1
|
Ji Y, Lang D, Xu Z, Ma X, Bai Q, Zhang W, Zhang X, Zhao Q. Bacillus pumilus G5 combined with silicon enhanced flavonoid biosynthesis in drought-stressed Glycyrrhiza uralensis Fisch. by regulating jasmonate, gibberellin and ethylene crosstalk. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109560. [PMID: 39884146 DOI: 10.1016/j.plaphy.2025.109560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Drought stress poses a significant threat to global agricultural production, including the cultivation of medicinal plants. Plant growth-promoting bacteria (PGPB) and the eco-friendly element silicon (Si) are known to alleviate the adverse effects of drought stress. This study examines how inoculation with Bacillus pumilus G5 or/and Si influences plant hormone signaling and flavonoid biosynthesis pathways in drought-stressed Glycyrrhiza uralensis Fisch. (G. uralensis), focusing on genetic and metabolic aspects. The results indicate that the combined application of G5 and Si (G5+Si) may regulate the crosstalk among jasmonate (JA), gibberellin (GA), and ethylene (ET) signaling pathways, thereby up-regulating key flavonoid biosynthesis genes, including phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), and chalcone synthase (CHS), leading to the accumulation of isoliquiritigenin, liquiritigenin, liquiritin, and licochalcone A, thereby enhancing the drought tolerance of G. uralensis seedlings. The findings provide new insights into the synergistic role of PGPB and Si in improving plant resilience to drought stress, offering theoretical reference for further studies on plant drought tolerance mechanisms.
Collapse
Affiliation(s)
- Yonggan Ji
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Duoyong Lang
- College of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhanchao Xu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Northwest University First Hospital, Shaanxi, Xi'an, 710043, China
| | - Xin Ma
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Qiuxian Bai
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan, Yinchuan, 750004, China
| | - Wenjin Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan, Yinchuan, 750004, China.
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan, Yinchuan, 750004, China.
| | - Qipeng Zhao
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan, Yinchuan, 750004, China.
| |
Collapse
|
2
|
Naz T, Iqbal MM, Raza B, Mubeen MA, Nadeem MA, Al-Ghamdi AA, Elshikh MS, Rizwan M, Iqbal R. Green remediation of lead (pb) from Pb-toxic soil by combined use of silicon nanomaterials and leguminous Lens culinaris L. plants. Sci Rep 2025; 15:4366. [PMID: 39910259 PMCID: PMC11799537 DOI: 10.1038/s41598-025-88759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
Lead (Pb) toxicity is a major issue due to anthropogenic activities that is faced by farmers nowadays which inhibits plant growth and decreases crop yields. From contaminated soils, Pb absorbed by the plants and then ultimately enters into the food chain. Silicon (Si) can reduce Pb availability to plants and can be helpful in Pb immobilization in the soils. Moreover, Si in its nano-form, is expected to augment the beneficial attributes of applied Si. However, very little is known regarding the prospects of nano-Si application and leguminous lentil for alleviating the effects of Pb stress. To assess the effectiveness of bulk Si and nano-Si for reducing Pb toxicity and improving the yield of lentils, a pot study was conducted. Lentil variety Punjab Masoor 2020 was examined under normal and Pb toxic conditions as affected by applied Si and nano-Si. There were eight treatments comprised of different combinations of Si at 100 and 200 mg Si kg- 1 soil, and nano-Si at 125 mg kg- 1 soil, which were tested against Pb at 500 mg kg- 1 soil. A completely randomized design with factorial arrangements was applied along with three replications each. The result showed that Pb toxicity reduced the plant growth, yield, total chlorophyll contents, membrane stability index, relative water content, shoot fresh weight and dry weights of lentil. Whereas Si and nano-Si lessened the negative effect of Pb toxicity by significantly reducing its concentration in plant roots and shoot, and improved agro-physiological traits of lentil in normal and Pb-toxic soil conditions. In soil spiked with 500 mg kg- 1 Pb, the application of 100 and 200 mg bulk Si per kg of soil and 125 mg kg- 1 nano-Si reduced the Pb concentration in shoot by 31, 62 and 84% respectively over controls. In squat, the application of nano-Si most significantly (p ≤ 0.05) reduced the root and shoot Pb concentration in lentil.
Collapse
Affiliation(s)
- Tayyaba Naz
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
- Saline Agriculture Research Centre, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Mazhar Iqbal
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Bilal Raza
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
- Saline Agriculture Research Centre, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Muhammad Asad Mubeen
- Lincoln Institute of Agriculture Food Technology, College of Health and Science, University of Lincoln, Riseholme Park, Lincoln, LN2 2LG, UK
| | - Muhammad Ather Nadeem
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Rizwan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| |
Collapse
|
3
|
Shah AA, Usman S, Noreen Z, Kaleem M, Raja V, El-Sheikh MA, Ibrahim Z, Sehar S. Fullerenol nanoparticles and AMF application for optimization of Brassica napus L. resilience to lead toxicity through physio-biochemical and antioxidative modulations. Sci Rep 2024; 14:30992. [PMID: 39730765 DOI: 10.1038/s41598-024-82086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
Crop plants are severely affected by heavy metals (HMs), leading to food scarcity and economical loss. Lead (Pb) is outsourced by use of lead-based fertilizers, batteries, mining, smelting and metal processing. It significantly reduces growth, development and yield of crops cultivated on contaminated sites. In this study, the ameliorative role of carbon based fullerenol nanoparticles (FNPs) in combination with Arbuscular Mycorrhizal Fungi (AMF) inoculation was examined in Brassica napus L. grown in Pb contaminated soil. A pot experiment in three-ways completely randomize fashion with three replicates was conducted. For Pb stress, a 200 µM PbCl2 solution was applied at a rate of 1 L per pot. FNPs were applied via foliar spray at a concentration of 3 mM. For AMF inoculation rhizospheric soil was collected from Sorghum bicolor fields and used in this experiment. Results of the study showed that Pb toxicity greatly reduced growth (shoot length; 15%, root length; 25%) of B. napus plants. It lowered photosynthesis (38%) and gas exchange related attributes. Pb contamination caused oxidative stress, evident from elevated level of malondialdehyde (62%), and reactive oxygen species (H2O2; 60%, OH-; 103% and O2•-; 23%). It also triggered the antioxidant defense system of B. napus. These plants also had high Pb metal ions in their root and shoot compared with control. Foliar application of FNPs along with AMF inoculation effectively mitigated oxidative stress caused by Pb via increasing antioxidant enzymes activities. Catalase, peroxidase, superoxide dismutase, ascorbate peroxidase, glutathione reductase, phenylalanine ammonia-lyase and polyphenol peroxidase activities were increased by 37, 19, 96, 200, 47, 117 and 47%, respectively. In conclusion, these treatments modulated photosynthetic machinery, antioxidant defense mechanism and nutrients uptake in B. napus plants to alleviate Pb stress. It is presumed that use of carbon-based nano particles in combination with AMF inoculation could effectively mitigate HMs stress in crop plants grown in contaminated soil.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Sheeraz Usman
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Muhammad Kaleem
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Vaseem Raja
- University Centre for Research and Development Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zakir Ibrahim
- Faculty of Agriculture, Department of Biotechnology and Bioinformatics, Lasbela University of Agriculture, Water and Marine Sciences, Uthal , 90150, Pakistan
| | - Shafaque Sehar
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Ali MA, Nafees M, Waseem M, Alomrani SO, Al-Ghanim KA, Alshehri MA, Zheng H, Ali S, Li F. Modulation of Cd carriers by innovative nanocomposite (Ca+Mg) and Cd-resistance microbes ( Bacillus pumilus): a mechanistic approach to enhance growth and yield of rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1387187. [PMID: 39290730 PMCID: PMC11405208 DOI: 10.3389/fpls.2024.1387187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/12/2024] [Indexed: 09/19/2024]
Abstract
Cadmium (Cd) is a well-known pollutant in agricultural soil, affecting human health through the food chain. To combat this issue, Ca + Mg (25 mg L-1) nanocomposite and Bacillus pumilus, either alone or combined, were applied to rice plants under Cd (5 mg kg-1, 10 mg kg-1) contamination. In our study, growth and yield traits demonstrated the beneficial influence of Ca + Mg and B. pumilus application in improving rice defense mechanism by reducing Cd stress. Combined Ca + Mg and B. pumilus application increased SPAD (15), total chlorophyll (18), chlorophyll a (11), chlorophyll b (22), and carotenoids (21%) with Cd (10 mg kg-1), compared to the application alone. Combined Ca + Mg and B. pumilus application significantly regulated MDA (15), H2O2 (13), EL (10), and O2 •- (24%) in shoots under Cd (10 mg kg-1), compared to the application alone. Cd (10 mg kg-1) increased the POD (22), SOD (21), APX (12), and CAT (13%) in shoots with combined Ca + Mg and B. pumilus application, compared to the application alone. Combined Ca + Mg and B. pumilus application significantly reduced Cd accumulation in roots (22), shoots (13), and grains (20%) under Cd (10 mg kg-1), compared to the application alone. Consequently, the combined application of Ca + Mg and B. pumilus is a sustainable solution to enhance crop production under Cd stress.
Collapse
Affiliation(s)
- Muhammad Azhar Ali
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Muhammad Nafees
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Muhammad Waseem
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Sarah Owdah Alomrani
- Department of Biology, College of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Sehrish AK, Ahmad S, Alomrani SO, Ahmad A, Al-Ghanim KA, Alshehri MA, Tauqeer A, Ali S, Sarker PK. Nutrient strengthening and lead alleviation in Brassica Napus L. by foliar ZnO and TiO 2-NPs modulating antioxidant system, improving photosynthetic efficiency and reducing lead uptake. Sci Rep 2024; 14:19437. [PMID: 39169199 PMCID: PMC11339315 DOI: 10.1038/s41598-024-70204-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
With the anticipated foliar application of nanoparticles (NPs) as a potential strategy to improve crop production and ameliorate heavy metal toxicity, it is crucial to evaluate the role of NPs in improving the nutrient content of plants under Lead (Pb) stress for achieving higher agriculture productivity to ensure food security. Herein, Brassica napus L. grown under Pb contaminated soil (300 mg/kg) was sprayed with different rates (0, 25, 50, and 100 mg/L) of TiO2 and ZnO-NPs. The plants were evaluated for growth attributes, photosynthetic pigments, leaf exchange attributes, oxidant and antioxidant enzyme activities. The results revealed that 100 mg/L NPs foliar application significantly augmented plant growth, photosynthetic pigments, and leaf gas exchange attributes. Furthermore, 100 mg/L TiO2 and ZnO-NPs application showed a maximum increase in SPAD values (79.1%, 68.9%). NPs foliar application (100 mg/L TiO2 and ZnO-NPs) also substantially reduced malondialdehyde (44.3%, 38.3%), hydrogen peroxide (59.9%, 53.1%), electrolyte leakage (74.8%, 68.3%), and increased peroxidase (93.8%, 89.1%), catalase (91.3%, 84.1%), superoxide dismutase (81.8%, 73.5%) and ascorbate peroxidase (78.5%, 73.7%) thereby reducing Pb accumulation. NPs foliar application (100 mg/L) significantly reduced root Pb (45.7%, 42.3%) and shoot Pb (84.1%, 76.7%) concentration in TiO2 and ZnO-NPs respectively, as compared to control. Importantly, macro and micronutrient analysis showed that foliar application 100 mg/L TiO2 and ZnO-NPs increased shoot zinc (58.4%, 78.7%) iron (79.3%, 89.9%), manganese (62.8%, 68.6%), magnesium (72.1%, 93.7%), calcium (58.2%, 69.9%) and potassium (81.5%, 68.6%) when compared to control without NPs. The same trend was observed for root nutrient concentration. In conclusion, we found that the TiO2 and ZnO-NPs have the greatest efficiency at 100 mg/L concentration to alleviate Pb induced toxicity on growth, photosynthesis, and nutrient content of Brassica napus L. NPs foliar application is a promising strategy to ensure sustainable agriculture and food safety under metal contamination.
Collapse
Affiliation(s)
- Adiba Khan Sehrish
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Shoaib Ahmad
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Sarah Owdah Alomrani
- Department of Biology, College of Science and Arts, Najran University, 66252, Najran, Saudi Arabia
| | - Azeem Ahmad
- Soil and Water Chemistry Laboratory, Institute of Soil and Environment Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muhammad Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Arslan Tauqeer
- School of Modern Engineering and Applied Sciences, Nanjing University, Nanjing Jiangsu, 210023, China
| | - Shafaqat Ali
- Department of Environmental Science, Government College University, Faisalabad, Faisalabad, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Pallab K Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
| |
Collapse
|
6
|
Zhan Q, Ahmad A, Arshad H, Yang B, Chaudhari SK, Batool S, Hasan M, Feng G, Mustafa G, Hatami M. The role of reduced graphene oxide on mitigation of lead phytotoxicity in Triticum aestivum L.plants at morphological and physiological levels. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108719. [PMID: 38739962 DOI: 10.1016/j.plaphy.2024.108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Rapid global industrialization and an increase in population have enhanced the risk of heavy metals accumulation in plant bodies to disrupt the morphological, biochemical, and physiological processes of plants. To cope with this situation, reduced graphene oxide (rGO) NPs were used first time to mitigate abiotic stresses caused in plant. In this study, rGO NPs were synthesized and reduced with Tecoma stans plant leave extract through modified Hummer's methods. The well prepared rGO NPs were characterized by ultra-violet visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Zeta potential, and scanning electron microscopy (SEM). However, pot experiment was conducted with four different concentrations (15, 30, 60, 120 mg/L) of rGO NPs and three different concentrations (300, 500,700 mg/L) of lead (Pb) stress were applied. To observe the mitigative effects of rGO NPs, 30 mg/L of rGO NPs and 700 mg/L of Pb were used in combination. Changes in morphological and biochemical characteristics of wheat plants were observed for both Pb stress and rGO NPs treatments. Pb was found to inhibit the morphological and biochemical characteristics of plants. rGO NPs alone as well as in combination with Pb was found to increase the chlorophyll content of wheat plants. Under Pb stress conditions and rGO NPs treatments, antioxidant enzyme activities like ascorbate peroxidases (APX), superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were observed. Current findings revealed that greenly reduced graphene oxide NPs can effectively promote growth in wheat plants under Pb stress by elevating chlorophyll content of leaves, reducing the Pb uptake, and suppressing ROS produced due to Pb toxicity.
Collapse
Affiliation(s)
- Qingying Zhan
- School of Health, Guangzhou Vocational University of Science and Technology, 510555, China
| | - Ashfaq Ahmad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Huma Arshad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Sunbal Khalil Chaudhari
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, 42100, Pakistan
| | - Sana Batool
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Murtaza Hasan
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Guangzhu Feng
- School of Health, Guangzhou Vocational University of Science and Technology, 510555, China.
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| | - Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran; Institute of Nanoscience and Nanotechnology, Arak University, 38156-8-8349, Arak, Iran.
| |
Collapse
|
7
|
Mukarram M, Ahmad B, Choudhary S, Konôpková AS, Kurjak D, Khan MMA, Lux A. Silicon nanoparticles vs trace elements toxicity: Modus operandi and its omics bases. FRONTIERS IN PLANT SCIENCE 2024; 15:1377964. [PMID: 38633451 PMCID: PMC11021597 DOI: 10.3389/fpls.2024.1377964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Phytotoxicity of trace elements (commonly misunderstood as 'heavy metals') includes impairment of functional groups of enzymes, photo-assembly, redox homeostasis, and nutrient status in higher plants. Silicon nanoparticles (SiNPs) can ameliorate trace element toxicity. We discuss SiNPs response against several essential (such as Cu, Ni, Mn, Mo, and Zn) and non-essential (including Cd, Pb, Hg, Al, Cr, Sb, Se, and As) trace elements. SiNPs hinder root uptake and transport of trace elements as the first line of defence. SiNPs charge plant antioxidant defence against trace elements-induced oxidative stress. The enrolment of SiNPs in gene expressions was also noticed on many occasions. These genes are associated with several anatomical and physiological phenomena, such as cell wall composition, photosynthesis, and metal uptake and transport. On this note, we dedicate the later sections of this review to support an enhanced understanding of SiNPs influence on the metabolomic, proteomic, and genomic profile of plants under trace elements toxicity.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, School of Agriculture, Universidad de la Republica, Montevideo, Uruguay
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Bilal Ahmad
- Plant Physiology Section, Department of Botany, Government Degree College for Women, Pulwama, Jammu and Kashmir, India
| | - Sadaf Choudhary
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alena Sliacka Konôpková
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
8
|
Maryam H, Abbasi GH, Waseem M, Ahmed T, Rizwan M. Preparation and characterization of green silicon nanoparticles and their effects on growth and lead (Pb) accumulation in maize (Zea mays L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123691. [PMID: 38431245 DOI: 10.1016/j.envpol.2024.123691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
The excessive accumulation of heavy metals, particularly lead (Pb) in agricultural soils, is a growing problem worldwide and needs urgent attention. This study aimed to prepare green silicon (Si) NPs using extract of Chenopodium quinoa leaves and evaluated their effects on Pb uptake and growth of maize (Zea mays L.). The results indicated that Pb exposure negatively affected the growth and chlorophyll contents of maize varieties, while SiNPs positively affected these attributes. Pb alone increased the electrolyte-leakage (EL), hydrogen-peroxide (H2O2) and selected antioxidant enzyme activities in leaves, whereas SiNPs decreased EL and H2O2 concentrations and further enhanced the enzyme activities as compared to their respective treatments without SiNPs. Pb-only treatments led to an increase in Pb concentrations and total Pb uptake in both shoots and roots. In contrast, SiNPs resulted in reduced Pb concentrations, with a concurrent decrease in total Pb uptake in shoots compared to the control treatment. The findings demonstrated that foliar application of SiNPs can mitigate the toxic effects of Pb in maize plants by triggering the antioxidant enzyme system and reducing the oxidative stress. Taken together, SiNPs have the potential to enhance maize production in Pb-contaminated soils. However, future research and application efforts should prioritize key aspects such as optimizing NPs synthesis, understanding positive mechanisms of green-synthesized NPs, and conducting multiple crop tests and real-world field trials.
Collapse
Affiliation(s)
- Haseeba Maryam
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ghulam Hassan Abbasi
- Institute of Agro-Industry & Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China; Xianghu Laboratory, Hangzhou, 311231, China; MEU Research Unit, Middle East University, Amman, Jordan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
9
|
Ghorbani A, Emamverdian A, Pehlivan N, Zargar M, Razavi SM, Chen M. Nano-enabled agrochemicals: mitigating heavy metal toxicity and enhancing crop adaptability for sustainable crop production. J Nanobiotechnology 2024; 22:91. [PMID: 38443975 PMCID: PMC10913482 DOI: 10.1186/s12951-024-02371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
The primary factors that restrict agricultural productivity and jeopardize human and food safety are heavy metals (HMs), including arsenic, cadmium, lead, and aluminum, which adversely impact crop yields and quality. Plants, in their adaptability, proactively engage in a multitude of intricate processes to counteract the impacts of HM toxicity. These processes orchestrate profound transformations at biomolecular levels, showing the plant's ability to adapt and thrive in adversity. In the past few decades, HM stress tolerance in crops has been successfully addressed through a combination of traditional breeding techniques, cutting-edge genetic engineering methods, and the strategic implementation of marker-dependent breeding approaches. Given the remarkable progress achieved in this domain, it has become imperative to adopt integrated methods that mitigate potential risks and impacts arising from environmental contamination on yields, which is crucial as we endeavor to forge ahead with the establishment of enduring agricultural systems. In this manner, nanotechnology has emerged as a viable field in agricultural sciences. The potential applications are extensive, encompassing the regulation of environmental stressors like toxic metals, improving the efficiency of nutrient consumption and alleviating climate change effects. Integrating nanotechnology and nanomaterials in agrochemicals has successfully mitigated the drawbacks associated with traditional agrochemicals, including challenges like organic solvent pollution, susceptibility to photolysis, and restricted bioavailability. Numerous studies clearly show the immense potential of nanomaterials and nanofertilizers in tackling the acute crisis of HM toxicity in crop production. This review seeks to delve into using NPs as agrochemicals to effectively mitigate HM toxicity and enhance crop resilience, thereby fostering an environmentally friendly and economically viable approach toward sustainable agricultural advancement in the foreseeable future.
Collapse
Affiliation(s)
- Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran.
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Necla Pehlivan
- Biology Department, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
10
|
Khan I, Awan SA, Rizwan M, Huizhi W, Ulhassan Z, Xie W. Silicon nanoparticles improved the osmolyte production, antioxidant defense system, and phytohormone regulation in Elymus sibiricus (L.) under drought and salt stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8985-8999. [PMID: 38183551 DOI: 10.1007/s11356-023-31730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Drought and salt stress negatively influence the growth and development of various plant species. Thus, it is crucial to overcome these stresses for sustainable agricultural production and the global food chain. Therefore, the present study investigated the potential effects of exogenous silicon nanoparticles (SiNPs) on the physiological and biochemical parameters, and endogenous phytohormone contents of Elymus sibiricus under drought and salt stress. Drought stress was given as 45% water holding capacity, and salt stress was given as 120 mM NaCl. The seed priming was done with different SiNP concentrations: SiNP1 (50 mg L-1), SiNP2 (100 mg L-1), SiNP3 (150 mg L-1), SiNP4 (200 mg L-1), and SiNP5 (250 mg L-1). Both stresses imposed harmful impacts on the analyzed parameters of plants. However, SiNP5 increased the chlorophylls and osmolyte accumulation such as total proteins by 96% and 110% under drought and salt stress, respectively. The SiNP5 significantly decreased the oxidative damage and improved the activities of SOD, CAT, POD, and APX by 10%, 54%, 104%, and 211% under drought and 42%, 75%, 72%, and 215% under salt stress, respectively. The SiNPs at all concentrations considerably improved the level of different phytohormones to respond to drought and salt stress and increased the tolerance of Elymus plants. Moreover, SiNPs decreased the Na+ and increased K+ concentrations in Elymus suggesting the reduction in salt ion accumulation under salinity stress. Overall, exogenous application (seed priming/dipping) of SiNPs considerably enhanced the physio-biochemical and metabolic responses, resulting in an increased tolerance to drought and salt stresses. Therefore, this study could be used as a reference to further explore the impacts of SiNPs at molecular and genetic level to mitigate abiotic stresses in forages and related plant species.
Collapse
Affiliation(s)
- Imran Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Samrah Afzal Awan
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Wang Huizhi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Wengang Xie
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
11
|
Asgher M, Rehaman A, Nazar Ul Islam S, Khan NA. Multifaceted roles of silicon nano particles in heavy metals-stressed plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122886. [PMID: 37952923 DOI: 10.1016/j.envpol.2023.122886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/16/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Heavy metal (HM) contamination has emerged as one of the most damaging abiotic stress factors due to their prominent release into the environment through industrialization and urbanization worldwide. The increase in HMs concentration in soil and the environment has invited attention of researchers/environmentalists to minimize its' impact by practicing different techniques such as application of phytohormones, gaseous molecules, metalloids, and essential nutrients etc. Silicon (Si) although not considered as the essential nutrient, has received more attention in the last few decades due to its involvement in the amelioration of wide range of abiotic stress factors. Silicon is the second most abundant element after oxygen on earth, but is relatively lesser available for plants as it is taken up in the form of mono-silicic acid, Si(OH)4. The scattered information on the influence of Si on plant development and abiotic stress adaptation has been published. Moreover, the use of nanoparticles for maintenance of plant functions under limited environmental conditions has gained momentum. The current review, therefore, summarizes the updated information on Si nanoparticles (SiNPs) synthesis, characterization, uptake and transport mechanism, and their effect on plant growth and development, physiological and biochemical processes and molecular mechanisms. The regulatory connect between SiNPs and phytohormones signaling in counteracting the negative impacts of HMs stress has also been discussed.
Collapse
Affiliation(s)
- Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, 185234, India
| | - Abdul Rehaman
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, 185234, India
| | - Syed Nazar Ul Islam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, 185234, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
12
|
Jalil S, Nazir MM, Al-Huqail AA, Ali B, Al-Qthanin RN, Asad MAU, Eweda MA, Zulfiqar F, Onursal N, Masood HA, Yong JWH, Jin X. Silicon nanoparticles alleviate cadmium toxicity in rice (Oryza sativa L.) by modulating the nutritional profile and triggering stress-responsive genetic mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115699. [PMID: 37979353 DOI: 10.1016/j.ecoenv.2023.115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
This study investigated the physiological and molecular responses of rice genotype '9311' to Cd stress and the mitigating effects of silicon oxide nanoparticles (SiO NPs). Cd exposure severely hindered plant growth, chlorophyll content, photosynthesis, and Cd accumulation. However, SiO NPs supplementation, particularly the SiONP100 treatment, significantly alleviated Cd-induced toxicity, mitigating the adverse effects on plant growth while maintaining chlorophyll content and photosynthetic attributes. The SiONP100 treatment also reduced Cd accumulation, indicating a preference for Si uptake in genotype 9311. Complex interactions among Cd, Si, Mg, Ca, and K were uncovered, with fluctuations in MDA and H2O2 contents. Distinct morphological changes in stomatal aperture and mesophyll cell structures were observed, including changes in starch granules, grana thylakoids, and osmophilic plastoglobuli. Moreover, following SiONP100 supplementation, genotype 9311 increased peroxidase, superoxide dismutase, and catalase activities by 56%, 44%, and 53% in shoots and 62%, 49%, and 65% in roots, respectively, indicating a robust defense mechanism against Cd stress. Notably, OsNramp5, OsHMA3, OsSOD-Cu/Zn, OsCATA, OsCATB, and OsAPX1 showed significant expression after SiO NPs treatment, suggesting potential Cd translocation within rice tissues. Overall, SiO NPs supplementation holds promise for enhancing Cd tolerance in rice plants while maintaining essential physiological functions.
Collapse
Affiliation(s)
- Sanaullah Jalil
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rahmah N Al-Qthanin
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia; Prince Sultan Bin Abdelaziz for Environmental Research and Natural Resources Sustainability Center, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad A U Asad
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mohamed A Eweda
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Nilgün Onursal
- Faculty of Education, Department of Science Education, Siirt University, Siirt, Turkey
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, 38000 Faisalabad, Pakistan; MEU Research Unit, Middle East University, Amman, Jordan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456 Alnarp, Sweden.
| | - Xiaoli Jin
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Aqeel U, Parwez R, Aftab T, Khan MMA, Naeem M. Silicon dioxide nanoparticles suppress copper toxicity in Mentha arvensis L. by adjusting ROS homeostasis and antioxidant defense system and improving essential oil production. ENVIRONMENTAL RESEARCH 2023; 236:116851. [PMID: 37558115 DOI: 10.1016/j.envres.2023.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Copper (Cu) is an essential micronutrient for plants; however, the excessive accumulation of Cu due to various anthropogenic activities generates progressive pollution of agricultural land and that causes a major constraint for crop production. Excess Cu (80 mg kg-1) in the soil diminished growth and biomass, photosynthetic efficiency and essential oil (EO) content in Mentha arvensis L., while amplifying the antioxidant enzyme's function and reactive oxygen species (ROS) production. Therefore, there is a pressing need to explore effective approaches to overcome Cu toxicity in M. arvensis plants. Thus, the present study unveils the potential of foliar supplementation of two distinct forms of silicon dioxide nanoparticles (SiO2 NPs) i.e., Aerosil 200F and Aerosil 300 to confer Cu stress tolerance attributes to M. arvensis. The experiment demonstrated that applied forms of SiO2 NPs (120 mg L-1), enhanced plants' growth and augmented the photosynthetic efficiency along with the activities of CA (carbonic anhydrase) and NR (nitrate reductase), however, the effects were more accentuated by Aerosil 200F application. Supplementation of SiO2 NPs also exhibited a beneficial effect on the antioxidant machinery of Cu-disturbed plants by raising the level of proline and total phenol as well as the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione reductase (GR), thereby lowering ROS and electrolytic leakage (EL). Interestingly, SiO2 NPs supplementation upscaled EO production in Cu-stressed plants with more pronounced effects received in the case of Aerosil 200F over Aerosil 300. We concluded that the nano form (Aerosil 200F) of SiO2 proved to be the best in improving the Cu-stress tolerance in plants.
Collapse
Affiliation(s)
- Umra Aqeel
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Rukhsar Parwez
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - M Masroor A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India.
| |
Collapse
|
14
|
Zhang X, Saravanakumar K, Sathiyaseelan A, Lu Y, Wang MH. Adsorption of methyl orange dye by SiO 2 mesoporous nanoparticles: adsorption kinetics and eco-toxicity assessment in Zea mays sprout and Artemia salina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117000-117010. [PMID: 36884180 DOI: 10.1007/s11356-023-26173-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Herein, we prepared the silica nanoparticles (SiO2 NPs) by a modified Stober's method for methyl orange (MO) removal. The SiO2 NPs were found to be spherical with a zeta size of 152.5 d. nm, a PDI of 0.377, and a zeta potential of -5.59 mV. The effect of different parameters (initial dye concentration, reaction time, temperature, and pH) on the adsorption of MO by SiO2 NPs was determined. The adsorption pattern of SiO2 NPs was highly fitted with the Langmuir, Freundlich, Redlich-Peteroen, and Temkin isotherm models. The highest adsorption rate was recorded at 69.40 mg/g of SiO2 NPs. Furthermore, the toxic effect of before and after removal of MO in aqueous solution was tested in terms of phytotoxicity and acute toxicity. The SiO2 NPs treated MO dye solution were not exhibited significant toxicity to corn seeds and Artemia salina. These results indicated that SiO2 NPs can be used for the adsorption of MO.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yuting Lu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
- College of Bioscience and Biotechnology, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
15
|
Ahmed T, Masood HA, Noman M, Al-Huqail AA, Alghanem SM, Khan MM, Muhammad S, Manzoor N, Rizwan M, Qi X, Abeed AHA, Li B. Biogenic silicon nanoparticles mitigate cadmium (Cd) toxicity in rapeseed (Brassica napus L.) by modulating the cellular oxidative stress metabolism and reducing Cd translocation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132070. [PMID: 37478591 DOI: 10.1016/j.jhazmat.2023.132070] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/24/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Nano-enabled strategies have emerged as promising alternatives to resolve heavy metals (HMs) related harms in an eco-friendly manner. Here, we explored the potential of biogenic silicon nanoparticles (SiNPs) in alleviating cadmium (Cd) stress in rapeseed (Brassica napus L.) plants by modulating cellular oxidative repair mechanisms. Biogenic SiNPs of spherical shapes with size ranging between 14 nm and 35 nm were synthesized using rice straw extract and characterized through advanced characterization techniques. A greenhouse experiment results showed that SiNPs treatment at 250 mg kg-1 significantly improved growth parameters, including fresh weight (33.3 %) and dry weight (32.6 %) of rapeseed plants than Cd-treated control group. Photosynthesis and leaf gas exchange parameters were also positively influenced by SiNPs treatment, indicating enhanced photosynthetic efficiency. Additionally, SiNPs treatment at 250 mg kg-1 increased the activities of antioxidant enzymes such as superoxide dismutase (19.1 %), peroxidase (33.4 %), catalase (14.4 %), and ascorbate peroxidase (33.8 %), which may play a crucial role in ROS scavenging and reduction in Cd-induced oxidative stress. TEM analysis revealed that SiNPs treatment effectively mitigated Cd-induced damage to leaf ultrastructure, while qPCR analysis showed that SiNPs treatment changed the expressions of the antioxidant defense and stress related genes. Moreover, SiNPs treatment significantly influenced the Cd accumulation and Si contents in plants. Overall, our findings revealed that biogenic SiNPs have great potential to serve as a sustainable, eco-friendly, and non-toxic alternative for the remediation of Cd toxicity in rapeseed plants.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China.; Xianghu Laboratory, Hangzhou 311231, China
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, 38000 Faisalabad, Pakistan
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Suliman Ms Alghanem
- Department of Biology, College of Science, Qassim University, Burydah 52571, Saudi Arabia
| | - Muhammad Munem Khan
- Department of Plant Breeding and Genetics, University of Agriculture, 38000 Faisalabad, Pakistan.
| | - Sher Muhammad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Natasha Manzoor
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | | | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China..
| |
Collapse
|
16
|
Su Y, Peng S, Xu G, Gao Q, Chen J, Lu X, Duan B. Effect of cornstalk biochar on phytoremediation of Pb-contaminated soil by females and males of Populus deltoides (Salicaceae). PHYSIOLOGIA PLANTARUM 2023; 175:e13986. [PMID: 37615999 DOI: 10.1111/ppl.13986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Soil pollution with lead (Pb) has become a serious global concern, adversely affecting the forest ecosystem. This study was conducted to investigate the effects of corn straw on the remediation efficiency of Pb-contaminated soil using Populus deltoides. Female and male P. deltoides cuttings were subjected to soil spiked with 900 mg kg-1 Pb and amended with 5% (v/v) corn straw biochar for 90 days. Under Pb stress, the addition of biochar significantly increased the total biomass accumulation by 29% in females and 26% in males. However, without the addition of biochar, the biomass accumulation was significantly reduced by 11% in females and 3% in males under Pb stress. Females showed a higher uptake and accumulation of Pb in roots and leaves, while males accumulated more Pb in roots and stems and exhibited an increased anti-oxidative capacity. Biochar addition alleviated Pb toxicity in both male and female P. deltoides by immobilizing Pb ion in the soil, reducing Pb uptake and translocation, promoting nutrient uptake, and improving the diversity and stability of the soil bacteria community. Under Pb stress, the relative abundances of metal-resistance bacteria significantly increased, such as the abundance of Bacteroidetes in females and the abundances of Actinobacteria, Firmicutes, and Planctomycetes in males. In brief, the males under biochar addition exhibited promising potential as candidates for phytoremediation of Pb-contaminated soil. This study provides new insights into mechanisms underlying sexually differential responses to Pb stress in the presence of biochar amendment.
Collapse
Affiliation(s)
- Yan Su
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuming Peng
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Environment and Ecology, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Gang Xu
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Qiao Gao
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Chen
- Engineering Research Center of Chuanxibei RHS Construction at Mianyang Teachers' College of Sichuan Province, Mianyang Teachers' College, Mianyang, China
| | - Xuyang Lu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Baoli Duan
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
17
|
Li Y, Cheng X, Feng C, Huang X. Interaction of Lead and Cadmium Reduced Cadmium Toxicity in Ficus parvifolia Seedlings. TOXICS 2023; 11:toxics11030271. [PMID: 36977036 PMCID: PMC10054560 DOI: 10.3390/toxics11030271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 05/23/2023]
Abstract
Potentially toxic elements (PTEs) pollution occurs widely in soils due to various anthropogenic activities. Lead (Pb) and cadmium (Cd) coexist in soil frequently, threatening plant growth. To explore the interaction effect between Pb and Cd in Ficus parvifolia and the response of plant physiological characteristics to Pb and Cd stress, we designed a soil culture experiment. The experiment demonstrated that Pb stress improved leaf photosynthesis ability, while Cd stress inhibited it. Furthermore, Pb or Cd stress increased malonaldehyde (MDA) content, but plants were able to reduce it by increasing antioxidant enzyme activities. The presence of Pb could alleviate Cd phytotoxicity in plants by inhibiting Cd uptake and accumulation as well as increasing leaf photosynthesis and antioxidant ability. Pearson correlation analysis illustrated that the variability of Cd uptake and accumulation between Pb and Cd stress was related to plant biomass and antioxidant enzyme activities. This research will offer a new perspective on alleviating Cd phytotoxicity in plants.
Collapse
|
18
|
Tao Y, Shen L, Han S, Li Z, Cui Y, Lin Y, Qu J, Zhang Y. Metagenomic study of carbon metabolism in black soil microbial communities under lead-lanthanum stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130666. [PMID: 36580779 DOI: 10.1016/j.jhazmat.2022.130666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Pollution of soil environments with heavy metals (HMs) and rare earth elements (REEs) cannot be ignored. We aimed to determine the effects of lead combined with lanthanum (Pb-La) on microbial community structure, carbon metabolism, and differences in carbon source utilization in black soils using EcoPlates™ and a macrogenomic approach. We found that Pb and La contents and the microbial community structure together influence and shape the response of soil carbon metabolism to Pb-La. Compared with controls, microorganisms under pollution stress preferentially use phenolic and carboxylic acids as growth carbon sources. Under Pb-La stress, the relative abundance of Proteobacteria significantly increased, thereby selectively displacing heavy metal-sensitive phyla, such as Chloroflexi, Acidobacteria, and Thaumarchaeota. Altered functional potential of the microbial carbon cycle manifested as differences in carbon metabolism, methane metabolism, and carbon fixation pathways. Furthermore, an appropriate concentration of La can reduce the environmental toxicity of Pb, whereas a high concentration of La has synergistic toxicity with Pb. These findings have important implications for understanding the impact of HM-REE contamination in microbial communities and the functions associated with carbon metabolism in black soils.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lu Shen
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Siyue Han
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yunhe Cui
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yulong Lin
- School of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
19
|
Mukarram M, Khan MMA, Kurjak D, Lux A, Corpas FJ. Silicon nanoparticles (SiNPs) restore photosynthesis and essential oil content by upgrading enzymatic antioxidant metabolism in lemongrass ( Cymbopogon flexuosus) under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1116769. [PMID: 36875580 PMCID: PMC9981966 DOI: 10.3389/fpls.2023.1116769] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Lemongrass (Cymbopogon flexuosus) has great relevance considering the substantial commercial potential of its essential oil. Nevertheless, the increasing soil salinity poses an imminent threat to lemongrass cultivation given its moderate salt-sensitivity. For this, we used silicon nanoparticles (SiNPs) to stimulate salt tolerance in lemongrass considering SiNPs special relevance to stress settings. Five foliar sprays of SiNPs 150 mg L-1 were applied weekly to NaCl 160 and 240 mM-stressed plants. The data indicated that SiNPs minimised oxidative stress markers (lipid peroxidation, H2O2 content) while triggering a general activation of growth, photosynthetic performance, enzymatic antioxidant system including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), and osmolyte proline (PRO). SiNPs amplified stomatal conductance and photosynthetic CO2 assimilation rate by about 24% and 21% in NaCl 160 mM-stressed plants. Associated benefits contributed to pronounced plant phenotype over their stressed counterparts, as we found. Foliar SiNPs sprays assuaged plant height by 30% and 64%, dry weight by 31% and 59%, and leaf area by 31% and 50% under NaCl 160 and 240 mM concentrations, respectively. SiNPs relieved enzymatic antioxidants (SOD, CAT, POD) and osmolyte (PRO) in lemongrass plants stressed with NaCl 160 mM (9%, 11%, 9%, and 12%, respectively) and NaCl 240 mM (13%, 18%, 15%, and 23%, respectively). The same treatment supported the oil biosynthesis improving essential oil content by 22% and 44% during 160 and 240 mM salt stress, respectively. We found SiNPs can completely overcome NaCl 160 mM stress while significantly palliating NaCl 240 mM stress. Thus, we propose that SiNPs can be a useful biotechnological tool to palliate salinity stress in lemongrass and related crops.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Francisco J. Corpas
- Department of Stress, Development and Signaling in Plants, Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
20
|
Li H, Song F, Song X, Zhu K, Lin Q, Zhang J, Ning G. Single and composite damage mechanisms of soil polyethylene/polyvinyl chloride microplastics to the photosynthetic performance of soybean ( Glycine max [L.] merr.). FRONTIERS IN PLANT SCIENCE 2023; 13:1100291. [PMID: 36743543 PMCID: PMC9889878 DOI: 10.3389/fpls.2022.1100291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Introduction Adverse impacts of soil microplastics (MPs, diameter<5 mm) on vegetative growth and crop production have been widely reported, however, the single and composite damage mechanisms of polyethylene (PE) /polyvinyl chloride (PVC) microplastics (MPs) induced photosynthesis inhibition are still rarely known. Methods In this study, two widely distributed MPs, PE and PVC, were added to soils at a dose of 7% (dry soil) to examine the single and composite effects of PE-MPs and PVC-MPs on the photosynthetic performance of soybean. Results Results showed PE-MPs, PVC-MPs and the combination of these two contaminants increased malondialdehyde (MDA) content by 21.8-97.9%, while decreased net photosynthesis rate (Pn) by 11.5-22.4% compared to those in non-stressed plants, PVC MPs caused the most severe oxidative stress, while MPs stress resulted in Pn reduction caused by non-stomatal restriction. The reason for this is the single and composite MPs stress resulted in a 6% to 23% reduction in soybean PSII activity RCs reaction centers, along with negative effects on soybean PSII energy uptake, capture, transport, and dissipation. The presence of K-band and L-band also represents an imbalance in the number of electrons on the donor and acceptor side of PSII and a decrease in PSII energy transfer. Similarly, PVC single stress caused greater effects on soybean chloroplast PSII than PE single stress and combined stresses. Discussion PE and PVC microplastic stress led to oxidative stress in soybean, which affected the structure and function of photosynthetic PSII in soybean, ultimately leading to a decrease in net photosynthetic rate in soybean.
Collapse
Affiliation(s)
- Haibin Li
- Department of Soil Science, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Fupeng Song
- Department of Soil Science, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Xiliang Song
- Department of Soil Science, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Kongming Zhu
- Department of Soil Science, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Qun Lin
- Department of Soil Science, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Jinliang Zhang
- Dongying District, Agricultural and Rural Bureau, Dongying, China
| | - Guoqiang Ning
- Dongying District, Agricultural and Rural Bureau, Dongying, China
| |
Collapse
|
21
|
Zhao J, Yu B, Wang X, Chen L, Akhtar K, Tang S, Lu H, He J, Wen R, He B. Differences in the response mechanism of cadmium uptake, transfer, and accumulation of different rice varieties after foliar silicon spraying under cadmium-stressed soil. FRONTIERS IN PLANT SCIENCE 2023; 13:1064359. [PMID: 36704163 PMCID: PMC9872021 DOI: 10.3389/fpls.2022.1064359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Most studies have shown that foliar silicon (Si) spraying can reduce the risk of rice quality safety caused by cadmium (Cd) contamination. However, it has recently been found that different rice varieties have different responses to Si. Therefore, we selected six rice varieties (YHSM, YXY1179, YXYLS, JLK1377, MXZ2, and YLY900) to compare the differences in the effects of leaf spray on Cd accumulation among different varieties. According to the change in Cd content in brown rice after Si application, the six rice varieties were divided into two types: Si-inhibited varieties (JLY1377, MXZ2, LY900, and YXYLS) and Si-stimulated varieties (WY1179 and YHSM). For Si-inhibited varieties, the Cd content of rice was reduced by 13.5%-65.7% after Si application. At the same time, the Cd content of the root, stem, leaf, panicle, and glume decreased to different degrees, the Cd content of the cell wall component increased by 2.2%-37.6%, the extraction state of Cd with strong mobile activity (ethanol-extracted and deionized water-extracted) was changed to the extraction state of Cd with weak mobile activity (acetic acid-extracted and hydrochloric acid-extracted), and the upward transport coefficient of different parts was reduced. For Si-stimulated varieties, Si application increased the Cd content of rice by 15.7%-24.1%. At the same time, the cell soluble component Cd content significantly increased by 68.4%-252.4% and changed the weakly mobile extraction state Cd to the strong mobile extraction state, increasing the upward transport coefficient of different sites. In conclusion, different rice varieties have different responses to Si. Foliar Si spraying inhibits the upward migration of Cd of Si-inhibited varieties, thereby reducing the Cd content of rice, but it has the opposite effect on Si-stimulated varieties. This result reminds us that we need to consider the difference in the effect of varieties in the implementation of foliar Si spraying in remediation of Cd-contaminated paddy fields.
Collapse
Affiliation(s)
- Junyang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baoshan Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xueli Wang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lihong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Kashif Akhtar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shide Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Huaming Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Jinhua He
- Soil and Fertilizer Workstation, Department of Agriculture and Rural Affairs of Nanning, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ronghui Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bing He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
22
|
Verma KK, Zeng Y, Song XP, Singh M, Wu KC, Rajput VD, Li YR. Nanosilicon: An approach for abiotic stress mitigation and sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:1025974. [PMID: 36618645 PMCID: PMC9816422 DOI: 10.3389/fpls.2022.1025974] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Abiotic stresses causing extensive yield loss in various crops globally. Over the past few decades, the application of silicon nanoparticles (nSi) has emerged as one of the abiotic stress mitigators. The initial responses of plants are shown by the biogenesis of reactive oxygen species (ROS) to sustain cellular/organellar integrity to ensure in vivo operation of metabolic functions by regulating physiological and biochemical pathways during stress conditions. Plants have evolved various antioxidative systems to balance/maintain the process of homeostasis via enzymatic and non-enzymatic activities to repair the losses. In the adverse environment, supplementation of Si mitigates the stress condition and improved the growth and development of plants. Its ameliorative effects were correlated with the enhanced antioxidant enzymes activities to maintain the equilibrium between the ROS generation and reduction. However, there are limited studies covered the role of nSi in the abiotic stress condition. This review addresses the accumulation and/or uptake of nSi in several crops and its mode of action linked with improved plants' growth and tolerance capabilities to confer sustainable agriculture.
Collapse
Affiliation(s)
- Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Yuan Zeng
- International Co-operation Division, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow, India
| | - Kai-Chao Wu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| |
Collapse
|
23
|
Ma X, Xu Z, Lang D, Zhou L, Zhang W, Zhang X. Comprehensive physiological, transcriptomic, and metabolomic analyses reveal the synergistic mechanism of Bacillus pumilus G5 combined with silicon alleviate oxidative stress in drought-stressed Glycyrrhiza uralensis Fisch. FRONTIERS IN PLANT SCIENCE 2022; 13:1033915. [PMID: 36570944 PMCID: PMC9773211 DOI: 10.3389/fpls.2022.1033915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Glycyrrhiza uralensis Fisch. is often cultivated in arid, semi-arid, and salt-affected regions that suffer from drought stress, which leads to the accumulation of reactive oxygen species (ROS), thus causing oxidative stress. Plant growth-promoting bacteria (PGPB) and silicon (Si) have been widely reported to be beneficial in improving the tolerance of plants to drought stress by maintaining plant ROS homeostasis. Herein, combining physiological, transcriptomic, and metabolomic analyses, we investigated the response of the antioxidant system of G. uralensis seedlings under drought stress to Bacillus pumilus (G5) and/or Si treatment. The results showed that drought stress caused the overproduction of ROS, accompanied by the low efficiency of antioxidants [i.e., superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), the ascorbate (AsA)-glutathione (GSH) pool, total carotenoids, and total flavonoids]. Inversely, supplementation with G5 and/or Si enhanced the antioxidant defense system in drought-stressed G. uralensis seedlings, and the complex regulation of the combination of G5 and Si differed from that of G5 or Si alone. The combination of G5 and Si enhanced the antioxidant enzyme system, accelerated the AsA-GSH cycle, and triggered the carotenoid and flavonoid metabolism, which acted in combination via different pathways to eliminate the excess ROS induced by drought stress, thereby alleviating oxidative stress. These findings provide new insights into the comparative and synergistic roles of PGPB and Si in the antioxidant system of plants exposed to drought and a guide for the application of PGPB combined with Si to modulate the tolerance of plants to stress.
Collapse
Affiliation(s)
- Xin Ma
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhanchao Xu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Duoyong Lang
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, China
| | - Li Zhou
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Wenjin Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Engineering and Technology Research Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Engineering and Technology Research Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| |
Collapse
|
24
|
Sarkar MM, Mukherjee S, Mathur P, Roy S. Exogenous nano-silicon application improves ion homeostasis, osmolyte accumulation and palliates oxidative stress in Lens culinaris under NaCl stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:143-161. [PMID: 36242906 DOI: 10.1016/j.plaphy.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/01/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Lentil is one of the highly nutritious legumes but is highly susceptible to salinity stress. Silicon has been known to reduce the effect of various environmental stresses including salinity. Moreover, silicon when applied in its nano-form is expected to augment the beneficial attributes of silicon. However, very little is known regarding the prospect of nano-silicon (nSi) application for alleviating the effect of salinity stress in non-silicified plants like lentil. In this study, the primary objective was to evaluate the efficacy of nSi in the alleviation of NaCl stress during germination and early vegetative stages. In this context, different concentrations of nSi (0, 1, 5, 10 g L-1) was applied along with four different concentrations of NaCl (0, 100, 200, 300 mM). The results indicated the uptake of nSi which was confirmed by the better accumulation of silica in the plant tissues. Most importantly, the enhanced accumulation of silica increased the K+/Na+ ratio of the NaCl-stressed seedlings. Moreover, nSi efficiently improved germination, growth, photosynthetic pigments, and osmotic balance. On the other hand, the relatively reduced activities of antioxidative enzymes were surmounted by the higher activity of non-enzymatic antioxidants which mainly scavenged the increased ROS. Reduced ROS accumulation in return ensured better membrane integrity and reduced electrolyte leakage up on nSi application. Therefore, it can be concluded that the application of nSi (more specifically at 10 g L-1) facilitated the uptake of silica and improved the K+/Na+ ratio to reclaim the growth and physiological status of NaCl-stressed seedlings.
Collapse
Affiliation(s)
- Mahima Misti Sarkar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, Kalyani University, West Bengal, 742213, India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
25
|
Kaya C, Ugurlar F, Farooq S, Ashraf M, Alyemeni MN, Ahmad P. Combined application of asparagine and thiourea improves tolerance to lead stress in wheat by modulating AsA-GSH cycle, lead detoxification and nitrogen metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:119-132. [PMID: 36113307 DOI: 10.1016/j.plaphy.2022.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/23/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Lead (Pb), like other heavy metals, is not essentially required for optimal plant growth; however, plants uptake it from the soil, which poses an adverse effect on growth and yield. Asparagine (Asp) and thiourea (Thi) are known to assuage the negative impacts of heavy metal pollution on plant growth; however, combined application of Asp and Thi has rarely been tested to discern if it could improve wheat yield under Pb stress. Thus, this experimentation tested the role of individual and combined applications of Asp (40 mM) and Thi (400 mg/L) in improving wheat growth under lead (Pb as PbCl2, 0.1 mM) stress. Lead stress significantly reduced plant growth, chlorophyll contents and photosystem system II (PSII) efficiency, whereas it increased Pb accumulation in the leaves and roots, leaf proline contents, phytochelatins, and oxidative stress related attributes. The sole or combined application of Asp and Thi increased the vital antioxidant biomolecules/enzymes, including reduced glutathione (GSH), ascorbic acid (AsA), ascorbate peroxsidase (APX), catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), dehydroascorbate reductase (DHAR), and glutathione reductase (GR). Furthermore, the sole or the combined application of Asp and Thi modulated nitrogen metabolism by stimulating the activities of nitrate and nitrite reductase, glutamate synthase (GOGAT) and glutamine synthetase (GS). Asp and Thi together led to improve plant growth and vital physiological processes, but lowered down Pb accumulation compared to those by their sole application. The results suggest that Asp and Thi synergistically can improve wheat growth under Pb-toxicity.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Ferhat Ugurlar
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Shahid Farooq
- Department of Plant Protection, Faculty of Agriculture, Harran University, Sanlıurfa, 63250, Turkey
| | - Muhammed Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
| | | | - Parvaiz Ahmad
- Botany and Microbiology Department, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
26
|
Rahman SU, Wang X, Shahzad M, Bashir O, Li Y, Cheng H. A review of the influence of nanoparticles on the physiological and biochemical attributes of plants with a focus on the absorption and translocation of toxic trace elements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119916. [PMID: 35944778 DOI: 10.1016/j.envpol.2022.119916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/11/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Trace elements (TEs) from various natural and anthropogenic activities contaminate the agricultural water and soil environments. The use of nanoparticles (NPs) as nano-fertilizers or nano-pesticides is gaining popularity worldwide. The NPs-mediated fertilizers encourage the balanced availability of essential nutrients to plants compared to traditional fertilizers, especially in the presence of excessive amounts of TEs. Moreover, NPs could reduce and/or restrict the bioavailability of TEs to plants due to their high sorption ability. In this review, we summarize the potential influence of NPs on plant physiological attributes, mineral absorption, and TEs sorption, accumulation, and translocation. It also unveils the NPs-mediated TE scavenging-mechanisms at plant and soil interface. NPs immobilized TEs in soil solution effectively by altering the speciation of TEs and modifying the physiological, biochemical, and biological properties of soil. In plants, NPs inhibit the transfer of TEs from roots to shoots by inducing structural modifications, altering gene transcription, and strengthening antioxidant defense mechanisms. On the other hand, the mechanisms underpinning NPs-mediated TEs absorption and cytotoxicity mitigation differ depending on the NPs type, distribution strategy, duration of NP exposure, and plants (e.g., types, varieties, and growth rate). The review highlights that NPs may bring new possibilities for resolving the issue of TE cytotoxicity in crops, which may also assist in reducing the threats to the human dietary system. Although the potential ability of NPs in decontaminating soils is just beginning to be understood, further research is needed to uncover the sub-cellular-based mechanisms of NPs-induced TE scavenging in soils and absorption in plants.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Muhammad Shahzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Owais Bashir
- Division of Soil Science and Agricultural Chemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, 190025, Kashmir, India
| | - Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China.
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
27
|
Dhakate P, Kandhol N, Raturi G, Ray P, Bhardwaj A, Srivastava A, Kaushal L, Singh A, Pandey S, Chauhan DK, Dubey NK, Sharma S, Singh VP, Sahi S, Grillo R, Peralta-Videa J, Deshmukh R, Tripathi DK. Silicon nanoforms in crop improvement and stress management. CHEMOSPHERE 2022; 305:135165. [PMID: 35667508 DOI: 10.1016/j.chemosphere.2022.135165] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Although, silicon - the second most abundant element in the earth crust could not supersede carbon (C) in the competition of being the building block of life during evolution, yet its presence has been reported in some life forms. In case of the plants, silicon has been reported widely to promote the plant growth under normal as well as stressful situations. Nanoform of silicon is now being explored for its potential to improve plant productivity and its tolerance against various stresses. Silicon nanoparticles (SiNPs) in the form of nanofertilizers, nanoherbicides, nanopesticides, nanosensors and targeted delivery systems, find great utilization in the field of agriculture. However, the mechanisms underlying their uptake by plants need to be deciphered in detail. Silicon nanoformss are reported to enhance plant growth, majorly by improving photosynthesis rate, elevating nutrient uptake and mitigating reactive oxygen species (ROS)-induced oxidative stress. Various studies have reported their ability to provide tolerance against a range of stresses by upregulating plant defense responses. Moreover, they are proclaimed not to have any detrimental impacts on environment yet. This review includes the up-to-date information in context of the eminent role of silicon nanoforms in crop improvement and stress management, supplemented with suggestions for future research in this field.
Collapse
Affiliation(s)
| | - Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Priyanka Ray
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Anupriya Bhardwaj
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Aakriti Srivastava
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Laveena Kaushal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Akanksha Singh
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Sangeeta Pandey
- Plant-Microbe Interaction Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, UP India
| | - Nawal Kishore Dubey
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology,Allahabad, Prayagraj, India
| | - Vijay Pratap Singh
- Department of Botany, C.M.P. Degree College, University of Allahabad, Allahabad-211002, India
| | - Shivendra Sahi
- Department of Biology, Saint Joseph's University, University City Campus, 600 S. 43rd St. Philadelphia, PA 19104, USA
| | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP, 15385-000, Brazil
| | - Jose Peralta-Videa
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, USA
| | - Rupesh Deshmukh
- National Institute of Plant Genome Research, New Delhi, India.
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| |
Collapse
|
28
|
Chelator Iminodisuccinic Acid Regulates Reactive Oxygen Species Accumulation and Improves Maize (Zea mays L.) Seed Germination under Pb Stress. PLANTS 2022; 11:plants11192487. [PMID: 36235352 PMCID: PMC9573693 DOI: 10.3390/plants11192487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/09/2023]
Abstract
To explore the effects of iminodisuccinic acid (a chelating agent) on maize (Zea mays L.) seed germination under lead (Pb) stress, we comparatively analyzed the effects of applying different concentrations of iminodisuccinic acid (0, 5, 20, and 100 mmol·dm−3) and combined an addition of exogenous substances regulating reactive oxygen species production on maize seed germination, seedling growth, H2O2 content, NADPH oxidase activity, and antioxidant enzyme activities under Pb-stressed and Pb-free conditions. Iminodisuccinic acid (100 mmol·dm−3) significantly delayed seed germination under normal germination conditions and alleviated the inhibitory effects of Pb stress (20 mmol·dm−3) on seed germination. Under normal conditions (without Pb stress), the iminodisuccinic acid-induced inhibition of seed germination was enhanced by treatment with dimethylthiourea (a specific scavenger of reactive oxygen species) or diphenyleneiodonium chloride (a specific inhibitor of NADPH oxidase), but diminished by treatment with H2O2, CaCl2, diethyldithiocarbamic acid (a specific inhibitor of superoxide dismutase), or aminotriazole (a specific inhibitor of catalase). Under Pb stress, iminodisuccinic acid partially eliminated the excessive H2O2 accumulation, improved superoxide dismutase and catalase activity, and weakened the high NADPH oxidase activity. In addition, Ca2+ chelation may be essential for maintaining the reactive oxygen species’ balance and improving seed germination and seedling growth by iminodisuccinic acid supplementation in maize under Pb stress. The proposed iminodisuccinic acid supplementation-based method improved maize seed germination in Pb-polluted soil.
Collapse
|
29
|
Lyu J, Jin N, Meng X, Jin L, Wang S, Xiao X, Liu Z, Tang Z, Yu J. Exogenous silicon alleviates the adverse effects of cinnamic acid-induced autotoxicity stress on cucumber seedling growth. FRONTIERS IN PLANT SCIENCE 2022; 13:968514. [PMID: 36035700 PMCID: PMC9399776 DOI: 10.3389/fpls.2022.968514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Autotoxicity is a key factor that leads to obstacles in continuous cropping systems. Although Si is known to improve plant resistance to biotic and abiotic stresses, little is known about its role in regulating leaf water status, mineral nutrients, nitrogen metabolism, and root morphology of cucumber under autotoxicity stress. Here, we used cucumber seeds (Cucumis sativus L. cv. "Xinchun No. 4") to evaluate how exogenous Si (1 mmol L-1) affected the leaf water status, mineral nutrient uptake, N metabolism-related enzyme activities, root morphology, and shoot growth of cucumber seedlings under 0.8 mmol L-1 CA-induced autotoxicity stress. We found that CA-induced autotoxicity significantly reduced the relative water content and water potential of leaves and increase their cell sap concentration. CA-induced stress also inhibited the absorption of major (N, P, K, Ca, Mg) and trace elements (Fe, Mn, Zn). However, exogenous Si significantly improved the leaf water status (relative water content and water potential) of cucumber leaves under CA-induced stress. Exogenous Si also promoted the absorption of mineral elements by seedlings under CA-induced stress and alleviated the CA-induced inhibition of N metabolism-related enzyme activities (including nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, glutamate dehydrogenase). Moreover, exogenous Si improved N uptake and utilization, promoted root morphogenesis, and increased the growth indexes of cucumber seedlings under CA-induced stress. Our findings have far-reaching implications for overcoming the obstacles to continuous cropping in cucumber cultivation.
Collapse
Affiliation(s)
- Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xin Meng
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Li Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shuya Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
30
|
Rabiya UE, Ali M, Farooq MA, Siddiq Z, Alamri SA, Siddiqui MH, Khan WUD. Comparative efficiency of silica gel, biochar, and plant growth promoting bacteria on Cr and Pb availability to Solanum melongena L. in contaminated soil irrigated with wastewater. FRONTIERS IN PLANT SCIENCE 2022; 13:950362. [PMID: 35991387 PMCID: PMC9386531 DOI: 10.3389/fpls.2022.950362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/27/2022] [Indexed: 06/01/2023]
Abstract
Crop irrigation with untreated wastewater is a routine practice in developing countries that causes multiple human health consequences. A comparative study was performed to regulate total Cr and Pb stress in soil and Solanum melongena L. plant. For this purpose, 0.2% chitosan polymerized silica gel (CP-silica gel), 1.5% zinc-enriched biochar (ZnBc), and three bacterial species such as Trichococcus sp. (B1), Pseudomonas alcaligenes (B2), and Bacillus subtilis (B3) were selected. Initially, a biosorption trial was conducted to test the heavy metal removal efficiency of three bacterial species B1, B2, and B3 for 24 h. Hence, B3 showed maximum Cr and Pb removal efficiency among the studied bacterial isolates. Then, a pot study was conducted with 12 different treatments having three replicates. After harvesting, different growth and biochemical parameters such as chlorophyll concentration, proteins, phenolics, reactive oxygen species, and antioxidant enzymes were analyzed. The results demonstrated that wastewater application significantly (p ≤ 0.01) reduced the fresh and dry weights of the root, stem, and leaves due to high total Cr and Pb toxicity. However, CP-silica gel and ZnBc treatments performed best when applied in combination with B3. The concentration of leaf total Cr was significantly decreased (91 and 85%) with the application of ZnBc + B3 and CP-Silica gel + B3, respectively, as compared to control. There was a reduction in stem hydrogen peroxide (87%) and malondialdehyde (81%) recorded with CP-silica gel + B3 treatment due to enhanced activities of antioxidant enzymes viz. ascorbate peroxidase (6-folds) and catalase (7-folds) relative to control. Similarly, leaf total phenolics (3-folds) and protein (6-folds) contents were enhanced with CP silica gel+B3 application relative to control. Overall, CP-silica gel and ZnBc with B3 application proved to be the most appropriate treatments and can be used in developing countries to limit the deleterious effects of total Cr and Pb pollution.
Collapse
Affiliation(s)
- Umm e Rabiya
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Muhammad Ali
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Muhammad Ansar Farooq
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zafar Siddiq
- Department of Botany, Government College University, Lahore, Pakistan
| | - Saud A. Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Waqas-ud-Din Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
31
|
Danish M, Shahid M, Zeyad MT, Bukhari NA, Al-Khattaf FS, Hatamleh AA, Ali S. Bacillus mojavensis, a Metal-Tolerant Plant Growth-Promoting Bacterium, Improves Growth, Photosynthetic Attributes, Gas Exchange Parameters, and Alkalo-Polyphenol Contents in Silver Nanoparticle (Ag-NP)-Treated Withania somnifera L. (Ashwagandha). ACS OMEGA 2022; 7:13878-13893. [PMID: 35559145 PMCID: PMC9088912 DOI: 10.1021/acsomega.2c00262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/22/2022] [Indexed: 05/19/2023]
Abstract
Discharge of nanoparticles (NPs) into aquatic and terrestrial ecosystems during manufacturing processes and from various commercial goods has become a significant ecotoxicological concern. After reaching soil systems, NPs cause deleterious effects on soil fertility, microbial activity, and crop productivity. Taking into consideration the medicinal importance of Withania somnifera (L.) (ashwagandha), the present study assessed the potential hazards of silver nanoparticles (Ag-NPs) and the toxicity amelioration by a metal-tolerant plant growth-promoting rhizobacterium (PGPR). Bacillus mojavensis BZ-13 (NCBI accession number MZ950923) recovered from metal-polluted rhizosphere soil, tolerated an exceptionally high level of Ag-NPs. The growth-regulating substances synthesized by B. mojavensis were increased with increasing concentrations (0-1000 μg mL-1) of Ag-NPs. Also, strain BZ-13 had the ability to form biofilm, produce alginate and exopolysaccharides (EPSs), as well maintain swimming and swarming motilities in the presence of Ag-NPs. Soil application of varying concentrations of Ag-NPs resulted in a dose-related reduction in growth and biochemical features of ashwagandha. In contrast, following soil inoculation, B. mojavensis relieved the Ag-NPs-induced phytotoxicity and improved plant productivity. Root, shoot length, dry biomass, and leaf area increased by 13, 17, 37, 25%, respectively, when B. mojavensis was applied with 25 mg/kg Ag-NPs when compared to noninoculated controls. Furthermore, the soil plant analysis development (SPAD) index, photosystem efficiency (Fv/Fm), PS II quantum yield (FPS II), photochemical quenching (qP), non-photochemical quenching (NpQ), and total chlorophyll and carotenoid content of BZ-13-inoculated plants in the presence of 25 mg Ag-NPs/kg increased by 33, 29, 41, 47, 35, 26, and 25%, respectively, when compared to noninoculated controls that were exposed to the same amounts of NPs. In addition, a significant (p ≤ 0.05) increase in 48, 18, 21, and 19% in withaferin-A (alkaloids), flavonoids, phenols, and tannin content, respectively, was recorded when plants were detached from bacterized and Ag-NP-treated plants. Leaf gas exchange parameters were also modulated in the case of inoculated plants. Furthermore, bacterial inoculation significantly decreased proline, lipid peroxidation, antioxidant enzymes, and Ag-NP's absorption and build-up in phyto-organs. In conclusion, soil inoculation with B. mojavensis may possibly be used as an alternative to protect W. somnifera plants in soil contaminated with nanoparticles. Therefore, phytohormone and other biomolecule-synthesizing and NP-tolerant PGPR strains like B. mojavensis might serve as an agronomically significant and cost-effective remediation agent for augmenting the yield and productivity of medicinally important plants like ashwagandha raised in soil contaminated with nanoparticles in general and Ag-NPs in particular.
Collapse
Affiliation(s)
- Mohammad Danish
- Section
of Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh202002, Uttar Pradesh, India
| | - Mohammad Shahid
- Department
of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohammad Tarique Zeyad
- ICAR-National
Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, 275101, Uttar Pradesh, India
| | - Najat A. Bukhari
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fatimah S. Al-Khattaf
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sajad Ali
- Department
of Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
32
|
Noman M, Ahmed T, Ijaz U, Hameed A, Shahid M, Azizullah, Li D, Song F. Microbe-oriented nanoparticles as phytomedicines for plant health management: An emerging paradigm to achieve global food security. Crit Rev Food Sci Nutr 2022; 63:7489-7509. [PMID: 35254111 DOI: 10.1080/10408398.2022.2046543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biotic and abiotic environmental stresses affect the production and quality of agricultural products worldwide. The extensive use of traditional preventive measures comprising toxic chemicals has become more problematic due to severe ecotoxicological challenges. To address this issue, engineered nanoparticles (NPs) with their distinct physical and chemical properties has gained scientific attention and can help plants to confront environmental challenges. Despite their ameliorative and beneficial effects, toxicological concerns have been raised about NPs. The recent development of biogenic NPs (bio-NPs) is getting attention in agriculture due to their diverse biocompatibility, better functional efficacy, and eco-friendly nature compared to the recalcitrant NPs, providing a promising strategy for increased crop protection against biotic and abiotic environmental stresses, with the ultimate goal of ensuring global food security. This review summarizes the recent advances in the engineering of bio-NPs with particular emphasis on the functions of bio-NPs in protecting plants from biotic and abiotic environmental stresses, delivery and entry routes of NPs to plant systems, nanotoxicity, and plant physiological/biochemical responses to nanotoxicity. Future perspectives of bio-NP-enabled strategies, remaining pitfalls, and possible solutions to combat environmental challenges via advanced nanotechnology to achieve global food security and a sustainable agricultural system are also discussed.
Collapse
Affiliation(s)
- Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Usman Ijaz
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Amir Hameed
- Plant Breeding and Acclimatization Institute, National Research Institute, Blonie, Poland
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Azizullah
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Dayong Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengming Song
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Ahmed T, Noman M, Ijaz M, Ali S, Rizwan M, Ijaz U, Hameed A, Ahmad U, Wang Y, Sun G, Li B. Current trends and future prospective in nanoremediation of heavy metals contaminated soils: A way forward towards sustainable agriculture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112888. [PMID: 34649136 DOI: 10.1016/j.ecoenv.2021.112888] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 05/23/2023]
Abstract
Heavy metals (HMs) contamination in agricultural soils is a major concern for global food safety and human health. Although, various in-situ and ex-situ remediation methods have been used for the treatment of HMs contaminated soils, however, they also have many drawbacks viz., capital investment, toxicity, and environmental health hazards. Consequently, there is an urgent need to develop a novel method to ameliorate the toxicity of HMs in agricultural soils. In recent years, nanoparticles (NPs) have gained significant attention due to their potential applications in the environment and agriculture fields. Nanoremediation employs NPs that effectively reduce the contents of toxic HMs in the soil-plant system. Several studies have reported that the application of NPs in HMs-polluted soils, which reduced plant-available HMs concentration soils. However, the long-term efficiency of NPs immobilization is still unclear. Here, we provide details about the toxicity of HMs to environmental systems and potential applications NPs to alleviate the accumulation of HMs in agricultural soils. Finally, we present the mechanistic route of HMs-toxicity alleviation in plants by NPs application as well as their long-term efficiency and future prospects.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province. Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province. Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Munazza Ijaz
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province. Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Usman Ijaz
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province. Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Amir Hameed
- Department of Biotechnology, Akhuwat-Faisalabad Institute of Research Science and Technology, Faisalabad, Pakistan
| | - Usama Ahmad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guochang Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province. Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Li Y, Ali A, Jeyasundar PGSA, Azeem M, Tabassum A, Guo D, Li R, Mian IA, Zhang Z. Bacillus subtilis and saponin shifted the availability of heavy metals, health indicators of smelter contaminated soil, and the physiological indicators of Symphytum officinale. CHEMOSPHERE 2021; 285:131454. [PMID: 34271464 DOI: 10.1016/j.chemosphere.2021.131454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/10/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Bacillus subtilis and saponin were tested for the uptake of heavy metals (HMs) by Symphytum officinale grown in a smelter-contaminated soil in completely randomized design. Soil pH and electrical conductivity increased by 0.11 unit (T3) and 754 mS cm-1 (T2), respectively. The bioavailable Zn decreased by 5.80% (T2); Cd and Pb increased by 6.21% (T2) and 13.46% (T3), respectively. Soil urease increased by 24% (T3) and alkaline phosphatase, β-glucosidase, and dehydrogenase decreased by 20% (T2), 27.70% (T2), and 21% (T1), respectively. Soil amendments altered the microbial diversity. Fourier-transform infrared spectroscopy and X-ray diffraction reported no obvious changes, except saponin application, which led to possible release of HMs in soil. The fresh weight of Symphytum officinale increased by 21.3 and 5.50% in T2 and T3, respectively. Chlorophyll (a) and carotenoid decreased by the sole application of B. subtilis and saponin and vice-versa for chlorophyll (b). Mono-application of B. subtilis efficiently increased the peroxidase (POD: 27%) and polyphenol oxidase (PPO: 13.56%), whereas, co-application enhanced the phenylalanine ammonia-lyase (PAL: 6.50%) level in shoots. Zn concentration in the shoots and roots declined by 12.75 and 27.32% in T1, respectively. Cd increased (3.92%, T3) in shoots and decreased (39.25%, T1) in roots; Pb concentration remained below detection in shoots and increased by 40% (T3) in roots due to accumulation in dead cells and cell vacuoles. Overall, B. subtilis and saponin influenced the bioavailability of HMs, enzymatic activities, and bacterial abundance in the soil; plant growth indicators, antioxidants activities, and metal uptake in shoots and roots.
Collapse
Affiliation(s)
- Yiman Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Amjad Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; School of Environmental and Municipal Engineering, Xian University of Architecture and Technology, Xian, 715000, China.
| | | | - Muhammad Azeem
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Anum Tabassum
- Department of Microbiology, Women University, Mardan, 23200, Pakistan
| | - Di Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ishaq Ahmad Mian
- Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar, 2500, Pakistan
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
35
|
Liao J, Cai X, Yang Y, Chen Q, Gao S, Liu G, Sun L, Luo Z, Lei T, Jiang M. Dynamic study of the lead (Pb) tolerance and accumulation characteristics of new dwarf bamboo in Pb-contaminated soil. CHEMOSPHERE 2021; 282:131089. [PMID: 34119730 DOI: 10.1016/j.chemosphere.2021.131089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Dwarf bamboo is a woody plant with potential for use in the remediation of Pb-contaminated soil. Due to its clonal growth habit, there are two keys to its application for continuous soil Pb remediation: 1) its ability to form shoots and grow into new bamboo normally under Pb stress and 2) the Pb tolerance and accumulation characteristics of this new bamboo. Here, 5 species of dwarf bamboo were treated with 2 levels of soil Pb stress (0 and 1500 mg kg-1). In the roots of 3 of the species (Sasa argenteostriata, Sasaella glabra, and Indocalamus decorus), Pb tended to be distributed along the cell wall and transported to vacuoles. In the other 2 species (Sasa auricoma and Sasa fortunei), Pb was arranged linearly along the cell wall. Under Pb treatment, the new bamboo of all species showed gradual physiological adaptation to Pb stress. Correlations of the net photosynthetic rate, superoxide dismutase activity, and free proline levels with Pb content in new leaves in November were all higher than those in July, though that of malondialdehyde content decreased, suggesting that new dwarf bamboo exhibits good soil Pb stress tolerance. Sasa argenteostriata and Indocalamus decorus consistently maintained higher antioxidant enzyme activities and free proline levels than the other species under Pb treatment, and the total biomass per pot of the new bamboo decreased the least compared to that in the Pb-free treatment for these two species. Therefore, these bamboo species may be used in the long-term continuous remediation of Pb-contaminated soil.
Collapse
Affiliation(s)
- Jiarong Liao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xinyi Cai
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yixiong Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Guangli Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhenghua Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
36
|
Khan I, Awan SA, Rizwan M, Ali S, Zhang X, Huang L. Arsenic behavior in soil-plant system and its detoxification mechanisms in plants: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117389. [PMID: 34058445 DOI: 10.1016/j.envpol.2021.117389] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/20/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) is one of the most toxic and cancer-causing metals which is generally entered the food chain via intake of As contaminated water or food and harmed the life of living things especially human beings. Therefore, the reduction of As content in the food could be of great importance for healthy life. To reduce As contamination in the soil and food, the evaluation of plant-based As uptake and transportation mechanisms is critically needed. Different soil factors such as physical and chemical properties of soil, soil pH, As speciation, microbial abundance, soil phosphates, mineral nutrients, iron plaques and roots exudates effectively regulate the uptake and accumulation of As in different parts of plants. The detoxification mechanisms of As in plants depend upon aquaporins, membrane channels and different transporters that actively control the influx and efflux of As inside and outside of plant cells, respectively. The xylem loading is responsible for long-distance translocation of As and phloem loading involves in the partitioning of As into the grains. However, As detoxification mechanism based on the clear understandings of how As uptake, accumulations and translocation occur inside the plants and which factors participate to regulate these processes. Thus, in this review we emphasized the different soil factors and plant cell transporters that are critically responsible for As uptake, accumulation, translocation to different organs of plants to clearly understand the toxicity reasons in plants. This study could be helpful for further research to develop such strategies that may restrict As entry into plant cells and lead to high crop yield and safe food production.
Collapse
Affiliation(s)
- Imran Khan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Samrah Afzal Awan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
37
|
Khan I, Awan SA, Rizwan M, Ali S, Hassan MJ, Brestic M, Zhang X, Huang L. Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112510. [PMID: 34273846 DOI: 10.1016/j.ecoenv.2021.112510] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 05/28/2023]
Abstract
Silicon (Si) is the second richest element in the soil and surface of earth crust with a variety of positive roles in soils and plants. Different soil factors influence the Si bioavailability in soil-plant system. The Si involves in the mitigation of various biotic (insect pests and pathogenic diseases) and abiotic stresses (salt, drought, heat, and heavy metals etc.) in plants by improving plant tolerance mechanism at various levels. However, Si-mediated restrictions in heavy metals uptake and translocation from soil to plants and within plants require deep understandings. Recently, Si-based improvements in plant defense system, cell damage repair, cell homeostasis, and regulation of metabolism under heavy metal stress are getting more attention. However, limited knowledge is available on the molecular mechanisms by which Si can reduce the toxicity of heavy metals, their uptake and transfer from soil to plant roots. Thus, this review is focused the following facets in greater detail to provide better understandings about the role of Si at molecular level; (i) how Si improves tolerance in plants to variable environmental conditions, (ii) how biological factors affect Si pools in the soil (iii) how soil properties impact the release and capability of Si to decrease the bioavailability of heavy metals in soil and their accumulation in plant roots; (iv) how Si influences the plant root system with respect to heavy metals uptake or sequestration, root Fe/Mn plaque, root cell wall and compartment; (v) how Si makes complexes with heavy metals and restricts their translocation/transfer in root cell and influences the plant hormonal regulation; (vi) the competition of uptake between Si and heavy metals such as arsenic, aluminum, and cadmium due to similar membrane transporters, and (vii) how Si-mediated regulation of gene expression involves in the uptake, transportation and accumulation of heavy metals by plants and their possible detoxification mechanisms. Furthermore, future research work with respect to mitigation of heavy metal toxicity in plants is also discussed.
Collapse
Affiliation(s)
- Imran Khan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Samrah Afzal Awan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
38
|
Sharma A, Vishwakarma K, Singh NK, Prakash V, Ramawat N, Prasad R, Sahi S, Singh VP, Tripathi DK, Sharma S. Synergistic action of silicon nanoparticles and indole acetic acid in alleviation of chromium (Cr VI) toxicity in Oryza sativa seedlings. J Biotechnol 2021; 343:71-82. [PMID: 34534595 DOI: 10.1016/j.jbiotec.2021.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022]
Abstract
The present study investigates ameliorative effect of silicon nanoparticles (SiNPs) and indole acetic acid (IAA) alone and in combination against hexavalent chromium (CrVI) toxicity in rice seedlings. The results of the study revealed protective effects of SiNPs and IAA against CrVI toxicity. The 100μM of CrVI imposed toxic effects in rice seedlings at morphological, physiological and biochemical levels which coincided with increased level of intracellular CrVI and declined level of endogenous nitric oxide (NO). The CrVI enhanced levels of superoxide radicals (SOR) (59.51% and 50.1% in shoot and root, respectively) and H2O2 (19.5% and 23.69% in shoot and root, respectively). However, when SiNPs and IAA were applied to plants under CrVI stress, they enhanced tolerance and defence mechanisms as manifested in terms of increased biomass, endogenous NO, photosynthetic pigments, and antioxidants level (ascorbate-glutathione cycle). It was also noticed that CrVI arrested cell cycle at G2/M phase whereas growth was restored as compared to control when SiNPs and IAA were supplemented. Thus, the hypothesis that combined application of SiNPs and IAA will be effective in alleviating CrVI toxicity is validated from the results of this study. Moreover, in SiNPs and IAA-mediated mitigation of CrVI toxicity, endogenous NO has a positive role. The importance of the study will be that the combination of SiNPs and IAA can be utilized against heavy metal stress and even when supplied alone, they will enhance the crop productivity parameters with and without stress conditions.
Collapse
Affiliation(s)
- Aishwarya Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004 (UP) India
| | - Kanchan Vishwakarma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004 (UP) India; Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector 125, Noida-201313, India
| | - Nand Kumar Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004 (UP) India
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004 (UP) India
| | - Naleeni Ramawat
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida-201313, India
| | - Rajendra Prasad
- Department of Horticulture, Kulbhasker Ashram PG Collage, Allahabad
| | - Shivendra Sahi
- University of the Sciences in Philadelphia (USP), Philadelphia, PA, United States
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India.
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida-201313, India.
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004 (UP) India.
| |
Collapse
|
39
|
Arif Y, Singh P, Bajguz A, Alam P, Hayat S. Silicon mediated abiotic stress tolerance in plants using physio-biochemical, omic approach and cross-talk with phytohormones. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:278-289. [PMID: 34146783 DOI: 10.1016/j.plaphy.2021.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 06/03/2021] [Indexed: 05/28/2023]
Abstract
Silicon (Si) is the second most abundant element present on the lithosphere and a quasi-essential element for plants' cellular and developmental processes. Si is associated with augmented germination, growth, photosynthesis, gas exchange, photosystem efficiency, and yield attributes in unstressed and stressed plants. The exogenous application of Si facilitates morpho-physiological and biochemical traits. It triggers the content of compatible osmolyte and enzymatic and non-enzymatic antioxidants, which decreases reactive oxygen species like hydrogen peroxide and superoxide. Uptake and transport of Si in plants are discussed in this review. Furthermore, the potent roles of Si in plants are emphasized. The cross-talk of Si with phytohormones such as auxins, cytokinins, gibberellins, abscisic acid, brassinosteroids, salicylic acid, nitric oxide, jasmonic acid, and ethylene is also presented. Moreover, attempts have been made to cover the contribution of Si mediated enhancement in 'omics' (genomic, transcriptomic, proteomic, metabolomic, and ionomic) approach that is useful in diminishing stress. This review aims to provide Si integration with phytohormone and utilization of 'omic approaches' to understand the role of Si in plants. This review also underlines the need for future research to evaluate the role of Si during abiotic stress in plants and the identification of gaps in understanding this process as a whole at a broader level.
Collapse
Affiliation(s)
- Yamshi Arif
- Aligarh Muslim University, Faculty of Life Sciences, Department of Botany, Plant Physiology Section, Aligarh, 202002, India
| | - Priyanka Singh
- Aligarh Muslim University, Faculty of Life Sciences, Department of Botany, Plant Physiology Section, Aligarh, 202002, India
| | - Andrzej Bajguz
- University of Bialystok, Faculty of Biology, Department of Biology and Plant Ecology, Konstantego Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Shamsul Hayat
- Aligarh Muslim University, Faculty of Life Sciences, Department of Botany, Plant Physiology Section, Aligarh, 202002, India.
| |
Collapse
|
40
|
Akhtar N, Ilyas N, Mashwani ZUR, Hayat R, Yasmin H, Noureldeen A, Ahmad P. Synergistic effects of plant growth promoting rhizobacteria and silicon dioxide nano-particles for amelioration of drought stress in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:160-176. [PMID: 34116336 DOI: 10.1016/j.plaphy.2021.05.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Drought tolerant plant growth-promoting rhizobacteria (PGPR) can confer drought tolerance in plants, when inoculated, and this effect can be more pronounced by their combined application with silicon oxide nanoparticles (SiO2 NPs). In this research, drought-tolerant and plant growth-promoting rhizobacterial strains were isolated from the rhizospheric soil of wheat plants growing in the arid region of Pakistan. Out of 30 isolated strains, three rhizobacterial strains were selected based on their drought tolerance, higher phytohormones (indole acetic acid (IAA), abscisic acid (ABA), and cytokinin (CK), and osmolyte (proline and sugar) production ability. These strains were identified as Bacillus sp. Azospirillum lipoferum and Azospirillum brasilense by 16S rRNA sequencing and accession numbers (MT482404, MT742664, and MT 742666, respectively) were obtained. Inoculation of these strains, alone and in combination, improved the germination attributes of wheat seeds under drought stress conditions. However, the combination of all three bacterial strains gave the best results. SiO2 NPs were prepared from silicon dioxide and characterized by scanning electron microscopy (SEM), Energy dispersive X-rays pattern (EDX), and UV-visible spectrum. The effect of SiO2 NPs was also tested on wheat seeds under drought stress and it was observed that SiO2 NPs (150 mg/L) create pronounced drought ameliorative potential in wheat seedlings. In the pot experiment, the combined application of SiO2 NPs and PGPR exhibited a synergistic role and improved the growth and yield of wheat. The interaction between SiO2 NPs and bacterial combination improved biomass (fresh and dry weight), and chlorophyll-a, b content by 138.78%, 65.70%, 128.57%, and 283.33% respectively as compared to untreated but drought exposed plants. They also improved relative water content (71.66%), gas exchange attributes, increased nutrients uptake, and osmolytes production of wheat. Up-regulation of antioxidant enzymes; superoxide dismutase (60.49%), peroxidase (55.99%), and catalase (81.69%) was also observed. This research work suggested that the application of SiO2 NPs and PGPR strains induced drought tolerance in wheat by modulating different physiological and metabolic processes in plants which ultimately improved the growth and yield of wheat under drought stress.
Collapse
Affiliation(s)
- Nosheen Akhtar
- Department of Botany, PMAS-Arid University Rawalpindi, 46300, Rawalpindi, Pakistan
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid University Rawalpindi, 46300, Rawalpindi, Pakistan.
| | | | - Rifat Hayat
- Institute of Soil Science, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University, 45550, Islamabad, Pakistan
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, S.P. College, Srinagar, Jammu, and Kashmir, India
| |
Collapse
|
41
|
Saleem I, Maqsood MA, Rehman MZU, Aziz T, Bhatti IA, Ali S. Potassium ferrite nanoparticles on DAP to formulate slow release fertilizer with auxiliary nutrients. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112148. [PMID: 33756292 DOI: 10.1016/j.ecoenv.2021.112148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Low use efficiency of nitrogen (N) and phosphorus (P) is major challenge of modern agriculture. Coating of conventional fertilizers with nanomaterials is a promising technique for improved nutrient use efficiency. In current study, nanoparticles (NPs) of potassium ferrite (KFeO2 NPs) were coated on di-ammonium phosphate (DAP) fertilizer with three rates (2, 5, 10%) of KFeO2 NPs and were evaluated for release of N, P, K and Fe supplementation in clay loam and loam soil up to 60 days. The NPs were characterized for crystal assemblage, bond formation, morphology and configuration using the x-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform-infra red spectroscopy (FT-IR). The results showed that size of NPs ranged between 7 and 18 nm. The controlled release of P in 10% KFeO2 nano-coated DAP was observed throughout the incubation period. The P release kept on increasing from day-1 (14.5 µg g-1) to day-60 (178.6 µg g-1) in coated DAP (10%) in loam soil. The maximum release of 50.4 µg g-1 NH4+1-N in coated DAP (10%) was observed after 30 days of incubation. The release of NO3-1-N was consistent up to 45 and 60 days in clay loam and loam soil, respectively. The average release of potassium and iron in 60 days was 19.7 µg g-1 and 7.3 µg g-1 higher in 10% coated DAP than traditional DAP in clay loam soil. It was concluded that KFeO2 nano-coated DAP supplied P and mineral N for longer period of time in both soils, and some higher coating levels should be tested in future.
Collapse
Affiliation(s)
- Ifra Saleem
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| | - Muhammad Aamer Maqsood
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan.
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| | - Tariq Aziz
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, Faculty of Sciences, University of Agriculture, 38000 Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
42
|
Iqbal Z, Sarkhosh A, Balal RM, Gómez C, Zubair M, Ilyas N, Khan N, Shahid MA. Silicon Alleviate Hypoxia Stress by Improving Enzymatic and Non-enzymatic Antioxidants and Regulating Nutrient Uptake in Muscadine Grape ( Muscadinia rotundifolia Michx.). FRONTIERS IN PLANT SCIENCE 2021; 11:618873. [PMID: 33643333 PMCID: PMC7902783 DOI: 10.3389/fpls.2020.618873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/23/2020] [Indexed: 05/26/2023]
Abstract
Flooding induces low oxygen (hypoxia) stress to plants, and this scenario is mounting due to hurricanes followed by heavy rains, especially in subtropical regions. Hypoxia stress results in the reduction of green pigments, gas exchange (stomatal conductance and internal CO2 concentration), and photosynthetic activity in the plant leaves. In addition, hypoxia stress causes oxidative damage by accelerating lipid peroxidation due to the hyperproduction of reactive oxygen species (ROS) in leaf and root tissues. Furthermore, osmolyte accumulation and antioxidant activity increase, whereas micronutrient uptake decreases under hypoxia stress. Plant physiology and development get severely compromised by hypoxia stress. This investigation was, therefore, aimed at appraising the effects of regular silicon (Si) and Si nanoparticles (SiNPs) to mitigate hypoxia stress in muscadine (Muscadinia rotundifolia Michx.) plants. Our results demonstrated that hypoxia stress reduced muscadine plants' growth by limiting the production of root and shoot dry biomass, whereas the root zone application of both Si and SiNP effectively mitigated oxidative and osmotic cell damage. Compared to Si, SiNP yielded better efficiency by improving the activity of enzymatic antioxidants [including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)], non-enzymatic antioxidants [ascorbic acid (AsA) and glutathione contents], and accumulation of organic osmolytes [proline and glycinebetaine (GB)]. SiNP also regulated the nutrient profile of the plants by increasing N, P, K, and Zn contents while limiting Mn and Fe concentration to a less toxic level. A negative correlation between antioxidant activities and lipid peroxidation rates was observed in SiNP-treated plants under hypoxia stress. Conclusively, SiNP-treated plants combat hypoxia more efficiently stress than conventional Si by boosting antioxidant activities, osmoprotectant accumulation, and micronutrient regulation.
Collapse
Affiliation(s)
- Zafar Iqbal
- Central Laboratories, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Rashad Mukhtar Balal
- Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Celina Gómez
- Environmental Horticulture Department, University of Florida, Gainesville, FL, United States
| | - Muhammad Zubair
- Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Noshin Ilyas
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Naeem Khan
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Muhammad Adnan Shahid
- Department of Agriculture, Nutrition and Food Systems, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
43
|
Rahbari A, Fatemi H, Esmaiel Pour B, Rizwan M, Soltani AA. Lead (Pb)-resistant bacteria inhibit Pb accumulation in dill (Anethum graveolens L.) by improving biochemical, physiological, and antioxidant enzyme response of plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5704-5713. [PMID: 32968907 DOI: 10.1007/s11356-020-10851-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
The accumulation of heavy metal in the soil is a serious concern for sustainable food production due to their toxic effects on plants and other living things. The strategies are required on urgent bases for the management of metal-contaminated soils. Thus, the microbes from the genus Pseudomonas were characterized for different traits and lead (Pb)-resistant ability and their effects were assessed on growth, photosynthesis, antioxidant capacity, and Pb uptake by dill (Anethum graveolens L.). Furthermore, soil basal respiration and induced respiration in soil were also assessed under microbes and Pb stress. Among the tested three strains, Pseudomonas P159 and P150 were more tolerant to Pb stress than Pseudomonas P10, whereas P159 showed the highest values for phosphorus (P), siderophore, auxin, and hydrogen cyanide production. The bacterial inoculation increased the plant shoot dry weights, carbohydrates, proline, and chlorophyll contents under Pb stress. The catalase (CAT) and peroxidase (POD) activities of the plants were higher in bacterial-treated plants than control. The bacterial inoculation decreased Pb concentration in plants, and the response varied with the type of microbes. The bacterial strains enhanced the soil basal and induced respiration than respective Pb treatments alone. Overall, Pseudomonas P159 is potentially suitable for the remediation of Pb-contaminated soils. Graphical abstract.
Collapse
Affiliation(s)
- Akram Rahbari
- Department of Horticulture, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hamideh Fatemi
- Department of Horticulture, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Behrooz Esmaiel Pour
- Department of Horticulture, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Ali-Ashraf Soltani
- Department of Soil Science, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
44
|
Ali J, Ali F, Ahmad I, Rafique M, Munis MFH, Hassan SW, Sultan T, Iftikhar M, Chaudhary HJ. Mechanistic elucidation of germination potential and growth of Sesbania sesban seedlings with Bacillus anthracis PM21 under heavy metals stress: An in vitro study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111769. [PMID: 33396087 DOI: 10.1016/j.ecoenv.2020.111769] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 05/06/2023]
Abstract
Soils contaminated with heavy metals such as Chromium (Cr) and Cadmium (Cd) severely impede plant growth. Several rhizospheric microorganisms support plant growth under heavy metal stress. In this study, Cr and Cd stress was applied to in vitro germinating seedlings of a Legume plant species, Sesbania sesban, and investigated the plant growth potential in presence and absence of Bacillus anthracis PM21 bacterial strain under heavy metal stress. The seedlings were exposed to different concentrations of Cr (25-75 mg/L) and Cd (100-200 mg/L) in Petri plates. Growth curve analysis of B. anthracis PM21 revealed its potential to adapt Cr and Cd stress. The bacteria supported plant growth by exhibiting ACC-deaminase activity (1.57-1.75 μM of α-ketobutyrate/h/mg protein), producing Indole-3-acetic acid (99-119 μM/mL) and exopolysaccharides (2.74-2.98 mg/mL), under heavy metal stress condition. Analysis of variance revealed significant differences in growth parameters between the seedlings with and without bacterial inoculation in metal stress condition. The combined Cr+Cd stress (75 + 200 mg/L) significantly reduced root length (70%), shoot length (24%), dry weight (54%) and fresh weight (57%) as compared to control. Conversely, B. anthracis PM21 inoculation to seedlings significantly increased (p ≤ 0.05) seed germination percentage (5%), root length (31%), shoot length (23%) and photosynthetic pigments (Chlorophyll a: 20%; Chlorophyll b: 16% and total chlorophyll: 18%), as compared to control seedlings without B. anthracis PM21 inoculation. The B. anthracis PM21 inoculation also enhanced activities of antioxidant enzymes, including superoxide dismutase (52%), peroxidase (66%), and catalase (21%), and decreased proline content (56%), electrolyte leakage (50%), and malondialdehyde concentration (46%) in seedlings. The B. anthracis PM21 inoculated seedlings of S. sesban exhibited significantly high (p ≤ 0.05) tissue deposition of Cr (17%) and Cd (16%) as compared to their control counterparts. Findings of the study suggested that B. anthracis PM21 endured metal stress through homeostasis of antioxidant activities, and positively impacted S. sesban growth and biomass. Further experiments in controlled conditions are necessary for investigating phytoremediation potential of S. sesban in metal-contaminated soils in presence of B. anthracis PM21 bacterial strain.
Collapse
Affiliation(s)
- Javed Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fawad Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, 61100 Vehari, Pakistan
| | - Mazhar Rafique
- Department of Soil and Climate Sciences, Faculty of Agriculture Sciences, The University of Haripur, Pakistan
| | | | | | - Tariq Sultan
- Soil Biology Program, Land Resources Research Institute, National Agricultural Research Center, Islamabad, Pakistan
| | - Muhammad Iftikhar
- Soil Biology Program, Land Resources Research Institute, National Agricultural Research Center, Islamabad, Pakistan
| | | |
Collapse
|
45
|
Li M, Zhang P, Adeel M, Guo Z, Chetwynd AJ, Ma C, Bai T, Hao Y, Rui Y. Physiological impacts of zero valent iron, Fe 3O 4 and Fe 2O 3 nanoparticles in rice plants and their potential as Fe fertilizers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116134. [PMID: 33290949 DOI: 10.1016/j.envpol.2020.116134] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/22/2020] [Accepted: 11/16/2020] [Indexed: 05/12/2023]
Abstract
Fe-based nanoparticles (Fe-based NPs) have great potential as a substitute for traditional Fe-fertilizer; however, their environmental risk and impact on plant growth are not fully understood. In this study, we compared the physiological impacts of three different Fe-based NP formulations: zero-valent iron (ZVI), Fe3O4 and Fe2O3 NPs, on hydroponic rice after root exposure for 2 weeks. Fe-normal (Fe(+)) and Fe-deficiency (Fe(-)) conditions were compared. Results showed that low dose (50 mg L-1) of ZVI and Fe3O4 NPs improved the rice growth under Fe(-) condition, while Fe2O3 NPs did not improve plant growth and caused phytotoxicity at high concentration (500 mg L-1). Under Fe(+) conditions, none of the Fe-based NPs exhibited positive effects on the rice plants with plant growth actually being inhibited at 500 mg L-1 evidenced by reduced root volume and leaf biomass and enhanced oxidative stress in plant. Under Fe(-) condition, low dose (50 mg L-1) of ZVI NPs and Fe3O4 NPs increased the chlorophyll content by 30.7% and 26.9%, respectively. They also alleviated plant stress demonstrated by the reduced oxidative stress and decreased concentrations of stress related phytohormones such as gibberellin and indole-3-acetic acid. Low dose of ZVI and Fe3O4 NPs treatments resulted in higher Fe accumulation in plants compared to Fe2O3 NPs treatment, by down-regulating the expression of IRT1 and YSL15. This study provides significant insights into the physiological impacts of Fe-based NPs in rice plants and their potential application in agriculture. ZVI and Fe3O4 NPs can be used as Fe-fertilizers to improve rice growth under Fe-deficient condition, which exist in many rice-growing regions of the world. However, dose should be carefully chosen as high dose (500 mg L-1 in this study) of the Fe-based NPs can impair rice growth.
Collapse
Affiliation(s)
- Mingshu Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Muhammad Adeel
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew J Chetwynd
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Tonghao Bai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; Yantai Institute, China Agricultural University (Yantai), Shandong 264670, China
| | - Yi Hao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China
| | - Yukui Rui
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China.
| |
Collapse
|
46
|
Fatemi H, Esmaiel Pour B, Rizwan M. Foliar application of silicon nanoparticles affected the growth, vitamin C, flavonoid, and antioxidant enzyme activities of coriander (Coriandrum sativum L.) plants grown in lead (Pb)-spiked soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1417-1425. [PMID: 32839908 DOI: 10.1007/s11356-020-10549-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/16/2020] [Indexed: 05/03/2023]
Abstract
Lead (Pb) is among the most abundant toxic trace elements which causes direct and indirect negative effects on humans, animals, and plants. Thus, there is a need to alleviate the Pb toxicity in plants for good quality food production especially from marginal soils. In this study, the effects of silicon nanoparticles (Si NPs) were investigated on coriander (Coriandrum sativum L.) biomass, vitamin C, flavonoid, antioxidant enzyme activities (i.e., catalase (CAT), peroxidase (POD), and super oxide dismutase (SOD)), malondialdehyde (MDA), and Pb concentration in plants subjected to different Pb concentrations. Treatments included four levels of Pb (0, 500, 1000, and 1500 mg/kg of soil), and two levels of Si NPs (0 and 1.5 mM) in all combinations. The Pb treatments alone decreased the plant biomass and vitamin C while increased the flavonoid, MDA, antioxidant enzyme activities, and Pb concentration in tissues depending upon the Pb treatments. The foliar-applied 1.5 mM Si NPs alleviated the adverse impacts of Pb on coriander plants which were due to the minimization of Pb concentration in plants and improvements in the plant defense system. Si NPs minimized accumulation of MDA in plant tissues and adjusted the activities of POD, CAT, and SOD in plants under Pb stress. Overall, Si NP foliar application might be a suitable approach in reducing the Pb concentrations in plants. However, field studies with various plant species and environmental conditions are required to highlight the role of Si NPs on the plant under toxic trace element stress.
Collapse
Affiliation(s)
- Hamideh Fatemi
- Department of Horticulture, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Behrooz Esmaiel Pour
- Department of Horticulture, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| |
Collapse
|
47
|
Zhou P, Adeel M, Shakoor N, Guo M, Hao Y, Azeem I, Li M, Liu M, Rui Y. Application of Nanoparticles Alleviates Heavy Metals Stress and Promotes Plant Growth: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E26. [PMID: 33374410 PMCID: PMC7824443 DOI: 10.3390/nano11010026] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/04/2022]
Abstract
Nanotechnology is playing a significant role in addressing a vast range of environmental challenges by providing innovative and effective solutions. Heavy metal (HM) contamination has gained considerable attention in recent years due their rapidly increasing concentrations in agricultural soil. Due to their unique physiochemical properties, nanoparticles (NPs) can be effectively applied for stress alleviation. In this review, we explore the current status of the literature regarding nano-enabled agriculture retrieved from the Web of Science databases and published from January 2010 to November 2020, with most of our sources spanning the past five years. We briefly discuss uptake and transport mechanisms, application methods (soil, hydroponic and foliar), exposure concentrations, and their impact on plant growth and development. The current literature contained sufficient information about NPs behavior in plants in the presence of pollutants, highlighting the alleviation mechanism to overcome the HM stress. Furthermore, we present a broad overview of recent advances regarding HM stress and the possible mechanism of interaction between NPs and HM in the agricultural system. Additionally, this review article will be supportive for the understanding of phytoremediation and micro-remediation of contaminated soils and also highlights the future research needs for the combined application of NPs in the soil for sustainable agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (P.Z.); (M.A.); (N.S.); (M.G.); (Y.H.); (I.A.); (M.L.); (M.L.)
| |
Collapse
|