1
|
Zhang X, Liu T, Sun W, Zhang C, Jiang X, You X, Wang X. The fate and ecological risk of typical diamide insecticides in soil ecosystems under repeated application. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138440. [PMID: 40339368 DOI: 10.1016/j.jhazmat.2025.138440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/13/2025] [Accepted: 04/28/2025] [Indexed: 05/10/2025]
Abstract
Diamide insecticides are the third most widely used class of pesticides worldwide. However, the long-term impacts of repeated diamide applications on soil ecosystems remain unclear. This study investigated chlorantraniliprole (CLP) and cyantraniliprole (CYP) effects on soil ecosystems through simulated repeated exposures. Results showed both exhibited slow degradation in the soil, with repeated applications extending their persistence, particularly for CLP. Both significantly inhibited soil alkaline nitrogen and organic matter accumulation, while reducing urease and sucrase activities, with CLP exerting stronger inhibitory effects. Metagenomic analysis indicated that CLP and CYP notably reduced soil microbial diversity. Additionally, the two insecticides altered the soil microbial community structure and inhibited carbon-nitrogen metabolic pathways. Further analysis revealed that CLP treatment significantly decreased the relative abundances of Mesorhizobium and Marmoricola, whereas CYP treatment primarily reduced Clostridium_sensu_stricto_1. All of these genera exhibited significant positive correlations with key metabolic pathways in soil carbon and nitrogen cycling. Notably, the relative abundance of Sphingomonas increased significantly following CLP and CYP treatments, demonstrating potential degradation capabilities. Overall, both CLP and CYP posed ecological risks to soil ecosystems, with CLP exhibiting more severe impacts. These findings revealed the need for strengthened scientific management in actual production.
Collapse
Affiliation(s)
- Xin Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| | - Wei Sun
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Chengzhi Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiaoke Jiang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiangwei You
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| |
Collapse
|
2
|
Lei Y, Liu H, Wu Y, Huang Y, Zhou Q, Chen L, Jin S, Tang D. Three-Dimensional Quantitative Structure-Activity Relationship-Based Molecular Design through a Side Arm Strategy to Synthesize Phenylpyrazole Oxime Derivatives and Improve Their Insecticidal Activity and Photoself-Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5585-5604. [PMID: 39995035 DOI: 10.1021/acs.jafc.4c09282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Three-dimensional quantitative structure-activity relationship (3D-QSAR) serves as one of the most important and effective tools to guide molecular design for the development of new pesticides. According to the principle of structural splicing, only changing a small group may lead to a great increase in activity while maintaining the active center unchanged. Under the guidance of 3D-QSAR, three series of phenylpyrazole oxime fluorescent insecticides acting on the GABA receptor, namely, esters (POEs), ethers (POETs), and triazoles (POTs), were designed through a side arm strategy and synthesized by an ultrasonic bath reaction, which were fully characterized and crystal-analyzed. The preliminary bioassay results indicated that the insecticidal activities of POE12 and POT2 against Plutella xylostella were 4.2 and 2.7 times higher than that of fipronil and better than that of the isolated Mythimna separata. Through the trend of insecticidal activity, the introduction of an aryl ring and an electron-withdrawing group in the substituted functional group of the side arm can enhance the insecticidal activity. Reversed-phase HPLC also confirmed that POEs and POTs had good lipid solubility, which was beneficial to improve their fluidity in the cell membrane. Through molecular packing, molecular docking, and Hirshfeld surface, the intermolecular interaction brought by side arms of POEs, POETs, and POTs and the strong interaction with GABA receptors were preliminarily verified. Photophysical tests revealed that the introduction of the side arm expanded the conjugated system and improved its light absorption and fluorescence. Under the irradiation of simulated sunlight, it was found that they had photoself-degradation and could be retransformed into the parent fragment of phenylpyrazole, thereby improving its biological activity and reducing residues.
Collapse
Affiliation(s)
- Yizhe Lei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| | - Huiling Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| | - Yu Wu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| | - Yufeng Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| | - Quan Zhou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| | - Lianqing Chen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, Hubei Province 430074, China
- Hubei Three Gorges Laboratory, Yichang, Hubei Province 443000, China
- Department of Chemistry, University of Wisconsin-Platteville, Platteville, Wisconsin 53818, United States
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| | - Dingguo Tang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| |
Collapse
|
3
|
Ma Z, Chang J, Li J, Wan B, Wang H. Mechanistic Insight into the Reproductive Toxicity of Trifloxystrobin in Male Sprague-Dawley Rats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22014-22026. [PMID: 39626112 DOI: 10.1021/acs.est.4c08168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Previous studies have demonstrated the reproductive toxicity of trifluorostrobin (TRI) in male organisms. However, the underlying mechanisms of TRI responsible for testicular damage and hormonal disruption remain elusive. This study elucidated the male reproductive toxicity of TRI at the molecular level under environmentally relevant concentrations and its associations with gut microbiota dysbiosis. The rats were administered TRI (1.5, 15, and 75 mg/kg of body weight/day) continuously via gavage for 90 days. Exposure to 15 mg/kg (below the no-observed adverse effect level (NOAEL) of 30 mg/kg) and 75 mg/kg TRI damaged testicular tissue, reduced sperm count, and lowered serum hormone and total cholesterol levels. Transcriptomics analysis combined with molecular docking simulations and cell proliferation assays showed that exposure to TRI led to testicular damage by inhibiting the expression of cholesterol receptor genes, which, in turn, disrupted steroid hormone biosynthesis. Furthermore, exposure to TRI resulted in a marked decline in the relative abundance of the probiotic bacteria. Consistently, significant reductions in the relative abundance of short-chain fatty acids (SCFAs), retinoic acids, and steroid hormones in the gut were observed. Additionally, a significant correlation was observed between the relative abundance of Parabacteroides and serum testosterone levels, a vital biomarker for reproductive toxicity monitoring. These findings shed light on the mode of action of TRI-induced male reproductive toxicity and highlight the link between testicular injury and gut microbiota.
Collapse
Affiliation(s)
- Zheng Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
- University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Jianzhong Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Bin Wan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
- University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Huili Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| |
Collapse
|
4
|
Zhang P, Ran L, Yang C, Tang C, Ke X, Xu Z. Comparative study of fenpropathrin and its main metabolite in soil-earthworm microcosms: Toxicity, degradation, transcriptome, and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177354. [PMID: 39489445 DOI: 10.1016/j.scitotenv.2024.177354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/19/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
This study comprehensively investigated the comparative acute toxicities, degradation, transcriptome, and oxidative stress induction of fenpropathrin (FEN) and its main metabolite 3-phenoxybenzoic acid (3-PBA)in soil-earthworm microcosms. FEN degradation half-life ranged from 19.09 to 28.52 days, and the peak-shaped trends of 3-PBA were also observed in different soil types. The LC50 values of FEN and 3-PBA were 12.75 and 7.49 μg/cm2, respectively, suggesting that 3-PBA was more toxic to earthworms. Furthermore, the sub-lethal toxicities indicated that 3-PBA exerted more prominent alterations in protein content, enzyme activity, lipid peroxidation, and oxidative stress in earthworms. Additionally, integrated biomarker response evaluations indicated that 3-PBA induced more prominent sub-lethal toxicity in earthworms than FEN. Finally, exposure to FEN and 3-PBA resulted in distinct differentially expressed genes (DEGs) in earthworms. Enrichment analysis revealed that these DEGs were predominantly enriched in purine metabolism and bile secretion pathways in earthworms. Moreover, the p53 signaling pathway, cell cycle, DNA replication, drug metabolism, and pyrimidine metabolism were also enriched in earthworms after exposure to FEN and 3-PBA. These results suggested that FEN and 3-PBA induced varying toxicities in earthworms. This study highlighted the systemic differences in the toxicities, degradation, transcriptome, and oxidative stress induction between FEN and 3-PBA in soil-earthworm microcosms. Our findings could be used for a comprehensive risk assessment of FEN and 3-PBA in the soil ecosystem.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - LuLu Ran
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Cancan Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Can Tang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Xiaojiang Ke
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Kesti S, Macar O, Kalefetoğlu Macar T, Çavuşoğlu K, Yalçın E. Investigation of the protective role of Ginkgo biloba L. against phytotoxicity, genotoxicity and oxidative damage induced by Trifloxystrobin. Sci Rep 2024; 14:19937. [PMID: 39198657 PMCID: PMC11358517 DOI: 10.1038/s41598-024-70712-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Trifloxystrobin (TFS) is a widely used strobilurin class fungicide. Ginkgo biloba L. has gained popularity due to its recognized medicinal and antioxidant properties. The aim of this study was to determine whether Ginkgo biloba L. extract (Gbex) has a protective role against TFS-induced phytotoxicity, genotoxicity and oxidative damage in A. cepa. Different groups were formed from Allium cepa L. bulbs subjected to tap water (control), 200 mg/L Gbex (Gbex1), 400 mg/L Gbex (Gbex2), 0.8 g/L TFS solution (TFS), 200 mg/L Gbex + 0.8 g/L TFS (TFS + Gbex1) and 400 mg/L Gbex + 0.8 g/L TFS (TFS + Gbex2), respectively. The phenolic composition of Gbex and alterations in the morphological, physiological, biochemical, genotoxicity and anatomical parameters were evaluated. Rutin, protocatechuic acid, catechin, gallic acid, taxifolin, p-coumaric acid, caffeic acid, epicatechin, syringic acid and quercetin were the most prevalent phenolic substances in Gbex. Rooting percentage, root elongation, weight gain, chlorophyll a and chlorophyll b decreased by approximately 50%, 85%, 77%, 55% and 70%, respectively, as a result of TFS treatment compared to the control. In the TFS group, the mitotic index fell by 28% compared to the control group, but chromosomal abnormalities, micronuclei frequency and tail DNA percentage increased. Fragment, vagrant chromosome, sticky chromosome, uneven chromatin distribution, bridge, vacuole-containing nucleus, reverse polarization and irregular mitosis were the chromosomal abnormalities observed in the TFS group. The levels of proline (2.17-fold) and malondialdehyde (2.71-fold), as well as the activities of catalase (2.75-fold) and superoxide dismutase (2.03-fold) were increased by TFS in comparison to the control. TFS-provoked meristematic disorders were damaged epidermis and cortex cells, flattened cell nucleus and thickened cortex cell wall. Gbex combined with TFS relieved all these TFS-induced stress signs in a dose-dependent manner. This investigation showed that Gbex can play protective role in A. cepa against the phytotoxicity, genotoxicity and oxidative damage caused by TFS. The results demonstrated that Gbex had this antioxidant and antigenotoxic potential owing to its high phenolic content.
Collapse
Affiliation(s)
- Saliha Kesti
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Oksal Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, 28400, Giresun, Turkey.
| | - Tuğçe Kalefetoğlu Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, 28400, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Emine Yalçın
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| |
Collapse
|
6
|
Alaoui A, Christ F, Silva V, Vested A, Schlünssen V, González N, Gai L, Abrantes N, Baldi I, Bureau M, Harkes P, Norgaard T, Navarro I, de la Torre A, Sanz P, Martínez MÁ, Hofman J, Pasković I, Pasković MP, Glavan M, Lwanga EH, Aparicio VC, Campos I, Alcon F, Contreras J, Mandrioli D, Sgargi D, Scheepers PTJ, Ritsema C, Geissen V. Identifying pesticides of high concern for ecosystem, plant, animal, and human health: A comprehensive field study across Europe and Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174671. [PMID: 39004368 DOI: 10.1016/j.scitotenv.2024.174671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
The widespread and excessive use of pesticides in modern agricultural practices has caused pesticide contamination of the environment, animals, and humans, with confirmed serious health consequences. This study aimed to identify the 20 most critical substances based on an analysis of detection frequency (DF) and median concentrations (MC) across environmental and biological matrices. A sampling campaign was conducted across 10 case study sites in Europe and 1 in Argentina, each encompassing conventional and organic farming systems. We analysed 209 active substances in a total of 4609 samples. All substances ranked among the 20 most critical were detected in silicon wristbands worn by humans and animals and indoor dust from both farming systems. Five of them were detected in all environmental matrices. Overall, higher values of DF and MC, including in the blood plasma of animals and humans, were recorded in samples of conventional compared to organic farms. The differences between farming systems were greater in the environmental samples and less in animal and human samples. Ten substances were detected in animal blood plasma from conventional farms and eight in animal blood plasma from organic farms. Two of those, detected in both farming systems, are classified as hazardous for mammals (acute). Five substances detected in animal blood plasma from organic farms and seven detected in animal blood plasma from conventional farms are classified as hazardous for mammals (dietary). Three substances detected in human blood plasma are classified as carcinogens. Seven of the substances detected in human blood plasma are classified as endocrine disruptors. Six substances, of which five were detected in human blood plasma, are hazardous for reproduction/development. Efforts are needed to elucidate the unknown effects of mixtures, and it is crucial that such research also considers biocides and banned substances, which constitute a baseline of contamination that adds to the effect of substances used in agriculture.
Collapse
Affiliation(s)
- Abdallah Alaoui
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.
| | - Florian Christ
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | - Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Anne Vested
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Vivi Schlünssen
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Lingtong Gai
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Nelson Abrantes
- CESAM and Department of Biology, University of Aveiro, Portugal
| | - Isabelle Baldi
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
| | - Mathilde Bureau
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Trine Norgaard
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - Irene Navarro
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Adrián de la Torre
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Paloma Sanz
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - María Ángeles Martínez
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Igor Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Huguesa 8, 52440 Poreč, Croatia
| | - Marija Polić Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Huguesa 8, 52440 Poreč, Croatia
| | - Matjaž Glavan
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Esperanza Huerta Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Isabel Campos
- CESAM and Department of Environment and Planning, University of Aveiro, Portugal
| | - Francisco Alcon
- Agricultural Engineering School, Universidad Politécnica de Cartagena, Spain
| | - Josefa Contreras
- Agricultural Engineering School, Universidad Politécnica de Cartagena, Spain
| | | | - Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Italy
| | - Paul T J Scheepers
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Coen Ritsema
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
7
|
Zhang Y, Huang C, Zhao J, Hu L, Yang L, Zhang Y, Sang W. Insights into tolerance mechanisms of earthworms (Eisenia fetida) in copper-contaminated soils by integrating multi-omics analyses. ENVIRONMENTAL RESEARCH 2024; 252:118910. [PMID: 38604487 DOI: 10.1016/j.envres.2024.118910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/17/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Earthworms can resist high levels of soil copper (Cu) contamination and play an essential role in absorbing them effectively. However, the molecular mechanisms underlying Cu tolerance in earthworms are poorly understood. To address this research gap, we studied alterations of Eisenia fetida in antioxidant enzymes, gut microbiota, metabolites, and genes under varying levels of Cu exposure soils (0, 67.58, 168.96, 337.92 mg/kg). Our results revealed a reduction in antioxidant enzyme activities across all treatment groups, indicating an adaptive response to alleviate Cu-induced oxidative stress. Analysis of gut microbiota revealed a significant increase in the abundance of bacteria associated with nutrient uptake and Cu2+ excretion under Cu stress. Furthermore, metabolomic analysis discovered an increase in certain metabolites associated with energy metabolism, such as pyruvic acid, L-malic acid, and fumaric acid, as Cu concentration escalated. These results suggested that enhanced energy supply contributes to the elevated tolerance of E. fetida towards Cu. Additionally, transcriptome analysis not only identified crucial detoxification genes (Hsp70, CTSL, GST, CHAC, and GCLC), but also confirmed the critical role of glutathione metabolism as a key pathway in E. fetida Cu detoxification processes. These findings provide a new perspective on the molecular mechanisms of Cu tolerance in earthworms.
Collapse
Affiliation(s)
- Yanliang Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Chenyu Huang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jinqi Zhao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Luyi Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Lan Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yuanyuan Zhang
- Beijing Milu Ecological Research Center, Beijing, 100076, China; Beijing Biodiversity Conservation Research Center, Beijing, 100076, China.
| | - Weiguo Sang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
8
|
Lin XL, Guo F, Rillig MC, Chen C, Duan GL, Zhu YG. Effects of common artificial sweeteners at environmentally relevant concentrations on soil springtails and their gut microbiota. ENVIRONMENT INTERNATIONAL 2024; 185:108496. [PMID: 38359549 DOI: 10.1016/j.envint.2024.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Artificial sweeteners (AS) are extensively utilized as sugar substitutes and have been recognized as emerging environmental contaminants. While the effect of AS on aquatic organisms has garnered recent attention, their effects on soil invertebrates and gut microbial communities remain unclear. To address this knowledge gap, we exposed springtails (Folsomia candida) to both single and combined treatments of four typical AS (sucralose [SUC], saccharin [SAC], cyclamate [CYC], and acesulfame [ACE]) at environmentally relevant concentrations of 0.01, 0.1 and 1 mg kg-1 in soil. Following the first-generational exposure, the reproduction of juveniles showed a significant increase under all the AS treatments of 0.1 mg kg-1. The transcriptomic analysis revealed significant enrichment of several Kyoto Encyclopedia of Gene and Genome pathways (e.g., glycolysis/gluconeogenesis, pentose and glucuronate interconversions, amino sugar, and nucleotide sugar metabolism, ribosome, and lysosome) in springtails under all AS treatments. Analysis of gut bacterial microbiota indicated that three AS (SUC, CYC, and ACE) significantly decreased alpha diversity, and all AS treatments increased the abundance of the genus Achromobacter. After the sixth-generational exposure to CYC, weight increased, but reproduction was inhibited. The pathways that changed significantly (e.g., extracellular matrix-receptor interaction, amino sugar and nucleotide sugar metabolism, lysosome) were generally similar to those altered in first-generational exposure, but with opposite regulation directions. Furthermore, the effect on the alpha diversity of gut microbiota was contrary to that after first-generational exposure, and more noticeable disturbances in microbiota composition were observed. These findings underscore the ecological risk of AS in soils and improve our understanding of the toxicity effects of AS on living organisms.
Collapse
Affiliation(s)
- Xiang-Long Lin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Matthias C Rillig
- Institut Für Biologie, Freie Universität Berlin, Berlin 14195, Germany
| | - Chun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gui-Lan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
9
|
Chen C, Zheng N, Zhu H, An Q, Pan J, Li X, Ji Y, Li N, Sun S. Co-exposure to UV-aged microplastics and cadmium induces intestinal toxicity and metabolic responses in earthworms. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132737. [PMID: 37832442 DOI: 10.1016/j.jhazmat.2023.132737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Aged microplastics (MPs) alter the interaction with heavy metals due to changes in surface properties. However, the combined toxicological effects of aged MPs on heavy metals in soil remain poorly understood. In this study, earthworms were employed as model animals to investigate the effects of aged MPs on the biotoxicity of cadmium (Cd) by simulating the exposure patterns of original and UV-aged MPs (polylactic acid (PLA) and polyethylene (PE)) with Cd. The results showed that UV-aging decreased the zeta potential and increased the specific surface area of the MPs, which enhanced the bioaccumulation of Cd and caused more severe oxidative stress to earthworms. Meanwhile, the earthworm intestines exhibited increased tissue damage, including chloragogenous tissue congestion lesions, and typhlosole damage. Furthermore, the combined exposure to UV-aged MPs and Cd enhanced the complexity of the microbial network in the earthworm gut and interfered with endocrine disruption, membrane structure, and energy metabolic pathways in earthworms. The results emphasized the need to consider the degradation of MPs in the environment. Hence, we recommend that future toxicological studies use aged MPs that are more representative of the actual environmental conditions, with the results being important for the risk assessment and management of MPs.
Collapse
Affiliation(s)
- Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China.
| | - Huicheng Zhu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Jiamin Pan
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Ning Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| |
Collapse
|
10
|
Lin X, Liu Z, Wang W, Duan G, Zhu Y. Effects of artificial sweetener acesulfame on soil-dwelling earthworms (Eisenia fetida) and its gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167641. [PMID: 37806587 DOI: 10.1016/j.scitotenv.2023.167641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/16/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Artificial sweeteners (AS) are the emerging contaminants with potential toxicity to living organisms. The effects of AS to soil typical invertebrates have not been revealed. In this study, the responses of earthworms (Eisenia fetida) and gut microbial communities to acesulfame-contaminated soils (0.1, 1 and 10 mg kg-1) were studied using transcriptomics, metabolomics and metagenomics analyses. The fresh weight of earthworms was significantly stimulated by acesulfame at concentrations of 1 mg kg-1. Sphingolipid metabolism, purine metabolism, cutin, suberine and wax biosynthesis pathways were significantly affected. At 10 mg kg-1 treatment, the amount and weight of cocoons were significantly increased and decreased, respectively, accompanied by the significant disorder of ECM-receptor interaction, and carbon fixation in photosynthetic organisms pathways. Lysosome pathway was significantly affected in all the treatments. Moreover, the acesulfame significantly increased the relative abundance of Bacteroidetes and Mucoromycota, and decreased Proteobacteria in the gut of earthworms. Our multi-level investigation indicated that AS at a relatively low concentration induced toxicity to earthworms and AS pollution has significant environmental risks for soil fauna.
Collapse
Affiliation(s)
- Xianglong Lin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhelun Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiran Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-, Beijing, Beijing 100083, China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
11
|
Zhang S, Luo T, Weng Y, Wang D, Sun L, Yu Z, Zhao Y, Liang S, Ren H, Zheng X, Jin Y, Qi X. Toxicologic effect and transcriptome analysis for sub-chronic exposure to carbendazim, prochloraz, and their combination on the liver of mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5500-5512. [PMID: 38123780 DOI: 10.1007/s11356-023-31412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Carbendazim (CBZ) and prochloraz (PCZ) are broad-spectrum fungicides used in agricultural peat control. Both fungicides leave large amounts of residues in fruits and are toxic to non-target organisms. However, the combined toxicity of the fungicides to non-target organisms is still unknown. Therefore, we characterized the toxic effects of dietary supplementation with CBZ, PCZ, and their combination for 90 days in 6-week-old male Institute of Cancer Research (ICR) mice. CBZ-H (100 mg/kg day), PCZ-H (10 mg/kg day), and their combination treatments increased the relative liver weights and caused liver injury. The serum total cholesterol (TC), triglyceride (TG), glucose (Glu), pyruvate (PYR), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were reduced, and synergistic toxicity was observed. Hepatic transcriptome revealed that 326 differentially expressed genes (DEGs) of liver were observed in the CBZ treatment group, 149 DEGs in the PCZ treatment group, and 272 DEGs in the combination treatment group. According to KEGG enrichment analysis, the fungicides and their combination affected lipid metabolism, amino acid metabolism, and ferroptosis. In addition, the relative mRNA levels of key genes involved in lipid metabolism were also examined. Compared with individual exposure, combined exposure to CBZ and PCZ caused a more obvious decrease in the expression of some genes related to glycolipid metabolism. Furthermore, the relative mRNA levels of some key genes in the combination treatment group were lower than those in the CBZ and PCZ treated groups. In summary, CBZ, PCZ, and their combination generally caused hepatotoxicity and glycolipid metabolism disorders, which could provide new insights for investigating the combined toxicity of multiple fungicides to animals.
Collapse
Affiliation(s)
- Shuwen Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou, 310021, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou, 310021, China
- Institute of Agro-Product Safety and Nutrition, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou, 310021, China
- Institute of Agro-Product Safety and Nutrition, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Li Sun
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheping Yu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou, 310021, China
- Institute of Agro-Product Safety and Nutrition, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Senmiao Liang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Haiying Ren
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiliang Zheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xingjiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
12
|
Chowdhary AB, Dutta R, Singh J, Tikoria R, Quadar J, Angmo D, Singh A, Singh S, Vig AP. Physiological and behavioral assessment of Metaphire posthuma in response to clothianidin insecticide: Insights from molecular and biochemical analysis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105639. [PMID: 37945220 DOI: 10.1016/j.pestbp.2023.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
In the present study, Clothianidin [(E) - 1-(2 - chloro-1,3 - thiazol - 5-ylmethyl) - 3-methyl - 2- nitroguanidine] (CLO) was selected as a soil pollutant and earthworm was employed as a test organism. The various responses like biochemical and detoxification process of earthworm Metaphire posthuma towards Clothianidin at lethal and sublethal doses were studied using OECD-standardized toxicological guidelines. The present study examined the toxicity of CLO to earthworms after 28 days of exposure at conc. 0, 1.5, 3, 6, 12 and 24 mg kg-1 in a soil mixture. Biochemical markers including Guaiacol peroxidase (POD), Superoxide dismutase (SOD), Catalase (CAT), Glutathione S-transferase (GST) and content of Malondialdehyde (MDA) in earthworms were measured. Acute toxicity tests revealed that CLO caused a concentration-dependent increase in mortality with LC50 (Lethal concentration) values of 10.960 and 8.201 mg kg-1 for 7th and 14th day respectively. The earthworms were exposed to CLO contaminated soil for 56 days and reflecting the significant decrease in earthworm growth, cocoon and hatchling production. Moreover, enzyme activities such as CAT, SOD, POD and MDA content were significantly enhanced with the increased concentration and exposure period of CLO. Molecular docking studies indicated that CLO primarily interacts to the junction site of SOD and in active centres of CAT, POD and GST. As a result, the current findings imply that the sub chronic CLO exposure can induce variations in physiology and avoidance behaviour of earthworms, oxidative stress as well as alterations in enzyme activities.
Collapse
Affiliation(s)
- Anu Bala Chowdhary
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India.
| | - Rahil Dutta
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Jaswinder Singh
- Department of Zoology, Khalsa College Amritsar, Punjab 143002, India.
| | - Raman Tikoria
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005, India; Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Jahangeer Quadar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Deachen Angmo
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Sharanpreet Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Adarsh Pal Vig
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India.
| |
Collapse
|
13
|
Li X, Luo J, Han C, Lu X. Nanoplastics enhance the intestinal damage and genotoxicity of sulfamethoxazole to medaka juveniles (Oryzias melastigma) in coastal environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164943. [PMID: 37329919 DOI: 10.1016/j.scitotenv.2023.164943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Antibiotics and nanoplastics are widely detected in the coastal ecosystem. However, the transcriptome mechanism elucidating the effect of antibiotics and nanoplastics co-exposure on the gene expression of aquatic organisms in coastal environment is still unclear. Here, single and joint effects of sulfamethoxazole (SMX) and polystyrene nanoplastics (PS-NPs) on the intestinal health and gene expression of medaka juveniles (Oryzias melastigma), which live in coastal environment, were investigated. The SMX and PS-NPs co-exposure decreased intestinal microbiota diversity compared to the PS-NPs, and caused more adverse effect on the intestinal microbiota composition and intestinal damage compared to the SMX, indicating that PS-NPs might enhance the toxicity of SMX on the medaka intestine. The increased abundance of Proteobacteria in the intestine was observed in the co-exposure group, which might induce the intestinal epithelium damage. In addition, the differentially expressed genes (DEGs) were mainly involved in the drug metabolism-other enzymes, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450 pathways in visceral tissue after the co-exposure. The expression of the host immune system genes (e.g., ifi30) could be associated with the increased pathogens in intestinal microbiota. This study is useful for understanding the toxicity effect of antibiotics and NPs on aquatic organisms in coastal ecosystem.
Collapse
Affiliation(s)
- Xue Li
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiwei Luo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
| | - Chenglong Han
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
14
|
Kim Y, Jeon HJ, Kim K, Kim C, Moon JK, Hwang KW, Lee SE. Enantioselective effect of trifloxystrobin in early-stage zebrafish (Danio rerio) embryos: Cardiac abnormalities impacted by E,E-trifloxystrobin enantiomer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121537. [PMID: 37003586 DOI: 10.1016/j.envpol.2023.121537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Trifloxystrobin (TFS) is one of the extensively used strobilurin fungicides, which is composed of four enantiomers and its active form is E,E-TFS. In this study, we assess the acute toxicity of four enantiomers, E,E-, E,Z-, Z,E-, and Z,Z-TFS in zebrafish (Danio rerio) embryos. Among the four enantiomers, only E,E-TFS was found to be acutely toxic, with an estimated LC50 value of 0.68 mg/L. Treatment with E,E-TFS resulted in various phenotypic changes in the embryos, including pericardial and yolk-sac edema, spine curvature, and blood pooling. And it shortened the whole body length in the treated embryos by increasing the total intersegmental vessel numbers using a Tg(fli1a:EGFP) zebrafish line. Further study using Tg(cmlc2:EGFP) zebrafish line revealed that E,E-TFS treatment was associated with cardiac malformations, a failure of heart function, and a lowered heartbeat rate at the concentration of 0.25 mg/L. Also, the differential gene expression analysis identified significant down-regulation of vmhc and cacna1c genes encoding ventricular myosin heavy chain and calcium voltage-gated channel subunit alpha 1C, which are crucial for heart development. These results suggest the need for regular monitoring of E,E-TFS enantiomers after field application and further research into their potential chronic effects on environmental organisms.
Collapse
Affiliation(s)
- Yurim Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hwang-Ju Jeon
- Red River Research Station, Louisiana State University Agricultural Center, Bossier City, LA, USA
| | - Kyeongnam Kim
- Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Chaeeun Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Joon-Kwan Moon
- Department of Plant Resources and landscape Architecture, Hankyong National University, Anseong 17579, Republic of Korea
| | - Kyu-Won Hwang
- Department of Plant Resources and landscape Architecture, Hankyong National University, Anseong 17579, Republic of Korea
| | - Sung-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea; Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
15
|
Kovačević M, Stjepanović N, Hackenberger DK, Lončarić Ž, Hackenberger BK. Comprehensive study of the effects of strobilurin-based fungicide formulations on Enchytraeus albidus. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1554-1564. [PMID: 36462129 DOI: 10.1007/s10646-022-02609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Excessive application of fungicides in crop fields can cause adverse effects on soil organisms and consequently affect soil properties. Existing knowledge on the effects of strobilurin fungicides has been primarily based on toxicity tests with active ingredients, while the effects of fungicide formulations remain unclear. Therefore, this work aims to provide new data on the effects of three commercial formulations of strobilurin fungicides on the soil organism Enchytraeus albidus. The tested fungicide formulations were Retengo® (pyraclostrobin-PYR), Zato WG 50® (trifloxystrobin-TRI) and Stroby WG® (kresoxim-methyl-KM). In laboratory experiments, multiple endpoints were considered at different time points. The results showed that PYR had the greatest impact on survival and reproduction (LC50 = 7.57 mga.i.kgsoil-1, EC50 = 0.98 mga.i.kgsoil-1), followed by TRI (LC50 = 72.98 mga.i.kgsoil-1, EC50 = 16.93 mga.i.kgsoil-1) and KM (LC50 = 73.12 mga.i.kgsoil-1, EC50 ≥ 30 mga.i.kgsoil-1). After 7 days of exposure, MXR activity was inhibited at the highest concentration of all fungicides tested (6 mgPYRkgsoil-1, 15 mgTRIkgsoil-1 and 30 mgKMkgsoil-1). Furthermore, oxidative stress (induction of SOD, CAT and GST) and lipid peroxidation (increase in MDA) were also observed. In addition, there was a decrease in total available energy after exposure to PYR and KM. Exposure to fungicides resulted in a shift in the proportions of carbohydrates, lipids, and proteins affecting the amount of available energy. In addition to the initial findings on the effects of strobilurin formulations on enchytraeids, the observed results suggest that multiple and long-term exposure to strobilurin formulations in the field could have negative consequences on enchytraeid populations.
Collapse
Affiliation(s)
- Marija Kovačević
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | - Nikolina Stjepanović
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | - Davorka K Hackenberger
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia.
| | - Željka Lončarić
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | | |
Collapse
|
16
|
Qiao Z, Li P, Tan J, Peng C, Zhang F, Zhang W, Jiang X. Oxidative stress and detoxification mechanisms of earthworms (Eisenia fetida) after exposure to flupyradifurone in a soil-earthworm system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:115989. [PMID: 36055090 DOI: 10.1016/j.jenvman.2022.115989] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Flupyradifurone (FLU) has great application potential in agricultural production as a new generation of neonicotinoid insecticide after imidacloprid. Nevertheless, the toxic effects of FLU on non-target soil organisms remain unclear, resulting in considerable environmental risks. We evaluated the acute and subchronic toxicities of FLU to earthworms. The results of acute toxicity show that the median lethal concentration (LC50) values (14 d) of FLU were 186.9773 mg kg-1 for adult earthworms and 157.6502 mg kg-1 for juveniles, respectively. The subchronic toxicity of FLU that focused on the activities of antioxidant and detoxication enzymes showed the superoxide dismutase (SOD), catalase (CAT), and glutathione-S transferase (GST) activities in earthworms increased while the peroxidase (POD) and acetylcholinesterase (AChE) activities decreased after exposure to FLU. Oxidative damage analyses revealed that the reactive oxygen species (ROS) level and malonaldehyde (MDA) content in earthworms were increased by FLU, resulting in DNA damage. Transcriptomics and RT-qPCR confirmed that FLU influenced the expression of genes related to antioxidant response and detoxification of earthworms. Ultimately detoxification metabolism, environmental information processing, cell processes, and immune system pathways are significantly enriched to respond jointly to FLU. Our study fills the gaps in the toxicity of FLU to earthworms, providing a basis for its risk assessment of soil ecosystems and non-target biological toxicity.
Collapse
Affiliation(s)
- Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Peiyao Li
- College of Agriculture, Qingdao Agricultural University, Qingdao, Shandong, 266109, PR China
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fengwen Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China; Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, Shandong, 266101, PR China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Xingyin Jiang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China.
| |
Collapse
|
17
|
Wang X, Li P, Cao X, Liu B, He S, Cao Z, Xing S, Liu L, Li ZH. Effects of ocean acidification and tralopyril on bivalve biomineralization and carbon cycling: A study of the Pacific Oyster (Crassostrea gigas). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120161. [PMID: 36100119 DOI: 10.1016/j.envpol.2022.120161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/21/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
The combined effects of emerging pollutants and ocean acidification (OA) on marine organisms and marine ecosystems have attracted increasing attention. However, the combined effects of tralopyril and OA on marine organisms and marine ecosystems remain unclear. In this study, Crassostrea gigas (C. gigas) were exposed to tralopyril (1 μg/L) and/or OA (PH = 7.7) for 21 days and a 14-day recovery acclimation. To investigate the stress response and potential molecular mechanisms of C. gigas to OA and tralopyril exposure alone or in combination, as well as the effects of OA and/or tralopyril on bivalve biomineralization and marine carbon cycling. The results showed that the combined toxicity was between that of acidification and tralopyril alone. Single or combined exposure activated the general stress defense responses of C. gigas mantle, affected energy metabolism and biomineralization of the organism and the carbon cycle of the marine ecosystem. Moreover, acidification-induced and tralopyril-induced toxicity showed potential recoverability at molecular and biochemical levels. This study provides a new perspective on the molecular mechanisms of tralopyril toxicity to bivalve shellfish and reveals the potential role of tralopyril and OA on marine carbon cycling.
Collapse
Affiliation(s)
- Xu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
18
|
Acute multiple toxic effects of Trifloxystrobin fungicide on Allium cepa L. Sci Rep 2022; 12:15216. [PMID: 36076029 PMCID: PMC9458729 DOI: 10.1038/s41598-022-19571-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022] Open
Abstract
Trifloxystrobin (TFS) is a strobilurin-type fungicide that should be investigated due to its risks to non-targeted organisms. The goal of this study was to assess the susceptibility of Allium cepa L. to TFS in a multi-pronged approach. For 72 h, 0.2 g/L, 0.4 g/L and 0.8 g/L doses of TFS were administered to A. cepa bulbs and the control group was treated with tap water. The toxic effects of TFS were tested, considering physiological, cytogenetic, biochemical and anatomical analyses. TFS delayed growth by reducing the rooting ratio, root elongation and weight increase. Following TFS treatments, mitotic index (MI) scores decreased, while the formation of micronucleus (MN) and chromosomal aberrations (CAs) ascended. CAs types induced by TFS were listed according to their frequency as fragment, vagrant chromosome, sticky chromosome, uneven distribution of chromatin, bridge, nucleus with vacuoles, reverse polarization and irregular mitosis. TFS provoked an increment in superoxide dismutase (SOD) and catalase (CAT) enzyme activities as well as an accumulation of malondialdehyde (MDA). Meristematic cells of A. cepa roots treated with TFS had various anatomical damages, including damaged epidermis, flattened cell nucleus, damaged cortex and thickness in the cortex cell wall. All damages arising from TFS treatments exhibited dose-dependency. The findings of the present study revealed the serious toxicity of TFS in a non-targeted plant. It should not be neglected to evaluate the potential hazards of TFS with different toxicity tests.
Collapse
|
19
|
Hou K, Yang Y, Zhu L, Wu R, Du Z, Li B, Zhu L, Sun S. Toxicity evaluation of chlorpyrifos and its main metabolite 3,5,6-trichloro-2-pyridinol (TCP) to Eisenia fetida in different soils. Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109394. [PMID: 35697281 DOI: 10.1016/j.cbpc.2022.109394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
The present study utilized a biomarker response method to evaluate the effect of 3,5,6-trichloro-2-pyridinol (TCP) in artificial and natural soils on Eisenia fetida after 7, 14, 28, 42 and 56 days exposure. Results indicated that TCP induced excessive reactive oxygen species, caused oxidative stress and DNA damage to Eisenia fetida. Biomarker responses were standardized to calculate the Integrated Biomarker Response (IBR) index. The IBR index of three enzymes (superoxide dismutase, catalase and glutathione S-transferase) activities showed that TCP induced the oxidative stress to E. fetida in red clay was stronger than in the other three soils. Specifically, chlorpyrifos exposure group showed a lower toxicity than TCP exposure group after 28 days exposure but a higher toxicity than TCP exposure group after 56 days exposure. Despite the deficiencies of this study, the above information is of great significance for assessing the risk of chlorpyrifos and its metabolite TCP pollution in soil ecosystems.
Collapse
Affiliation(s)
- Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China
| | - Yue Yang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Lei Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China
| | - Ruolin Wu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Shujuan Sun
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| |
Collapse
|
20
|
Jia K, Chen G, Zeng J, Liu F, Liao X, Guo C, Luo J, Xiong G, Lu H. Low trifloxystrobin-tebuconazole concentrations induce cardiac and developmental toxicity in zebrafish by regulating notch mediated-oxidative stress generation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113752. [PMID: 35709675 DOI: 10.1016/j.ecoenv.2022.113752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/21/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Trifloxystrobin-tebuconazole (TFS-TBZ) is a novel, broad-spectrum fungicide that has been frequently detected in both the environment and agricultural products. However, its adverse effects on aquatic organisms remain unknown. In this study, the adverse effects of ecologically relevant TFS-TBZ concentrations (i.e., 75.0, 112.5, and 150.0 μg/L) on the heart and development of zebrafish were investigated. TFS-TBZ was found to substantially hinder development, inhibit growth, and cause significant abnormity at higher concentrations. Moreover, TFS-TBZ caused severe pericardial edema, heart loop failure, cardiac linearization, and ultra-slow heartbeat, implying that TFS-TBZ might induce congenital heart disease. TFS-TBZ inhibited Notch signaling and increased the intracellular generation of reactive oxygen species, resulting in decreased myocardial cell proliferation and increased apoptosis. The use of sodium valproate and Gadofullerene illustrated the relevance of the Notch signaling system and oxidative stress. Finally, TFS-TBZ exposure conveys severe developmental toxicity to the zebrafish heart. The underlying mechanism is regulation notch mediated-oxidative stress generation, implying that TFS-TBZ may be potentially hazardous to aquatic organisms in the environment.
Collapse
Affiliation(s)
- Kun Jia
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Guilan Chen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Junquan Zeng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Chen Guo
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Jiaqi Luo
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
21
|
Yang X, Shang G, Wang X. Biochemical, transcriptomic, gut microbiome responses and defense mechanisms of the earthworm Eisenia fetida to salt stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113684. [PMID: 35623149 DOI: 10.1016/j.ecoenv.2022.113684] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/05/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The accumulation of sodium chloride (NaCl) in soil is a worldwide problem with detrimental effects on the survival of soil animals. The effects of NaCl on earthworms remain unclear. Here, we show that the growth rate, cocoon production rate, annetocin precursor (ANN) mRNA level, and superoxide dismutase and catalase activities in earthworms were reduced under NaCl stress, whereas the mortality rate, reactive oxygen species (ROS) and malondialdehyde activity level increased. Histological damage to the earthworm body wall and intestine were observed under NaCl stress. NaCl stress increased DNA damage in the seminal vesicle and coelomocytes. The mRNA level of lumbrokinase, 1,3-beta-glucanse, coelomic cytolytic factor (CCF1), and alpha-amylase was significantly down-regulated, whereas that of earthworm excitatory peptides2 (EEP2) was up-regulated. From 16 S rRNA sequencing, the earthworm gut microbiota diversity decreased under NaCl stress. However, Verminephrobacter, Kluyvera, Lactobacillus, and Ochrobactrum increased under NaCl stress. These findings contribute to the risk assessment of the salt stress on soil organisms.
Collapse
Affiliation(s)
- Xuelian Yang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215128, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
| | - Guangshen Shang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China.
| |
Collapse
|
22
|
Ito K, Hano T, Ito M, Onduka T, Ohkubo N, Mochida K. Integrated transcriptomic and metabolomic analyses reveal mechanism underlying higher resistance of the marine oligochaete Thalassodrilides cf. briani (Clitellata: Naididae) to heavy contamination of sediments with polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:153969. [PMID: 35245562 DOI: 10.1016/j.scitotenv.2022.153969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
In some coastal areas, sediments are contaminated with various chemical compounds, causing significant threats to marine organisms. Therefore, the development of remediation techniques is important. Here, we focused on bioremediation using marine benthic animals such as aquatic oligochaetes. The oligochaete Thalassodrilides cf. briani is highly resistant to contamination of sediments with toxic chemicals. We examined whether T. cf. briani could decompose high-concentration polycyclic aromatic hydrocarbons (PAHs) in sediments. Furthermore, relevant genes expressed in T. cf. briani exposed to contaminated sediment were comprehensively examined using next-generation sequencing, and its metabolites were identified by metabolomic analysis using gas chromatography-mass spectrometry. T. cf. briani reduced the concentration of 16 PAHs in the sediment from 55,900 to 45,200 ng/g dry weight in 50 days, thereby reducing total PAH concentrations by approximately 20%. The results of transcriptomic analysis suggest that activation of a drug-metabolizing enzyme system may promote the metabolism of harmful chemical substances during excretion of chemicals from the body. According to the results of principal component analysis based on the values of 43 types of metabolomes identified by metabolomic analysis, groups were divided according to the difference in the number of exposure days. In addition, levels of glutamine, which is important for maintaining digestive tract functions, increased. This suggests that the digestive tract function promotes the metabolism and detoxification of foreign substances. Furthermore, transcriptome analysis revealed that glutamate dehydrogenase increased 1.3-fold and glutamine synthetase increased 1.7-fold, confirming the increase in glutamine. Thus, we conclude that T. cf. briani adapted to the polluted sediment by regulating its metabolism.
Collapse
Affiliation(s)
- Katsutoshi Ito
- National Research and Development Agency, Japan Fisheries Research and Education Agency, Fisheries Technology Institute, Hatsukaichi Field Station, Maruishi 2-17-5, Hatsukaichi, Hiroshima 739-0452, Japan.
| | - Takeshi Hano
- National Research and Development Agency, Japan Fisheries Research and Education Agency, Fisheries Technology Institute, Hatsukaichi Field Station, Maruishi 2-17-5, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Mana Ito
- National Research and Development Agency, Japan Fisheries Research and Education Agency, Fisheries Technology Institute, Hatsukaichi Field Station, Maruishi 2-17-5, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Toshimitsu Onduka
- National Research and Development Agency, Japan Fisheries Research and Education Agency, Fisheries Technology Institute, Hatsukaichi Field Station, Maruishi 2-17-5, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Nobuyuki Ohkubo
- National Research and Development Agency, Japan Fisheries Research and Education Agency, Fisheries Technology Institute, Hatsukaichi Field Station, Maruishi 2-17-5, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Kazuhiko Mochida
- National Research and Development Agency, Japan Fisheries Research and Education Agency, Fisheries Technology Institute, Hatsukaichi Field Station, Maruishi 2-17-5, Hatsukaichi, Hiroshima 739-0452, Japan
| |
Collapse
|
23
|
Zhao W, Teng M, Zhang J, Wang K, Zhang J, Xu Y, Wang C. Insights into the mechanisms of organic pollutant toxicity to earthworms: Advances and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119120. [PMID: 35283202 DOI: 10.1016/j.envpol.2022.119120] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Earthworms play positive ecological roles in soil formation, structure, and fertility, environmental protection, and terrestrial food chains. For this review, we searched the Web of Science database for articles published from 2011 to 2021 using the keywords "toxic" and "earthworm" and retrieved 632 publications. From the perspective of bibliometric analysis, we conducted a co-occurrence network analysis using the keywords "toxic" and "earthworm" to identify the most and least reported topics. "Eisenia fetida," "bioaccumulation," "heavy metals," "oxidative stress," and "pesticides" were the most common terms, and "microbial community," "bacteria," "PFOS," "bioaugmentation," "potentially toxic elements," "celomic fluid," "neurotoxicity," "joint toxicity," "apoptosis," and "nanoparticles" were uncommon terms. Additionally, in this review we highlight the main routes of organic pollutant entry into soil, and discuss the adverse effects on the soil ecosystem. We then systematically review the mechanisms underlying organic pollutant toxicity to earthworms, including oxidative stress, energy and lipid metabolism disturbances, neurological toxicity, intestinal inflammation and injury, gut microbiota dysbiosis, and reproductive toxicity. We conclude by discussing future research perspectives, focusing on environmentally relevant concentrations and conditions, novel data processing approaches, technologies, and detoxification and mitigation methods. This review has implications for soil management in the context of environmental pollution.
Collapse
Affiliation(s)
- Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jie Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Kai Wang
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, People's Republic Of China
| | - Jialu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
24
|
Jin MK, Zhang Q, Zhao WL, Li ZH, Qian HF, Yang XR, Zhu YG, Liu HJ. Fluoroquinolone antibiotics disturb the defense system, gut microbiome, and antibiotic resistance genes of Enchytraeus crypticus. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127509. [PMID: 34736185 DOI: 10.1016/j.jhazmat.2021.127509] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic residues from animal manure cause soil pollution and can pose a threat to soil animals. In this study, the toxicological effects of fluoroquinolone antibiotics on Enchytraeus crypticus, including defence response, gut microbiome, and antibiotic resistance genes (ARGs), were studied. The cytochrome P450 enzyme activity and reactive oxygen species levels increased, activating the defense response. The superoxide dismutase and glutathione S-transferase activity, and the expression of immune defense molecules such as coelomic cytolytic factor, lysozyme, bactericidal protein fetidins and lysenin changed. Furthermore, the diversity of the gut microbiome decreased, and the relative abundance of Bacteroidetes decreased significantly at the phylum level but increased in pathogenic and antibiotic-secreting bacteria (Rhodococcus and Streptomyces) at the genus level. However, the soil microbiome was not significantly different from that of the control group. The relative abundance of ARGs in the gut and soil microbiome significantly increased with enrofloxacin concentration, and the fluoroquinolone ARGs were significantly increased in both the soil (20.85-fold, p < 0.001) and gut (11.72-fold, p < 0.001) microbiomes. Subtypes of ARGs showed a positive correlation with Rhodococcus, which might increase the risk of disease transmission and the probability of drug-resistant pathogens. Furthermore, mobile genetic elements significantly promote the spread of ARGs.
Collapse
Affiliation(s)
- Ming-Kang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou 310018, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, China
| | - Wen-Lu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou 310018, China
| | - Zhi-Heng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou 310018, China
| | - Hai-Feng Qian
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Hui-Jun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou 310018, China.
| |
Collapse
|
25
|
Li G, Li D, Rao H, Liu X. Potential neurotoxicity, immunotoxicity, and carcinogenicity induced by metribuzin and tebuconazole exposure in earthworms (Eisenia fetida) revealed by transcriptome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150760. [PMID: 34619195 DOI: 10.1016/j.scitotenv.2021.150760] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/11/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Metribuzin and tebuconazole have been widely used in agriculture for several decades. Apart from endocrine disruption, little is known about their toxicological effects on organisms without thyroid organs, at the transcriptional level. To explore this toxicity, model earthworm species Eisenia fetida, hatched from the same cocoon and cultured under identical environmental conditions, were independently exposed to the two chemicals at non-lethal concentrations in OECD artificial soil for 48 h after exposure. RNA-seq technology was used to analyze and compare the gene expression profiles of earthworms exposed to metribuzin and tebuconazole. The functions of differentially expressed genes and their standard response patterns of upregulated and downregulated expression for both pesticides were verified. The findings demonstrated that metribuzin and tebuconazole are both potentially toxic to earthworms. Toxicological effects mainly involved the nervous system, immune system, and tumors, at the transcriptional level, as well as the induction of cytochrome P450-dependent detoxification and oxidative stress. In addition, the mitogen-activated protein kinase kinase kinase gene was identified as a biomarker, and the mitogen-activated protein kinase signaling pathway was verified to be a part of the adverse outcome pathway of metribuzin and tebuconazole and their structural analogs.
Collapse
Affiliation(s)
- Gang Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Key Laboratory for Zhejiang Pesticide Residue Detection and Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China
| | - Dongxue Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Key Laboratory for Zhejiang Pesticide Residue Detection and Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China
| | - Huixian Rao
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Key Laboratory for Zhejiang Pesticide Residue Detection and Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China
| | - Xinjǚ Liu
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Key Laboratory for Zhejiang Pesticide Residue Detection and Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China.
| |
Collapse
|
26
|
Bi Y, Han L, Qin F, Song S, lv X, Dong Q, Qiao C, Ren B. Method validation, residue analysis and dietary risk assessment of trifloxystrobin and trifloxystrobin acid in milk, eggs and pork. Biomed Chromatogr 2022; 36:e5342. [DOI: 10.1002/bmc.5342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yingying Bi
- College of Science China Agricultural University Beijing China
| | - Lijun Han
- College of Science China Agricultural University Beijing China
| | - Fayi Qin
- College of Science China Agricultural University Beijing China
| | - Shuangyu Song
- College of Science China Agricultural University Beijing China
| | - Xinru lv
- College of Science China Agricultural University Beijing China
| | - Qin Dong
- College of Science China Agricultural University Beijing China
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute Chinese Academy of Agricultural Sciences Zhengzhou China
| | - Bo Ren
- Department of Laboratory Animal Science Peking University Health Science Center Beijing China
| |
Collapse
|
27
|
Andrade GC, Brancini GTP, Abe FR, de Oliveira DP, Nicolella HD, Tavares DC, Micas AFD, Savazzi EA, Silva-Junior GJ, Wainwright M, Braga GÚL. Phenothiazinium dyes for photodynamic treatment present lower environmental risk compared to a formulation of trifloxystrobin and tebuconazole. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112365. [PMID: 34823208 DOI: 10.1016/j.jphotobiol.2021.112365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of conventional chemical antifungal agents has led to worldwide concern regarding the selection of resistant isolates. In this scenario, antimicrobial photodynamic treatment (APDT) has emerged as a promising alternative to overcome this issue. The technique is based on the use of a photosensitizer (PS) and light in the presence of molecular oxygen. Under these conditions, the PS generates reactive oxygen species which damage the biomolecules of the target organism leading to cell death. The great potential of APDT against plant-pathogenic fungi has already been reported both in vitro and in planta, indicating this control measure has the potential to be widely used in crop plants. However, there is a lack of studies on environmental risk with ecotoxicological assessment of PSs used in APDT. Therefore, this study aimed to evaluate the environmental toxicity of four phenothiazinium PSs: i) methylene blue (MB), ii) new methylene blue N (NMBN), iii) toluidine blue O (TBO), and iv) dimethylmethylene blue (DMMB) and also of the commercial antifungal NATIVO®, a mixture of trifloxystrobin and tebuconazole. The experiments were performed with Daphnia similis neonates and zebrafish embryos. Our results showed that the PSs tested had different levels of toxicity, with MB being the less toxic and DMMB being the most. Nonetheless, the environmental toxicity of these PSs were lower when compared to that of NATIVO®. Furthermore, estimates of bioconcentration and of biotransformation half-life indicated that the PSs are environmentally safer than NATIVO®. Taken together, our results show that the toxicity associated with phenothiazinium PSs would not constitute an impediment to their use in APDT. Therefore, APDT is a promising approach to control plant-pathogenic fungi with reduced risk for selecting resistant isolates and lower environmental impacts when compared to commonly used antifungal agents.
Collapse
Affiliation(s)
- Gabriela Carvalho Andrade
- University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, 14040-903 Ribeirão Preto, SP, Brazil
| | | | - Flávia Renata Abe
- University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, 14040-903 Ribeirão Preto, SP, Brazil
| | - Danielle Palma de Oliveira
- University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, 14040-903 Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | | | | | - André Fernando Ditondo Micas
- Companhia Ambiental do Estado de São Paulo (CETESB), Divisão de Laboratório de Ribeirão Preto, 14096-350 Ribeirão Preto, SP, Brazil
| | - Eduardo Angelino Savazzi
- Companhia Ambiental do Estado de São Paulo (CETESB), Divisão de Laboratório de Ribeirão Preto, 14096-350 Ribeirão Preto, SP, Brazil
| | | | - Mark Wainwright
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK
| | - Gilberto Úbida Leite Braga
- University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
28
|
Wu R, Zhou T, Wang J, Wang J, Du Z, Li B, Juhasz A, Zhu L. Oxidative stress and DNA damage induced by trifloxystrobin on earthworms (Eisenia fetida) in two soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149004. [PMID: 34293608 DOI: 10.1016/j.scitotenv.2021.149004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Trifloxystrobin is a new type of fungicide, which is extensively used due to its excellent antifungal activity. In this study, oxidative stress and DNA damage induced by trifloxystrobin exposure was evaluated using Eisenia fetida at subchronic toxicity concentrations in artificial soil and brown soil (0.1-2.5 mg/kg). Throughout the exposure period (days 7, 28 and 56), six biochemical indicators including reactive oxygen species (ROS), antioxidant enzymes (SOD and CAT), glutathione S-transferase (GST), lipid peroxidation and DNA damage (8-hydroxydeoxyguanosine) were measured. In addition, the integrated biomarker response (IBR) index was calculated to make comparison of toxicological response between artificial and brown soils. Results indicated that trifloxystrobin can induce oxidative stress and DNA damage to earthworms with subchronic toxicity greater in brown soil compared to artificial soil as determined through integrated calculations for six biochemical indicators. Trifloxystrobin toxicological experiments in artificial soil may not accurately evaluate its toxicity in natural soil ecosystems, as the toxicity of trifloxystrobin to Eisenia fetida was underestimated.
Collapse
Affiliation(s)
- Ruolin Wu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Tongtong Zhou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| |
Collapse
|
29
|
Kovačević M, Hackenberger DK, Hackenberger BK. Effects of strobilurin fungicides (azoxystrobin, pyraclostrobin, and trifloxystrobin) on survival, reproduction and hatching success of Enchytraeus crypticus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148143. [PMID: 34102440 DOI: 10.1016/j.scitotenv.2021.148143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/19/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Large quantities of strobilurin fungicides (SFs) are used worldwide, resulting in adverse effects on non-target organisms. SFs affect the reproduction and embryonic development of aquatic organisms, while the impact on soil organisms has been insufficiently researched. Therefore, we investigated the effects of three SFs (azoxystrobin (AZO), pyraclostrobin (PYR), and trifloxystrobin (TRI)) on the survival, reproduction, and hatching success of the non-target soil oligochaete Enchytraeus crypticus. The standard enchytraeid reproduction test (ERT) showed that, regarding survival, TRI (LC50 = 2.34 mg/kg) was the most toxic, followed by PYR (LC50 = 4.26 mg/kg) and AZO (LC50 ≥150 mg/kg). Reproduction was affected in the same order (TRI EC50 = 0.045 mg/kg, PYR EC50 = 1.85 mg/kg, and AZO EC50 = 93.10 mg/kg). Exposure to AZO and PYR showed a negative impact on hatching success with a significant increase in the number of unhatched cocoons. Prolonged hatching test was consequently carried out. As a result, a hatching delay was observed at lower AZO and PYR concentrations, while at higher concentrations hatching was completely stopped as the cocoons were no longer viable. Hence, hatching test enabled a discrimination between hatching delay and hatching impairment. Besides demonstrating the adverse effects of AZO, PYR, and TRI on the survival, reproduction, and hatching success of E. crypticus, the obtained results indicate the convenience of using several endpoints in reproduction tests. The usage of prolonged hatching tests and monitoring of hatching dynamics could fill the gap between standard reproduction tests and multigeneration tests and allow a better understanding of the adverse effects on reproduction.
Collapse
Affiliation(s)
- Marija Kovačević
- University of Osijek, Department of Biology, Cara Hadrijana 8A, HR-31000 Osijek, Croatia
| | - Davorka K Hackenberger
- University of Osijek, Department of Biology, Cara Hadrijana 8A, HR-31000 Osijek, Croatia
| | | |
Collapse
|
30
|
Wang H, Qiu TX, Lu JF, Liu HW, Hu L, Liu L, Chen J. Potential aquatic environmental risks of trifloxystrobin: Enhancement of virus susceptibility in zebrafish through initiation of autophagy. Zool Res 2021; 42:339-349. [PMID: 33998181 PMCID: PMC8175947 DOI: 10.24272/j.issn.2095-8137.2021.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic pollution in aquatic ecosystems can lead to many adverse effects, including a greater susceptibility to pathogens among resident biota. Trifloxystrobin (TFS) is a strobilurin fungicide widely used in Asia to control soybean rust. However, it has the potential to enter aquatic ecosystems, where it may impair fish resistance to viral infections. To explore the potential environmental risks of TFS, we characterized the antiviral capacities of fish chronically exposed to TFS and subsequently infected with spring viraemia of carp virus (SVCV). Although TFS exhibited no significant cytotoxicity at the tested environmental concentrations during viral challenge, SVCV replication increased significantly in a time-dependent manner within epithelioma papulosum cyprini (EPC) cells and zebrafish exposed to 25 μg/L TFS. Results showed that the highest viral load was more than 100-fold that of the controls. Intracellular biochemical assays indicated that autophagy was induced by TFS, and associated changes included an increase in autophagosomes, conversion of LC3-II, accumulation of Beclin-1, and degradation of P62 in EPC cells and zebrafish. In addition, TFS markedly decreased the expression and phosphorylation of mTOR, indicating that activation of TFS may be associated with the mTOR-mediated autophagy pathway. This study provides new insights into the mechanism of the immunosuppressive effects of TFS on non-target aquatic hosts and suggests that the existence of TFS in aquatic environments may contribute to outbreaks of viral diseases.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Tian-Xiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Han-Wei Liu
- Ningbo Customs District Technology Center, Ningbo, Zhejiang 315832, China
| | - Ling Hu
- Ningbo Customs District Technology Center, Ningbo, Zhejiang 315832, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
31
|
Xiao R, Liu X, Ali A, Chen A, Zhang M, Li R, Chang H, Zhang Z. Bioremediation of Cd-spiked soil using earthworms (Eisenia fetida): Enhancement with biochar and Bacillus megatherium application. CHEMOSPHERE 2021; 264:128517. [PMID: 33049509 DOI: 10.1016/j.chemosphere.2020.128517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
In this study, we evaluated the influence of biochar and Bacillus megatherium on Cd removal from artificially contaminated soils using earthworms (Eisenia fetida). Within a 35-days remediation period, over 30% of Cd was removed by earthworms from the contaminated soil (with Cd at ∼ 2.5 mg kg-1), and both additives facilitated Cd removal. Additionally, over 22% reduction in the extractable Cd contents was also achieved by earthworms. Cd accumulated in earthworms steadily increased through remediation, and the accumulated Cd decreased in the order of earthworm + biochar (T3) > earthworm + Bacillus megatherium (T4) > earthworm alone (T2). The bioaccumulation factors (BCF) were above 1, indicating the enrichment of Cd in earthworms, and there were higher BCF for both T4 (944%) and T3 (845%). The ingestion of metal-bonded biochar particle and the elevated Cd mobility would be the main reason for the enhanced Cd-remediation by earthworms under T3 and T4, respectively. Through remediation, microbiota communities in both, soil and earthworm guts, demonstrated high similarity, while a lower level of bacterial abundance was observed in earthworm guts compared with that in soils. Eventually, soils became more fertile and demonstrated higher enzyme activities after remediation. Therefore, we concluded that earthworm, alone or combined with biochar or Bacillus megatherium could be an alternative method for Cd-contaminated soil remediation.
Collapse
Affiliation(s)
- Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xiangyu Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Amjad Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Anle Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Muyuan Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Hong Chang
- College of Resource and Environment, Ningxia University, Yinchuan, 750021, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|