1
|
Zhao B, Chen F, Zhou K, Lin M, Shi L, Mi S, Pan H, Yao Q, Zhao X. Polyethylene nanoplastics, tebuconazole and cadmium affect soil-wheat system by altering rhizosphere microenvironment under single or combined exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135843. [PMID: 39305587 DOI: 10.1016/j.jhazmat.2024.135843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 12/01/2024]
Abstract
Microplastics and nanoplastics (NPs) are pollutants of global concern. However, the understanding of the combined effects of NPs and other pollutants in the soil-plant system remains limited, particularly for polyethylene (PE), the primary component of agricultural films. This study investigated the effects of PE NPs (0.5 %, w/w), fungicide tebuconazole (Te, 10 mg·kg-1), and cadmium (Cd, 4.0 mg·kg-1) on the soil-wheat system under single and combined exposures. The synergistic toxicity observed between NPs and Te impacted the nutritional conditions and antioxidant mechanisms of the soil-wheat system. The NPs increased the concentration of Cd in roots and the proportion of bioavailable Cd, exacerbating oxidative stress in wheat and inhibiting biomass. The soil-wheat system responded to stress by upregulating or downregulating pathways related to carbohydrate, amino acid, and sugar metabolism under various treatments. Sixteen functional genes associated with carbohydrate metabolism, amino acid metabolism, energy utilization, and gene repair at KEGG level 3 were employed to sustain microenvironmental homeostasis. Correlation analysis between microorganisms and environmental factors showed that various PGPG played roles in maintaining the health of the soil-wheat system. These results help to elucidate the comprehensive effects of NPs with other pollutants on the soil-plant system and provide new perspectives for toxic mechanisms.
Collapse
Affiliation(s)
- Bo Zhao
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Fang Chen
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Kexin Zhou
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Manfeng Lin
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Lihu Shi
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Shican Mi
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Haixia Pan
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Qiang Yao
- Ocean College, Hebei Agriculture University, Qinhuangdao 066004, China.
| | - Xin Zhao
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
2
|
Huang F, Chen L, Zeng Y, Dai W, Wu F, Hu Q, Zhou Y, Shi S, Fang L. Unveiling influences of metal-based nanomaterials on wheat growth and physiology: From benefits to detriments. CHEMOSPHERE 2024; 364:143212. [PMID: 39222697 DOI: 10.1016/j.chemosphere.2024.143212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Metal-based nanomaterials (MNs) are widely used in agricultural production. However, our current understanding of the overall effects of MNs on crop health is insufficient. A global meta-analysis of 144 studies involving approximately 2000 paired observations was conducted to explore the impacts of MNs on wheat growth and physiology. Our analysis revealed that the MN type plays a key role in influencing wheat growth. Ag MNs had significant negative effects on wheat growth and physiology, whereas Fe, Ti, and Zn MNs significantly increased wheat biomass and photosynthesis. Our study also observed a clear dose-specific effect, with a decrease in wheat shoot biomass with increasing MN concentrations. Meanwhile, MNs with small sizes (<25 nm) have no significant impacts on wheat growth. Furthermore, both the root and foliar applications significantly improved wheat growth, with no considerable differences. Using a machine learning approach, we found that the MN type was the main driving factor affecting wheat shoot biomass, followed by MN dose and size. Overall, wheat growth and physiology can be negatively influenced by specific MNs, for which a high dose and small size should be avoided in practical applications. Therefore, our study can provide insights into the future design and safe use of MNs in agriculture and increase the public acceptance of nano-agriculture.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Wei Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Fang Wu
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Qing Hu
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Ying Zhou
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Shunmei Shi
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
3
|
Azarin K, Usatov A, Minkina T, Duplii N, Fedorenko A, Plotnikov A, Mandzhieva S, Kumar R, Yong JWH, Sehar S, Rajput VD. Evaluating the phytotoxicological effects of bulk and nano forms of zinc oxide on cellular respiration-related indices and differential gene expression in Hordeum vulgare L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116670. [PMID: 38981388 DOI: 10.1016/j.ecoenv.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The increasing use of nanoparticles is driving the growth of research on their effects on living organisms. However, studies on the effects of nanoparticles on cellular respiration are still limited. The remodeling of cellular-respiration-related indices in plants induced by zinc oxide nanoparticles (nnZnO) and its bulk form (blZnO) was investigated for the first time. For this purpose, barley (Hordeum vulgare L.) seedlings were grown hydroponically for one week with the addition of test compounds at concentrations of 0, 0.3, 2, and 10 mg mL-1. The results showed that a low concentration (0.3 mg mL-1) of blZnO did not cause significant changes in the respiration efficiency, ATP content, and total reactive oxygen species (ROS) content in leaf tissues. Moreover, a dose of 0.3 mg mL-1 nnZnO increased respiration efficiency in both leaves (17 %) and roots (38 %). Under the influence of blZnO and nnZnO at medium (2 mg mL-1) and high (10 mg mL-1) concentrations, a dose-dependent decrease in respiration efficiency from 28 % to 87 % was observed. Moreover, the negative effect was greater under the influence of nnZnO. The gene transcription of the subunits of the mitochondria electron transport chain (ETC) changed mainly only under the influence of nnZnO in high concentration. Expression of the ATPase subunit gene, atp1, increased slightly (by 36 %) in leaf tissue under the influence of medium and high concentrations of test compounds, whereas in the root tissues, the atp1 mRNA level decreased significantly (1.6-2.9 times) in all treatments. A dramatic decrease (1.5-2.4 times) in ATP content was also detected in the roots. Against the background of overexpression of the AOX1d1 gene, an isoform of alternative oxidase (AOX), the total ROS content in leaves decreased (with the exception of 10 mg mL-1 nnZnO). However, in the roots, where the pressure of the stress factor is higher, there was a significant increase in ROS levels, with a maximum six-fold increase under 10 mg mL-1 nnZnO. A significant decrease in transcript levels of the pentose phosphate pathway and glycolytic enzymes was also shown in the root tissues compared to leaves. Thus, the disruption of oxidative phosphorylation leads to a decrease in ATP synthesis and an increase in ROS production; concomitantly reducing the efficiency of cellular respiration.
Collapse
Affiliation(s)
- Kirill Azarin
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Alexander Usatov
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Nadezhda Duplii
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Aleksei Fedorenko
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Andrey Plotnikov
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Saglara Mandzhieva
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Rahul Kumar
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden.
| | - Shafaque Sehar
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Vishnu D Rajput
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation.
| |
Collapse
|
4
|
Bouzar B, Benzerzour M, Abriak NE. Innovative reuse of mineral waste for treatment of a contaminated soil by fluorine: synthesis of hydroxyapatite (HAP) and chemical performance assessments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34452-x. [PMID: 39066942 DOI: 10.1007/s11356-024-34452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
This research aimed to introduce a novel method for the valorization of mineral waste, focusing on the development of hydroxyapatite (HAP) as an effective and economical adsorbent for immobilizing fluoride ions (F-) in soil. Hydroxyapatites were produced through the reaction between potassium dihydrogen phosphate (KH2PO4) and calcium-abundant limestone soil (CLS). X-ray diffraction analyses revealed that the primary phases in HAPCLS were brushite (CaHPO5·2H2O) and hydroxyapatite (Ca10(PO4)6(OH)2). The FTIR spectra exhibited characteristics akin to natural HAP, including the presence of orthophosphate groups (PO43-), hydroxyl groups (OH-), and both A/B types of carbonates in the apatite structure. The morphology of the synthesized HAP, as observed through SEM-EDS, was consistent with that of phosphocalcic hydroxyapatite crystals. The EDS results indicated a Ca/P atomic ratio of 1.7 for HAPCLS, aligning closely with the typical hydroxyapatite stoichiometry (Ca/P = 1.67). The application of HAP to reduce fluoride (F-) levels in soil proved to be successful; introducing 1% of various HAP formulations reduced the fluoride concentration from 51.4 mg/kg in untreated soil to levels below the IWSI limit (10 mg/kg), achieving a reduction to 8.1 mg/kg for HAPCLS. The sequential extraction of fluoride demonstrated that after soil treatment, fluoride was predominantly removed from the residual fraction (Fraction 4) and was effectively sequestered by the hydroxyapatites (Ca10(PO4)6(OH)2) through anionic exchange with hydroxide ions (OH-), resulting in the formation of stable and insoluble fluorapatite (Ca10(PO4)6F2).
Collapse
Affiliation(s)
- Bader Bouzar
- IMT Nord Europe, Centre for Materials and Processes, Institut Mines-Télécom, 59000, EnvironnementLille, France.
- Laboratoire de Génie Civil Et Géo-Environnement, Univ. Lille, Univ., ULR 4515 - LGCgE, F-59000, Lille, France.
| | - Mahfoud Benzerzour
- IMT Nord Europe, Centre for Materials and Processes, Institut Mines-Télécom, 59000, EnvironnementLille, France
- Laboratoire de Génie Civil Et Géo-Environnement, Univ. Lille, Univ., ULR 4515 - LGCgE, F-59000, Lille, France
| | - Nor-Edine Abriak
- IMT Nord Europe, Centre for Materials and Processes, Institut Mines-Télécom, 59000, EnvironnementLille, France
- Laboratoire de Génie Civil Et Géo-Environnement, Univ. Lille, Univ., ULR 4515 - LGCgE, F-59000, Lille, France
| |
Collapse
|
5
|
Zhou Q, Li X, Zheng X, Zhang X, Jiang Y, Shen H. Metabolomics reveals the phytotoxicity mechanisms of foliar spinach exposed to bulk and nano sizes of PbCO 3. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133097. [PMID: 38113737 DOI: 10.1016/j.jhazmat.2023.133097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
PbCO3 is an ancient raw material for Pb minerals and continues to pose potential risks to the environment and human health through mining and industrial processes. However, the specific effects of unintentional PbCO3 discharge on edible plants remain poorly understood. This study unravels how foliar application of PbCO3 induces phytotoxicity by potentially influencing leaf morphology, photosynthetic pigments, oxidative stress, and metabolic pathways related to energy regulation, cell damage, and antioxidant defense in Spinacia oleracea L. Additionally, it quantifies the resultant human health risks. Plants were foliarly exposed to PbCO3 nanoparticles (NPs) and bulk products (BPs), as well as Pb2+ at 0, 5, 10, 25, 50, and 100 mg·L-1 concentrations once a day for three weeks. The presence and localization of PbCO3 NPs inside the plant cells were confirmed by TEM-EDS analysis. The maximum accumulation of total Pb was recorded in the root (2947.77 mg·kg-1 DW for ion exposure), followed by the shoot (942.50 mg·kg-1 DW for NPs exposure). The results revealed that PbCO3 and Pb2+ exposure had size- and dose-dependent inhibitory effects on spinach length, biomass, and photosynthesis attributes, inducing impacts on the antioxidase activity of CAT, membrane permeability, and nutrient elements absorption and translocation. Pb2+ exhibited pronounced toxicity in morphology and chlorophyll; PbCO3 BP exposure accumulated the most lipid peroxidation products of MDA and H2O2; and PbCO3 NPs triggered the largest cell membrane damage. Furthermore, PbCO3 NPs at 10 and 100 mg·L-1 induced dose-dependent metabolic reprogramming in spinach leaves, disturbing the metabolic mechanisms related to amino acids, antioxidant defense, oxidative phosphorylation, fatty acid cycle, and the respiratory chain. The spinach showed a non-carcinogenic health risk hierarchy: Pb2+ > PbCO3 NPs > PbCO3 BPs, with children more vulnerable than adults. These findings enhance our understanding of PbCO3 particle effects on food security, emphasizing the need for further research to minimize their impact on human dietary health.
Collapse
Affiliation(s)
- Qishang Zhou
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.
| | - Xueming Zheng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yueheng Jiang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - He Shen
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| |
Collapse
|
6
|
Kumari A, Chokheli VA, Lysenko VS, Mandzhieva SS, Minkina TM, Mazarji M, Rajput VD, Shuvaeva VA, Sushkova SS, Barakhov A. Genotoxic and morpho-physiological responses of ZnO macro- and nano-forms in plants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9345-9357. [PMID: 36383335 DOI: 10.1007/s10653-022-01428-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
In the current study, two plants, viz., Pisum sativum L. and Hordeum vulgare L., were exposed to nano- and macro-dispersed ZnO at 1, 10, and 30 times of maximal permissible concentration (MPC). The main objective of the study is to depict and compare the genotoxicity in terms of chromosomal anomalies, cytotoxicity (i.e., mitotic index), and phytotoxicity (viz., germination, morphometry, maximal quantum yield, and chlorophyll fluorescence imaging) of macro- and nano-forms of ZnO along with their accumulation and translocation. In the case of genotoxic and cytotoxic responses, the maximal effect was observed at 30 MPC, regardless of the macro- or nano-forms of ZnO. The phytotoxic observations revealed that the treatment with macro- and nano-forms of ZnO significantly affected the germination rate, germination energy, and length of roots and shoots of H. vulgare in a dose-dependent manner. The factor toxicity index of treated soil demonstrated that toxicity soared as concentrations increased and that at 30 MPC, toxicity was average and high in macro- and nano-dispersed ZnO, respectively. Furthermore, the photosynthetic parameters were observed to be negatively affected in both treatments, but the maximal effect was observed in the case of nano-dispersed form. It was noted that the mobility of nano-dispersed ZnO in the soil was higher than macro-dispersed. The increased mobility of nano-dispersed ZnO might have boosted their accumulation and translocation that subsequently led to the oxidative stress due to the accelerated production of reactive oxygen species, thus strengthen toxicity implications in plants.
Collapse
Affiliation(s)
- Arpna Kumari
- Southern Federal University, Rostov-On-Don, Russia, 344006.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Liu Y, Kang M, Weng Y, Ding Y, Bai X. Toxicity and tolerance mechanism of binary zinc oxide nanoparticles and tetrabromobisphenol A regulated by humic acid in Chlorella vulgaris. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1615-1625. [PMID: 37581509 DOI: 10.1039/d3em00230f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Recent studies have reported that nanoparticles (NPs) released into the aquatic environment may interact with persistent organic pollutants such as brominated flame retardants, whereas the environmental processes and toxicological impacts induced by such binary NPs require further specification. This study investigated the ultrastructural damage of Chlorella vulgaris triggered by exposure to zinc oxide (ZnO) NPs, tetrabromobisphenol A (TBBPA), ZnO-TBBPA, and ZnO-TBBPA-humic acid (HA), clarified the uptake and distribution of ZnO NPs in cells, and explored the physiological toxicity and tolerance mechanism. The results demonstrated that ZnO NPs induced irregular morphology in algal cells, and the disruption of the cellular ultrastructure by binary ZnO-TBBPA was also extremely severe due to the excessive uptake of ZnO NPs, which resulted in strong oxidative stress responses. In particular, the accumulation of reactive oxygen species further exacerbated the reduction of total chlorophyll content and algal density. Moreover, the cluster heat map and correlation analysis revealed that superoxide dismutase activity played a critical role in alleviating lipid peroxidation damage and enhancing the tolerance of algal cells to the stress of binary ZnO NPs. More notably, the existence of HA intensified the dispersion stability of NP suspensions and significantly mitigated the synergistic toxicity of binary ZnO-TBBPA. This study provides new insights into the environmental behavior and biological impacts of binary NPs in the natural environment.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road No. 1, Gulou District, Nanjing 210098, China.
| | - Mengen Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road No. 1, Gulou District, Nanjing 210098, China.
| | - Yuzhu Weng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road No. 1, Gulou District, Nanjing 210098, China.
| | - Yuanyuan Ding
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road No. 1, Gulou District, Nanjing 210098, China.
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road No. 1, Gulou District, Nanjing 210098, China.
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| |
Collapse
|
8
|
Anjum S, Vyas A, Sofi T. Fungi-mediated synthesis of nanoparticles: characterization process and agricultural applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4727-4741. [PMID: 36781932 DOI: 10.1002/jsfa.12496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/31/2022] [Accepted: 02/13/2023] [Indexed: 06/08/2023]
Abstract
In the field of nanotechnology, the use of biologically active products from fungi for the reduction and synthesis of nanoparticles as an alternative to toxic chemicals has received extensive attention, due to their production of large quantities of proteins, high yields, easy handling, and the low toxicity of the residues. Fungi have become valuable tools for the manufacture of nanoparticles in comparison with other biological systems because of their enhanced growth control and diversity of metabolites, including enzymes, proteins, peptides, polysaccharides, and other macro-molecules. The ability to use different species of fungi and to perform the synthesis under different conditions enables the production of nanoparticles with different physicochemical characteristics. Fungal nanotechnology has been used to develop and offer products and services in the agricultural, medicinal, and industrial sectors. Agriculturally, it has found applications in plant disease management, crop improvement, biosensing, and the production of environmentally friendly, non-toxic pesticides and fertilizers to enhance agricultural production in general. The subject of this review is the application of fungi in the synthesis of inorganic nanoparticles, characterization, and possible applications of fungal nanoparticles in the diverse agricultural sector. The literature shows potential uses of fungi in biogenic synthesis, enabling the production of nanoparticles with different physiognomies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shahnaz Anjum
- Department of Botany, Lovely Professional University, Phagwara, India
- Division of Plant Pathology, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, India
| | - Ashish Vyas
- Department of Microbiology and Biochemistry, Lovely Professional University, Phagwara, India
| | - Tariq Sofi
- Division of Plant Pathology, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, India
| |
Collapse
|
9
|
Basit F, He X, Zhu X, Sheteiwy MS, Minkina T, Sushkova S, Josko I, Hu J, Hu W, Guan Y. Uptake, accumulation, toxicity, and interaction of metallic-based nanoparticles with plants: current challenges and future perspectives. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4165-4179. [PMID: 37103657 DOI: 10.1007/s10653-023-01561-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The rapid development of industrialization is causing several fundamental problems in plants due to the interaction between plants and soil contaminated with metallic nanoparticles (NPs). Numerous investigations have been conducted to address the severe toxic effects caused by nanoparticles in the past few decades. Based on the composition, size, concentration, physical and chemical characteristics of metallic NPs, and plant types, it enhances or lessens the plant growth at various developmental stages. Metallic NPs are uptaken by plant roots and translocated toward shoots via vascular system based on composition, size, shape as well as plant anatomy and cause austere phytotoxicity. Herein, we tried to summarize the toxicity induced by the uptake and accumulation of NPs in plants and also we explored the detoxification mechanism of metallic NPs adopted by plants via using different phytohormones, signaling molecules, and phytochelatins. This study was intended to be an unambiguous assessment including current knowledge on NPs uptake, accumulation, and translocation in higher plants. Furthermore, it will also provide sufficient knowledge to the scientific community to understand the metallic NPs-induced inhibitory effects and mechanisms involved within plants.
Collapse
Affiliation(s)
- Farwa Basit
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Xiang He
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Xiaobo Zhu
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Mohamed Salah Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Izabela Josko
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Jin Hu
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Weimin Hu
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Yajing Guan
- Hainan Institute, Zhejiang University, Sanya, 572025, China.
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Sun H, Li Z, Wen J, Zhou Q, Gong Y, Zhao X, Mao H. Co-exposure of maize to polyethylene microplastics and ZnO nanoparticles: Impact on growth, fate, and interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162705. [PMID: 36907408 DOI: 10.1016/j.scitotenv.2023.162705] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs), especially polyethylene MPs (PE MPs), which are the primary component of mulch, have attracted increasing attention in recent years. ZnO nanoparticles (NPs), which constitute a metal-based nanomaterial commonly used in agricultural production, co-converge with PE MPs in the soil. However, studies revealing the behavior and fate of ZnO NPs in soil-plant systems in the presence of MPs are limited. In this study, a pot experiment was used to evaluate the effects of maize co-exposure to PE MPs (0.5 % and 5 % w/w) and ZnO NPs (500 mg/kg) on growth, element distribution, speciation, and adsorption mechanism. The results demonstrate that individual exposure to PE MPs posed no significant toxicity; however, it significantly decreased maize grain yield (essentially 0). ZnO NP-exposure treatments significantly increased the Zn concentration and distribution intensity in maize tissues. Among them, the Zn concentration in the maize root exceeded 200 mg/kg, compared with 40 mg/kg in the grain. Moreover, the Zn concentrations in various tissues decreased in the following order: stem, leaf, cob, bract, and grain. Reassuringly, ZnO NPs still could not be transported to the maize stem under co-exposure to PE MPs. ZnO NPs had been biotransformed (64 % of the Zn was associated with histidine, with the remainder being associated with P [phytate] and cysteine) in maize stem. This study provides new insights into the plant physiological risks of PE MP and ZnO NP co-exposure in the soil-plant system and assesses the fate of ZnO NPs.
Collapse
Affiliation(s)
- Hongda Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Zhuofan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jinyu Wen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qianqian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Yafang Gong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Xiaohan Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Hui Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
11
|
Tripathi S, Mahra S, J V, Tiwari K, Rana S, Tripathi DK, Sharma S, Sahi S. Recent Advances and Perspectives of Nanomaterials in Agricultural Management and Associated Environmental Risk: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101604. [PMID: 37242021 DOI: 10.3390/nano13101604] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
The advancement in nanotechnology has enabled a significant expansion in agricultural production. Agri-nanotechnology is an emerging discipline where nanotechnological methods provide diverse nanomaterials (NMs) such as nanopesticides, nanoherbicides, nanofertilizers and different nanoforms of agrochemicals for agricultural management. Applications of nanofabricated products can potentially improve the shelf life, stability, bioavailability, safety and environmental sustainability of active ingredients for sustained release. Nanoscale modification of bulk or surface properties bears tremendous potential for effective enhancement of agricultural productivity. As NMs improve the tolerance mechanisms of the plants under stressful conditions, they are considered as effective and promising tools to overcome the constraints in sustainable agricultural production. For their exceptional qualities and usages, nano-enabled products are developed and enforced, along with agriculture, in diverse sectors. The rampant usage of NMs increases their release into the environment. Once incorporated into the environment, NMs may threaten the stability and function of biological systems. Nanotechnology is a newly emerging technology, so the evaluation of the associated environmental risk is pivotal. This review emphasizes the current approach to NMs synthesis, their application in agriculture, interaction with plant-soil microbes and environmental challenges to address future applications in maintaining a sustainable environment.
Collapse
Affiliation(s)
- Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Victoria J
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shweta Rana
- Department of Physical and Natural Sciences, FLAME University, Pune 412115, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shivendra Sahi
- Department of Biology, St. Joseph's University, 600 S. 43rd St., Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Wang J, Zhu J, Zheng Q, Wang D, Wang H, He Y, Wang J, Zhan X. In vitro wheat protoplast cytotoxicity of polystyrene nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163560. [PMID: 37080310 DOI: 10.1016/j.scitotenv.2023.163560] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Nanoplastics are an emerging environmental pollutant, having a potential risk to the terrestrial ecosystem. In the natural environment, almost all the micro-or nano-plastics will be aged by many factors and their characterizations of the surface will be modified. However, the toxicity and mechanism of the modified polystyrene nanoparticles (PS-NPs) to plant cells are not clear. In the study, the amino- and carboxyl-modified PS-NPs with different sizes (20 and 200 nm) were selected as the typical representatives to investigate their effects on protoplast cell viability, reactive oxygen species (ROS) production in the cell and the leakage of cell-inclusion and apoptosis. The results indicated that the 20 nm amino-modified PS-NPs (PS-20A) could significantly damage the structure of the cell, especially the cell membrane, chloroplast and mitochondrion. After being modified by amino group, smaller size nanoplastics had the potential to cause more severe damage. In addition, compared with carboxyl-modified PS-NPs, the amino-modified PS-NPs induced more ROS production and caused higher membrane permeability/lactate dehydrogenase (LDH) leakage. Apoptosis assay indicated that the proportion of viable cells in the PS-20A treatment decreased significantly, and the proportion of necrotic cells increased by four times. This study provides new insights into the toxicity and damage mechanism of PS-NPs to terrestrial vascular plants at the cellular level, and guides people to pay attention to the quality and safety of agricultural products caused by nanoplastics.
Collapse
Affiliation(s)
- Jia Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Qiuping Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Dongru Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Huiqian Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Yuan He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Jiawei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China.
| |
Collapse
|
13
|
Tian L, Ma LY, Chen X, Ge J, Ma Y, Ji R, Yu X. Insights into the accumulation, distribution and toxicity of pyrene associated with microplastics in rice (Oryza sativa L.) seedlings. CHEMOSPHERE 2023; 311:136988. [PMID: 36306968 DOI: 10.1016/j.chemosphere.2022.136988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Microplastic and polycyclic aromatic hydrocarbons (PAHs) can be introduced into agroecosystems through various agricultural activities and may threaten food safety and human health. However, little research has focused on the behavior of microplastics-associated PAHs and their toxicity effects in agroecosystems, especially in crops. In the present study, we investigated the accumulation, distribution and toxicity of pyrene associated with polyethylene (PE) microplastics in rice (Oryza sativa L.). With quantitative analysis using 14C isotope labelling, the total accumulation efficiency of 14C-pyrene in rice seedlings was 22.4 ± 1.2% and 14.5 ± 0.3% when exposed to freely dissolved pyrene and PE-associated pyrene, respectively. The translocation of 14C-pyrene was significantly decreased by microplastics adsorption even when the amount of pyrene in the rice roots had no significant difference. Subcellular distribution of 14C-pyrene in rice suggested that PE microplastics-associated pyrene located more on cell walls than free dissolved pyrene. Furthermore, results showed free pyrene, but not PE-associated pyrene, significantly decreased the length and biomass of rice roots as well as increased the activities of antioxidant enzymes (superoxide dismutase and catalase). It indicated that the association with microplastics alleviated the phytotoxicity of pyrene in rice seedlings. These findings shed new light on the environmental behavior and effects of PAHs associated with microplastics in crops and will be helpful to its comprehensive risks assessment.
Collapse
Affiliation(s)
- Lili Tian
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Li Ya Ma
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Xiaolong Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Jing Ge
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China
| | - Yini Ma
- College of Ecology and Environment, Hainan University, Renmin Avenue 58, 570028, Haikou, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, 210023, Nanjing, China
| | - Xiangyang Yu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Zhongling Street 50, 210014, Nanjing, China.
| |
Collapse
|
14
|
Lyu C, Zhang X, Huang L, Yuan X, Xue C, Chen X. Widely targeted metabolomics analysis characterizes the phenolic compounds profiles in mung bean sprouts under sucrose treatment. Food Chem 2022; 395:133601. [PMID: 35816988 DOI: 10.1016/j.foodchem.2022.133601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/13/2023]
Abstract
Phenolic compounds are one of the wholesome substances of mung bean sprouts, showing numerous health-promoting functions. Here, effects of sucrose on phenolic compounds profiles of mung bean sprouts were investigated. Results showed that the content and composition of phenolic compounds were significantly altered by 1‰ and 5‰ sucrose, respectively. The antioxidant capacity was significantly improved by sucrose. Based on metabolomics, 251 metabolites were detected, of which 106 were phenolic compounds. Correlation analysis showed 21 phenolics were positively correlated with antioxidant capacity. The changes in phenolic composition and antioxidant capacity after sucrose treatment were mainly due to the enrichment of phenolic biosynthesis pathways. Moreover, the gene expression and enzyme activity analysis of key phenolic biosynthetic genes contributed to elucidate the phenolic profile under sucrose treatment. In summary, mung bean sprouts are promising sources of dietary phenolic compounds and sucrose treatment is a good process to produce phenolic-rich mung bean sprouts.
Collapse
Affiliation(s)
- Chongyang Lyu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China; College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaoyan Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China.
| | - Lu Huang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China.
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China; College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
15
|
Akintelu SA, Olabemiwo OM, Ibrahim AO, Oyebamiji JO, Oyebamiji AK, Olugbeko SC. Biosynthesized nanoparticles as a rescue aid for agricultural sustainability and development. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Wang J, Lu S, Bian H, Xu M, Zhu W, Wang H, He C, Sheng L. Effects of individual and combined polystyrene nanoplastics and phenanthrene on the enzymology, physiology, and transcriptome parameters of rice (Oryza sativa L.). CHEMOSPHERE 2022; 304:135341. [PMID: 35716708 DOI: 10.1016/j.chemosphere.2022.135341] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Owing to their wide distribution, easy production, and resistance to degradation, microplastics (MPs) represent a globally emerging group of pollutants of concern. Furthermore, their decomposition can result in the generation of nanoplastics (NPs), which cause further environmental issues. Currently, the impact of the combination of these plastics with other organic pollutants on crop growth remains poorly investigated. In this study, a hydroponic experiment was conducted for seven days to evaluate the effects of 50 nm, 50 mg/L polystyrene (PS), and 1 mg/L phenanthrene (Phe) on the growth of rice plants. The results revealed that both Phe and PS inhibited growth and improved the antioxidant potential of rice. Relative to Phe alone, exposure to a combination of PS and Phe reduced Phe accumulation in the roots and shoots by 67.73% and 36.84%, respectively, and decreased the pressure on the antioxidant system. Exposure to Phe alone destroyed the photosynthetic system of rice plant leaves, whereas a combination of PS and Phe alleviated this damage. Gene Ontology (GO) analysis of the rice transcriptomes revealed that detoxification genes and phenylalanine metabolism were suppressed under exposure to Phe, which consequently diminished the antioxidant capacity and polysaccharide synthesis in rice plants. Kyoto Encyclopaedia of Genes and Genomes (KEGG) transcriptome analysis revealed that the combined presence of both PS and Phe improved photosynthesis and energy metabolism and alleviated the toxic effects of Phe by altering the carbon fixation pathway and hormone signal transduction in rice plants. The combination of PS and Phe also prevented Phe-associated damage to rice growth. These findings improve our understanding of the effects of MP/NPs and polycyclic aromatic hydrocarbons on crops.
Collapse
Affiliation(s)
- Junyuan Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Siyuan Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Hongfeng Bian
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Miao Xu
- Key Laboratory of Straw Biology and Higher Value Application, The Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Weize Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Chunguang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| |
Collapse
|
17
|
Sun H, Peng Q, Guo J, Zhang H, Bai J, Mao H. Effects of short-term soil exposure of different doses of ZnO nanoparticles on the soil environment and the growth and nitrogen fixation of alfalfa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119817. [PMID: 35872284 DOI: 10.1016/j.envpol.2022.119817] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The extensive application of nanomaterials has increased their levels in soil environments. Therefore, clarifying the process of environmental migration is important for environmental safety and human health. In this study, alfalfa was used to determine the effects of different doses of ZnO nanoparticles (NPs) on the growth of alfalfa and the soil environment. Results showed that the alfalfa biomass was inversely proportional to the exposure concentration of ZnO NPs. The Zn concentration in the alfalfa tissue and the exposure dose presented a significant positive correlation. A high concentration of ZnO NPs decreased the nitrogen-fixing area of root nodules while the number of bacteroids and root nodules, which in turn affected the nitrogen-fixing ability of alfalfa. At the same time, it caused different degrees of damage to the root nodules and root tip cells of alfalfa. A high dose of ZnO NPs decreased the relative abundance and diversity of the soil microorganisms. Therefore, short-term and high-dose exposure of ZnO NPs causes multiple toxicities in plants and soil environments.
Collapse
Affiliation(s)
- Hongda Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingqing Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haoyue Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Junrui Bai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
18
|
Cai Y, Yuan B, Ma X, Fang G, Zhou D, Gao J. Foliar application of SiO 2 and ZnO nanoparticles affected polycyclic aromatic hydrocarbons uptake of Amaranth (Amaranthus tricolor L.): A metabolomics and typical statistical analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155258. [PMID: 35429559 DOI: 10.1016/j.scitotenv.2022.155258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/09/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Nano-enabled foliar-application could be an ideal strategy for advancing agricultural productivity. However, it remains largely unknown whether they inhibit or promote the uptake of pollutants. Here, we systematically examined how foliar applying SiO2 nanoparticles (nSiO2) and ZnO nanoparticles (nZnO) (20 nm, 100 mg·L-1), influence polycyclic aromatic hydrocarbons (PAHs) uptake in 4-week-old amaranth (Amaranthus tricolor L.). Results showed that foliar application of nSiO2 or nZnO enhanced amaranth biomass by 20.2-26.4% but decreased PAHs bioaccumulation in leaves by 20.4-54.9% after 7-d incubation. Changes regarding amino acid-related pathways (alanine/aspartate/glutamate metabolism and arginine biosynthesis) and energy maintenance pathways (TCA cycle) were observed in amaranth leaves after foliar application of nSiO2 and nZnO. Specific PLS-DA analyses with total PAHs uptake as the biological endpoint showed that the contents of PAHs positively correlated with valine (R2 = 0.799) and tyrosine (R2 = 0.789), but negatively correlated with D-tagatose (R2 = 0.805) and L-gulonolactone (R2 = 0.877), indicating greater oxidant stress under higher PAHs level. We propose that mechanisms of declined uptake of PAHs involve the biomass-dependent dilute effect and activation of biological response against PAHs accumulation. These findings provide a prospective vision on how nano-enabled foliar-application alleviates PAH-enriched environmental burden while producing higher-yield agricultural products, especially for low toxic and biocompatible nSiO2.
Collapse
Affiliation(s)
- Yue Cai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binbin Yuan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyue Ma
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
19
|
Nile SH, Thiruvengadam M, Wang Y, Samynathan R, Shariati MA, Rebezov M, Nile A, Sun M, Venkidasamy B, Xiao J, Kai G. Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives. J Nanobiotechnology 2022; 20:254. [PMID: 35659295 PMCID: PMC9164476 DOI: 10.1186/s12951-022-01423-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/17/2022] [Indexed: 12/04/2022] Open
Abstract
Nano-priming is an innovative seed priming technology that helps to improve seed germination, seed growth, and yield by providing resistance to various stresses in plants. Nano-priming is a considerably more effective method compared to all other seed priming methods. The salient features of nanoparticles (NPs) in seed priming are to develop electron exchange and enhanced surface reaction capabilities associated with various components of plant cells and tissues. Nano-priming induces the formation of nanopores in shoot and helps in the uptake of water absorption, activates reactive oxygen species (ROS)/antioxidant mechanisms in seeds, and forms hydroxyl radicals to loosen the walls of the cells and acts as an inducer for rapid hydrolysis of starch. It also induces the expression of aquaporin genes that are involved in the intake of water and also mediates H2O2, or ROS, dispersed over biological membranes. Nano-priming induces starch degradation via the stimulation of amylase, which results in the stimulation of seed germination. Nano-priming induces a mild ROS that acts as a primary signaling cue for various signaling cascade events that participate in secondary metabolite production and stress tolerance. This review provides details on the possible mechanisms by which nano-priming induces breaking seed dormancy, promotion of seed germination, and their impact on primary and secondary metabolite production. In addition, the use of nano-based fertilizer and pesticides as effective materials in nano-priming and plant growth development were also discussed, considering their recent status and future perspectives.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yao Wang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Ramkumar Samynathan
- R&D Division, Alchem Diagnostics, No. 1/1, Gokhale Street, Ram Nagar, Coimbatore, 641009, Tamil Nadu, India
| | - Mohammad Ali Shariati
- Scientific Department, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow, 109004, Russian Federation
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhina St., Moscow, 109316, Russian Federation
| | - Arti Nile
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Meihong Sun
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, 641062, Tamil Nadu, India.
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| |
Collapse
|
20
|
Xu X, Zhao C, Qian K, Sun M, Hao Y, Han L, Wang C, Ma C, White JC, Xing B. Physiological responses of pumpkin to zinc oxide quantum dots and nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118723. [PMID: 34952181 DOI: 10.1016/j.envpol.2021.118723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The present study investigated that the potential of soil or foliar applied 15 mg/L zinc oxide quantum dots (ZnO QD, 11.7 nm) to enhance pumpkin (Cucurbita moschata Duch.) growth and biomass in comparison with the equivalent concentrations of other sizes of ZnO particles, ZnO nanoparticles (ZnO NPs, 43.3 nm) and ZnO bulk particles (ZnO BPs, 496.7 nm). In addition, ZnSO4 was used to set a Zn2+ ionic control. For foliar exposure, ZnO QD increased dry mass by 56% relative to the controls and values were 17.3% greater than that of the ZnO NPs particles. The cumulative water loss in the ZnO QD treatment was 10% greater than with ZnO NPs, suggesting that QD could better enhance pumpkin growth. For the root exposure, biomass and accumulative water loss equivalent across all Zn treatments. No adverse effects in terms of pigment (chlorophyll and anthocyanin) contents were evident across all Zn types regardless exposure routes. Foliar exposure to ZnO QD caused 40% increases in shoot Zn content as compared to the control; the highest Zn content was evident in the Zn2+ ionic treatment, although this did not lead to growth enhancement. In addition, the shoot and root content of other macro- and micro-nutrients were largely equivalent across all the treatments. The contents of other nutritional compounds, including amino acids, total protein and sugar, were also significantly increased by foliar exposure of ZnO QD. The total protein in the ZnO QD was 53% higher than the ZnO particle treatments in the root exposure group. Taken together, our findings suggest that ZnO QDs have significant potential as a novel and sustainable nano-enabled agrichemical and strategies should be developed to optimize benefit conferred to amended crops.
Collapse
Affiliation(s)
- Xinxin Xu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chenchen Zhao
- College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Min Sun
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yi Hao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lanfang Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
21
|
Zhu J, Liu S, Shen Y, Wang J, Wang H, Zhan X. Microplastics lag the leaching of phenanthrene in soil and reduce its bioavailability to wheat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118472. [PMID: 34752790 DOI: 10.1016/j.envpol.2021.118472] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/14/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Microplastics wildly occur in soil and they can become the carriers of persistent contaminants. However, the influence of microplastics on polycyclic aromatic hydrocarbons vertical translocation in the soil system after rainfall is limitedly understood. Here, experiments were conducted to study the influence of polyethylene (PE), polystyrene (PS) and polyvinyl chloride (PVC) microplastics on the leaching behavior and bioavailability of phenanthrene (Phe). The adsorption capacity of phenanthrene on the microplastics followed the order of PS > PE > PVC. The Phe concentrations in the top soil layer after 15 days of leaching with water were 30.25, 28.32 and 27.25 mg kg-1 for the treatments of Phe-PS, Phe-PE and Phe-PVC respectively, which is consistent with the adsorption capacities of microplastics. The concentrations of Phe were correlated with the microplastic adsorption capacities at soil depths of 5-45 cm. Under long-term leaching, Phe could reach the deeper soil layer. Phe concentrations significantly decreased in the leachate over time. Phe concentrations in wheat had a positive correlation with that in leachate/leached top soil layer. Our findings are beneficial to accurately evaluate the ecological risk of the combined contamination of PAHs and microplastics, and improve the understanding of the environmental behaviors of different microplastics.
Collapse
Affiliation(s)
- Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| | - Shiqi Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Yu Shen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Jia Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Huiqian Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China.
| |
Collapse
|
22
|
Huang D, Dang F, Huang Y, Chen N, Zhou D. Uptake, translocation, and transformation of silver nanoparticles in plants. ENVIRONMENTAL SCIENCE: NANO 2022; 9:12-39. [PMID: 0 DOI: 10.1039/d1en00870f] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This article reviews the plant uptake of silver nanoparticles (AgNPs) that occurred in soil systems and the in planta fate of Ag.
Collapse
Affiliation(s)
- Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
| | - Yingnan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| |
Collapse
|
23
|
Liu S, Wang J, Zhu J, Wang J, Wang H, Zhan X. The joint toxicity of polyethylene microplastic and phenanthrene to wheat seedlings. CHEMOSPHERE 2021; 282:130967. [PMID: 34082309 DOI: 10.1016/j.chemosphere.2021.130967] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 05/20/2023]
Abstract
Due to wide distribution, easy production, and difficult degradation, microplastic pollution has become a new environmental problem that has attracted worldwide attention. However, there is little information about the effects of microplastics in soil and their combined pollution with other organic pollutants on crop growth. In this study, we conducted soil culture experiments to evaluate the effects of polyethylene microplastics (PE-MPs) (0.5%, 1%, 2%, 5%, 8% w/w) individual and combined with phenanthrene (100 mg kg-1) on wheat growth for 15 days. Under PE-MPs alone and combined with phenanthrene exposure, dose-dependent toxicities in biomass, shoot height and root length were observed. Over 1% PE-MPs stimulate wheat root elongation. Compared with single phenanthrene treatment, the co-contamination of PE-MPs and phenanthrene reduces the accumulation of phenanthrene in wheat roots and leaves. In the range of 0-5%, the activity of wheat root antioxidant enzymes increases with increasing PE-MP concentration; but both phenanthrene and high concentrations (8%) of PE-MPs cause damage to the antioxidant system in wheat roots. In the presence or absence of phenanthrene, the photosynthetic pigment concentration of wheat leaves shows a dual concentration effect of low promotion and high inhibition under PE-MPs stress. The single pollution of PE-MPs destroys the photosynthetic system of wheat leaves, while the co-contamination of PE-MPs and phenanthrene exacerbates this destruction. Therefore, the co-contamination of PE-MPs and phenanthrene causes greater damage to wheat growth. Our findings can help to evaluate the individual and comprehensive toxicity of microplastics and polycyclic aromatic hydrocarbons to crops.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China
| | - Jiawei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China
| | - Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China
| | - Jia Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China
| | - Huiqian Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China.
| |
Collapse
|
24
|
Ahmed T, Noman M, Manzoor N, Ali S, Rizwan M, Ijaz M, Allemailem KS, BinShaya AS, Alhumaydhi FA, Li B. Recent advances in nanoparticles associated ecological harms and their biodegradation: Global environmental safety from nano-invaders. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106093. [DOI: 10.1016/j.jece.2021.106093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
|
25
|
Li M, Xu G, Guo N, Zheng N, Dong W, Li X, Yu Y. Influences and mechanisms of nanoparticles on pentachloronitrobenzene accumulation by earthworms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51471-51479. [PMID: 33983610 DOI: 10.1007/s11356-021-14368-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Pesticides and nanoparticles may coexist in soil; however, influences of nanoparticles on accumulation of pesticides in terrestrial organisms are still unclear. This study aims to investigate the influences and mechanisms of metal oxide nanoparticles (nano ZnO and nano CuO) on accumulation of pentachloronitrobenzene (PCNB) in earthworms and their combined toxicity. The earthworms were cultivated in the soil spiked with nanoparticles (10, 50, 250 mg/kg) and PCNB (100 μg/kg) for 21 days. The concentrations of PCNB in earthworms in binary exposure treatments (PCNB + ZnO and PCNB + CuO) reached 2.47 and 3.13 times of that in individual PCNB exposure treatment, indicating that nanoparticles facilitated the accumulation of PCNB in earthworms. The contents of reactive oxygen species (ROS) in earthworms in treatments PCNB + ZnO 250 and PCNB + CuO 250 reached 379 and 316 fluorescence intensity/mg Protein, respectively, which were significantly higher than that in control group (183 fluorescence intensity/mg protein), indicating that nanoparticles would cause oxidative stress to earthworms. Earthworm coelomocytes were extracted from healthy earthworms and cultivated in culture media in cytotoxicity tests. Changes of intracellular ROS contents and cell viability suggested that PCNB and nanoparticles caused serious oxidative damage to earthworm coelomocytes, thus leading to the damage of cell membrane and cell death. In in vivo tests, changes of biomarkers (ROS and malondialdehyde) demonstrated that these pollutants injured the earthworms. Increased accumulation of PCNB in binary exposure treatments was due to the damage of body cavity caused by nanoparticles. This study provides a novel hypothesis for nanoparticles facilitating organic pollutants entering terrestrial organisms and determines whether nanoparticles would bring about greater environmental risks of other pollutants.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Guo
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Na Zheng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and Resources, Jilin University, Changchun, 130021, China
| | - Weihua Dong
- College of Geographical Science, Changchun Normal University, Changchun, 130032, China
| | - Xiao Li
- Liaoning Renqia Daofeng Testing Technology Co Ltd, Shenyang, 110034, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
26
|
Toropov AA, Toropova AP. Quasi-SMILES as a basis for the development of models for the toxicity of ZnO nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145532. [PMID: 33578164 DOI: 10.1016/j.scitotenv.2021.145532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
The application of nanomaterials is expanding. Therefore, it is necessary to investigate the relationship between the structure and toxicity of different nanomaterials. Quasi-SMILES is a line of symbols which are codes of corresponding conditions of experiments aimed to estimate the toxicity of ZnO nanoparticles towards the rat via intraperitoneal injections. By means of the Monte Carlo method, the so-called correlation weights for fragments of quasi-SMILES can be calculated. Having the numerical data on the correlation weights one can build up a one-variable model for the toxicity. The checking up of the approach with five random splits of all available data on results of thirty-six experiments into a sub-system of training and sub-system of validation has confirmed the significance of the statistical quality of models obtained with the above approach. The average determination coefficient equal to 0.957 (dispersion 0.010) and average root mean square error equal to 7.25 [mg/kg] (dispersion 0.59 [mg/kg]).
Collapse
Affiliation(s)
- Andrey A Toropov
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Alla P Toropova
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy.
| |
Collapse
|
27
|
Gan CD, Jia YB, Yang JY. Remediation of fluoride contaminated soil with nano-hydroxyapatite amendment: Response of soil fluoride bioavailability and microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124694. [PMID: 33278725 DOI: 10.1016/j.jhazmat.2020.124694] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Nano-hydroxyapatite (NHAP), possessing high defluoridation capacity, has been widely used to remove fluoride (F) from polluted water, but little is known about how it affects the bioavailability and toxicity of soil F towards plants. Here, the impact of NHAP (2% w/w) amendment on immobilization, speciation and accumulation of F was studied in a soil-plant system. The results revealed that the NHAP amendment worked effectively to reduce levels of water-soluble F (37.3%-87.8%) and increase available P (76.6%-147%). X-ray photoelectron spectroscopy analysis indicated that the formation of insoluble CaF2 and the ion exchange of F- with OH- into NHAP might be involved in the mechanism of F immobilization and soil pH elevation. Exposure to NHAP significantly decreased the abundance of Cyanobacteria in tested soils, and Gemmatimonadetes abundance in bulk soil was significantly higher than that in rhizosphere soil at 1,000 mg kg-1 F spiked level. Additionally, NHAP amendment decreased F accumulation in wheat shoots (9.10%-18.7%) and roots (3.88%-22.4%), which could mainly be attributed to the reduction of soil bioavailable F and the supplement of Ca from NHAP. These results suggest that NHAP could be a promising amendment to be applied to acidic soil contaminated with F.
Collapse
Affiliation(s)
- Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Yan-Bo Jia
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China.
| |
Collapse
|
28
|
Wang B, Wang H, Han D, Chen J, Yin Y. Studying the mixture effects of brominated flame retardants and metal ions by comet assay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115677. [PMID: 33254668 DOI: 10.1016/j.envpol.2020.115677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/12/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
This study was designed to evaluate the sensitivities of diverse cell lines on DNA damage effects and genotoxic effects of three brominated flame retardants (BFRs) and three metal ions (Cu2+, Cd2+, Hg2+) by comet assay. First, THP-1 was identified as the most sensitive cell line in terms of DNA damage among 11 kinds of cells screened. Accordingly, the THP-1 cell line was used as a model in subsequent single/combined genotoxicity tests. Single exposure tests to BFRs or metal ions revealed that the DNA damage effects increased with increasing exposure concentration. In combined exposure tests, BFRs (at concentrations of 1/2 EC50) were deployed in combination with different concentrations of Cu2+, Cd2+, or Hg2+. The results showed that the % tail DNA values were significantly increased by most mixtures. Our findings on combined toxic effects by comet assay provide valuable information for setting valid environmental safety evaluation standards.
Collapse
Affiliation(s)
- Biyan Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Haiyan Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Daxiong Han
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Jinming Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Yan Yin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| |
Collapse
|
29
|
Liu Y, Pan B, Li H, Lang D, Zhao Q, Zhang D, Wu M, Steinberg CEW, Xing B. Can the properties of engineered nanoparticles be indicative of their functions and effects in plants? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111128. [PMID: 32827963 DOI: 10.1016/j.ecoenv.2020.111128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The extensive applicability of engineered nanoparticles (ENPs) in various fields such as environment, agriculture, medicine or biotechnology has mostly been attributed to their better physicochemical properties as compared with conventional bulk materials. However, functions and biological effects of ENPs change across different scenarios which impede the progress in their risk assessment and safety management. This review thus intends to figure out whether properties of ENPs can be indicators of their behavior through summarizing and analyzing the available literature and knowledge. The studies have indicated that size, shape, solubility, specific surface area, surface charge and surface reactivity constitute a more accurate measure of ENPs functions and toxic effects in addition to mass concentration. Effects of ENPs are also highly dependent on dose metrics, species and strains of organisms, environmental conditions, exposure route and duration. Searching correlations between properties and functions or biological effects may serve as an effective way in understanding positive and negative impacts of ENPs. This will ensure safe design and sustainable future use of ENPs.
Collapse
Affiliation(s)
- Yang Liu
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Bo Pan
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China.
| | - Hao Li
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Di Lang
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Qing Zhao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Di Zhang
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Min Wu
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Christian E W Steinberg
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China; Institute of Biology, Freshwater & Stress Ecology, Humboldt University, Berlin, 12437, Germany
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States.
| |
Collapse
|
30
|
Haq ANU, Islam A, Younas F, Danish L, Ullah I, Nadhman A, Shah H, Khan I. Impact of zinc oxide nanoflowers on growth dynamics and physio-biochemical response of Triticum aestivum. TOXICOLOGICAL & ENVIRONMENTAL CHEMISTRY 2020; 102:568-584. [DOI: 10.1080/02772248.2020.1837133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/10/2020] [Indexed: 10/10/2024]
Affiliation(s)
- Ayesha Naveed Ul Haq
- Sulaiman Bin Abdullah Aba Alkhail, Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Arshad Islam
- Sulaiman Bin Abdullah Aba Alkhail, Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Farhan Younas
- Sulaiman Bin Abdullah Aba Alkhail, Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Lubna Danish
- Sulaiman Bin Abdullah Aba Alkhail, Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Ikram Ullah
- Sulaiman Bin Abdullah Aba Alkhail, Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Hamidullah Shah
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, Pakistan
| | - Imran Khan
- Gomal University, Gomal Center for Biochemistry and Biotechnology, Indus Highway, Dera Ismail Khan, Pakistan
| |
Collapse
|
31
|
Yusefi-Tanha E, Fallah S, Rostamnejadi A, Pokhrel LR. Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140240. [PMID: 32570083 DOI: 10.1016/j.scitotenv.2020.140240] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/13/2020] [Accepted: 06/13/2020] [Indexed: 05/04/2023]
Abstract
Dearth of knowledge about the prospect of using Zinc (Zn) based nanoparticles (NPs) to enrich Zn-deficient soils with Zn warrants investigations into potential soil applications of ZnONPs for improving crop yield and plant health. Herein, we investigated the potential influence of ZnONPs on seed yield, focusing on particle size-, morphology-, and concentration-dependent responses of multiple antioxidant defense biomarkers, in soil-grown soybean (Glycine max cv. Kowsar) during its lifecycle of 120 d. We achieved this goal following a rational design strategy that enabled us to synthesize three types of morphologically different ZnONPs (spherical/ 38 nm, floral-like/ 59 nm, and rod-like/ >500 nm); all with high purity, triclinic crystal structure, and negative surface charge; and compared the toxicity with Zn2+ ions. Each pot received two seeds, placed in soil inoculated with N-fixing bacterium (Rhizobium japonicum) and grown in outdoor mesocosm for 120 d. Our findings demonstrated a significant particle size-, morphology-, and concentration-dependent influence of ZnONPs on seed yield, lipid peroxidation, and various antioxidant biomarkers in soybean. Our spherical 38 nm ZnONPs were the most protective compared to the floral-like 59 nm ZnONPs, rod-like >500 nm ZnONPs, and Zn2+ ions, particularly up to 160 mg Zn/kg. However, at the highest concentration of 400 mg Zn/kg, spherical 38 nm ZnONPs elicited the highest oxidative stress responses (H2O2 synthesis, MDA, SOD, CAT, POX) in soybean compared to the other two morphologically different ZnONPs tested. The concentration-response curves for the three types of ZnONPs and Zn2+ ions were nonlinear (nonmonotonous) for all the endpoints evaluated. The weight of evidence also suggested a differential nano-specific toxicity of ZnONPs compared to ionic Zn2+ toxicity in soybean. Our higher no-observed-adverse-effect-level (NOAEL) of 160 mg Zn/kg indicates the potential for using ZnONPs as a novel nanofertilizer for crops grown in Zn-deficient soils to improve crop yield, food quality and address malnutrition, globally.
Collapse
Affiliation(s)
- Elham Yusefi-Tanha
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
| | - Ali Rostamnejadi
- Department of Electroceramics and Electrical Engineering, Malek Ashtar University of Technology, Iran.
| | - Lok Raj Pokhrel
- Department of Public Health, The Brody School of Medicine, Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
32
|
Paramo LA, Feregrino-Pérez AA, Guevara R, Mendoza S, Esquivel K. Nanoparticles in Agroindustry: Applications, Toxicity, Challenges, and Trends. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1654. [PMID: 32842495 PMCID: PMC7558820 DOI: 10.3390/nano10091654] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022]
Abstract
Nanotechnology is a tool that in the last decade has demonstrated multiple applications in several sectors, including agroindustry. There has been an advance in the development of nanoparticulated systems to be used as fertilizers, pesticides, herbicides, sensors, and quality stimulants, among other applications. The nanoencapsulation process not only protects the active ingredient but also can affect the diffusion, interaction, and activity. It is important to evaluate the negative aspects of the use of nanoparticles (NPs) in agriculture. Given the high impact of the nanoparticulated systems in the agro-industrial field, this review aims to address the effects of various nanomaterials on the morphology, metabolomics, and genetic modification of several crops.
Collapse
Affiliation(s)
- Luis A. Paramo
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico; (L.A.P.); (A.A.F.-P.); (R.G.)
| | - Ana A. Feregrino-Pérez
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico; (L.A.P.); (A.A.F.-P.); (R.G.)
| | - Ramón Guevara
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico; (L.A.P.); (A.A.F.-P.); (R.G.)
| | - Sandra Mendoza
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, Chemistry Faculty, Universidad Autónoma de Querétaro, Cerro de las Campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico;
| | - Karen Esquivel
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico; (L.A.P.); (A.A.F.-P.); (R.G.)
| |
Collapse
|
33
|
Li M, Xu G, Yang X, Zeng Y, Yu Y. Metal oxide nanoparticles facilitate the accumulation of bifenthrin in earthworms by causing damage to body cavity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114629. [PMID: 33618460 DOI: 10.1016/j.envpol.2020.114629] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 06/12/2023]
Abstract
In this study, we explored the influence of two metal oxide nanoparticles, nano CuO and nano ZnO (10, 50, 250 mg/kg), on accumulation of bifenthrin (100 μg/kg) in earthworms (Eisenia fetida) and its mechanism. The concentrations of bifenthrin in earthworms from binary exposure groups (bifenthrin + CuO and bifenthrin + ZnO) reached up to 23.2 and 28.9 μg/g, which were 2.65 and 3.32 times of that in bifenthrin exposure group without nanoparticles, respectively, indicating that nanoparticles facilitated the uptake of bifenthrin in earthworms. The contents of biomarkers (ROS, SOD, and MDA) in earthworms indicated that nanoparticles and bifenthrin caused damage to earthworms. Ex vivo test was utilized to investigate the toxic effects of the pollutants to cell membrane of earthworm coelomocytes and mechanism of increased bifenthrin accumulation. In ex vivo test, cell viability in binary exposure groups declined up to 30% and 21% compared to the control group after 24 h incubation, suggesting that coelomocyte membrane was injured by the pollutants. We conclude that nanoparticles damage the body cavity of earthworms, and thus lead to more accumulation of bifenthrin in earthworms. Our findings provide insights into the interactive accumulation and toxicity of nanoparticles and pesticides to soil organisms.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiutao Yang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zeng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
34
|
Balážová Ľ, Baláž M, Babula P. Zinc Oxide Nanoparticles Damage Tobacco BY-2 Cells by Oxidative Stress Followed by Processes of Autophagy and Programmed Cell Death. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1066. [PMID: 32486255 PMCID: PMC7353174 DOI: 10.3390/nano10061066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
Nanomaterials, including zinc oxide nanoparticles (ZnO NPs), have a great application potential in many fields, such as medicine, the textile industry, electronics, and cosmetics. Their impact on the environment must be carefully investigated and specified due to their wide range of application. However, the amount of data on possible negative effects of ZnO NPs on plants at the cellular level are still insufficient. Thus, we focused on the effect of ZnO NPs on tobacco BY-2 cells, i.e., a widely accepted plant cell model. Adverse effects of ZnO NPs on both growth and biochemical parameters were observed. In addition, reactive oxygen and nitrogen species visualizations confirmed that ZnO NPs may induce oxidative stress. All these changes were associated with the lipid peroxidation and changes in the plasma membrane integrity, which together with endoplasmatic reticulum and mitochondrial dysfunction led to autophagy and programmed cell death. The present study demonstrates that the phytotoxic effect of ZnO NPs on the BY-2 cells is very complex and needs further investigation.
Collapse
Affiliation(s)
- Ľudmila Balážová
- Department of Pharmacognosy and Botany, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 72, SK-041 81 Košice, Slovakia
| | - Matej Baláž
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01 Košice, Slovakia;
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic;
| |
Collapse
|
35
|
Wan X, Steinman AD, Shu X, Cao Q, Yao L, Xie L. Combined toxic effects of microcystin-LR and phenanthrene on growth and antioxidant system of duckweed (Lemna gibba L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109668. [PMID: 31574372 DOI: 10.1016/j.ecoenv.2019.109668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/02/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Microcystins and polycyclic aromatic hydrocarbons commonly co-exist in eutrophic freshwater environments. However, their combined toxicity remains unknown. The aim of this study was to evaluate the combined toxic effects of microcystin-LR (MC-LR) and phenanthrene (Phe) on duckweed (Lemna gibba L.) during a short-term exposure (7 d). L. gibba was exposed to a range of environmentally relevant concentrations of MC-LR (5, 50, 250, 500 μg/L) and Phe (0.1, 1, 5, 10 μg/L), both individually and in MC-LR + Phe mixtures (5 + 0.1, 50 + 1, 250 + 5, 500 + 10 μg/L). Subsequently, biomarkers of toxicity such as growth, chlorophyll-a, and antioxidant enzyme activity (catalase, superoxide dismutase, and peroxidase) were analyzed in L. gibba. Growth and the antioxidant system of L. gibba were not significantly inhibited by Phe alone, whereas higher concentrations of individual MC-LR (≥50 μg/L) significantly inhibited growth and induced oxidative stress. Based on Abott's formula, their interaction effects were concentration dependent. Antagonistic effects were observed when exposed to combinations of lower concentrations of MC-LR and Phe (≤50 + 1 μg/L), while additive or synergistic effects were induced at higher concentrations of both compounds (≥250 + 5 μg/L). Moreover, higher concentrations of Phe (≥5 μg/L) increased the accumulation of MC-LR in L. gibba. Our results suggested that the toxic effects of MC-LR and phenanthrene were exacerbated only when they co-exist in water bodies at relatively high concentrations. Consequently, co-existence of MC-LR and Phe at low levels are unlikely to exacerbate ecological hazards to L. gibba in most aquatic environments, at least based on responses of this plant.
Collapse
Affiliation(s)
- Xiang Wan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI, 49441, USA
| | - Xiubo Shu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Qing Cao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Lei Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
36
|
Bao Y, Guo A, Ma J, Pan C, Hu L. Citric acid and glycine reduce the uptake and accumulation of Fe 2O 3 nanoparticles and oxytetracycline in rice seedlings upon individual and combined exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133859. [PMID: 31421347 DOI: 10.1016/j.scitotenv.2019.133859] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Uptake of nanoparticles and antibiotics by plants is root exudates-dependent, however, the underlying influence processes and mechanisms from different root exudates are rarely investigated. A hydroponic experiment was conducted to investigate the accumulation of Fe2O3 nanoparticle (NP) and oxytetracycline (OTC) in rice seedlings, in the absence or presence of citric acid or glycine, acting as components of root exudates. Irrespective of individual or combined exposure of Fe2O3 NP and OTC, citric acid and glycine both reduced surface-Fe, surface-OTC, root-OTC, shoot-OTC accumulations with dose-effect relationship. Two exudates increased |ζ| values of NP, which weakened the interactive attraction between NP and root surface and then decreased surface-Fe accumulation. Citric acid and glycine binding with OTC in solution decreased surface-OTC accumulation, and further decreased root-OTC and shoot-OTC accumulations. Combined exposure of two pollutants alleviated the reduction effect of citric acid and glycine on surface-Fe/surface-OTC/root-OTC accumulations due to their high accumulations in combined exposure compared to individual exposure. Although citric acid and glycine promoted TFroot-shoot and TFsurface-root of two pollutants, respectively, they always decreased total rice-Fe and rice-OTC accumulations. Therefore, the presence of root exudates decreased the bioaccumulation of Fe2O3 NP and OTC in rice upon their individual and combined exposure through changing their environmental behaviors in rhizosphere.
Collapse
Affiliation(s)
- Yanyu Bao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Aiyun Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jinyu Ma
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Chengrong Pan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lu Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| |
Collapse
|