1
|
Dargahi A, Zandian H, Samiee F, Farzipour S, Sheikhmemari N, Kazemipour-Khabbazi S. Assessment of toxic metals and trace elements in breast milk of mothers and their health risks to infants: A cross-sectional study in Ardabil, Northwest Iran. Food Chem Toxicol 2025; 200:115389. [PMID: 40081788 DOI: 10.1016/j.fct.2025.115389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/02/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
This research aimed to assess the potential health risks for infants and measure the concentrations of heavy metal substances in the breast milk of mothers residing in Ardabil, Iran. The study was descriptive and cross-sectional in nature. Ten health centers in Ardabil City were selected for the research. The ages of participating mothers ranged from 19 to 39 years, and breast milk samples were collected from those who were 1-12 months postpartum. A 25-item questionnaire was used to evaluate the participants' exposure to heavy metals in their environment and diet. Data analysis was performed using the non-parametric Mann-Whitney U test, resulting in a p-value greater than 0.05. The average body mass index (BMI) of breastfeeding mothers was 26.26 ± 3.73. Spike recovery values ranged from 92 % to 106 %, indicating reliable performance within the ICP-MS range. The limit of detection (LOD) during routine sample analysis was 0.001 μg/L. The daily intake (DI) of lead (Pb), arsenic (As), and chromium (Cr) for infants was calculated. According to the findings, copper (Cu) had the highest average concentration in breast milk at 803.94 μg/L, while cadmium (Cd) had the lowest at 1.87 μg/L. Additionally, potassium (K) exhibited the highest average concentration at 490.49 mg/L, whereas molybdenum (Mo) had the lowest at 0.8 μg/L. The average daily intake of Pb, As, and Cr through breastfeeding was measured at 3.39, 0.799, and 3.47 μg/kg-bw/day, respectively. The results confirmed the presence of mercury (Hg), As, and Pb in every milk sample collected from lactating mothers in Ardabil, indicating potential exposure of infants to elevated levels of toxic heavy metals.
Collapse
Affiliation(s)
- Abdollah Dargahi
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Environmental Health Engineering, Khalkhal University of Medical Sciences, Khalkhal, Iran.
| | - Hamed Zandian
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Centre for Public Health and Wellbeing, School of Health and Social Wellbeing, College of Health, Science and Society, University of the West of England, Bristol, UK
| | - Fateme Samiee
- Department of Environmental Health Engineering, School Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahla Farzipour
- Department of Obstetrics and Gynecology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Negin Sheikhmemari
- Department of Obstetrics and Gynecology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Salva Kazemipour-Khabbazi
- Department of English Language and Persian Literature, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Priyadarshini A, Dash JR. Heavy Metal Residues in Raw Cow Milk Collected from Three Major Cities of Odisha, India. Biol Trace Elem Res 2025:10.1007/s12011-025-04575-4. [PMID: 40102355 DOI: 10.1007/s12011-025-04575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Environmental pollution, particularly that caused by heavy metals, is a significant global concern in the current period of globalisation and possess a substantial risk to human and animal health through food chain. There have also been reports of heavy metal contamination of cattle and buffalo milk from various parts of India, including Tamilnadu, the Mumbai suburbs, and Northern Gujarat. However, no research has been done to determine whether cow milk from the study area in the state of Odisha contains heavy metal residues. Residue of heavy metals (arsenic, lead, cadmium, mercury and cobalt) in raw cow milk samples collected from three major cities of Odisha was studied. Arsenic was not detected in any of the milk samples. In the milk samples from Bhubaneswar, lead was detected higher than the permissible limit recommended by Codex standard and FSSAI, cadmium was detected close to the permissible limit recommended by Codex standard but below the limit recommended by FSSAI, cobalt and mercury were detected below the permissible limit recommended by Codex standard and FSSAI. In Cuttack and Puri, lead was detected close to the recommended permissible limit but other metals (viz. cadmium, cobalt and mercury) were below the recommended permissible limit. Among the three cities, heavy metals were detected highest in the milk samples from Bhubaneswar than Cuttack and Puri. Three of Odisha's largest cities-Bhubaneswar, Cuttack, and Puri-are rapidly becoming more urbanized and industrialized, with populations and automobiles increasing. This might contaminate water and soil, which would then poison the food chain. This could be the primary way that heavy metals enter the animal body, which would then contaminate milk and animal food. The Pb and Cd residues detected in cow milk from the study areas were alarming. It suggested that the cows reared by Goalas in these study areas do not produce environmentally safe and suitable milk for human consumption.
Collapse
Affiliation(s)
- Anisha Priyadarshini
- Department of Veterinary Pharmacology and Toxicology, CVSc and AH, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Jeevan Ranjan Dash
- Department of Veterinary Pharmacology and Toxicology, CVSc and AH, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India.
| |
Collapse
|
3
|
Kang S, Zheng Y, Zhu B, Wu Y, He Q. Ultrasensitive and rapid detection of Hg 2+ in milk based on β-galactosidase driven colloidal motors. Food Res Int 2025; 205:115977. [PMID: 40032471 DOI: 10.1016/j.foodres.2025.115977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/15/2025] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
In this study, we present a new β-galactosidase-powered Janus colloidal motor for the active and rapid detection of Hg2+ in milk. The colloidal motor was fabricated by depositing a thin gold layer on one side of the self-assembled polyelectrolyte capsule, followed by immobilizing β-galactosidase and nitrogen-doped carbon quantum dots asymmetrically on the other side of the polyelectrolyte capsule. β-Galactosidase on the surface of the gold side can decompose the lactose in milk into glucose and galactose, leading to active motion. Furthermore, since nitrogen-doped carbon quantum dots on the colloidal motor's surface can be quenched by Hg2+ in milk, such colloidal motors are found to serve as an effective fluorescent sensing platform for the sensitive detection of Hg2+ ions. Benefiting from the efficient movement of the colloidal motors, the interaction between the nitrogen-doped carbon quantum dots and the quenched substrate is greatly enhanced, thus improving the detection efficiency and accuracy of Hg2+. Under the optimized conditions, the colloidal motors achieved a linear detection range of 0.031-15 μM and the low detection limit of 9.1 nM. The colloidal motors are proving to be an attractive multifunctional sensor platform, providing a valuable means of monitoring Hg2+ contamination in dairy products.
Collapse
Affiliation(s)
- Sheng Kang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Yong Zheng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Baohua Zhu
- Chemistry and Chemical Engineering College, Inner Mongolia University, Hohhot 010021, China.
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China.
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
4
|
Chebli AI, Zergui A, Amziane A, Zebbiche Y, Abdennour S. Metals in honey, cow's milk and eggs in North-East Algeria and health risk. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2025; 18:55-64. [PMID: 39410796 DOI: 10.1080/19393210.2024.2414088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/04/2024] [Indexed: 02/21/2025]
Abstract
Metal contamination of foodstuffs is a major public health challenge of increasing concern. The present study aimed to determine lead, cadmium and mercury in honey, cow's milk and poultry eggs collected from the North-Eastern region of Algeria and to evaluate the health risks associated with their regular consumption. To this aim 30 samples of each foodstuff were analysed using ICP-MS. Among the quantified heavy metals, Pb was found at the highest level in both honey (0.752 ± 0.16 µg g-1) and poultry egg (0.988 ± 0.19 µg g-1) in the region of Skikda. The highest values of Cd (0.798 ± 0.12 µg g-1) and Hg (0.097 ± 0.02 µg g-1) were found in poultry eggs collected from the same region. For infants the Hazard Index was well above 1 in honey samples from all three locations, in cow's milk collected from Mila and Skikda and in poultry eggs collected from Skikda.
Collapse
Affiliation(s)
- A I Chebli
- Faculty of Medicine, University of Constantine 3, Constantine, Algeria
| | - A Zergui
- Faculty of Medicine, University of Oran 1, Oran, Algeria
| | - A Amziane
- Faculty of Pharmacy, University of Algiers 1, Algeria
| | - Y Zebbiche
- Faculty of Pharmacy, University of Algiers 1, Algeria
| | - S Abdennour
- Faculty of Medicine, University of Constantine 3, Constantine, Algeria
| |
Collapse
|
5
|
Sharma A, Gupta S, Shrivas K, Chakradhari S, Pervez S, Deb MK. Heavy metal contamination in cow and buffalo milk from industrial and residential areas of raipur, India: A health risk assessment. Food Chem Toxicol 2025; 196:115178. [PMID: 39645020 DOI: 10.1016/j.fct.2024.115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
This study investigated heavy metal contamination in cow and buffalo milk from industrial and residential areas of Raipur, India, assessing health risks and identifying contamination sources. Milk samples were collected from seven sites and analyzed for Zn, Ni, Fe, Mn, Cu, Cr, Cd, Pb, and As using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and atomic absorption spectroscopy (AAS). Results revealed higher contamination in industrial areas, with fodder being a primary source for Zn, Ni, Fe, and Cu, while water contributed to Mn, Cr, and As. Estimated daily intake (EDI), target hazard quotient (THQ), and carcinogenic risk (CR) determination highlighted non-carcinogenic risks for Ni, Fe, and Pb, and significant carcinogenic risks for Pb and As. The concentrations of Zn, Ni, Fe, Mn, Cu, Cr, Cd, Pb, and As in milk samples were ranged from 1.708 to 3.243, 0.078-0.295, 1.480-4.450, 0.119-0.472, 0.032-0.461, 0.007-0.040, 0.006-0.032, 0.040-0.204, and 0.006-0.023 mg/kg, respectively. The principal component analysis (PCA) identified fodder as a source of Zn, Ni, Fe, Cu, and Cd, while water contributed to Mn, Cr, and As. This study needed monitoring and regulation to mitigate health risks from contaminated milk in Raipur.
Collapse
Affiliation(s)
- Anuradha Sharma
- Department of Zoology, Govt. Nagarjuna P.G. College of Science, Raipur, 492010, CG, India
| | - Shashi Gupta
- Department of Zoology, Govt. Nagarjuna P.G. College of Science, Raipur, 492010, CG, India.
| | - Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, CG, India.
| | - Suryakant Chakradhari
- Research and Development, The Waxpol Industries Ltd. Urla, Raipur, 492003, CG, India
| | - Shamsh Pervez
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, CG, India
| | - Manas Kanti Deb
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, CG, India
| |
Collapse
|
6
|
Shen B, Lu R, Lv M, Chen J, Li J, Long J, Cai H, Su L, Gong Z. Association between the levels of toxic heavy metals and schizophrenia in the population of Guangxi, China: A case-control study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125179. [PMID: 39490508 DOI: 10.1016/j.envpol.2024.125179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The relationship between body levels of heavy metals and the risk of schizophrenia remains unclear. This study investigates the relationship between plasma levels of toxic heavy metals and the risk of schizophrenia among adults in Guangxi, China. Plasma concentrations of lead (Pb), cadmium (Cd), arsenic (As), and chromium (Cr) were measured using inductively coupled plasma mass spectrometry (ICP-MS). To evaluate both the single and combined effects of metal exposure on the risk of schizophrenia, we employed multivariate logistic regression, Bayesian Kernel Machine Regression (BKMR), and generalized Weighted Quantile Sum (gWQS) models. Additionally, we employed the Comparative Toxicogenomics Database (CTD) to analyze the mechanistic pathways through which metal mixtures may induce schizophrenia. Relative mRNA expression levels were measured using Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to predict potential biological functions. In logistic regression models, compared to the lowest exposure group (Q1), the odds ratios (ORs) for Pb in groups Q2, Q3, and Q4 were 2.18 (95% CI: 1.20-3.94), 4.74 (95% CI: 2.52-8.95), and 3.62 (95% CI: 1.80-7.28), respectively. Both BKMR and gWQS models indicated a positive correlation between the combined effects of toxic heavy metal mixtures and the risk of schizophrenia, with Pb demonstrating the most substantial impact, particularly in older adults and females. Elevated levels of tumor necrosis factor (TNF) and interleukin-1 beta (IL-1β) were observed in patients with schizophrenia, while the expression of tumor protein p53 (TP53) was significantly reduced. These findings underscore the critical need to avoid exposure to toxic heavy metals to prevent schizophrenia, highlighting significant public health implications.
Collapse
Affiliation(s)
- Bing Shen
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China
| | - Rumei Lu
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China
| | - Miao Lv
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China
| | - JieWen Chen
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China
| | - Jiale Li
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China
| | - Jianxiong Long
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China
| | - Hong Cai
- Department of Medical Psychology and Behaviors, School of Public Health of Guangxi Medical University, Nanning, China
| | - Li Su
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China.
| | - Zukang Gong
- Nanning Center for Disease Control and Prevention, Nanning, China.
| |
Collapse
|
7
|
Battisti S, Scaramozzino P, Delfino D, Droghei B, Ubaldi A, Sala MG, Russo K, Neri B. Heavy metals and trace elements in milk and dairy products in the Lazio region (Central Italy). FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:371-380. [PMID: 39155543 DOI: 10.1080/19393210.2024.2389423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024]
Abstract
A study was carried out to determine the concentration of heavy metals and trace elements in milk and dairy products collected from local farms, supermarkets, or food retailers in the region of Lazio (Central Italy). Persistent exposure to metal contamination is of particular concern for human health, as it can cause different serious disorders. The monitoring of the matrices studied is therefore important, given their high consumption in the daily diet. The elements determined by ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) were lead (Pb), arsenic (As), mercury (Hg), cadmium (Cd), chromium (Cr), nickel (Ni), molybdenum (Mo) and thallium (Tl), for a total of 151 measurements in 98 samples. The results showed that 11.3% of the measurements were quantifiable but below the legal maximum limits (MLs) set by EU regulations. The data obtained may be useful for dietary exposure information, inter-regional comparisons and for planning regional surveillance strategies.
Collapse
Affiliation(s)
- Sabrina Battisti
- UOC Osservatorio Epidemiologico e UOC Chimica, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Roma, Italia
| | - Paola Scaramozzino
- UOC Osservatorio Epidemiologico e UOC Chimica, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Roma, Italia
| | - Daniela Delfino
- UOC Osservatorio Epidemiologico e UOC Chimica, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Roma, Italia
| | - Barbara Droghei
- UOC Osservatorio Epidemiologico e UOC Chimica, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Roma, Italia
| | - Alessandro Ubaldi
- UOC Osservatorio Epidemiologico e UOC Chimica, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Roma, Italia
| | - Marcello Giovanni Sala
- UOC Osservatorio Epidemiologico e UOC Chimica, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Roma, Italia
| | - Katia Russo
- UOC Osservatorio Epidemiologico e UOC Chimica, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Roma, Italia
| | - Bruno Neri
- UOC Osservatorio Epidemiologico e UOC Chimica, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Roma, Italia
| |
Collapse
|
8
|
Fereja WM, Muda C, Labena AA. Assessment of heavy metal levels in cow's milk and associated health risks in the vicinity of the MIDROC Laga Dambi gold mine in Ethiopia. J Trace Elem Med Biol 2024; 86:127529. [PMID: 39303547 DOI: 10.1016/j.jtemb.2024.127529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION The possible health effects of consuming milk contaminated with heavy metals have been the subject of considerable concern worldwide. OBJECTIVE The aim of this study was to determine the level of heavy metals in cow's milk in the vicinity of MIDROC Laga Dambi gold mine and to assess their possible health risks for consumers. METHODS Nine composite samples were formed by aggregating 243 milk samples obtained in triplicates from 81 domestic milk-producing households. Inductively coupled plasma-optical emission spectroscopy was used to measure the amount of heavy metals after samples digestion under optimal conditions. RESULTS The heavy metals concentrations obtained were 13.913-7.843, 9.505-3.589, 5.972-3.147, 2.288-1.851, 0.403-0.143, 0.436-0.128, 0.26-0.153, 0.143-0.048, 0.160-ND (not detected), and 0.140-ND mgkg-1for Fe, Zn, Pb, Mn, Hg, Cr, Cd, As, Ni, and Co, respectively. Of the heavy metals identified, the levels of Pb, As, Cd, and Hg exceeded the recommended value. Based on the estimated daily intake (EDI), the total health quotient (THQ) is higher than unity even for Pb alone. It has been found that the consumption of cow milk increases the health index (HI) by 2.972. Ninety five percent of the HI in the study area was explained by the toxic heavy metals (Pb, Cd, As, and Hg) in the cow milk, which were found to be beyond the safe limit. CONCLUSION This demonstrates that there is a health risk to the population who consume cow's milk sourced from the vicinity of MIDROC Laga Dambi gold mine. To safeguard the public's health, we advised strict monitoring and legislative control for the safety of cow's milk originating from study area.
Collapse
Affiliation(s)
- Workineh Mengesha Fereja
- Department of Chemistry, College of Natural and Computational Sciences, Energy and Environment Research Center, Dilla University, 419, Dilla, Ethiopia.
| | - Chuluke Muda
- Department of Chemistry, College of Natural and Computational Sciences, Dilla University, 419, Dilla, Ethiopia.
| | - Abraham Alemayehu Labena
- Department of Chemistry, College of Natural and Computational Sciences, Dilla University, 419, Dilla, Ethiopia.
| |
Collapse
|
9
|
Chebli AI, Reffai MA, Amziane A, Djerroud J, Zebbiche Y. Assessment of Toxic Element Contamination in Honey, Milk, and Eggs from Algiers (Algeria) Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS): Exploring Health Implications of Pollution. Biol Trace Elem Res 2024; 202:3303-3317. [PMID: 37864749 DOI: 10.1007/s12011-023-03891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/25/2023] [Indexed: 10/23/2023]
Abstract
Consumption of foods such as milk, honey, and eggs contaminated with toxic elements above established norms poses a health risk to the population. This study explores the potential of products from beehives, poultry, and dairy as indicators of environmental pollution caused by toxic substances (Pb, Cd, Hg), seeks contamination sources, evaluates the exposure level, and assesses health risks. Through the analysis of samples from three distinct regions in Algiers, including 30 milk, 30 honey, and 30 poultry egg samples, the study assesses levels of toxic elements (lead, cadmium, and mercury) using ICP-MS and analyzes consumer exposure risk. The analysis of honey reveals levels of Pb (0.282 μg/g) > Cd (0.161 μg/g) > Hg (0.017 μg/g), the analysis of eggs shows levels of Pb (0.399 μg/g) > Cd (0.239 μg/g) > Hg (0.027 μg/g), and the results in milk show levels of Cd (0.250 μg/g) > Pb (0.131 μg/g) > Hg (0.019 μg/g). The risk analysis indicates a risk associated with milk consumption for both adults and children, whereas for honey and eggs, the risk is limited to children only in polluted areas. Future research should expand to other toxic elements in different food matrices in both northern and southern Algeria to evaluate the health risk for African and European consumers.
Collapse
Affiliation(s)
- A I Chebli
- National Center of Toxicology, Algiers, Algeria.
| | - M A Reffai
- National Center of Toxicology, Algiers, Algeria
| | - A Amziane
- National Center of Toxicology, Algiers, Algeria
- Faculty of Pharmacy, University of Algiers 1, Algiers, Algeria
| | - J Djerroud
- National Center of Toxicology, Algiers, Algeria
| | - Y Zebbiche
- Faculty of Pharmacy, University of Algiers 1, Algiers, Algeria
| |
Collapse
|
10
|
Leiva-Tafur D, Rascón J, Corroto de la Fuente F, Goñas M, Gamarra Torres OA, Oliva-Cruz M. Spatio-temporal evaluation of metals and metalloids in the water of high Andean livestock micro-watersheds, Amazonas, Peru. Heliyon 2024; 10:e33013. [PMID: 38948038 PMCID: PMC11211900 DOI: 10.1016/j.heliyon.2024.e33013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/13/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024] Open
Abstract
Cattle ranching is a fundamental economic activity in northern Peru, where proper management of water resources is crucial. This study, a pioneer in the region, evaluated water quality and its suitability for human consumption, vegetable irrigation, and livestock production. It is also the first study to document the presence of metals and metalloids in vulnerable areas because they are located at the headwaters of river watersheds. The spatiotemporal evaluation of physicochemical parameters, metals, and metalloids was performed in five micro-watersheds (Cabildo, Timbambo, Pomacochas, Atuen, and Ventilla) from water samples collected in the dry season (October 2017) and wet season (March 2018). The parameters were analyzed using microwave plasma atomic emission spectrometry. The results were contrasted with international and Peruvian quality standards related to dairy cow production. The highest values of pH, total dissolved solids, and electrical conductivity were reported during the dry season, and the highest turbidity during the wet season. Of the metals evaluated, arsenic (As) was omnipresent in all the micro-watersheds, followed by lead (Pb). In contrast to World Health Organization regulations, concentrations of As, cadmium (Cd), Pb, and iron represent a risk; according to Peruvian regulations, As and Pb exceed the concentrations established for use in animal drinking water and vegetable irrigation, and according to water guidelines for dairy cattle, concentrations of As, Pb, Cd, and Al exceed the permitted limits. The high concentrations of these metals in the study area are attributable to a synergy between natural factors, such as Andean geology and livestock activity. The data reported will allow for proper water resource management, pollution prevention, and the design and adoption of mitigation measures.
Collapse
Affiliation(s)
- Damaris Leiva-Tafur
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Jesús Rascón
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | | | - Malluri Goñas
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
- Centro Experimental Yanayacu, Instituto Nacional de Innovación Agraria, Jaén, 06801, Cajamarca, Peru
| | - Oscar Andrés Gamarra Torres
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Manuel Oliva-Cruz
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| |
Collapse
|
11
|
Adelusi OA, Oladeji OM, Gbashi S, Njobeh PB. Influence of geographical location on the distribution of heavy metals in dairy cattle feeds sourced from two South African provinces. Food Sci Nutr 2024; 12:4223-4232. [PMID: 38873466 PMCID: PMC11167146 DOI: 10.1002/fsn3.4082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 06/15/2024] Open
Abstract
The contamination of feed and food by heavy metals represents a significant concern for the health of both animals and humans. This study investigates the impact of geographical location on heavy metal distribution in dairy cattle feeds sourced from Free State and Limpopo, South Africa (SA). A total of 70 feed samples (40 from Free State and 30 from Limpopo) were collected from 2018 to 2019 and analyzed for heavy metals, including cadmium (Cd), arsenic (As), copper (Cu), zinc (Zn), lead (Pb), and chromium (Cr), using inductively coupled plasma mass spectrometry (ICP-MS). Our findings revealed the presence of Cr, Cu, and Zn in the feeds, but at levels below the FAO/WHO permissible limits. Additionally, As, Cd, and Pb concentrations in the feeds were below the Limit of Detections (LODs). Generally, Cr concentrations (0.032-0.454 mg/kg) identified in the Free State samples were lower than those found in Limpopo (0.038-1.459 mg/kg), while the levels of Cu (0.092-4.898 mg/kg) and Zn (0.39-13.871 mg/kg) recorded in the Free State samples were higher than those from Limpopo [(0.126-3.467 mg/kg) and (0.244-13.767 mg/kg), respectively]. According to independent sample t-tests, Cu and Zn levels were substantially higher (p ≤ .05) in Free State feeds compared to Limpopo, while Limpopo feeds exhibited significantly higher (p ≤ .05) Cr concentrations than Free State feeds. Despite the low recorded heavy metal levels, regular monitoring of these elements in cow diets across all SA provinces is essential for ensuring the well-being of animals and humans.
Collapse
Affiliation(s)
- Oluwasola Abayomi Adelusi
- Department of Biotechnology and Food Technology, Faculty of ScienceUniversity of JohannesburgJohannesburgSouth Africa
| | - Oluwaseun Mary Oladeji
- Department of Biology and Environmental Science, Faculty of ScienceSefako Makgatho Health Sciences UniversityPretoriaSouth Africa
| | - Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of ScienceUniversity of JohannesburgJohannesburgSouth Africa
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of ScienceUniversity of JohannesburgJohannesburgSouth Africa
| |
Collapse
|
12
|
Mezzetti M, Passamonti MM, Dall’Asta M, Bertoni G, Trevisi E, Ajmone Marsan P. Emerging Parameters Justifying a Revised Quality Concept for Cow Milk. Foods 2024; 13:1650. [PMID: 38890886 PMCID: PMC11171858 DOI: 10.3390/foods13111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Milk has become a staple food product globally. Traditionally, milk quality assessment has been primarily focused on hygiene and composition to ensure its safety for consumption and processing. However, in recent years, the concept of milk quality has expanded to encompass a broader range of factors. Consumers now also consider animal welfare, environmental impact, and the presence of additional beneficial components in milk when assessing its quality. This shifting consumer demand has led to increased attention on the overall production and sourcing practices of milk. Reflecting on this trend, this review critically explores such novel quality parameters, offering insights into how such practices meet the modern consumer's holistic expectations. The multifaceted aspects of milk quality are examined, revealing the intertwined relationship between milk safety, compositional integrity, and the additional health benefits provided by milk's bioactive properties. By embracing sustainable farming practices, dairy farmers and processors are encouraged not only to fulfill but to anticipate consumer standards for premium milk quality. This comprehensive approach to milk quality underscores the necessity of adapting dairy production to address the evolving nutritional landscape and consumption patterns.
Collapse
Affiliation(s)
- Matteo Mezzetti
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| | - Matilde Maria Passamonti
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| | - Margherita Dall’Asta
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| | - Giuseppe Bertoni
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| | - Erminio Trevisi
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
- Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production of the Università Cattolica del Sacro Cuore (CREI), 29122 Piacenza, Italy
| | - Paolo Ajmone Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (M.D.); (G.B.); (E.T.)
| |
Collapse
|
13
|
Chirinos-Peinado D, Castro-Bedriñana J, Ríos-Ríos E, Castro-Chirinos G, Quispe-Poma Y. Lead, Cadmium, and Arsenic in Raw Milk Produced in the Vicinity of a Mini Mineral Concentrator in the Central Andes and Health Risk. Biol Trace Elem Res 2024; 202:2376-2390. [PMID: 37713056 PMCID: PMC10954997 DOI: 10.1007/s12011-023-03838-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
The bovine milk quality, safety, and security are of great concern mainly due to the dispersion of toxic substances from various anthropogenic activities and poor practices for organophosphates in agriculture use. This study evaluated the potential risk to human health from lead (Pb), cadmium (Cd), and arsenic (As) from the consumption of milk produced in an area of the Central Andes valley near a mini mineral concentrator by estimating the weekly intake (WI), dietary risk quotient (DRC), hazard quotient (THQ), and hazard index (HI) for the Peruvian population aged 2 to 85 years, in three scenarios of milk consumption by age (minimum, average, and maximum). Toxic element quantification was performed by flame atomic absorption spectrometry following standardized procedures. The mean amount ± standard deviation of Pb, Cd, and As in soils was 292±60.90, 3.54±1.58, and 5.60±2.20 mg/kg, the order of importance being Pb>As>Cd. The contents of Pb, Cd, and As in pastures were 23.17±10.02, 0.25±0.57, and 0.06±0.09 mg/kg, being from highest to lowest Pb>Cd>As. The means of Pb, Cd, and As content in 19 milk samples were 0.029±0.022, 0.007±0.006, and 0.010±0.004 mg/kg. Pb and Cd exceeded the maximum permissible limits (MPL), and the As was below the MPL. At all ages and milk consumption levels, the WI for Pb and Cd were below the estimated tolerable intake (TWI). The WI for As in < 19 years was higher than the TWI. The DRC for Pb and Cd at all three milk intake levels and all ages was < 1, and for As, it was > 1 in < 19 years, being the risk group. The TQH and HI for Pb and Cd were also > 1, signifying no health risk, and for As, the values were > 1 in < 11 years. Our results are valuable for preventing adverse health impacts from safe and innocuous milk consumption.
Collapse
Affiliation(s)
- Doris Chirinos-Peinado
- Research Center in Food and Nutritional Security, Universidad Nacional del Centro del Perú, Huancayo, Junín, Perú
| | - Jorge Castro-Bedriñana
- Research Center in Food and Nutritional Security, Universidad Nacional del Centro del Perú, Huancayo, Junín, Perú.
| | - Elva Ríos-Ríos
- Department of Chemistry, Science Faculty, Universidad Nacional Agraria La Molina, Lima, Perú
| | | | - Yubaly Quispe-Poma
- Zootechnical Faculty, Universidad Nacional del Centro del Perú, Huancayo, Junín, Perú
| |
Collapse
|
14
|
Chirinos-Peinado D, Castro-Bedriñana J, Barnes EPG, Ríos-Ríos E, García-Olarte E, Castro-Chirinos G. Assessing the Health Risk and Trophic Transfer of Lead and Cadmium in Dairy Farming Systems in the Mantaro Catchment, Central Andes of Peru. TOXICS 2024; 12:308. [PMID: 38787087 PMCID: PMC11125971 DOI: 10.3390/toxics12050308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
This study investigated lead (Pb) and cadmium (Cd) transfer in three dairy farming areas in the Mantaro river headwaters in the central Peruvian Andes and at varying distances from the mining complex at La Oroya. At each of these sites, the transfer of trace metals from the soil to raw milk was estimated, and a hazard assessment for lead and cadmium was carried out in scenarios of minimum, average, and maximum milk consumption in a Peruvian population aged 2-85. Pb and Cd were quantified by flame atomic absorption spectrometry. Significantly, the concentrations of lead and cadmium were found to exceed the maximum limits recommended by the World Health Organization, with a positive geospatial trend correlated with the distance from mining activity. Both Pb and Cd were found to be transferred through the soil-pasture-milk pathway, with the primary source of Cd being phosphate-based fertilizers used in pasture improvement. Pb was found to be the most significant contributor to the Hazard Index (HI) with those under 19 years of age and over 60 recording an HI of >1, with infants being the most vulnerable group due to their greater milk consumption in relation to their body weight. A marginal increase in contamination was observed in the dry season, indicating the need for studies to be expanded over several annual cycles.
Collapse
Affiliation(s)
- Doris Chirinos-Peinado
- Nutritional Food Safety Research Center, Universidad Nacional del Centro del Perú, Huancayo 12007, Peru; (D.C.-P.); (E.G.-O.)
| | - Jorge Castro-Bedriñana
- Nutritional Food Safety Research Center, Universidad Nacional del Centro del Perú, Huancayo 12007, Peru; (D.C.-P.); (E.G.-O.)
| | - Eustace P. G. Barnes
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
| | - Elva Ríos-Ríos
- Science Faculty, Universidad Nacional Agraria La Molina, Lima 15024, Peru;
| | - Edgar García-Olarte
- Nutritional Food Safety Research Center, Universidad Nacional del Centro del Perú, Huancayo 12007, Peru; (D.C.-P.); (E.G.-O.)
| | | |
Collapse
|
15
|
Chen J, Meng H, Fang Z, Lukman I, Gao J, Liao J, Deng Q, Sun L, Gooneratne R. An "off-on" fluorescent nanosensor for the detection of cadmium ions based on APDC-etched CdTe/CdS/SiO 2 quantum dots. Heliyon 2024; 10:e26980. [PMID: 38463779 PMCID: PMC10920365 DOI: 10.1016/j.heliyon.2024.e26980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
In this study, we have developed a novel fluorescent "OFF-ON" quantum dots (QDs) sensor based on CdTe/CdS/SiO2 cores. Ammonium pyrrolidine dithiocarbamate (APDC), ethylenediamine tetraacetic acid (EDTA), and 1,10-phenanthroline (Phen) served as potential chemical etchants. Among these three etchants, APDC exhibited the most pronounced quenching effect (94.06%). The APDC-etched CdTe/CdS/SiO2 QDs demonstrated excellent optical properties: the fluorescence of the APDC-etched CdTe/CdS/SiO2 QDs system (excitation wavelength: 365 nm and emission wavelength: 622 nm) was significantly and selectively restored upon the addition of cadmium ions (Cd2+) (89.22%), compared to 15 other metal ions. The linear response of the APDC-etched CdTe/CdS/SiO2 QDs was observed within the cadmium ion (Cd2+) concentration ranges of 0-20 μmol L-1 and 20-160 μmol L-1 under optimized conditions (APDC: 300 μmol L-1, pH: 7.0, reaction time: 10 min). The detection limit (LOD) of the APDC-etched CdTe/CdS/SiO2 QDs for Cd2+ was 0.3451 μmol L-1 in the range of 0-20 μmol L-1. The LOD achieved by the QDs in this study surpasses that of the majority of previously reported nanomaterials. The feasibility of using APDC-etched CdTe/CdS/SiO2 QDs for Cd2+ detection in seawater, freshwater, and milk samples was verified, with average recoveries of 95.27%-110.68%, 92%-106.47%, and 90.73%-111.60%, respectively, demonstrating satisfactory analytical precision (RSD ≤ 8.26).
Collapse
Affiliation(s)
- Jiaqian Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Haimei Meng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Iddrisu Lukman
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jianmeng Liao
- Zhanjiang Institute for Food and Drug Control, Zhanjiang, 524022, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| |
Collapse
|
16
|
Wang M, Xia Y, Ai S, Gu X, Wang HL. Kaempferol improves Pb-induced cognitive impairments via inhibiting autophagy. J Nutr Biochem 2024; 125:109556. [PMID: 38151193 DOI: 10.1016/j.jnutbio.2023.109556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Kaempferol (Kam) is a flavonoid antioxidant found in fruits and vegetables, which was discovered as neuroprotective antioxidants. Lead (Pb), an environmental pollution, could induce learning and memory deficits. Nevertheless, little is known about the mechanisms underlying Kam actions in Pb-induced learning and memory deficits. In this study, we investigated the effects of Kam on Pb-induced cognitive deficits. Pb-exposed rats were treated with 50 mg/kg Kam from postnatal day (PND) 30 to PND 60. Then, Y-maze and Morris water maze have been used to detect the spatial memory in all groups of rats. Hematoxylin and eosin (HE) staining and Nissl staining were used to analyze the neuronal structure damages. The results found Kam treatment improved the learning and memory ability and alleviated hippocampal neuronal pathological damages. Besides, Kam could significantly reverse the synaptic transmission related protein expression including PSD95 and NMDAR2B. Further research found that Kam downregulated autophagy markers, P62, ATG5, Beclin1, and LC3-II. Furthermore, 3-MA, autophagy inhibitor, increased the levels of NMDAR2B and PSD95 in Pb-induced PC12 cells, indicating Kam alleviated Pb-induced neurotoxicity through inhibiting autophagy activation. Our results showed that Kam could ameliorate Pb-induced cognitive impairments and neuronal damages by decreasing Pb-induced excess autophagy accumulation.
Collapse
Affiliation(s)
- Mengmeng Wang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yanzhou Xia
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, PR China
| | - Shu Ai
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, PR China
| | - Xiaozhen Gu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Hui-Li Wang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
17
|
Forcada S, Menéndez Miranda M, Stevens F, Royo LJ, Fernández Pierna JA, Baeten V, Soldado A. Industrial impact on sustainable dairy farms: Essential elements, hazardous metals and polycyclic aromatic hydrocarbons in forage and cow's milk. Heliyon 2023; 9:e20977. [PMID: 37886788 PMCID: PMC10597811 DOI: 10.1016/j.heliyon.2023.e20977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Sustainable dairy farms are characterised by the self-production of forage for animal feed. These farms are sometimes located near industrial areas, entailing a risk of food chain contamination with hazardous metals and polycyclic aromatic hydrocarbons (PAHs). Accordingly, evaluating the impact of pollution on forage and milk is of great interest. In this study, the effects of industrial factors on sustainable forage from 43 dairy farms and possible correlations between inorganic elements and PAHs were studied. Spearman's correlation and principal component analysis (PCA) were performed for the forage and milk. Most of the inorganic elements in the forage were below the maximum residual limits for cadmium (Cd) and lead (Pb), established in EU 2013/1275 and EU 2019/1869, respectively. However, arsenic (As) and mercury (Hg) levels were above their respective limits in the forage (EU 2019/1869). No milk samples exceeded the maximum residual limits for Pb (EU 488/2014) or Cd (EU 1881/2006) in dairy products. Heavy-weight PAHs (HW-PAHs, four or more aromatic rings) were detected in forage but not in milk. In the forage samples, HW-PAHs were positively correlated with Zn and Cd. In addition, some hazardous metals (chromium (Cr), iron (Fe), As, Hg, and Pb) also were positively correlated with Zn and Cd. Interestingly, no correlations were found between forage pollutants and milk, suggesting that these pollutants have a low transfer rate to milk. The PCA results highlighted the predominant contribution of PAHs to the global variance in forage samples collected at different distances from industrial areas. In milk, the contributions of hazardous metals and PAHs were more balanced than in forages. Finally, when distances to potential pollution sources were included in the PCA of forage samples, a negative correlation was observed between the former and the concentrations of HW-PAHs, Cd, and Zn, suggesting that thermal power plants and steel factory emissions were the main sources of polluting forage in this area.
Collapse
Affiliation(s)
- Sergio Forcada
- Regional Service for Agrofood Research and Development (SERIDA), PO Box 13, 33300, Asturias, Spain
| | - Mario Menéndez Miranda
- Regional Service for Agrofood Research and Development (SERIDA), PO Box 13, 33300, Asturias, Spain
| | - François Stevens
- Department of Knowledge and Valorization of Agricultural Products, Walloon Agricultural Research Centre (CRA-W), Chaussée de Namur 24, 5030, Gembloux, Belgium
| | - Luis J. Royo
- Regional Service for Agrofood Research and Development (SERIDA), PO Box 13, 33300, Asturias, Spain
| | - Juan Antonio Fernández Pierna
- Department of Knowledge and Valorization of Agricultural Products, Walloon Agricultural Research Centre (CRA-W), Chaussée de Namur 24, 5030, Gembloux, Belgium
| | - Vincent Baeten
- Department of Knowledge and Valorization of Agricultural Products, Walloon Agricultural Research Centre (CRA-W), Chaussée de Namur 24, 5030, Gembloux, Belgium
| | - Ana Soldado
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Asturias, Spain
| |
Collapse
|
18
|
Castro-Bedriñana J, Chirinos-Peinado D, Ríos-Ríos E, Castro-Chirinos G, Chagua-Rodríguez P, De La Cruz-Calderón G. Lead, Cadmium, and Arsenic in Raw Cow's Milk in a Central Andean Area and Risks for the Peruvian Populations. TOXICS 2023; 11:809. [PMID: 37888660 PMCID: PMC10611204 DOI: 10.3390/toxics11100809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Milk and its derivatives are basic foods in Peru, especially for children. The Junín region, in the central Andes, is one of the leading dairy basins. However, the safety of milk is affected by mining-metallurgical activities, wastewater dumping, organic residues, and inappropriate use of organophosphate fertilizers in agriculture whose contaminants reach the food chain, putting human health at risk. The purpose of this study was to evaluate the bioaccumulation of lead (Pb), cadmium (Cd), and arsenic (As) in milk produced on a representative farm in central Peru, which uses phosphorous agrochemicals and is adjacent to a small mineral concentrator and a municipal solid waste dump, and to evaluate the potential risk for the Peruvian population of 2-85 years considering three levels of daily intake by age, which constitutes the innovative contribution of the study. These three elements were quantified by flame atomic absorption spectrometry following standardized procedures. The mean contents of Pb (0.062 mg/kg), Cd (0.014 mg/kg), and As (0.030 mg/kg) in milk exceeded the maximum limits allowed by international standards. At all ages, the target quotient hazard followed a descending order of As > Pb > Cd, being > 1 in the case of As. The hazard index was >1 for children under 7, 9, and 11 years of age in the scenarios of low, medium, and high milk intake. The information is valid for formulating policies to prevent adverse health effects and develop standards and awareness programs, monitoring, and control of heavy metals in milk in Peru.
Collapse
Affiliation(s)
- Jorge Castro-Bedriñana
- Research Center in Food and Nutritional Security, Universidad Nacional del Centro del Perú, Huancayo 12001, Peru;
| | - Doris Chirinos-Peinado
- Research Center in Food and Nutritional Security, Universidad Nacional del Centro del Perú, Huancayo 12001, Peru;
| | - Elva Ríos-Ríos
- Department of Chemistry, Science Faculty, Universidad Nacional Agraria La Molina, Lima 14024, Peru;
| | | | - Perfecto Chagua-Rodríguez
- Faculty of Agroindustrial Engineering, Universidad Nacional Autónoma Altoandina de Tarma, Tarma 12701, Peru;
| | | |
Collapse
|
19
|
de Oliveira Filho EF, López-Alonso M, Vieira Marcolino G, Castro Soares P, Herrero-Latorre C, Lopes de Mendonça C, de Azevedo Costa N, Miranda M. Factors Affecting Toxic and Essential Trace Element Concentrations in Cow's Milk Produced in the State of Pernambuco, Brazil. Animals (Basel) 2023; 13:2465. [PMID: 37570274 PMCID: PMC10417244 DOI: 10.3390/ani13152465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of this study was to provide information on the levels of toxic (Cd and Pb) and essential (Cu, Fe, and Zn) elements in cow's milk produced in the State of Pernambuco (Brazil). A total of 142 samples of raw milk were collected, and the concentrations of essential and toxic elements were determined using inductively coupled plasma-optical emission spectrometry. In almost 30% of the samples analyzed, the Pb content exceeded the maximum level established in the Brazilian legislation (0.05 mg/L). By contrast, in all the samples, the Cd content was below the maximum allowable level (0.02 mg/L). The essential trace elements Cu, Fe, and Zn were generally present at lower concentrations than reported in other studies and can be considered within the deficient range for cow's milk. Statistical and chemometric procedures were used to evaluate the main factors influencing the metal concentrations (proximity to major roads, presence of effluents, and milking method). The study findings demonstrate that the proximity of the farms to major roads influences the concentrations of Cd, Pb, and Cu and that this is the main factor explaining the Pb content of milk. In addition, the presence of effluents influenced the concentrations of Cu, while no relationship between the metal content and the milking method was observed. Thus, in accordance with the study findings, the consumption of cow's milk produced in the region can be considered a risk to public health due to the high concentrations of Pb and the low concentrations of other essential minerals such as Cu, Zn, and Fe in some of the milk samples.
Collapse
Affiliation(s)
- Emanuel Felipe de Oliveira Filho
- Department of Veterinary Medicine, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, Brazil; (E.F.d.O.F.); (P.C.S.)
- Department of Animal Pathology, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Marta López-Alonso
- Department of Animal Pathology, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain;
| | | | - Pierre Castro Soares
- Department of Veterinary Medicine, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, Brazil; (E.F.d.O.F.); (P.C.S.)
| | - Carlos Herrero-Latorre
- Research Institute on Chemical and Biological Analysis, Analytical Chemistry, Nutrition and Bromatology Department, Faculty of Sciences, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Carla Lopes de Mendonça
- Clinic of Cattle of Garanhuns/UFRPE, Campus Garanhuns, Av. Bom Pastor–Boa Vista, Garanhuns 55292-270, Brazil; (C.L.d.M.); (N.d.A.C.)
| | - Nivaldo de Azevedo Costa
- Clinic of Cattle of Garanhuns/UFRPE, Campus Garanhuns, Av. Bom Pastor–Boa Vista, Garanhuns 55292-270, Brazil; (C.L.d.M.); (N.d.A.C.)
| | - Marta Miranda
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
20
|
Nieckarz Z, Pawlak K, Baran A, Wieczorek J, Grzyb J, Plata P. The concentration of particulate matter in the barn air and its influence on the content of heavy metals in milk. Sci Rep 2023; 13:10626. [PMID: 37391588 PMCID: PMC10313682 DOI: 10.1038/s41598-023-37567-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
Heavy metals are one of the components of smog, which is mainly the product of burning fossil fuels in residential buildings. These elements, introduced into the body of cattle by inhalation, may enter the milk. The goal of this study was to assess the impact of particulate pollution in the atmospheric air on the concentration of particulate matter in the air of a dairy cattle barn and on the content of selected heavy metals in milk from cows present in the building. Measurements were taken between November and April (148 measurement days). The calculations carried out showed a high correlation (RS = + 0.95) between the concentrations of particulates measured outside and inside the barn, which is indicative of a significant impact of the atmospheric air on the particulate pollution level of the livestock building. The number of days in excess of the daily standard for PM10 inside was 51. The conducted analysis of the chemical composition of the milk collected under high particulate pollution (February) showed that the permitted lead level had been exceeded-21.93 µg/kg (norm 20.00 µg/kg).
Collapse
Affiliation(s)
- Zenon Nieckarz
- Department of Experimental Computer Physics, Institute of Physics, Jagiellonian University in Cracow, Kraków, Poland
| | - Krzysztof Pawlak
- Department of Zoology and Animal Welfare, University of Agriculture in Cracow, Aleja Adama Mickiewicza 24/28, 30-059, Kraków, Poland.
| | - Agnieszka Baran
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Cracow, Kraków, Poland
| | - Jerzy Wieczorek
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Cracow, Kraków, Poland
| | - Jacek Grzyb
- Department of Microbiology and Biomonitoring, University of Agriculture in Cracow, Kraków, Poland
| | - Patrycja Plata
- Department of Zoology and Animal Welfare, University of Agriculture in Cracow, Aleja Adama Mickiewicza 24/28, 30-059, Kraków, Poland
| |
Collapse
|
21
|
Wati LR, Sargowo D, Nurseta T, Zuhriyah L. The Role of Protein Intake on the Total Milk Protein in Lead-Exposed Lactating Mothers. Nutrients 2023; 15:nu15112584. [PMID: 37299547 DOI: 10.3390/nu15112584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Protein is an essential macronutrient for the growth and development of infants. Protein levels in lactating mothers are dynamic and influenced by various factors, particularly the environment and maternal characteristics. Therefore, this study aimed to evaluate the complex correlation between maternal blood lead levels (BLLs), maternal diet, and total milk protein. The Kruskal-Wallis test was used to compare total milk protein in the three groups of lead exposure, while Spearman's correlation was used to assess the correlation between maternal diet, BLLs, and total milk protein. The multivariate analysis used multiple linear regression. The results showed that the median of maternal BLLs and total milk protein were 3.3 µg/dL and 1.07 g/dL, respectively. Maternal protein intake and current BMI had a positive correlation with total milk protein, while BLLs had a negative correlation. BLLs ≥ 5 μg/dL had the most significant impact on reducing the total milk protein (p = 0.032). However, increasing maternal protein intake can effectively maintain total milk protein levels in mothers with BLLs under 5 μg/dL (p < 0.001). It is crucial to measure BLLs in lactating mothers residing in areas exposed to lead because high maternal protein intake can only maintain total milk protein levels when the BLLs are <5 μg/dL.
Collapse
Affiliation(s)
- Linda Ratna Wati
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang 65145, East Java, Indonesia
- Department of Midwifery, Faculty of Medicine, Universitas Brawijaya, Malang 65145, East Java, Indonesia
| | - Djanggan Sargowo
- Department of Cardiology, Faculty of Medicine, Universitas Brawijaya, Universitas Brawijaya Hospital, Malang 65145, East Java, Indonesia
| | - Tatit Nurseta
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Brawijaya, Malang 65145, East Java, Indonesia
| | - Lilik Zuhriyah
- Department of Public Health, Faculty of Medicine, Universitas Brawijaya, Malang 65145, East Java, Indonesia
| |
Collapse
|
22
|
Kharkwal V, Bains K, Bishnoi M, Devi K. Health risk assessment of arsenic, lead and cadmium from milk consumption in Punjab, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:723. [PMID: 37225915 DOI: 10.1007/s10661-023-11256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023]
Abstract
Milk is an integral part of the human diet and its contamination with heavy metals may alter the health of its consumers. The study was conducted to assess the health risk associated with the heavy metals in milk samples collected from urban and rural households of Ludhiana and Bathinda districts of Punjab, India. One hundred and fifty milk samples were analyzed for heavy metals i.e. arsenic, cadmium, lead and mercury using Inductively Coupled Plasma Mass Spectrometry ICP-MS. The health risks, such as non-carcinogenic and carcinogenic risks from heavy metals in milk samples, were calculated for selected males and females of adults, children and elderly subjects. The results indicated that the arsenic, cadmium and lead content in milk samples were within permissible limit whereas mercury was not detected in any sample. The mean values showed that the selected urban and rural population of both districts was safe from non-carcinogenic risk associated with heavy metal content of milk. However, urban (50% males and 86% females) and rural (25% males) children of Bathinda district were at risk of cancer from arsenic and cadmium present in milk samples, respectively. It was also observed that the selected population of both districts were safe from carcinogenic risk due to the combined effects of heavy metals. It was concluded that even with a small amount of heavy metal in milk samples, the rural adults, rural male children and urban female children of Bathinda district had carcinogenic risk due to milk consumption. Hence, regular monitoring and testing of milk samples must be done as a public health measure to prevent heavy metal contamination in milk to safeguard the health of consumers.
Collapse
Affiliation(s)
- Vineeta Kharkwal
- Department of Food and Nutrition, College of Community Science, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Kiran Bains
- Department of Food and Nutrition, College of Community Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mahendra Bishnoi
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Kirti Devi
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| |
Collapse
|
23
|
Forcada S, Menéndez-Miranda M, Boente C, Rodríguez Gallego JL, Costa-Fernández JM, Royo LJ, Soldado A. Impact of Potentially Toxic Compounds in Cow Milk: How Industrial Activities Affect Animal Primary Productions. Foods 2023; 12:foods12081718. [PMID: 37107514 PMCID: PMC10138093 DOI: 10.3390/foods12081718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) frequently coexist in soils near industrial areas and sometimes in environmental compartments directly linked to feed (forage) and food (milk) production. However, the distribution of these pollutants along the dairy farm production chain is unclear. Here, we analyzed soil, forage, and milk samples from 16 livestock farms in Spain: several PTEs and PAHs were quantified. Farms were compared in terms of whether they were close to (<5 km) or far away from (>5 km) industrial areas. The results showed that PTEs and PAHs were enriched in the soils and forages from farms close to industrial areas, but not in the milk. In the soil, the maximum concentrations of PTEs reached 141, 46.1, 3.67, 6.11, and 138 mg kg-1 for chromium, arsenic, cadmium, mercury, and lead, respectively, while fluoranthene (172.8 µg kg-1) and benzo(b)fluoranthene (177.4 µg kg-1) were the most abundant PAHs. Principal component analysis of the soil PTEs suggested common pollution sources for iron, arsenic, and lead. In the forage, the maximum contents of chromium, arsenic, cadmium, mercury, and lead were 32.8, 7.87, 1.31, 0.47, and 7.85 mg kg-1, respectively. The PAH found in the highest concentration in the feed forage was pyrene (120 µg kg-1). In the milk, the maximum PTE levels were much lower than in the soil or the feed forages: 74.1, 16.1, 0.12, 0.28, and 2.7 µg kg-1 for chromium, arsenic, cadmium, mercury, and lead, respectively. Neither of the two milk samples exceeded the 20 µg kg-1 limit for lead set in EU 1881/2006. Pyrene was the most abundant PAH found in the milk (39.4 µg kg-1), while high molecular weight PAHs were not detected. For PTEs, the results showed that soil-forage transfer factors were higher than forage-milk ratios. Our results suggest that soils and forages around farms near industries, as well as the milk produced from those farms, have generally low levels of PTE and PAH contaminants.
Collapse
Affiliation(s)
- Sergio Forcada
- Regional Service for Agrofood Research and Development (SERIDA), P.O. Box 13, 33300 Villaviciosa, Asturias, Spain
| | - Mario Menéndez-Miranda
- Regional Service for Agrofood Research and Development (SERIDA), P.O. Box 13, 33300 Villaviciosa, Asturias, Spain
| | - Carlos Boente
- Atmospheric Pollution Laboratory, CIQSO-Center for Research in Sustainable Chemistry, Associate Unit CSIC-University of Huelva, Campus El Carmen s/n, 21071 Huelva, Huelva, Spain
| | - José Luis Rodríguez Gallego
- Environmental Biogeochemistry & Raw Materials Group and INDUROT, Campus de Mieres, University of Oviedo, C/Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias, Spain
| | - José M Costa-Fernández
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006 Oviedo, Asturias, Spain
| | - Luis J Royo
- Regional Service for Agrofood Research and Development (SERIDA), P.O. Box 13, 33300 Villaviciosa, Asturias, Spain
- Department of Functional Biology, Genetics, University of Oviedo, Avda. Julián Clavería 6, 33006 Oviedo, Asturias, Spain
| | - Ana Soldado
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
24
|
Determination of Heavy Metal Ions in Infant Milk Powder Using a Nanoporous Carbon Modified Disposable Sensor. Foods 2023; 12:foods12040730. [PMID: 36832804 PMCID: PMC9956227 DOI: 10.3390/foods12040730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Due to the risk of heavy metal pollution in infant milk powder, it is significant to establish effective detection methods. Here, a screen-printed electrode (SPE) was modified with nanoporous carbon (NPC) to detect Pb(II) and Cd(II) in infant milk powder using an electrochemical method. Using NPC as a functional nanolayer facilitated the electrochemical detection of Pb(II) and Cd(II) due to its efficient mass transport and large adsorption capacity. Linear responses were obtained for Pb (II) and Cd(II) in the range from 1 to 60 µg L-1 and 5 to 70 µg L-1, respectively. The limit of detection was 0.1 µg L-1 for Pb(II) and 1.67 µg L-1 for Cd(II). The reproducibility, stability, and anti-interference performance of the prepared sensor were tested as well. The heavy metal ion detection performance in the extracted infant milk powder shows that the developed SPE/NPC possesses the ability to detect Pb(II) and Cd(II) in milk powder.
Collapse
|
25
|
Yan M, Niu C, Li X, Wang F, Jiang S, Li K, Yao Z. Heavy metal levels in milk and dairy products and health risk assessment: A systematic review of studies in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158161. [PMID: 35988597 DOI: 10.1016/j.scitotenv.2022.158161] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Previous studies have indicated that heavy metal levels in milk vary partly depending on environmental metal concentrations. Given the increasing consumption of milk in China, it is essential to pay attention to milk safety. We performed a systematic review of relevant published studies to evaluate the heavy metal levels in milk and dairy products and the associated health risks, discuss environmental sources of heavy metals, and propose future research directions. A literature search was implemented in the Web of Science Core Collection and PubMed using multiple keywords such as "metal," "milk," "dairy products," and "China". A total of 16 published studies that analyzed metal levels in milk and dairy products in 20 provincial administrative regions were included. Most studies detected toxic heavy metals in milk and dairy products samples, including mercury, lead, cadmium, chromium, and arsenic. The lead concentration in milk from these studies did not exceed the Chinese standard for milk. However, three studies detected relatively high lead levels in both commercial and raw milk, exceeding the European Commission standard. The polluted environment surrounding the farm, feed, and packaging materials are likely sources of metals in milk and dairy products. The hazard index for the 11 analyzed metal elements in milk and dairy products was lower than 1, indicating negligible non-carcinogenic health risks from exposure to these metals. Children are at a higher risk than adults. This review illustrates that research in this field is limited to China. More research should be conducted in the future, such as evaluating the contribution of each environmental source of metal in milk and dairy products.
Collapse
Affiliation(s)
- Meilin Yan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Chenyue Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Ke Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
26
|
Sizova E, Yausheva E, Marshinskaia O, Kazakova T, Khlopko Y, Lebedev S. Elemental composition of the hair and milk of black-spotted cows and its relationship with intestinal microbiome reorganization. Vet World 2022; 15:2565-2574. [PMID: 36590114 PMCID: PMC9798049 DOI: 10.14202/vetworld.2022.2565-2574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim The cattle breeding system is facing severe problems associated with the increased negative impact of various human activity areas on the environment and the bodies of farm animals. The use of heavy metals in different production areas leads to their accumulation in the environment due to the ingestion of animals and humans through animal products. This study aimed to assess the elemental composition of the hair and milk of black-spotted cows and to identify the relationship between the content of toxic and essential elements and the state of the intestinal microbiome. Materials and Methods The element status was estimated by studying the chemical composition of the biosubstrates using inductively coupled plasma-mass spectroscopy. Based on the analysis of hair, the elemental composition, and the use of the coefficient of toxic load, two groups of animals were formed: Group I, which included cows with a lower load factor, and Group II, which included cows with a higher load factor. Results An increase in the heavy metal concentrations in the hair and milk of animals in Group II was observed. The As, Fe, Pb, Al, Co, Ni, and V concentrations in the hair of cows from Group II increased relative to Group I by 19%, 29%, 24.5%, 32.3%, 35.6%, 21.5%, and 18.2%, respectively. There was a significant increase in the level of Fe by 11.5%, Cr by 8.25%, Mn by 17.6%, Pb by 46.1%, and Cd by 25% in Group II compared with Group I in the assessment of elemental milk composition. There were no apparent changes in the intestinal microbiome of Group II. Conclusion Some heavy metals were accumulated in the bodies and milk of animals. This shows a high probability of heavy metals causing harm to the health of animals and humans.
Collapse
Affiliation(s)
- Elena Sizova
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Elena Yausheva
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Olga Marshinskaia
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Tatiana Kazakova
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia,Corresponding author: Tatiana Kazakova, e-mail: Co-authors: ES: , EY: , OM: , YK: , SL:
| | - Yuriy Khlopko
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Svyatoslav Lebedev
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| |
Collapse
|
27
|
Non-carcinogenic risk assessment of cadmium and lead in raw milk from dairy production farms in Iran, using Monte Carlo Simulation approach. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
28
|
Su C, Qu X, Gao Y, Zhou X, Yang X, Zheng N. Effects of Heavy Metal Exposure from Leather Processing Plants on Serum Oxidative Stress and the Milk Fatty Acid Composition of Dairy Cows: A Preliminary Study. Animals (Basel) 2022; 12:ani12151900. [PMID: 35892550 PMCID: PMC9331539 DOI: 10.3390/ani12151900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated whether unsaturated fatty acids in milk and the oxidative status of cows are affected by heavy metal exposure due to leather processing. The blood lead (Pb) concentrations in cows from two farms in the polluted area were 16.27 ± 8.63 μg/L, respectively, which were significantly (p < 0.05) higher than the blood Pb concentrations in cows from an unpolluted farm (6.25 ± 3.04 μg/L). There were significantly (p < 0.05) lower levels of glutathione S-transferase (GST), glutathione peroxidase (GPX), and glutathione (GSH) in the serum of cows from the polluted area compared to the levels in cows from an unpolluted area. The linoleic acid (C18:2n6c) content in milk from the polluted area was 15% lower than in the control area. There was a significant correlation between linoleic acid in milk with the blood Pb and serum GSH levels. Heavy metals can alter fatty acid synthesis through oxidative stress, which may be the mechanism by which heavy metals affect fatty acid synthesis in milk.
Collapse
Affiliation(s)
- Chuanyou Su
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.S.); (X.Q.); (Y.G.); (X.Z.); (X.Y.)
- College of Animal Science, Henan Agriculture University, Zhengzhou 450000, China
| | - Xueyin Qu
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.S.); (X.Q.); (Y.G.); (X.Z.); (X.Y.)
- Tianjin Mengde Group Co., Ltd., Tianjin 300400, China
| | - Yanan Gao
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.S.); (X.Q.); (Y.G.); (X.Z.); (X.Y.)
| | - Xuewei Zhou
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.S.); (X.Q.); (Y.G.); (X.Z.); (X.Y.)
| | - Xue Yang
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.S.); (X.Q.); (Y.G.); (X.Z.); (X.Y.)
| | - Nan Zheng
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.S.); (X.Q.); (Y.G.); (X.Z.); (X.Y.)
- Correspondence: ; Tel.: +86-10-62816069
| |
Collapse
|
29
|
Chirinos-Peinado D, Castro-Bedriñana J, Ríos-Ríos E, Mamani-Gamarra G, Quijada-Caro E, Huacho-Jurado A, Nuñez-Rojas W. Lead and Cadmium Bioaccumulation in Fresh Cow's Milk in an Intermediate Area of the Central Andes of Peru and Risk to Human Health. TOXICS 2022; 10:317. [PMID: 35736925 PMCID: PMC9227626 DOI: 10.3390/toxics10060317] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 02/01/2023]
Abstract
The dairy basin of the Mantaro River located in the centre of Peru faces serious anthropogenic disturbances as it receives emissions and discharges from the metallurgical mining activity located in the headwaters of the basin and milk contaminated with lead (Pb) and cadmium (Cd) endangers the environmental and human health, especially children. To measure the concentrations of Pb and Cd in milk and the dangers of their consumption in the Peruvian population, 40 milk samples were collected and quantified by atomic absorption spectrometry. The mean concentration of Pb in milk was 15 ± 2.6 µg/kg, which represented 75% of the Maximum Limit (ML), and that of Cd was 505 ± 123 µg/kg, which exceeded the ML by more than 194 times. The estimated weekly intake of Pb for people aged 2−85 years was below the Provisional Tolerable Weekly Intake (PTWI) references, determining risk coefficients (CRD) < 1. Weekly Cd intake was much higher than the PTWIs and CRDs were between 14 and 34, indicating that consumers would experience carcinogenic health effects, with children being at higher risk than adults, therefore, milk from the area is not safe for consumption. Cd would be transferred mainly through the soil (water)-grass-milk pathway, due to its presence in irrigation water and in fertilizers that contain Cd. The main pathway for Pb entry would be air-soil (water)-milk grass, from the fine particles emitted into the air by the mining-metallurgical activity, developed approximately 90 km from the study area.
Collapse
Affiliation(s)
- Doris Chirinos-Peinado
- Food and Nutritional Security Research Centre, Universidad Nacional del Centro del Perú, Huancayo 12006, Peru;
| | - Jorge Castro-Bedriñana
- Food and Nutritional Security Research Centre, Universidad Nacional del Centro del Perú, Huancayo 12006, Peru;
| | - Elva Ríos-Ríos
- Faculty of Science, Universidad Nacional Agraria La Molina, Lima 15024, Peru;
| | | | - Elías Quijada-Caro
- Faculty of Zootechnics, Universidad Nacional del Centro del Perú, Huancayo 12006, Peru; (E.Q.-C.); (A.H.-J.)
| | - Analí Huacho-Jurado
- Faculty of Zootechnics, Universidad Nacional del Centro del Perú, Huancayo 12006, Peru; (E.Q.-C.); (A.H.-J.)
| | - Wilfredo Nuñez-Rojas
- Specialized Research Institute, Faculty of Zootechnics, Universidad Nacional del Centro del Perú, Huancayo 12006, Peru;
| |
Collapse
|
30
|
Sharifi S, Sohrabvandi S, Mofid V, Javanmardi F, Khanniri E, Mortazavian AM. The assessment of lead concentration in raw milk collected from some major dairy farms in Iran and evaluation of associated health risk. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:181-186. [PMID: 35669832 PMCID: PMC9163241 DOI: 10.1007/s40201-021-00765-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/29/2021] [Indexed: 06/15/2023]
Abstract
Milk is one of the most consumed sources among people, especially children. hence, its contamination with heavy metals can pose a serious risk to children. Therefore, this study aimed to measure the lead concentration as one of the most dangerous heavy metals in the raw milk of several major animal husbandries in Tehran province from Iran. A total of 57 raw milk samples were collected from different regions of Tehran province. The lead contents were measured using a graphite furnace atomic absorption spectrometer. To evaluate the risk of the samples and hazard quotient (HQ) were calculated. The results showed that HQ for all samples was lower than 1 which was found within the acceptable level. Because the absorption of Pb is higher in children and this metal has a cumulative property in the body, even its small weekly intake can be dangerous in long-term consumption.
Collapse
Affiliation(s)
- Shahnaz Sharifi
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Qods Town (The West), Shahid Farahzadi Blvd, Shahid Hafezi St, Tehran, 1981619573 Iran
| | - Vahid Mofid
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Qods Town (The West), Shahid Farahzadi Blvd, Shahid Hafezi St, Tehran, 1981619573 Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Qods Town (The West), Shahid Farahzadi Blvd, Shahid Hafezi St, Tehran, 1981619573 Iran
| | - Elham Khanniri
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Qods Town (The West), Shahid Farahzadi Blvd, Shahid Hafezi St, Tehran, 1981619573 Iran
| | - Amir Mohammad Mortazavian
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Qods Town (The West), Shahid Farahzadi Blvd, Shahid Hafezi St, Tehran, 1981619573 Iran
| |
Collapse
|
31
|
Bilandžić N, Čalopek B, Sedak M, Đokić M, Murati T, Kmetič I, Gajger IT. The Content of Cobalt, Silver and Vanadium in Raw Cow's Milk in Croatia and Risk Assessment for Consumers. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:936-942. [PMID: 35083497 DOI: 10.1007/s00128-021-03436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Concentrations of selected trace elements Ag, Co and V in raw milk sampled from four geographical regions in Croatia were measured. Silver, Co and V were detected above the limit of detection within the range of 9.52%-30.8%, 1.6%-12.1% and 12.4%-30.8%. Silver concentrations were not detected in milk samples from the Croatian Littoral and Mountainous Croatia (CL-MC) region. Similar Ag content was found in Southern, Eastern and Central Croatia. The lowest mean of Co and V of 33.2 and 83.8 µg kg-1 were found in the CL-MC region while the highest of 49.8 and 136.9 µg kg-1 was found in Central Croatia. There were no statistically significant differences in Ag, Co and V contents between the four regions. The estimated daily dietary intakes (EDI) of total mean and total 95th percentile values of Ag, Co and V showed lower values in comparison with available EFSA health-based limits.
Collapse
Affiliation(s)
- Nina Bilandžić
- Department of Veterinary Public Health, Laboratory for Residue Control, Croatian Veterinary Institute, Savska c. 143, 10000, Zagreb, Croatia.
| | - Bruno Čalopek
- Department of Veterinary Public Health, Laboratory for Residue Control, Croatian Veterinary Institute, Savska c. 143, 10000, Zagreb, Croatia
| | - Marija Sedak
- Department of Veterinary Public Health, Laboratory for Residue Control, Croatian Veterinary Institute, Savska c. 143, 10000, Zagreb, Croatia
| | - Maja Đokić
- Department of Veterinary Public Health, Laboratory for Residue Control, Croatian Veterinary Institute, Savska c. 143, 10000, Zagreb, Croatia
| | - Teuta Murati
- Department of Chemistry and Biochemistry, Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Ivana Kmetič
- Department of Chemistry and Biochemistry, Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova ul. 55, 10000, Zagreb, Croatia
| |
Collapse
|
32
|
Lv B, Zhuo JZ, Peng YD, Wang Z. Comparative analysis of cadmium-induced toxicity and survival responses in the wolf spider Pirata subpiraticus under low-temperature treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32832-32844. [PMID: 35020152 DOI: 10.1007/s11356-022-18548-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) pollution is a serious heavy metal pollution in paddy fields, but its effect and underlying mechanism on soil arthropod overwintering and cold resistance are still unclear. In the present study, adult females of the wolf spider Pirata subpiraticus exposed to Cd stress underwent a simulated temperature process (25℃ → 16℃ → 8℃ → 4℃). The mortality rate and content of nutrients in the Cd-treated spiders were dramatically elevated after low-temperature treatment compared to those in the Cd-free control spiders under the same temperature condition. To uncover the putative modulatory mechanism of Cd on cold tolerance in P. subpiraticus, we employed an in-depth RNA sequencing analysis and yielded a total of 888 differentially expressed genes (DEGs). Besides, we characterized genes that participate in multiple cryoprotectant syntheses, including arginine, cysteine, glucose, glycerol, heat shock protein, and mannose. The enrichment analyses found that most of the DEGs involved in biological processes and pathways were related to carbohydrate, lipid, and protein metabolism. Notably, ten Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, such as starch and sucrose metabolism, arachidonic acid metabolism, amino acid metabolism, mineral absorption, and vitamin digestion and absorption, were distinctively enriched with downregulated genes. Meanwhile, we also identified that seven DEGs might inhibit the KEGG pathway of ovarian steroidogenesis and potentially cripple ovarian function and fecundity in the spider. The decreased egg sac weight, number of hatched spiderlings, and vitellin concentration further supported the view that Cd exposure vitiates the overwintering spider's fecundity. Collectively, the comparative analysis provides a novel perspective regarding the survival response and fecundity on the cold tolerance of spiders under Cd stress and offers a profound insight for evaluating Cd-induced toxicity on overwintering arthropods.
Collapse
Affiliation(s)
- Bo Lv
- College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun-Zhe Zhuo
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, 410128, Hunan, China
| | - Yuan-de Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
33
|
Ding H, Li Z, Li X, Yang X, Zhao J, Guo J, Lu W, Liu H, Wang J. FTO Alleviates CdCl 2-Induced Apoptosis and Oxidative Stress via the AKT/Nrf2 Pathway in Bovine Granulosa Cells. Int J Mol Sci 2022; 23:ijms23094948. [PMID: 35563339 PMCID: PMC9101166 DOI: 10.3390/ijms23094948] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
Cadmium (Cd) is a common environmental heavy metal contaminant of reproduction toxicity. Cd accumulation in animals leads to the damage of granulosa cells. However, its mechanism needs to be elucidated. This research found that treating granulosa cells with Cd resulted in reduced cell viability. The flow cytometry results showed that Cd increased the degree of apoptosis and level of superoxide anion (O2-) in granulosa cells. Further analysis showed that Cd treatment resulted in reduced expression levels of nuclear factor erythroid 2-related factor-2 (Nrf2), superoxide dismutase (SOD), catalase (CAT) and NAD(P)H: quinone oxidoreductase 1 (NQO1), and an increased expression level of malondialdehyde (MDA); the expression levels of Bcl-2 associated X (Bax) and caspase-3 increased, whereas that of B-cell lymphoma 2 (Bcl-2) decreased. Changes in m6A methylation-related enzymes were noted with Cd-induced damage to granulosa cells. The results of transcriptome and MeRIP sequencing revealed that the AKT pathway participated in Cd-induced damage in granulosa cells, and the MAX network transcriptional repressor (MNT) may be a potential target gene of fat mass and obesity-associated protein (FTO). FTO and YTH domain family member 2 (YTHDF2) regulated MNT expression through m6A modification. FTO overexpression alleviated Cd-induced apoptosis and oxidative stress through the activation of the AKT/Nrf2 pathway; this process could be reversed using siMNT. Overall, these findings associated m6A with Cd-induced damage to granulosa cells and provided insights into Cd-induced granulosa cell cytotoxicity from a new perspective centered on m6A modification.
Collapse
Affiliation(s)
- He Ding
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.D.); (Z.L.); (X.L.); (X.Y.); (J.Z.); (J.G.); (W.L.)
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhiqiang Li
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.D.); (Z.L.); (X.L.); (X.Y.); (J.Z.); (J.G.); (W.L.)
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xin Li
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.D.); (Z.L.); (X.L.); (X.Y.); (J.Z.); (J.G.); (W.L.)
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaorui Yang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.D.); (Z.L.); (X.L.); (X.Y.); (J.Z.); (J.G.); (W.L.)
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.D.); (Z.L.); (X.L.); (X.Y.); (J.Z.); (J.G.); (W.L.)
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Guo
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.D.); (Z.L.); (X.L.); (X.Y.); (J.Z.); (J.G.); (W.L.)
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.D.); (Z.L.); (X.L.); (X.Y.); (J.Z.); (J.G.); (W.L.)
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Liu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.D.); (Z.L.); (X.L.); (X.Y.); (J.Z.); (J.G.); (W.L.)
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (H.L.); (J.W.)
| | - Jun Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.D.); (Z.L.); (X.L.); (X.Y.); (J.Z.); (J.G.); (W.L.)
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (H.L.); (J.W.)
| |
Collapse
|
34
|
Carcinogenic Risk of Pb, Cd, Ni, and Cr and Critical Ecological Risk of Cd and Cu in Soil and Groundwater around the Municipal Solid Waste Open Dump in Central Thailand. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:3062215. [PMID: 35265140 PMCID: PMC8901317 DOI: 10.1155/2022/3062215] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/10/2022] [Indexed: 01/09/2023]
Abstract
Several consequences of health effects from municipal solid waste caused by carcinogenic and noncarcinogenic metals have been recognized. The water quality index (
) in the groundwater around this landfill is 2945.58, which is unacceptable for consumption. The contaminated groundwater mainly appears within a 1 km radius around the landfill. The metal pollution levels in the soil in descending order were Cu > Cd > Zn=Cr > Pb > Ni. The pollution degree (ER) of Cd was 2898.88, and the potential ecological risk index (RI) was 2945.58, indicating that the risk level was very high. Surprisingly, the hazard index (HI) of Pb (2.05) and Fe (1.59) in children was higher than 1. This indicated that the chronic risk and cancer risk caused by Pb and Fe for children were at a medium level. Carcinogenic risk by oral (CR oral) consumption of Ni, Cd, and Cr in children was 1.4E − 04, 2.5E − 04, and 1.8E − 04, respectively, while the lifetime carcinogenic risk (LCR) of Ni, Cd, and Cr in children was 1.5E − 04, 2.8E − 04, and 2.0E − 04, respectively. In adults, CR oral of Ni and Cr were 1.6E − 03 and 3.0E − 04, respectively, while LCR of Ni and Cr were 1.6E − 03 and 3.4E − 04, respectively, which exceeded the carcinogenic risks limits. Our study indicated a lifetime carcinogenic risk to humans. Environmental surveillance should focus on reducing health risks such as continuous monitoring of the groundwater, soil, and leachate treatment process.
Collapse
|
35
|
Calahorrano-Moreno MB, Ordoñez-Bailon JJ, Baquerizo-Crespo RJ, Dueñas-Rivadeneira AA, B. S. M. Montenegro MC, Rodríguez-Díaz JM. Contaminants in the cow's milk we consume? Pasteurization and other technologies in the elimination of contaminants. F1000Res 2022; 11:91. [PMID: 35186276 PMCID: PMC8822143 DOI: 10.12688/f1000research.108779.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Cow's milk is currently the most consumed product worldwide. However, due to various direct and indirect contamination sources, different chemical and microbiological contaminants have been found in cow's milk. This review details the main contaminants found in cow's milk, referring to the sources of contamination and their impact on human health. A comparative approach highlights the poor efficacy and effects of the pasteurization process with other methods used in the treatment of cow's milk. Despite pasteurization and related techniques being the most widely applied to date, they have not demonstrated efficacy in eliminating contaminants. New technologies have appeared as alternative treatments to pasteurization. However, in addition to causing physicochemical changes in the raw material, their efficacy is not total in eliminating chemical contaminants, suggesting the need for new research to find a solution that contributes to improving food safety.
Collapse
Affiliation(s)
- Micaela Belen Calahorrano-Moreno
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Jonathan Jerry Ordoñez-Bailon
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Ricardo José Baquerizo-Crespo
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Alex Alberto Dueñas-Rivadeneira
- Departamento de Procesos Agroindustriales, Facultad de Ciencias Zootécnicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | | | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| |
Collapse
|
36
|
Sai Chaithanya M, Bhaskar D, Vidya R. Metal transfer and related human health risk assessment through milk from cattle grazing at an industrial discharge area. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 39:295-310. [PMID: 34932429 DOI: 10.1080/19440049.2021.2007291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The water bodies within industrial areas are often used for the disposal of effluents leading to metal contamination in water, soil, and vegetation. However, the impact of metal enrichment in the food grown in these areas has not been much explored. The present study investigates the food chain contamination of eight metals (Al, Cd, Cr, Cu, Fe, Mn, Pb, and Zn) in the milk from the cattle grazing on a shallow lake bed within the industrial town of Ranipet, India, and associated health risk from the consumption by adults and children. It also considers the possible sources of metals into the cattle from water, forage, and soil. The total number of cattle grazing in the study area was identified, along with their average daily intakes. The total milk yield from these cattle and the milk consumption rates were identified from surveys conducted among cattle owners and milk buyers. The primary sources of all the metals, except Al are forage; whereas for Al, it is the soil. The projected milk consumption pattern indicates that 531 children and 1279 adults drinking contaminated milk are at considerable risk. The hazard indices ranged from 0.86 to 2.74 for children, and 0.35 to 1.13 for adults. The Cancer Risk values for Cd and Cr were above 10-4 for adults and children, signify serious health risk. The analyses of tail switch hair samples indicated that cattle are also environmentally exposed to metals indicating their subclinical effect. Hence, the study substantiates that soil can be a potential source of metals in the food chain, and apprises stringent quality control and monitoring food chain contamination from milk in industrial belts.
Collapse
Affiliation(s)
- Muthyala Sai Chaithanya
- Department of Environmental and Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, India
| | - Das Bhaskar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, India
| | - R Vidya
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore, India
| |
Collapse
|
37
|
Chirinos-Peinado D, Castro-Bedriñana J, García-Olarte E, Quispe-Ramos R, Gordillo-Espinal S. Transfer of lead from soil to pasture grass and milk near a metallurgical complex in the Peruvian Andes. Transl Anim Sci 2021; 5:txab003. [PMID: 34859197 PMCID: PMC8631083 DOI: 10.1093/tas/txab003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/12/2021] [Indexed: 11/20/2022] Open
Abstract
Milk quality is affected by the concentration of lead (Pb) in soil and pasture grasses used to raise cattle, especially in areas near mining-metallurgical complexes. In this study, the Pb content of soil and its transfer to grass and dairy milk in an area located to 20 km from the La Oroya Metallurgical Complex in Peru (altitude, >3,700 m s.a.l) was measured. Twenty soil samples (0–30 cm depth), 20 grass samples were collected, and 0.5 L of milk was obtained from 20 lactating cow in the communal cowshed. The Pb concentration (mg/kg) was quantified by flame atomic absorption spectrometry using a commercial Pb standard as quality control. The Pb average concentration in the soil, grass, and milk samples were 217.81 ± 39.48, 20.09 ± 2.83, and 0.58 ± 0.018 mg/kg (P < 0.01), respectively. The transfer factor (ratio of metal concentration) for Pb from soil to grass and from grass to milk was 0.095 and 0.031, respectively. The soil, grass, and milk samples all presented high Pb concentrations, with the milk samples containing 29-fold more Pb than the safety limit established by European regulations and were not suitable for human consumption or the manufacture of cheese, yogurt, and other derivatives. Our findings demonstrate that action to remediate these soils is critically needed.
Collapse
Affiliation(s)
- Doris Chirinos-Peinado
- Center for Research in Food and Nutritional Security, Universidad Nacional del Centro del Perú, Huancayo, Perú
| | - Jorge Castro-Bedriñana
- Center for Research in Food and Nutritional Security, Universidad Nacional del Centro del Perú, Huancayo, Perú
| | - Edgar García-Olarte
- Faculty of Zootechnics, Universidad Nacional del Centro del Perú, Huancayo, Perú
| | - Rolando Quispe-Ramos
- Faculty of Zootechnics, Universidad Nacional del Centro del Perú, Huancayo, Perú
| | | |
Collapse
|
38
|
Bilandžić N, Čalopek B, Sedak M, Đokić M, Gajger IT, Murati T, Kmetič I. Essential and potentially toxic elements in raw milk from different geographical regions of Croatia and their health risk assessment in the adult population. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Su C, Gao Y, Qu X, Zhou X, Yang X, Huang S, Han L, Zheng N, Wang J. The Occurrence, Pathways, and Risk Assessment of Heavy Metals in Raw Milk from Industrial Areas in China. TOXICS 2021; 9:toxics9120320. [PMID: 34941756 PMCID: PMC8708092 DOI: 10.3390/toxics9120320] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
Abstract
This study evaluated chromium (Cr), arsenic (As), cadmium (Cd), and lead (Pb) contamination in raw milk from industrial areas in China, identified the possible pathways of heavy metals from the environment to raw milk, and made a risk assessment of the consumption of heavy metals from milk consumption. The Cr, As, Cd, and Pb concentrations in raw milk, water and silage were analyzed using inductively coupled plasma mass spectrometry. The Cr and As in soil were analyzed by flame atomic absorption spectrometry and atomic fluorescence spectrometry, respectively. Cd and Pb in soil were determined by a Graphite furnace atomic absorption spectrophotometer. The Cr and As concentrations in milk from industrial areas were 2.41 ± 2.12 and 0.44 ± 0.31 μg/kg, respectively, which were significantly higher (p < 0.01) than those from non-industrial areas, which had levels of 1.10 ± 0.15 and 0.25 ± 0.09 μg/kg, respectively. Chromium was mainly transferred through the soil-silage-milk pathway, As was transferred through the water-silage-milk pathway, while Cd was mainly transferred through the soil (water)-silage-milk pathway. The contributions of each metal to the overall hazard index (HI) followed a descending order of As, Cr, Pb, and Cd, with values of 46.64%, 25.54%, 24.30%, and 3.52%, respectively. Children were at higher risk than adults.
Collapse
Affiliation(s)
- Chuanyou Su
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.S.); (Y.G.); (X.Z.); (X.Y.); (S.H.); (L.H.)
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou 450046, China
| | - Yanan Gao
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.S.); (Y.G.); (X.Z.); (X.Y.); (S.H.); (L.H.)
| | - Xueyin Qu
- Tianjin Mengde Group Co., Ltd., Tianjin 300400, China;
| | - Xuewei Zhou
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.S.); (Y.G.); (X.Z.); (X.Y.); (S.H.); (L.H.)
| | - Xue Yang
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.S.); (Y.G.); (X.Z.); (X.Y.); (S.H.); (L.H.)
| | - Shengnan Huang
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.S.); (Y.G.); (X.Z.); (X.Y.); (S.H.); (L.H.)
| | - Lei Han
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.S.); (Y.G.); (X.Z.); (X.Y.); (S.H.); (L.H.)
| | - Nan Zheng
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.S.); (Y.G.); (X.Z.); (X.Y.); (S.H.); (L.H.)
- Correspondence: (N.Z.); (J.W.); Tel.: +86-10-62816069 (N.Z. & J.W.)
| | - Jiaqi Wang
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.S.); (Y.G.); (X.Z.); (X.Y.); (S.H.); (L.H.)
- Correspondence: (N.Z.); (J.W.); Tel.: +86-10-62816069 (N.Z. & J.W.)
| |
Collapse
|
40
|
Kozhanova N, Sarsembayeva N, Lozowicka B, Kozhanov Z. Seasonal content of heavy metals in the "soil–feed–milk–manure" system in horse husbandry in Kazakhstan. Vet World 2021; 14:2947-2956. [PMID: 35017843 PMCID: PMC8743788 DOI: 10.14202/vetworld.2021.2947-2956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: The quality of food, especially animal-based food, is crucial for human health. However, the quality of milk and other animal products has become an acute cause for concern in Kazakhstan . Technogenic dispersion of heavy metals (HMs) causes adverse effects on living organisms and creates unfavorable conditions for the existence of humans, animals, and plants. The purpose of this study was to analyze the content of several HMs in samples of soil, horse feed (hay, mixed feed, and bran), mare's milk, and manure to assess bioaccumulation and possible adverse effects on the bodies of horses. An additional purpose was to identify areas with acceptable conditions for obtaining environmentally safe horse breeding products in the agricultural zones of the Almaty region, Kazakhstan.
Materials and Methods: Samples were obtained from two farms in the Almaty region in 2020 (spring, summer, and autumn). In total, 72 soil samples were analyzed, which were taken from the upper humus horizon to the depth of the arable layer. Eighty-six samples were taken from the feed of horses. Green feed was represented by perennial and annual grasses (alsike clover, Medicago sativa, sweet yellow clover, as well as pea and oat mix). Barley and wheat bran stored in the warehouses of the farm were sampled for the research as feed supplements. The mixed feed comprised components such as maize and sunflower. In addition, 46 samples of mare's milk and 28 samples of horse manure were collected. The HM analysis was performed in the laboratory of the Kazakh-Japanese Innovation Center. The residual amounts of HMs were determined using an absorption spectrometer with a voltammetric analyzer. The content of cadmium (Cd), lead (Pb), mercury (Hg), and arsenic (As) in all the studied samples of soil, feed, mare's milk, and manure did not exceed the threshold limit values (TLVs), suggesting that the intake of these toxic elements into the human body with food was low.
Results: The average Cd concentration was in the range of 0.29-0.31 mg/kg in soil samples and in the range of 0.20-0.27 mg/kg in feed samples. In milk, the Cd concentration varied from 0.01 to 0.02 mg/L and was lower in summer and higher in fall. The total average Cd content in horse manure was 0.1844 mg/kg. The concentration of Pb in soil samples ranged from 1.09 to 1.30 mg/kg with the lowest value in spring and the highest in fall. In the feed, the concentration of Pb varied from 0.14 to 0.76 mg/kg and in milk from 0.03 to 0.15 mg/L. The average concentrations of Hg and As in soil samples averaged 0.022 and 0.019 mg/kg, respectively, and were within the TLVs.
Conclusion: In the study areas, the calculated transition rates in the soil–feed–milk–manure system revealed that the greatest transition of HMs was observed for Pb and Cd, and a smaller migration was observed for Hg and As. The tendency of accumulation of trace elements continued in the feed.
Collapse
Affiliation(s)
- Nazym Kozhanova
- Department of Veterinary Sanitary Examination and Hygiene, Faculty of Veterinary Science, Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - Nurzhan Sarsembayeva
- Department of Veterinary Sanitary Examination and Hygiene, Faculty of Veterinary Science, Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - Bozena Lozowicka
- Institute of Plant Protection, National Research Institute, Bialystok, Poland
| | - Zhassulan Kozhanov
- Department of Technology of Production of Livestock Produce, Faculty of Technology and Bioresources, Veterinary Science, Kazakh National Agrarian University, Almaty, Kazakhstan
| |
Collapse
|
41
|
Talukder M, Bi SS, Jin HT, Ge J, Zhang C, Lv MW, Li JL. Cadmium induced cerebral toxicity via modulating MTF1-MTs regulatory axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117083. [PMID: 33965856 DOI: 10.1016/j.envpol.2021.117083] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Metal-responsive transcription factor 1 (MTF1) participates in redox homeostasis and heavy metals detoxification via regulating the expression of metal responsive genes. However, the exact role of MTF1 in Cd-induced cerebral toxicity remains unclear. Herein, we explored the mechanism of Cd-elicited cerebral toxicity through modulating MTF1/MTs pathway in chicken cerebrum exposed to different concentrations of Cd (35 mg, 70 mg, and 140 mg/kg CdCl2) via diet. Notably, cerebral tissues showed varying degrees of microstructural changes under Cd exposure. Cd exposure significantly up-regulated the expression of metal transporters (DMT1, ZIP8, and ZIP10) with concomitant elevated Cd level, as determined by ICP-MS. Cd significantly altered other cerebral biometals concentrations (particularly, Zn, Fe, Se, Cr, Mo, and Pb) and redox balance, resulting in increased cerebral oxidative stress. More importantly, Cd exposure suppressed MTF1 mRNA and nuclear protein levels and its target metal-responsive genes, notably metallothioneins (MT1 and MT2), and Fe and Cu transporter genes (FPN1, ATOX1, and XIAP). Moreover, Cd disrupted the regulation of expression of selenoproteome (particularly, GPxs and SelW), and cerebral Se level. Overall, our data revealed that molecular mechanisms associated with Cd-induced cerebral damage might include over-expression of DMT1, ZIP8 and ZIP10, and suppression of MTF1 and its main target metal-responsive genes as well as several selenoproteins.
Collapse
Affiliation(s)
- Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hai-Tao Jin
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150010, China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
42
|
Su C, Liu H, Qu X, Zhou X, Gao Y, Yang H, Zheng N, Wang J. Heavy Metals in Raw Milk and Dietary Exposure Assessment in the Vicinity of Leather-Processing Plants. Biol Trace Elem Res 2021; 199:3303-3311. [PMID: 33184740 DOI: 10.1007/s12011-020-02470-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022]
Abstract
The objective of this study was to assess the contamination levels of arsenic (As), lead (Pb), chromium (Cr), and cadmium (Cd) in raw milk and the subsequent potential health risk to local consumers close to leather-processing plants in China. The As and Pb concentrations in milk from contaminated areas were 0.43 ± 0.21 and 2.86 ± 0.96 μg/L, respectively, which were significantly higher than in milk from unpolluted farm, with values of 0.20 ± 0.05 and 2.32 ± 0.78 μg/L, respectively. The Cr and Cd levels in milk from contaminated areas were 1.21 ± 1.57 and 0.15 ± 0.04 μg/L, respectively, which were slightly higher than in milk from unpolluted farm, with values of 0.87 ± 0.61 and 0.13 ± 0.04 μg/L, respectively, (P > 0.05). Target hazard quotient (THQ) and hazard index (HI) values for As, Pb, Cr, and Cd from milk consumption were calculated for individuals aged 3 to 69. The THQ followed a descending order of As > Pb > Cr > Cd, with values of 0.0066-0.0441, 0.0033-0.0220, 0.0019-0.0124, and 0.0007-0.0046, respectively. The HI values (0.0124-0.0832) were far below the threshold of 1.
Collapse
Affiliation(s)
- Chuanyou Su
- Ministry of Agriculture-Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Animal Science and Technology, China Agriculture University, Beijing, 100193, China
| | - Huimin Liu
- Ministry of Agriculture-Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xueyin Qu
- Tianjin Mengde Group Co., Ltd., Tianjin, 300400, China
| | - Xuewei Zhou
- Ministry of Agriculture-Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanan Gao
- Ministry of Agriculture-Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongjian Yang
- College of Animal Science and Technology, China Agriculture University, Beijing, 100193, China
| | - Nan Zheng
- Ministry of Agriculture-Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiaqi Wang
- Ministry of Agriculture-Laboratory of Quality and Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
43
|
Yasotha A, Dabadé DS, Singh VP, Sivakumar T. Risk assessment of heavy metals in milk from cows reared around industrial areas in India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1799-1815. [PMID: 33123929 DOI: 10.1007/s10653-020-00758-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
This study assessed the health risk associated with exposure to heavy metals through consumption of milk from cows reared around industrial areas in India. Heavy metals, namely Cu, Zn, Cr, Pb, and Cd, were determined in water and forage from four locations as well as in milk produced by dairy cattle raised in these locations, using inductively coupled plasma-mass spectrometry. A quantitative risk assessment using probabilistic approaches was performed to assess the exposure of adults and children to the heavy metals via milk consumption. In milk samples, the highest levels of Cd and Pb were 0.18 mg L-1 and 0.37 mg L-1, respectively, which were above the international permissible levels. Possible sources of Pb in the milk could be the industrial by-products and wastes or automobiles exhaust gas. Significant (P < 0.05) positive relationships were found between the concentration of Cu, Cr, Pb, and Cd in milk and in the environmental samples (water or forage). Exposure assessment showed that milk consumers were mostly exposed to Zn, Cd, and Pb, with 63.7%, 51.2%, and 41.2% of children exposed to a dose greater than the references dose for these metals, respectively. Our results suggest that industrial activities lead to possible transfer of heavy metals to cows from their rearing environment (water, plant), which can be accumulated and cause potential health risks to milk consumers. The outcome of this study can be used by policy makers to manage the potential health risk.
Collapse
Affiliation(s)
- A Yasotha
- Department of Livestock Production Management, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600007, India
| | - D Sylvain Dabadé
- Laboratory of Food Sciences, University of Abomey-Calavi, 03 B.P., 2819, Jericho-Cotonou, Benin.
| | - Vijay Pal Singh
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Food Safety and Standards Authority of India, New Delhi, 110025, India
| | - T Sivakumar
- Department of Livestock Production Management, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600007, India
| |
Collapse
|
44
|
Thakali A, MacRae JD. A review of chemical and microbial contamination in food: What are the threats to a circular food system? ENVIRONMENTAL RESEARCH 2021; 194:110635. [PMID: 33347866 DOI: 10.1016/j.envres.2020.110635] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
A circular food system is one in which food waste is processed to recover plant nutrients and returned to the soil to enable the production of more food, rather than being diverted to landfill or incineration. The approach may be used to reduce energy and water use in food production and contribute to the sustainability of the system. Anaerobic digestion and composting are common food waste treatment technologies used to stabilize waste and produce residual materials that can replenish the soil, thus contributing to a circular food system. This approach can only be deemed safe and feasible, however, if food waste is uncontaminated or any contaminants are destroyed during treatment. This review brings together information on several contaminant classes at different stages of the food supply chain, their possible sources, and their fates during composting and digestion. The main aim is to identify factors that could impede the transition towards a safe, reliable and efficient circular food system. We investigated heavy metals, halogenated organic compounds, foodborne pathogens and antibiotic resistance genes (ARGs) in the food system and their fates during digestion and composting. Production and processing stages were identified as major entry points for these classes of contaminants. Heavy metals and foodborne pathogens pose less risk in a circular system than halogenated organics or antibiotic resistance. Given the diversity of properties among halogenated organic compounds, there is conflicting evidence about their fate during treatment. There are relatively few studies on the fate of ARGs during treatment, and these have produced variable results, indicating a need for more research to clarify their fate in the final products. Repeated land application of contaminated food waste residuals can increase the risk of accumulation and jeopardize the safety of a circular food system. Thus, careful management of the system and research into the fate of the contaminants during treatment is needed.
Collapse
Affiliation(s)
- Astha Thakali
- Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, ME, 04469, USA.
| | - Jean D MacRae
- Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, ME, 04469, USA.
| |
Collapse
|
45
|
Identification and Characterization of Arsenic Transforming Bacillus Species from Abandoned Mining Regions of Madhya Pradesh and Jharkhand. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The arsenic (As) comprehensiveness in nature has aggravated the expansion of arsenic fortification and detoxification components in microorganisms. Many microorganisms discovered today with ability to oxidize arsenite (As3+) into arsenate (As5+) or reduce As5+ to As3+. In this study, two bacterial strains designated 3AB3 and 5AB2 was isolated from the soil samples collected from abandoned mining region of Madhya Pradesh and Jharkhand, India and arsenic concentration has been determined in both water and soil samples. Enrichment culturing method was employed for isolating bacteria and further they are screened for their redox ability. The isolated strains exhibited maximum growth at 30°C, at pH 7.0 in arsenic stressed Luria Bertani broth, checked through UV-Vis spectrophotometer at OD-620nm. Biochemical characterization of isolated strains was performed with various confirmation tests. Phylogenetic analysis of selected bacterial strains through MEGA-X confirmed their relationship to the genus Bacillus. Further, they are tested for transformation ability of arsenic (MSA method) and gene identification was done in selected isolated strains (PCR method). The result of this study shows that, even after abandoning the mining activities, concentration of arsenic increases in ground water by reducing ability of bacterial strains. PCR analysis depicted the presence of genes arsR, arsB and arsC in the strain 3AB3 and gene aoxB in 5AB2 respectively.
Collapse
|
46
|
Boudebbouz A, Boudalia S, Bousbia A, Habila S, Boussadia MI, Gueroui Y. Heavy metals levels in raw cow milk and health risk assessment across the globe: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141830. [PMID: 33182002 DOI: 10.1016/j.scitotenv.2020.141830] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
This systematic review presents the potential toxicity of heavy metals such as lead (Pb), mercury (Hg), cadmium (Cd), iron (Fe), nickel (Ni), aluminum (Al), and copper (Cu) in raw cow milk, focusing on their contamination sources and on the assessment of the related human health risk. Multiple keywords such as "raw cow milk, heavy metals, and human health" were used to search in related databases. A total of 60 original articles published since 2010 reporting the levels of these metals in raw cow's milk across the world were reviewed. Data showed that the highest levels of Ni (833 mg/L), Pb (60 mg/L), Cu (36 mg/L) were noticed in raw cow milk collected in area consists of granites and granite gneisses in India, while the highest level of Cd (12 mg/L) was reported in barite mining area in India. Fe values in raw cow milk samples were above the WHO maximum limit (0.37 mg/L) with highest values (37.02 mg/L) recorded in India. The highest Al level was (22.50 mg/L) reported for raw cow's milk collected close to food producing plants region in Turkey. The Target Hazard Quotients (THQ) values of Hg were below 1 suggesting that milk consumers are not at a non-carcinogenic risk except in Faisalabad province (Pakistan) where THQ values = 7.7. For the other heavy metals, the THQ values were >1 for Pb (10 regions out of 70), for Cd (6 regions out of 59), for Ni (3 out of 29), and for Cu (3 out of 54). Exposure to heavy metals is positively associated with diseases developments. Moreover, data actualization and continuous monitoring are necessary and recommended to evaluate heavy metals effects in future studies.
Collapse
Affiliation(s)
- Ali Boudebbouz
- Département d'Écologie et Génie de l'Environnement, Université 8 Mai 1945 Guelma, BP 4010, Guelma 24000, Algeria; Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma, BP 4010, Guelma 24000, Algeria
| | - Sofiane Boudalia
- Département d'Écologie et Génie de l'Environnement, Université 8 Mai 1945 Guelma, BP 4010, Guelma 24000, Algeria; Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma, BP 4010, Guelma 24000, Algeria.
| | - Aissam Bousbia
- Département d'Écologie et Génie de l'Environnement, Université 8 Mai 1945 Guelma, BP 4010, Guelma 24000, Algeria; Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma, BP 4010, Guelma 24000, Algeria
| | - Safia Habila
- Laboratoire de Pharmocologie et de Phytochimie, Université Mohammed Seddik Benyahia Jijel, Algeria
| | - Meriem Imen Boussadia
- Département de Biologie, Université 8 Mai 1945 Guelma, BP 4010, Guelma 24000, Algeria
| | - Yassine Gueroui
- Département de Biologie, Université 8 Mai 1945 Guelma, BP 4010, Guelma 24000, Algeria
| |
Collapse
|
47
|
Liu C, Liu Y, Feng C, Wang P, Yu L, Liu D, Sun S, Wang F. Distribution characteristics and potential risks of heavy metals and antimicrobial resistant Escherichia coli in dairy farm wastewater in Tai'an, China. CHEMOSPHERE 2021; 262:127768. [PMID: 32777611 DOI: 10.1016/j.chemosphere.2020.127768] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 05/11/2023]
Abstract
Heavy metals and antimicrobial resistant bacteria in livestock and poultry environments can cause declines in production and significant economic losses, leading to potential environmental and public health issues. In this study, the heavy metal pollution status of livestock breeding water bodies in the Dawen river basin of Shandong Province in China was evaluated, and a total of 10 heavy metals were measured. In addition, antimicrobial susceptibility tests were conducted for Escherichia coli strains isolated from the water samples. The results showed that among all the metals, copper, zinc, and iron were detected at each sampling point, followed by nickel (detection rate of 95.74%), arsenic (detection rate of 89.36%), selenium (detection rate of 68.09%), lead (detection rate of 27.66%), and mercury (detection rate of 12.77%). Cadmium and hexavalent chromium were not detected. The contents of nine heavy metals were below the existing water standard values in China, whereas the iron pollution index in the water body in the study area was large and may pose a potential risk. A total of 17 E. coli isolates showed different resistance to β-lactams, aminoglycosides, tetracyclines, quinolone antibiotics and chloramphenicol, but were mainly resistant to β-lactams and tetracyclines. The detection rate of the tetA resistance gene was relatively high, indicating the overuse of cephalosporins and tetracyclines. The results of the present study might provide evidence of metal pollution and theoretical basis on the treatment of colibacillosis in the livestock industries.
Collapse
Affiliation(s)
- Cong Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China
| | - Yu Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Peng Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China
| | - Lanping Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Shuhong Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China.
| |
Collapse
|
48
|
Toman R, Pšenková M, Tančin V. The occurrence of eleven elements in dairy cow´s milk, feed, and soil from three different regions of Slovakia. POTRAVINARSTVO 2020. [DOI: 10.5219/1461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to measure the concentrations of eleven essential, potentially toxic and toxic elements (arsenic – As, calcium – Ca, cadmium – Cd, copper – Cu, iron – Fe, mercury – Hg, magnesium – Mg, nickel – Ni, lead – Pb, selenium – Se, zinc- Zn) in raw cow’s milk (spring, summer, and autumn season), feed (spring and autumn season) and soil (spring season) from three different environments by routine methods in the certified testing laboratory. The samples were collected in the undisturbed region around Novoť, the moderately disturbed region around Tulčík, and the strongly disturbed region around Čečejovce. The concentrations of all toxic elements (As, Cd, Hg, Ni, Pb) and two essential elements (Cu, Se) in milk were under the limits of quantification (LOQ) from all investigated areas and during all seasons. Concentrations of other elements in milk from the undisturbed and disturbed areas were significantly different, generally with the highest levels in summer. In soil samples, the significantly highest concentrations of Ca, Cu, Ni were found in a strongly disturbed area, Mg and As in moderately disturbed area, and Fe, Se, Zn, Hg, and Pb in an undisturbed area. Cadmium was under the LOQ. In feed, the concentrations of essential elements, except of Se, were higher in the autumn. The significantly highest concentration of As, Ni were recorded in a moderately disturbed area and Pb in the undisturbed area in both seasons. Cadmium and Hg were under the LOQ. Despite the higher level of some elements in soil (Fe, Mg, Ca) from all regions, there were not elevated concentrations of any element in feed or milk. The concentrations of all toxic elements in milk were under the permitted limits. Thus, the milk from all investigated areas was not contaminated with the elements posing a health risk for consumers and it is considered safe for human consumption.
Collapse
|
49
|
Toxicity in Goats Exposed to Arsenic in the Region Lagunera, Northern Mexico. Vet Sci 2020; 7:vetsci7020059. [PMID: 32375384 PMCID: PMC7357139 DOI: 10.3390/vetsci7020059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023] Open
Abstract
The Region Lagunera, a region in northeast Mexico, is undergoing significant problems with the quality of its groundwater, which exceeds the permissible limits of contaminants and/or heavy metals stipulated in Mexican legislation. The present study evaluated chronic toxicity in male goats exposed to arsenic via one ex situ Group 1 (n = 5) and one in situ female goats Group 3 (n = 10). The treatment in Group 1 was carried out in the La Laguna experimental field of the Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), located in Matamoros, Coahuila, Mexico. Sodium arsenite (2 mg/kg) was orally administered for 84 days to five male Creole goats, aged between four and five years old and weighing between 60 and 70 kg, in order to determine its effect on urine toxicity, libido, and physiological condition, an untreated group (n = 5) was included (Group 2). The experiment in group 3 was conducted on ten female Creole goats, aged between four and six years old and weighing between 40 and 49 kg, in both the contaminated sampling area in the rural community of El Venado and the control sampling area in the rural community of Nuevo Reynosa (Group 4 (n = 5)), in which the arsenic levels were measured in the urine of the exposed goats, as was their physiological condition. Significant differences (p < 0.01) between the groups were found in both the arsenic concentration in the urine and the physiological condition observed in both experimental groups.
Collapse
|