapse
Affiliation(s)
- Xin Ma
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Siudek P. Atmospheric Deposition of Polycyclic Aromatic Hydrocarbons (PAHs) in the Coastal Urban Environment of Poland: Sources and Transport Patterns. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14183. [PMID: 36361064 PMCID: PMC9657786 DOI: 10.3390/ijerph192114183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
This study combines an interseasonal variation of deposition profiles of fine-particulate-bound polycyclic aromatic hydrocarbons (PM2.5-bound PAHs) with source apportionment analysis. Comprehensive measurements were conducted in four representative periods of 2019 in the coastal urban region of the Baltic Sea in Poland. The mean daily deposition flux of Σ13PAHs was 229 ng m-2 day-1, which was lower than in other urban/industrial sites of Europe and Asia. The seasonal PAHs distribution exhibited a clear U-shaped pattern, reaching maximum values in January and December and the minimum in June. A strong influence of local/regional anthropogenic emissions and meteorological factors (precipitation, ambient temperature, wind regimes) was observed. The contribution of medium molecular weight PAHs (fluoranthene, pyrene, benzo(a)anthracene, chrysene) to the total sum of PAHs deposition fluxes increased from 24% in spring to 38% in summer, as a result of photochemistry, urban traffic, and shipping emissions. The highest contribution of 5- and 6-ring PAHs occurred primarily in autumn (55%), followed by winter (39%), spring (35%), and summer (26%). Benzo(a)pyrene (human carcinogenic compound) had a relatively high deposition flux in winter, which was almost 14 and 20 times higher than the values registered in spring and summer, respectively. The FLEXTRA dispersion model was used to study potential pollution regions for PM2.5-bound PAHs and to investigate changes in the PAH deposition regime in different seasons. This study reveals that the winter contribution of PAHs was mostly impacted by local urban activities (i.e., residential heating and coal-fired power plants). Winter PAH deposition fluxes were particularly associated with atmospheric particles transported from surrounding areas and industrially impacted regions of SE-S-SW Poland and Europe.
Collapse
Affiliation(s)
- Patrycja Siudek
- Institute of Meteorology and Water Management, Waszyngtona 42, PL-81-342 Gdynia, Poland
| |
Collapse
|
30
|
Huang G, Wang S, Chang X, Cai S, Zhu L, Li Q, Jiang J. Emission factors and chemical profile of I/SVOCs emitted from household biomass stove in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156940. [PMID: 35753472 DOI: 10.1016/j.scitotenv.2022.156940] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Household combustion of biomass straw for cooking or heating is one of the most important emission sources of intermediate volatility and semi-volatile organic compounds (I/SVOCs). However, there are limited studies on the emission factors (EFs) and speciation profiles of I/SVOCs from household stoves burning biomass straw. In this study, experiments were conducted in a typical Chinese stove to test the EFs and species of I/SVOCs in three commonly used straws. It was revealed that EFs of I/SVOCs emitted from the burning of corn straw, rice straw, and wheat straw were 6.7, 1.9, and 9.8 g/kg, respectively, which accounted for 48.3 %, 36.8 %, and 48.6 % of total organic compounds emitted. Particulate organic compounds were dominated by ketones, oxygenated aromatics, acids, esters, and nitrogen-containing compounds, whereas the gaseous phase was dominated by aldehydes, acids, and aromatics. Although I/SVOCs only accounted for 18.1-23.6 % of the gaseous emissions from burning of straw, they represented 64.8-72.9 % of the secondary organic aerosol formation potential (SOAFP). The EFs of 16 priority polycyclic aromatic hydrocarbons (PAHs) were 362.0, 262.5, and 1145.2 mg/kg for corn straw, rice straw, and wheat straw, respectively, among which 3-ring and 4-ring PAHs were the main components. Thus, the results of this study provide new reliable I/SVOCs data that are useful for the development of an accurate emission inventory of organic compounds, simulation of secondary organic aerosol (SOA) formation, and health risk assessment.
Collapse
Affiliation(s)
- Guanghan Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China; Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing 100048, China.
| | - Xing Chang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Siyi Cai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Liang Zhu
- Department of Chemistry, University of Oslo, Postboks 1033 Blindern, NO-0315 Oslo, Norway
| | - Qing Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| |
Collapse
|
31
|
Pietrogrande MC, Bacco D, Demaria G, Russo M, Scotto F, Trentini A. Polycyclic aromatic hydrocarbons and their oxygenated derivatives in urban aerosol: levels, chemical profiles, and contribution to PM 2.5 oxidative potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54391-54406. [PMID: 35297001 PMCID: PMC9356935 DOI: 10.1007/s11356-021-16858-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/29/2021] [Indexed: 05/11/2023]
Abstract
The concentrations of polycyclic aromatic hydrocarbons (PAHs) and quinones, a subgroup of oxygenated PAHs (oxy-PAHs), were measured in PM2.5 samples collected during warm (May-June 2019) and cold (February-March 2020) seasons in the city of Bologna, Italy. Total PAHs concentration was nearly double in winter (6.58 ± 1.03 ng m-3) compared with spring (3.16 ± 0.53 ng m-3), following the trend of the PM2.5 mass concentration. Molecular diagnostic ratios suggested that, together with traffic, biomass burning was the dominant emission source contributing to the peaks of concentration of PM2.5 registered in the cold season. Quinone level was constant in both seasons, being 1.44 ± 0.24 ng m-3, that may be related to the increased secondary formation during warm season, as confirmed by the higher Σoxy-PAHs/ΣPAHs ratio in spring than in winter. The oxidative potential (OP) of the PM2.5 samples was assessed using acellular dithiothreitol (DTT) and ascorbic acid (AA) assays. The obtained responses showed a strong seasonality, with higher volume-normalized (OPV) values in winter than in spring, i.e., OPVDTT: 0.32 ± 0.15 nmol min-1 m-3 vs. 0.08 ± 0.03 nmol min-1 m-3 and OPVAA: 0.72 ± 0.36 nmol min-1 m-3 vs. 0.28 ± 0.21 nmol min-1 m-3. Both OPVDTT and OPVAA responses were significantly associated with total PAHs, as a general descriptor of redox-active PAH derivatives, associated with co-emission from burning sources or secondary atmospheric oxidation of parent PAHs. Otherwise, only winter OPVDTT responses showed a significant correlation with total Ʃoxy-PAHs concentration.
Collapse
Affiliation(s)
- Maria Chiara Pietrogrande
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19 - 44121, Ferrara, Italy.
| | - Dimitri Bacco
- Emilia Romagna Regional Agency for Prevention, Environment and Energy, ARPAE, Via Po 5 - 40139, Bologna, Italy
| | - Giorgia Demaria
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19 - 44121, Ferrara, Italy
| | - Mara Russo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19 - 44121, Ferrara, Italy
| | - Fabiana Scotto
- Emilia Romagna Regional Agency for Prevention, Environment and Energy, ARPAE, Via Po 5 - 40139, Bologna, Italy
| | - Arianna Trentini
- Emilia Romagna Regional Agency for Prevention, Environment and Energy, ARPAE, Via Po 5 - 40139, Bologna, Italy
| |
Collapse
|
32
|
Sun J, Shen Z, Zhang T, Kong S, Zhang H, Zhang Q, Niu X, Huang S, Xu H, Ho KF, Cao J. A comprehensive evaluation of PM 2.5-bound PAHs and their derivative in winter from six megacities in China: Insight the source-dependent health risk and secondary reactions. ENVIRONMENT INTERNATIONAL 2022; 165:107344. [PMID: 35709581 DOI: 10.1016/j.envint.2022.107344] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/13/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric PAHs (polycyclic aromatic hydrocarbons) and their derivatives are a global concern that influences environments and threatens human health. Concentrations of 52 PAHs and the main derivatives in six Chinese megacities were measured in the winter of 2019. The concentrations of ∑PAHs (sum of 52 PAHs) ranged from 19.42 ± 7.68 to 65.40 ± 29.84 ng m-3, with significantly higher levels in northern cities (Harbin [HB], Beijing [BJ], and Xi'an [XA]) than southern ones (Wuhan [WH], Chengdu [CD] and Guangzhou [GZ]). Source apportionment of ∑PAHs was conducted by the PMF model and results showed coal combustion and traffic emissions were the two dominant sources, which dominated ∑PAHs in northern and southern cities, respectively. Biomass burning was also characterized as a crucial source of ∑PAHs and showed extremely high contributions in XA (42.5%). Assisted by the individual PAH source apportionment results, the source-depend TEQ (total BaP equivalent) and incremental lifetime cancer risk (ILCR) were firstly reported in these cities. The results highlighted the contributions of coal combustion and biomass burning to both TEQ and ILCR, which were underestimated by ∑PAHs source apportionment. Secondary organic aerosol-derived PAHs were demonstrated to increase the TEQ compared with the fresh PAHs and three parameters, namely temperature, relative humidity, and O3 concentrations were characterized by multiple linear regression as the principal factors influencing secondary reactions of PAHs in winter. This study provides accurate human health-orientated results and potential control measures to mitigate the toxicity of secondary formed PAHs, and significantly decrease the uncertainty level of traditional methods. The results also revealed great progress in air pollution control by the Chinese government in the past 20 years, but still a long way to go to formulate strict emission control strategies from both environmental and human health-protective perspectives.
Collapse
Affiliation(s)
- Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
| | - Tian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shaofei Kong
- Department of Atmospheric Science, School of Environmental Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Hongai Zhang
- Department of Pediatrics, Shanghai General Hospital, 650 Xinsongjiang Rd, Songjiang District, Shanghai 201620, China
| | - Qian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049 China
| | - Shasha Huang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| |
Collapse
|
33
|
Siudek P. Seasonal distribution of PM 2.5-bound polycyclic aromatic hydrocarbons as a critical indicator of air quality and health impact in a coastal-urban region of Poland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154375. [PMID: 35259377 DOI: 10.1016/j.scitotenv.2022.154375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/11/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
This study focuses on the inter-seasonal distribution and variability of thirteen native PAHs adsorbed onto respirable PM2.5 fraction collected in a coastal-urban region of northern Poland, in 2019. The backward trajectory analysis and several diagnostic ratios were applied to determine seasonal profiles of PAH congeners and their major sources in airborne samples. The annual cumulative mean value of total PAHs in PM2.5 was 6.92 ± 10.1 ng m-3, varying in the following range: 0.32 ng m-3 (May) - 68.57 ng m-3 (January). Seasonal mass concentrations of total particulate PAHs were ranked as follows: summer (1.27 ng m-3) < spring (4.83 ng m-3) < autumn (6.16 ng m-3) < winter (18.5 ng m-3). Clear seasonal differences in PAH concentrations can be explained by direct impact of local and regional urban/industrial activities, with priority winter contribution of coal combustion in residential and commercial sectors. In addition, for summer measurements the diagnostic ratios indicated that high molecular weight PAHs were mainly derived from vehicle emission and petrochemical industry, while relatively low mass contribution of 4-ring congeners to the total sum of PAHs was attributed to photochemical processing. The analysis of meteorological parameters (temperature, relative humidity) and gaseous precursors (SO2, NO2, NOx, O3 and CO) exhibits their statistically significant correlations with PAHs, indicating local/regional primary emission. The incremental lifetime cancer risk was 1.23 × 10-5, suggesting potential toxicity and carcinogenicity for adult females and males. This study highlights the importance of the implementation of health risk assessment model in urbanized coastal zones.
Collapse
Affiliation(s)
- Patrycja Siudek
- Institute of Meteorology and Water Management, Waszyngtona 42, PL-81-342 Gdynia, Poland; National Marine Fisheries Research Institute, Kołłataja 1, PL-81-332 Gdynia, Poland.
| |
Collapse
|
34
|
Wang X, Li A, Xu Q. The Association between Urinary Polycyclic Aromatic Hydrocarbons Metabolites and Type 2 Diabetes Mellitus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137605. [PMID: 35805265 PMCID: PMC9265723 DOI: 10.3390/ijerph19137605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are considered to be endocrine disruptors. In this study, the evidence on the association between PAHs and diabetes was systematically reviewed. PubMed, EMBASE, and ISI Web of Science were systematically searched for studies reporting the association between PAHs and diabetes. Of the 698 articles identified through the search, nine cross-sectional studies were included. Seven were conducted in the general population and two in coke oven workers. Fixed-effects and random-effects models were used to calculate the total effect. Subgroup analysis was further carried out according to the types of PAH metabolites. The results showed that the odds of diabetes were significantly higher for the highest category of urinary naphthalene (NAP), fluorine (FLU), phenanthrene (PHEN), and total mono-hydroxylated (OH-PAH) metabolites compared to the lowest category. The pooled odds ratios (OR) and 95% confidence intervals (CI) were 1.52 (95%CI: 1.19, 1.94), 1.53 (95%CI: 1.36, 1.71), 1.43 (95%CI: 1.28, 1.60), and 1.49 (95%CI: 1.07, 2.08), respectively. In coke oven workers, 4-hydroxyphenanthrene (4-OHPh) was significantly correlated with an increased risk of diabetes. Exposure measurements, outcome definitions, and adjustment for confounders were heterogeneous between studies. The results of the current study demonstrate a potentially adverse effect of PAHs on diabetes. Further mechanistic studies and longitudinal studies are needed to confirm whether PAH metabolite levels are causative, and hence associative, with increased diabetes incidences.
Collapse
Affiliation(s)
- Xue Wang
- Department of Allergy & Clinical Immunology, National Clinical Research Center for Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China;
- Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China;
- Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
- Correspondence:
| |
Collapse
|
35
|
Niu X, Wang Y, Chuang HC, Shen Z, Sun J, Cao J, Ho KF. Real-time chemical composition of ambient fine aerosols and related cytotoxic effects in human lung epithelial cells in an urban area. ENVIRONMENTAL RESEARCH 2022; 209:112792. [PMID: 35093308 DOI: 10.1016/j.envres.2022.112792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Particulate matter with aerodynamic diameters ≤1 μm (PM1) in the atmosphere, especially that which is emitted from anthropogenic sources, can induce considerable negative effects on the cardiopulmonary system. To investigate the chemical emission characteristics and organic sources in Yuen Long (Hong Kong), both offline and online approaches for PM1 samples were applied by filter-based samplers and a Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM), respectively. The toxicological effects on human A549 lung alveolar epithelial cells were investigated, and associations between cytotoxicity and organic sources and compositions were evaluated. The organics from the Q-ACSM measurement were the largest contributor to submicron aerosols in both seasons of our study, and the mass fraction was higher in winter (60%) than it was in autumn (46%). Regarding organic sources, the mass fraction of hydrocarbon-like organics (HOA) increased from 7% in autumn to 38% in winter, whereas cooking organics (COA) decreased from 30% in autumn to 18% in winter, and oxygenated organics (OOA) decreased from 63% to 45%. Organic compounds contributed more during pollution episodes, and more secondary ions were formed by means of the oxidation process. Oxidative and inflammatory responses in A549 cells were found with PM1 exposures; the differences in chemical compositions resulted in the higher cytotoxicity in winter than autumn. The cooking organic aerosol in residential area was significantly correlated with cell inflammation. Both elemental carbon and specific inorganic ions (SO42- and Mg2+) contributed to the intracellular cytotoxicity. This study demonstrated that specific atmospheric particulate matter chemical properties and sources can trigger distinct cell reactions; the inorganic ions from cooking emissions cannot be disregarded in terms of their pulmonary health risks in residential areas.
Collapse
Affiliation(s)
- Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yichen Wang
- School of Public Policy and Administration, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
36
|
Sun J, Ho SSH, Niu X, Xu H, Qu L, Shen Z, Cao J, Chuang HC, Ho KF. Explorations of tire and road wear microplastics in road dust PM 2.5 at eight megacities in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153717. [PMID: 35149066 DOI: 10.1016/j.scitotenv.2022.153717] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Tire and road wear microplastics (TRWMPs) in road dust are a key source of atmospheric particulate matter and have an adverse impact on human health and the environment. In this study, samples of particulate matter with a diameter of 2.5 μm or less (PM2.5) in road dust were collected from eight megacities in China to determine the TRWMP content, including that of natural rubber (NR), styrene-butadiene rubber (SBR), and butadiene rubber (BR). The total abundance of TRWMPs was the highest in Lanzhou (174.7 ± 17.0 μg g-1), followed by Xi'an (169.3 ± 23.8 μg g-1), Beijing (107.5 ± 7.5 μg g-1), Changchun (102.2 ± 8.4 μg g-1), Chengdu (101.6 ± 12.9 μg g-1), Guangzhou (98.8 ± 6.5 μg g-1), Wuhan (96.0 ± 5.3 μg g-1), and Shanghai (86.1 ± 30.1 μg g-1). A considerably higher TRWMP fraction in road dust PM2.5 was observed in the northern cities than in the southern cities and is attributable to the higher frictional resistance of roads subjected to less precipitation. The abundance of TRWMPs in the southern cities was dependent on road type, but this dependence was not observed in the northern cities. In the south, road dust PM2.5 on main roads contained more TRWMPs than that on branch roads. Correlation analysis indicated that TRWMPs were associated with tire, road, and break wear. In relation to intracellular oxidative stress factors, higher correlations were observed between TRWMPs and lactate dehydrogenase (r = 0.83) than between TRWMPs and reactive oxygen species (r = 0.59), possibly because TRWMPs destroy the integrity of the cell membrane, with NR exhibiting a higher cytotoxicity than SBR or BR. This study provides evidence that TRWMPs have an adverse impact on human health by inducing cellular oxidative stress. Therefore, further research on TRWMPs in respirable road dust is required.
Collapse
Affiliation(s)
- Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, NV 89512, United States
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Linli Qu
- Hong Kong Premium Services and Research Laboratory, Kowloon, Hong Kong, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
37
|
Zastrow L, Judas M, Speer K, Schwind KH, Jira W. Barbecue conditions affect contents of oxygenated and non-oxygenated polycyclic aromatic hydrocarbons in meat and non-meat patties. Food Chem X 2022; 14:100351. [PMID: 36118985 PMCID: PMC9475699 DOI: 10.1016/j.fochx.2022.100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
The contents of eight oxygenated polycyclic aromatic hydrocarbons (OPAHs; anthracene-9,10-dione, benzo[a]anthracene-7,12-dione, 11H-benzo[b]fluorene-11-one, 6H-benzo[cd]pyren-6-one, 7H-benzo[de]anthracene-7-one, 9,10-dihydro-8H-benzo[a]pyren-7-one, fluoren-9-one, and naphthacene-5,12-dione) and six PAHs (anthracene, fluorene, and PAH4) were investigated in barbecued meat and non-meat patties. The patties were prepared with ten setups (six replicates, each) of barbecue conditions defined by grill type, grate height, heating medium, and barbecue time. The highest median contents were observed with a disposable grill (OPAHs: 46.3 µg/kg; PAHs: 40.7 µg/kg) and a charcoal grill (OPAHs: 29.6 µg/kg; PAHs: 23.3 µg/kg). Fluoren-9-one and anthracene-9,10-dione were the dominant compounds within OPAHs, but also the four toxicologically most relevant OPAHs were detected with a total up to 11.8 µg/kg. Pairs of OPAHs and corresponding PAHs did not show strong correlations, as individual OPAHs and PAHs were affected differently by the barbecue conditions. No suitable markers for OPAH prediction could be found. We recommend to include OPAHs in future PAH investigations.
Collapse
|
38
|
Lara S, Villanueva F, Martín P, Salgado S, Moreno A, Sánchez-Verdú P. Investigation of PAHs, nitrated PAHs and oxygenated PAHs in PM 10 urban aerosols. A comprehensive data analysis. CHEMOSPHERE 2022; 294:133745. [PMID: 35090855 DOI: 10.1016/j.chemosphere.2022.133745] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic compounds (PACs) in particulate matter contribute considerably to the health risk of air pollution. As such, we have optimized a method to determine the levels of polycyclic aromatic hydrocarbons, especially nitrated and oxygenated polycyclic aromatic hydrocarbons, in samples of PM10 particulate matter using microwave-assisted extraction (MAE) and gas chromatography coupled to a triple quadrupole mass spectrometer (GC-MS/MS). The proposed method was applied to the analysis of real samples collected in the urban area of Ciudad Real (Spain) during one year. The median total concentrations of eighteen PAHs (∑PAHs) and seven OPAHs (∑OPAHs) were 0.54 and 0.23 ng m-3, respectively, with the corresponding value for NPAH (∑NPAHs) being 0.03 ng m-3 (only detected in 40% of samples). A clear seasonal trend was observed, with higher levels in the cold season and lower in the warm season for ∑PAHs. The same effect was observed for ∑OPAHs, which exhibited a median concentration of 0.72 ng m-3 in the cold season and 0.10 ng m-3 in the warm season, and for ∑NPAH, which exhibited a median of 0.04 ng m-3 in the cold season but were not detected in the warm season. Molecular diagnostic ratios and PCA (principal component analysis) showed a predominantly traffic origin for PACs. The sources of PAHs also depend on meteorological conditions and/or atmospheric reactions, as confirmed by means of statistical analysis. The ∑OPAH/∑PAH and ∑NPAH/∑PAH ratios were higher in the cold season than the warm season, thus suggesting that PAH derivatives originated from primary combustion emission sources together with their parent PAHs. The concentration range found for benzo(a)pyrene was 0.006-0.542 ng m-3, which is below the threshold value of 1 ng m-3 established in European legislation as the annual average value. The lifetime lung risk from inhalation of PM10-bound PACs was estimated to be six cancer cases per million people using the World Health Organization method.
Collapse
Affiliation(s)
- Sonia Lara
- Universidad de Castilla La Mancha. Instituto de Investigación en Combustión y Contaminación Atmosférica. Camino de Moledores s/n, 13071, Ciudad Real, Spain.
| | - Florentina Villanueva
- Universidad de Castilla La Mancha. Instituto de Investigación en Combustión y Contaminación Atmosférica. Camino de Moledores s/n, 13071, Ciudad Real, Spain; Parque Científico y Tecnológico de Castilla La Mancha, Paseo de la Innovación 1, 02006, Albacete, Spain.
| | - Pilar Martín
- Universidad de Castilla La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| | - Sagrario Salgado
- Universidad de Castilla La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| | - Andres Moreno
- Universidad de Castilla La Mancha, Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| | - Prado Sánchez-Verdú
- Universidad de Castilla La Mancha, Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
39
|
Ju S, Lim L, Ki YJ, Choi DH, Song H. Oxidative stress generated by polycyclic aromatic hydrocarbons from ambient particulate matter enhance vascular smooth muscle cell migration through MMP upregulation and actin reorganization. Part Fibre Toxicol 2022; 19:29. [PMID: 35449013 PMCID: PMC9026692 DOI: 10.1186/s12989-022-00472-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/15/2022] [Indexed: 01/16/2025] Open
Abstract
Background Epidemiological studies have suggested that elevated concentrations of particulate matter (PM) are strongly associated with the incidence of atherosclerosis, however, the underlying cellular and molecular mechanisms of atherosclerosis by PM exposure and the components that are mainly responsible for this adverse effect remain to be established. In this investigation, we evaluated the effects of ambient PM on vascular smooth muscle cell (VSMC) behavior. Furthermore, the effects of polycyclic aromatic hydrocarbons (PAHs), major components of PM, on VSMC migration and the underlying mechanisms were examined. Results VSMC migration was significantly increased by treatment with organic matters extracted from ambient PM. The total amount of PAHs contained in WPM was higher than that in SPM, leading to higher ROS generation and VSMC migration. The increased migration was successfully inhibited by treatment with the anti-oxidant, N-acetyl-cysteine (NAC). The levels of matrix metalloproteinase (MMP) 2 and 9 were significantly increased in ambient PM-treated VSMCs, with MMP9 levels being significantly higher in WPM-treated VSMCs than in those treated with SPM. As expected, migration was significantly increased in all tested PAHs (anthracene, ANT; benz(a)anthracene, BaA) and their oxygenated derivatives (9,10-Anthraquinone, AQ; 7,12-benz(a)anthraquinone, BAQ, respectively). The phosphorylated levels of focal adhesion kinase (FAK) and formation of the focal adhesion complex were significantly increased in ambient PM or PAH-treated VSMCs, and these effects were blocked by administration of NAC or α-NF, an inhibitor of AhR, the receptor that allows PAH uptake. Subsequently, the levels of phosphorylated Src and NRF, the downstream targets of FAK, were altered with a pattern similar to that of p-FAK. Conclusions PAHs, including oxy-PAHs, in ambient PM may have dual effects that lead to an increase in VSMC migration. One is the generation of oxidative stress followed by MMP upregulation, and the other is actin reorganization that results from the activation of the focal adhesion complex.
Collapse
Affiliation(s)
- Sujin Ju
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, 61452, Korea
| | - Leejin Lim
- Cancer Mutation Research Center, Chosun University, Gwangju, 61452, Korea
| | - Young-Jae Ki
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, 61452, Korea
| | - Dong-Hyun Choi
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, 61452, Korea
| | - Heesang Song
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, 61452, Korea.
| |
Collapse
|
40
|
Li H, Zhao Z, Luo XS, Fang G, Zhang D, Pang Y, Huang W, Mehmood T, Tang M. Insight into urban PM 2.5 chemical composition and environmentally persistent free radicals attributed human lung epithelial cytotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113356. [PMID: 35255246 DOI: 10.1016/j.ecoenv.2022.113356] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 05/12/2023]
Abstract
Fine particulate matter (PM2.5) is detrimental to the human respiratory system. However, the toxicity of PM2.5 and its associated potentially harmful species, notably novel pollutants like environmentally persistent free radicals (EPFRs), remains unclear. Therefore, one-year site monitoring and ambient air PM2.5 sampling in the Nanjing urban area was designed to investigate the relationships between chemical compositions (carbon fractions, metallic elements, and water-soluble ions) and EPFRs, and change in cytotoxicity with varying PM2.5 components. Oxidative stress (reactive oxygen species, ROS), inflammatory injury (IL-6 and TNF-α), and membrane injury (LDH) of human lung epithelial cells (A549) induced by PM2.5 were analyzed using in vitro cytotoxicity test. Both the composition and toxicity of PM2.5 from different seasons were compared. The average daily exposure of urban PM2.5 associated EPFRs load in Nanjing were 2.29 × 1011 spin m-3. Their exposure concentration and cytotoxic damage ability were stronger in the cold season than warm. The particle compositions of metals and carbon fractions were significantly positively correlated with EPFRs. The airborne EPFRs, organic carbon (OC), and heavy metal Cu, As, and Pb may pose principal cell damage ability, which is worthy of further study interlinking aerosol pollution and health risks.
Collapse
Affiliation(s)
- Hanhan Li
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhen Zhao
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao-San Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Guodong Fang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dong Zhang
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yuting Pang
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Zhejiang Institute of Meteorological Sciences, Hangzhou 310008, China
| | - Weijie Huang
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tariq Mehmood
- College of Environment, Hohai University, Nanjing, China
| | - Mingwei Tang
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
41
|
Wang Y, Qi A, Wang P, Tuo X, Huang Q, Zhang Y, Xu P, Zhang T, Zhang X, Zhao T, Wang W, Yang L. Temporal profiles, source analysis, and health risk assessments of parent polycyclic aromatic hydrocarbons (PPAHs) and their derivatives (NPAHs, OPAHs, ClPAHs, and BrPAHs) in PM 2.5 and PM 1.0 from the eastern coastal region of China: Urban coastal area versus coastal background area. CHEMOSPHERE 2022; 292:133341. [PMID: 34929283 DOI: 10.1016/j.chemosphere.2021.133341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The eastern coastal region of China is the area with the highest emission of PAHs in China. Therefore, understanding the sources and health risk of parent polycyclic aromatic hydrocarbons (PPAHs) and their derivatives in eastern coastal cities of China is the main basis for air pollution control. In this study, we measured the concentrations of 18 parent PAHs, 17 nitrated PAHs, 7 oxygenated PAHs, 8 chlorinated PAHs, and 13 brominated PAHs in PM1.0 and PM2.5 samples collected at an urban coastal city site and a coastal background site in 2019. We analyzed the temporal distribution, molecular composition, and sources and performed health risk assessments for both winter and summer samples. The average concentration of the PPAHs and their derivatives (all 63 compounds combined) in the PM1.0 samples accounted for 75.57% of the PAHs concentration in PM2.5 samples. The average concentration of PM2.5- and PM1.0- bound PPAHs in winter was 114.70 times higher than in summer, and their derivatives was 27.51 times. Both the combined concentrations of the 18 PPAHs and the combined concentrations of the 45 derivatives were higher in the coastal city compared to the background site during the winter (1.90 and 1.48 times, respectively), but they were comparable during the summer. The positive matrix factorization analysis indicated that the compounds mainly originated from coal/biomass combustion, industrial sources, vehicle emissions, and secondary formation. In addition, the concentration-weighted trajectories model revealed that the PAHs were mainly emitted locally in Shandong Province and surrounding areas, such as Hebei Province, Henan Province, and Bohai Sea. The compounds 1-NPYR, 2+9-BrPHE, 9,10-Cl2PHE, and 1-ClPYR dominantly contributed to the derivatives of TEQ during the winter due to their high concentrations or the high TEFs of these compounds.
Collapse
Affiliation(s)
- Yiming Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Anan Qi
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Pengcheng Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Xiong Tuo
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Qi Huang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yan Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Peng Xu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Tianqi Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Xiongfei Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Tong Zhao
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Lingxiao Yang
- Environment Research Institute, Shandong University, Qingdao, 266237, China; Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
42
|
Liu Z, Sun Y, Zeng Y, Guan Y, Huang Y, Chen Y, Li D, Mo L, Chen S, Mai B. Semi-volatile organic compounds in fine particulate matter on a tropical island in the South China Sea. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128071. [PMID: 34922134 DOI: 10.1016/j.jhazmat.2021.128071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Measurements of hazardous semi-volatile organic compounds (SVOCs) in remote tropical regions are rare. In this study, polycyclic aromatic compounds (PACs) [including polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs (NPAHs), and oxygenated PAHs (OPAHs)], organophosphate esters (OPEs), and phthalic acid esters (PAEs) were measured in fine particulate matter (PM2.5) at Yongxing Island in the South China Sea (SCS). The concentrations of PACs (median = 53.5 pg/m3) were substantially low compared with previous measurements. The concentration weighted trajectory (CWT) model showed that the eastern and southern China was the main source region of PAC, occurring largely during the northeast (NE) monsoon. The PM2.5 showed remarkably high concentrations of OPEs (median = 3231 pg/m3) and moderate concentrations of PAEs (13,013 pg/m3). Some Southeast Asian countries were largely responsible for their higher concentrations, driven by the tropical SCS monsoons. We found significant atmospheric loss of the SVOCs, which is an explanation for the low concentrations of PACs. Enhanced formation of N/OPAHs originated from tropical regions was also observed. The positive matrix factorization model was applied to apportion the SVOC sources. The results, as well as correlation analyses of the SVOC concentrations, further indicate insignificant local sources and enhanced atmospheric reactions on this island.
Collapse
Affiliation(s)
- Zheng Liu
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuxin Sun
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yufeng Guan
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuqi Huang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuping Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Daning Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ling Mo
- Water Quality Monitoring Section, Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Shejun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
43
|
Shen F, Li D, Chen J. Mechanistic toxicity assessment of fine particulate matter emitted from fuel combustion via pathway-based approaches in human cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150214. [PMID: 34571223 DOI: 10.1016/j.scitotenv.2021.150214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Fuel exhaust particulate matter (FEPM) is an important source of air pollution worldwide. However, the comparative and mechanistic toxicity of FEPMs emitted from combustion of different fuels is still not fully understood. This study employed pathway-based approaches via human cells to evaluate mechanistic toxicity of FEPMs. The results showed that FEPMs caused concentration-dependent (0.1-200 μg/mL) cytotoxicity and oxidative stress. FEPMs at low concentration (10 μg/mL) induced cell cycle arrest in S and G2 phases, while high level of FEPMs (200 μg/mL) caused cell cycle arrest in G1 phase. Different FEPMs induced distinct expression profiles of toxicity-related genes, illustrating different toxic mechanisms. Furthermore, FEPMs inhibited the phosphorylation of protein kinase A (PKA), which related with reproductive toxicity. Spearman rank correlations among the chemicals carried by FEPMs and the toxic effects revealed that PAHs and metals promoted cell cycle arrest in the G1 phase and suppressed PKA activity. Furthermore, PAHs (Nap and Acy) and metals (Al and Pb) in FEPMs were highly and positively correlated with the expression of genes involved in apoptosis, ER stress, metal stress and inflammation. Our findings offered more mechanistic information of FEPMs at the level of subcellular toxicity and help to better understand their potential health effects.
Collapse
Affiliation(s)
- Fanglin Shen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Fudan Tyndall Center, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Fudan Tyndall Center, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| |
Collapse
|
44
|
Rahmatinia T, Kermani M, Farzadkia M, Jonidi Jafari A, Delbandi AA, Rashidi N, Fanaei F. The effect of PM 2.5-related hazards on biomarkers of bronchial epithelial cells (A549) inflammation in Karaj and Fardis cities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2172-2182. [PMID: 34363174 DOI: 10.1007/s11356-021-15723-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Fine particles (especially PM2.5 particles) in ambient air can cause irreversible effects on human health. In the present study, seasonal variations in toxicity PM2.5 (cell viability and release of pro-inflammatory cytokines) were exposed human lung cells (A549) to concentrations of PM2.5 samples in summer (sPM2.5) and winter (wPM2.5) seasons. Cells were separately exposed to three concentrations of PM2.5 (25, 50, and 100 μg/mL) and three times (12 h, 1 and 2 days). We evaluated cell viability by MTT assay [3- (4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide] and liberation of pro-inflammatory cytokines (interleukin-6 and interleukin-8) by the ELISA method. The toxicological results of this study showed that increasing the concentration of PM2.5 particulates and contact time with it reduces cell viability and increases inflammatory responses. Seasonal cytotoxicity of PM2.5 particles in high-traffic areas at summer season compared to winter season was lower. The lowest percent of viability at 2 days of exposure and 100 μg/mL exposure in the winter sample was observed. Also, PM2.5 particles were influential in the amount of interleukins 8 and 6. The average release level of IL-6 and IL-8 in the cold season (winter) and the enormous exposure time and concentrations (2 days-100 μg/mL) was much higher than in the hot season (summer). These values were twice as high for winter PM2.5 samples as for summer samples. The compounds in PM2.5 at different seasons can cause some biological effects. The samples' chemical characteristics in two seasons displayed that the PMs were diverse in chemical properties. In general, heavy metals and polycyclic aromatic hydrocarbons were more in the winter samples. However, the samples of wPM2.5 had a lower mass quota of metals such as aluminum, iron, copper, zinc, and magnesium. Concentrations of chromium, cadmium, arsenic, mercury, nickel, and lead were more significant in the sample of wPM2.5.
Collapse
Affiliation(s)
- Tahereh Rahmatinia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nesa Rashidi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Fanaei
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Zhou Q, Chen J, Zhang J, Zhou F, Zhao J, Wei X, Zheng K, Wu J, Li B, Pan B. Toxicity and endocrine-disrupting potential of PM 2.5: Association with particulate polycyclic aromatic hydrocarbons, phthalate esters, and heavy metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118349. [PMID: 34653588 DOI: 10.1016/j.envpol.2021.118349] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The adverse effects of fine atmospheric particulate matter with aerodynamic diameters of ≤2.5 μm (PM2.5) are closely associated with particulate chemicals. In this study, PM2.5 samples were collected from highway and industry sites in Hangzhou, China, during the autumn and winter, and their cytotoxicity and pulmonary toxicity and endocrine-disrupting potential (EDP) were evaluated in vitro and in vivo; the particulate polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs), and heavy metals were then characterized. The toxicological results suggested that the PM2.5 from highway site induced higher cytotoxicity (cell viability inhibition, intracellular oxidative stress, and cell membrane injury) and pulmonary toxicity (inflammatory response (IR) and oxidative stress (OS)) than the samples from industry site, while the PM2.5 from industry site exhibited higher EDP (estrogenic and anti-androgenic activity). The cytotoxicity and pulmonary toxicity of PM2.5 in the winter were higher than those in the autumn, while no seasonal difference in the endocrine-disrupting potential was observed (p > 0.05). The Pearson correlation analysis between the biological effects and particulate chemicals revealed that the PM2.5-induced inflammatory response and oxidative stress were closely associated with the particulate PAHs and heavy metals (Pearson correlation coefficients: rIR, PAHs = 0.822-0.988, rIR, heavy metals = 0.895-0.971, rOS, PAHs = 0.843-0.986, and rOS, heavy metals = 0.887-0.933), while particulate di (2-ethylhexyl)phthalate (DEHP) substantially contributed to the EDP of PM2.5 (rEDP, DEHP = 0.981). This study indicated that the toxicity and EDP of PM2.5 could vary with the surrounding environment and season, which was closely associated with the variations of particulate chemicals. Further studies are needed to clarify the associations between the harmful effects of PM2.5 and other contributing factors.
Collapse
Affiliation(s)
- Qinghua Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jinyuan Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Junfan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Feifei Zhou
- Departments of TCM Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjing Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiuzhen Wei
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Kaiyun Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jian Wu
- Ecology and Environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, China
| | - Bingjie Li
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Bingjun Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
46
|
Rahmatinia T, Kermani M, Farzadkia M, Nicknam MH, Soleimanifar N, Mohebbi B, Jafari AJ, Shahsavani A, Fanaei F. Potential cytotoxicity of PM2.5-bound PAHs and toxic metals collected from areas with different traffic densities on human lung epithelial cells (A549). JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1701-1712. [PMID: 34900299 PMCID: PMC8617124 DOI: 10.1007/s40201-021-00724-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/14/2021] [Indexed: 05/26/2023]
Abstract
Laboratory and epidemiological researches have indicated that ambient air particulate matter have a plays critical role in causing diseases. The current research evaluated the chemical attributes of PM2.5 in the ambient air of the cities of Karaj and Fardis and determined its toxicological effects on human lung epithelial cells (A549). In the study city, 16 points were selected from the two high-traffic and low-traffic points for sampling. A sampling of ambient air was carried out in spring, summer, autumn, and winter 2018-19. Air sampling was performed for 24 h according to the EPA-TO/13A guidelines. To analyze of toxic metals and polycyclic aromatic hydrocarbons (PAHs), ICP-OES and GC-MS were used, respectively, and for cell toxicity analysis, an ELISA reader was used. Then from SPSS, Excel and R software were used for statistical analysis. The results of the current study indicated that the concentration of PAHs carcinogenic in the autumn season in high-traffic stations was the highest and equal to 9.3 ng/m3, and in the spring season in the low-traffic stations, it was the lowest and equal to 5.82 ng/m3. In general, during the period of study, Heavy metals including Zn, Fe, Pb, Cu, and Al had the highest concentration compared to other metals. However, Hg, Cr, As, Pb, Cu, Cd, and Zn were higher concentration in the winter and autumn seasons than in the spring and summer seasons. Cell viability measurements by using MTT showed that low-traffic and high-traffic stations had the highest toxicity in autumn season compared to other seasons. (p < 0.05). In general, high-traffic stations had the highest toxicity than low-traffic stations. The general conclusion of the present study was that PM2.5-bound PAHs and toxic metals, due to their high concentration, were toxic pollutants in air for residents of Karaj and Fardis. Also, the high concentration of PM2.5 caused the mitochondrial activity of A549 cells to stop and this stop was more significant in cold seasons and high-traffic areas.
Collapse
Affiliation(s)
- Tahereh Rahmatinia
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Narjes Soleimanifar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Mohebbi
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Fanaei
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Zhao H, Meng B, Sun G, Lin CJ, Feng X, Sommar J. Chemistry and Isotope Fractionation of Divalent Mercury during Aqueous Reduction Mediated by Selected Oxygenated Organic Ligands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13376-13386. [PMID: 34520177 DOI: 10.1021/acs.est.1c03171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We have investigated the chemistry and Hg isotope fractionation during the aqueous reduction of HgII by oxalic acid, p-quinone, quinol, and anthraquinone-2,6-disulfonate (AQDS), a derivate of anthraquinone (AQ) that is found in secondary organic aerosols (SOA) and building blocks of natural organic matter (NOM). Each reaction was examined for the effects of light, pH, and dissolved O2. Using an excess of ligand, UVB photolysis of HgII was seen to follow pseudo-first-order kinetics, with the highest rate of ∼10-3 s-1 observed for AQDS and oxalic acid. Mass-dependent fractionation (MDF) occurs by the normal kinetic isotope effect (KIE). Only the oxalate ion, rather than oxalic acid, is photoreactive when present in HgC2O4, which decomposes via two separate pathways distinguishable by isotope anomalies. Upon UVB photolysis, only the reduction mediated by AQDS results in a large odd number mass-independent fractionation (odd-MIF) signified by enrichment of odd isotopes in the reactant. Consistent with the rate, MDF, and odd-MIF reported for fulvic acid, our AQDS result confirms previous assumptions that quinones control HgII reduction in NOM-rich waters. Given the magnitude of odd-MIF triggered via a radical pair mechanism and the significant rate in the presence of air, reduction of HgII by photoproducts of AQDS may help explain the positive odd-MIF observed in ambient aerosols depleted of HgII.
Collapse
Affiliation(s)
- Huifang Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- School of Geography & Environmental Science, Guizhou Normal University, Guiyang 550025, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Guangyi Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian 710061, China
| | - Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
48
|
Krzyszczak A, Czech B. Occurrence and toxicity of polycyclic aromatic hydrocarbons derivatives in environmental matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147738. [PMID: 34023603 DOI: 10.1016/j.scitotenv.2021.147738] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
In the last years, there is great attention paid to the determination of polycyclic aromatic hydrocarbons (PAHs) in different environmental matrices. Extensive reviews on PAHs presence and toxicity were published recently. However, PAHs formation and transformation in the environment lead to the production of PAHs derivatives containing oxygen (O-PAHs), nitrogen (N-PAHs and aazarenes AZA) or sulfur (PASHs) in the aromatic ring. The development of new analytical methods enabled the determination of these novel contaminants. The presence of oxygen, nitrogen, or sulfur in PAHs aromatic rings increased their toxicity. The most common primary sources of PAHs derivatives are biological processes such as microbial activity (in soil, water, and wastewater treatment plants (O-PAHs)) and all processes involving combustion of fuel, coal, and biomass (O-PAHs, N-PAHs, AZA, PASHs). The secondary resources involved i) photochemical (UV light), ii) radical-mediated (OH, NO3), and iii) reactions with oxidants (O3, NOx) (O-PAHs, N-PAHs, AZA). Furthermore, N-PAHs were able to transform to their corresponding O-PAHs, while other derivatives were not. It indicated that N-PAHs are more vulnerable to photooxidation in the environment. 85% of O- and N-PAHs were detected with particle matter below 2.5 μm suggesting their easier bioaccessibility. More than 90% of compounds with four and more aromatic cycles were present in the particle phase in the air. Although the concentrations of N-PAHs or O-PAHs may be similar to PAHs concentration or even 1000 times lower than parent PAHs, PAHs derivatives accounted for a significant portion of the total mutagenicity. The present review is describing the results of the studies on the determination of PAHs derivatives in different environmental matrices including airborne particles, sediments, soil, and organisms. The mechanisms of their formation and toxicity were assessed.
Collapse
Affiliation(s)
- Agnieszka Krzyszczak
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, University of Maria Curie-Sklodowska, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, University of Maria Curie-Sklodowska, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland.
| |
Collapse
|
49
|
Zeng H, Zhang L, Sun F, Liu J, Fang B, Yang W, Meng C, Wang M, Wang Q, Hao Y. Inhalation bioaccessibility, health risk assessment, and source appointment of ambient PM 2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Caofeidian, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47574-47587. [PMID: 33893916 DOI: 10.1007/s11356-021-13965-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
The inhalation bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) is significant for accurately assessing the health risks posed by PM2.5-bound PAHs. In this study, 96 PM2.5 samples from Caofeidian, China, were investigated for PM2.5-bound PAH source appointment and bioaccessibility assessment during four seasons. PAH18 potential sources were identified by positive matrix factorization. The inhalation bioaccessibility of PAH18 was investigated by simulated epithelial lung fluid extraction. The incremental lifetime cancer risk (ILCR) model was subsequently used to evaluate the carcinogenic risk posed by PM2.5-bound PAHs in children, teenagers, and adults. Four potential sources of PM2.5-bound PAH18 were identified: industry emissions (44%), petroleum volatilization (30%), vehicle emissions (15%), and coal combustion (11%). The average inhalation bioaccessibility of PAHs ranged from 17.8% (dibenzo [a,h] anthracene) to 67.9% (fluorene). The ILCR values for children and teenagers were lower than the acceptable levels (10-6) in the four seasons considering inhalation bioaccessibility. However, the ILCR value of adults was higher than the threshold in winter (1.26 × 10-6). Source identification suggested that reducing industrial pollution was the primary measure for controlling PM2.5-bound PAHs in Caofeidian. Additionally, the inhalation bioaccessibility of PM2.5-bound PAHs was evaluated to precisely estimate the health risks caused by PAHs.
Collapse
Affiliation(s)
- Hao Zeng
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Lei Zhang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Feize Sun
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Jiajia Liu
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Bo Fang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Wenqi Yang
- Affiliated Hospital, North China University of Science and Technology, Tangshan, 063000, China
| | - Chunyan Meng
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Manman Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Qian Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China.
| | - Yulan Hao
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China.
| |
Collapse
|
50
|
Sun J, Yu J, Shen Z, Niu X, Wang D, Wang X, Xu H, Chuang HC, Cao J, Ho KF. Oxidative stress-inducing effects of various urban PM 2.5 road dust on human lung epithelial cells among 10 Chinese megacities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112680. [PMID: 34418851 DOI: 10.1016/j.ecoenv.2021.112680] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
PM2.5 Road dust samples were collected from 10 representative cities in southern and northern China for examination of chemical components and oxidative stress levels in A549 cells. Downtown road dust was abundance of heavy metals, EC and PAHs compared to nondowntown road dust. Source apportionment also revealed the relative higher contribution of vehicle emission to downtown (35.8%) than nondowntown road dust (25.5%). Consequently, downtown road dust induced much higher intracellular reactive oxidative species (ROS) levels than that from nondowntown (p < 0.05). This study highlights that the ROS-inducing capacity of road dust in China is lower at lower latitudes, which resulted in a significantly higher ROS-inducing capacity of road dust from northern cities than southern ones. Hotspot analysis demonstrated that heavy metals (i.e., Cr, Zn, Cu and Pb) in road dust were the most closely associated with ROS production in A549 cells. Vehicle emission and combustion emission in road dust were identified to be correlated with cellular ROS production. The findings highlight the ROS-inducing effect of PM2.5 road dust and also serve as a reference to make the targeted solutions for urban road dust pollution control, especially from a public health perspective.
Collapse
Affiliation(s)
- Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Diwei Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin Wang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, USA
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|