1
|
Ghosh T. Microplastics bioaccumulation in fish: Its potential toxic effects on hematology, immune response, neurotoxicity, oxidative stress, growth, and reproductive dysfunction. Toxicol Rep 2025; 14:101854. [PMID: 39802604 PMCID: PMC11720882 DOI: 10.1016/j.toxrep.2024.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
After being exposed, microplastics mostly bioaccumulated in guts and gills of fish, then, through circulation, spread and bioaccumulated in other tissues. Circulatory system of fish is impacted by the microplastic bioaccumulation in their tissues, influencing a number of hematological indices that are connected with immunity, osmotic pressure, blood clotting, molecular transport and fat metabolism. Variables like size, dose, duration, food consumption and species, all affect the bioaccumulation and toxicity of the microplastic, rather than the exposure routes. Microplastics lead to an imbalance in the generation of ROS and antioxidant defense of fish, which resulting in oxidative injury. Moreover, microplastics affect immunological responses through physico-chemical damage, hence produce neurotoxicity and modifies the activity of the acetylcholine esterase. Exposure to microplastics caused damage to the hepatic and gut tissue, affect intestinal barrier function and dysbiosis of microbial composition, altered the metabolism of host, affecting the activities of the digestive enzymes, eventually affecting the growth performance of fish. Microplastics exposure target the HPG axis and interfere with the process of steroidogenesis, apoptosis of the gonadal tissue, ultimately causing reproductive dysfunction. Fish exposed to microplastics have a range of toxic effects viz. alteration to immune, antioxidant and hematological indices, bioaccumulation, neurotoxicity, growth and reproductive dysfunction, all were examined in this present review by using different indicators.
Collapse
Affiliation(s)
- Tapas Ghosh
- Department of Zoology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
- Department of Zoology, Scottish Church College, Kolkata, West Bengal 700006, India
| |
Collapse
|
2
|
Aguilo-Arce J, Compa M, Corriero G, Mastrodonato M, Savino I, Semeraro D, Sureda A, Trani R, Longo C. Microplastic filtering and its physiological effects on the Mediterranean bath sponge Spongia officinalis (Porifera, Demospongiae). MARINE POLLUTION BULLETIN 2025; 215:117849. [PMID: 40112645 DOI: 10.1016/j.marpolbul.2025.117849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Microplastics (MPs) pose an increasing and significant threat to marine biodiversity and there is a current need to determine the effects of exposure on benthic sessile invertebrates. This study examines the filtration capacity and retention of MP particles, as well as their physiological impacts in the marine sponge Spongia officinalis, a bioindicator species. The findings revealed a very high filtration capacity for MPs within the size range of 1-5 μm, along with a rapid turnover rate, as a large portion of particles were expelled within 48 h of exposure. Histological analyses detected MP particles within the cellular structures of the analyzed tissues, indicating that MPs of this size can penetrate cellular barriers. In terms of physiological effects, detoxification activity was activated during the depuration phase, and lipid peroxidation was observed during both the exposure and depuration phases. Overall, this study provides critical insights into the filtration and retention capacity, intercellular integration of MP particles, and the physiological effects of MP exposure in S. officinalis, providing a baseline for future research.
Collapse
Affiliation(s)
- Joseba Aguilo-Arce
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Montserrat Compa
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Giuseppe Corriero
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; Interdepartmental Centre for Risk Analysis and Management in Health and Environmental Emergencies, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Maria Mastrodonato
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Ilaria Savino
- Water Research Institute, Italian National Research Council, CNR-IRSA, 70132 Bari, Italy.
| | - Daniela Semeraro
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain; Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Roberta Trani
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Caterina Longo
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; Interdepartmental Research Centre for Coastal Dynamics, University of Bari Aldo Moro, 70125 Bari, Italy.
| |
Collapse
|
3
|
Dong L, Li X, Zhang Y, Liu B, Zhang X, Yang L. Urinary microplastic contaminants in primary school children: Associations with behavioral development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118097. [PMID: 40179802 DOI: 10.1016/j.ecoenv.2025.118097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/15/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
Behavioral problems in children have been increasingly linked to environmental exposures. Microplastics (MPs), prevalent in urban environments, are emerging contaminants with potential neurodevelopmental effects. This study examines the relationship between urinary MPs and behavioral outcomes among primary school children in Shenyang, China. This study was conducted involving 1000 children aged 6-9 years from 40 schools across Shenyang. Urinary MPs, including polyamide (PA), polypropylene (PP), and polyvinyl chloride (PVC), were quantified using optical microscopy. Behavioral outcomes were assessed using the Strengths and Difficulties Questionnaire (SDQ). Mixed-effect negative binomial models evaluated associations between MPs and SDQ scores, adjusting for relevant covariates. The median urinary total microplastic concentration was 9 particles/100 mL. Increased particle counts of urinary MPs were positively associated with higher scores for emotional problems, conduct problems, hyperactivity, and peer problems. Total microplastic levels were linked to increased emotional symptoms (estimate: 0.128, 95 % CI: 0.065-0.198, p < 0.001), conduct problems (estimate: 0.231, 95 % CI: 0.140-0.323, p < 0.001), and hyperactivity (estimate: 0.168, 95 % CI: 0.101-0.235, p < 0.001). Peer relationship issues were also elevated with higher urinary microplastic levels (estimate: 0.206, 95 % CI: 0.133-0.271, p < 0.001). Conversely, prosocial behaviors declined with increased microplastic concentrations (estimate: -0.125, 95 % CI: -0.192 to -0.052, p = 0.001). Stratified analyses indicated no significant differences in these associations between boys and girls. Overall, urinary microplastic concentrations were significantly associated with adverse behavioral outcomes in children, highlighting the potential neurodevelopmental risks of microplastic exposure.
Collapse
Affiliation(s)
- Lingling Dong
- Second Department of Cardiovascular Medicine, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China
| | - Xiang Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Bingying Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Liaoning Province, China.
| | - Xinzhong Zhang
- Third Department of Cardiovascular Medicine, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China.
| | - Lina Yang
- Second Department of Cardiovascular Medicine, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
4
|
Puteri MN, Gew LT, Ong HC, Ming LC. Technologies to eliminate microplastic from water: Current approaches and future prospects. ENVIRONMENT INTERNATIONAL 2025; 199:109397. [PMID: 40279687 DOI: 10.1016/j.envint.2025.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/13/2025] [Accepted: 03/17/2025] [Indexed: 04/27/2025]
Abstract
Microplastic (MP) pollution has become a widespread environmental threat which must be addressed as it affects the water bodies, soil as well as air. MPs originally from synthetic textiles, tire abrasion, plastic waste, etc. pose the significant risks to both the environment and health due to its structure, ability to absorb toxins and act as carriers of harmful substances. This characteristic enables MPs to accumulate toxic substances and spread them within the food chain which leads to adverse effects on both the environment and human health including possible endocrine disruption. This problem needs to be solved in order to protect the self-regulatory systems of the environment and safeguard for human health. This review investigates various methods developed to eliminate MPs from water which each method exposes its own strengths and limitations. Conventional methods, such as filtration, coagulation-flocculation, and sedimentation serve as the primary line of defense but often struggle with smaller particles. Membrane filtration, magnetic separation, and electrochemical methods have shown better performance particularly for a wider MPs size range. However, their adoption is limited due to high costs and high energy requirement. A chemical approach focuses on the use of reactors to degrade MPs as a means of overcoming the problem posed by the persistent particles. Biological approaches, including bioremediation through bacteria, fungi, and algae offer eco-friendly alternatives by breaking down MPs into less harmful components. Future directions in MPs management involve the integration of these technologies for enhanced removal efficiency, the development of novel materials, and improved system designs to reduce costs and environmental impact. In summary, advancing research in biotechnological solutions and optimizing existing methods is critical to address the widespread and complex nature of MPs pollution to ensure healthier ecosystems and safer water supplies.
Collapse
Affiliation(s)
| | - Lai Ti Gew
- Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Hwai Chyuan Ong
- School of Engineering, Faculty of Engineering and Technology, Sunway University, Sunway City, Malaysia; School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia
| | - Long Chiau Ming
- Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (deemed to be University), Sawangi (M), Wardha, India
| |
Collapse
|
5
|
Prado CCA, Queiroz LG, de Paiva TCB, Pompêo M, Ando R, Rani-Borges B. Oxidative stress dynamics in Hyalella azteca under sub-chronic exposure to naturally aged polypropylene microplastics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 281:107303. [PMID: 40023059 DOI: 10.1016/j.aquatox.2025.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Microplastics (MPs) pollution has revealed a serious environmental issue, demonstrating chronic consequences for the affected environments and organisms. Although these plastic particles, pristine and aged, can circulate in different environmental matrices, their actual impacts on aquatic ecosystems are still under investigation. Here, we studied the toxicity of naturally aged secondary polypropylene (PP) MPs after constant exposure to ultraviolet radiation (26 µm) to the freshwater amphipod Hyalella azteca. The concentrations tested were 135, 1350, and 13,500 items/L. H. azteca was investigated for mortality and changes in enzyme markers after 7 and 14 days of exposure followed by a further 7 days of depuration. The results show that mortality was only significant at the highest concentration tested. The concentration of 13,500 items induced oxidative stress after 7 days of exposure only at the MDA levels and CAT activity, while the concentrations of 1350 and 13,500 items/L induced oxidative stress in all tested markers (SOD, CAT, GST and MDA after 14 days. After 7 days of depuration, the levels of biochemical damage were reduced, demonstrating the ability of the species to recover as they are isolated from this pollutant.
Collapse
Affiliation(s)
- Caio César Achiles Prado
- Sea Institute, Federal University of São Paulo, Unifesp, Dona Maria Máximo Street 168, Santos 11070-100, Brazil
| | - Lucas Gonçalves Queiroz
- Department of Ecology, Institute of Biosciences, University of São Paulo, USP, Matão Street 321, São Paulo 05508-090, Brazil
| | - Teresa Cristina Brazil de Paiva
- Department of Basic and Environmental Sciences, Engineering School of Lorena, University de Sao Paulo, Municipal do Campinho Road, Lorena 12602-810, Brazil
| | - Marcelo Pompêo
- Department of Ecology, Institute of Biosciences, University of São Paulo, USP, Matão Street 321, São Paulo 05508-090, Brazil
| | - Rômulo Ando
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, Prof. Lineu Prestes Avenue 748, São Paulo 05508-000, Brazil
| | - Bárbara Rani-Borges
- Department of Ecology, Institute of Biosciences, University of São Paulo, USP, Matão Street 321, São Paulo 05508-090, Brazil.
| |
Collapse
|
6
|
Timaná Morales M, Peraza Gómez V, Kozak ER, Trejo Flores JV, Robles Ravelero M, Espinosa Chaurand LD, Jiménez Ruíz EI. Microplastics in marine fish: a mini-review on presence, classification, and impacts. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:169-180. [PMID: 39616298 DOI: 10.1007/s10646-024-02837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 02/20/2025]
Abstract
Plastic production has experienced exponential growth in recent years due to its diverse industrial applications, low cost, and high availability, also causing issues, since plastic waste in aquatic ecosystems transforms into microplastics (MPs) through mechanical and weathering processes. Microplastics are distributed ubiquitously in water bodies, where they can be ingested by a wide aquatic organism range, including fish, which have been used as bioindicators to assess microplastic presence and toxicity. Research has revealed microplastic presence in various fish species worldwide; the most common characteristics are fibers and fragments of blue, black, and transparent colors, and polyethylene, terephthalate, polypropylene and cellophane chemical composition. Experimental studies under laboratory conditions have demonstrated microplastics impact on fish, showing physical, immunological, and hematological damage, and oxidative stress ultimately leading to organisms' death. However, laboratory results do not necessarily predict impacts on wild fish due to different conditions to which the organisms are exposed. Therefore, further research needs to simulate real scenarios faced by wild fish in the marine environment, providing greater certainty about microplastic impacts and negative effects.
Collapse
Affiliation(s)
- María Timaná Morales
- Programa de Maestría en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México
| | - Viridiana Peraza Gómez
- Programa de Maestría en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México.
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Área de Ciencias Pesqueras, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México.
- Unidad Académica Escuela Nacional de Ingeniería Pesquera, Universidad Autónoma de Nayarit, San Blas, Nayarit, México.
| | - Eva R Kozak
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Universidad de Guadalajara, Jalisco, México
| | - José Vladimir Trejo Flores
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Área de Ciencias Pesqueras, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México
| | - Maricruz Robles Ravelero
- Posgrado en Ciencias en Recursos Acuáticos. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen S/N. Col. Los Pinos, Mazatlán, Sinaloa, 82000, México
| | | | - Edgar Iván Jiménez Ruíz
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit. Tepic, Nayarit, Mexico
| |
Collapse
|
7
|
Ma F, Liu Z, Quan J, Yuan Y, Wang J, Zhou X, Wang J, Shen L, Tie D, Yang M, Lin Y, Song G, Wang Y, Shi G. N 6-methyladenosine RNA methylation regulates microplastics-induced cell senescence in the rainbow trout liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 961:178363. [PMID: 39793132 DOI: 10.1016/j.scitotenv.2024.178363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Microplastics are prevalent in aquatic ecosystems, impacting various forms of aquatic life, including fish. In this study, Rainbow trout (Oncorhynchus mykiss) were exposed to two concentrations of microplastics (0 and 500 μg/L) over a 14-day period, during which a comprehensive analysis was conducted to assess the liver accumulation of microplastics and their effects on oxidative stress, the liver response, and transcriptomics. Our findings indicated that microplastics significantly accumulated in the liver and activated the antioxidant system in fish by enhancing the activity of antioxidant enzymes. Histological lesions were also observed in the liver of the fish. Furthermore, microplastics induced alterations in the expression of hepatic N6-methyladenosine readers, specifically downregulating IGF2BP1 (encoding insulin like growth factor 2 mRNA binding protein 1) and upregulating YTHDF2 (encoding YTH N6-methyladenosine RNA binding protein F2), which in turn decreased mRNA stability and reduced the expression of C-myc and other regulatory factors involved in the cell cycle and proliferation. This sequence of events resulted in slowed cell proliferation, the induction of cell cycle arrest, and the promotion of cellular senescence. This study offers valuable insights into the toxicological mechanisms of microplastics and enhances our understanding of the threats that plastic pollution poses to freshwater organisms.
Collapse
Affiliation(s)
- Fang Ma
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China; Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, PR China.
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, PR China
| | - Jinqiang Quan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, PR China
| | - Yijun Yuan
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China
| | - Jianzhou Wang
- Tianshui Fishery Work Station, Tianshui, Gansu Province, PR China
| | - Xiangjun Zhou
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China; Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, PR China
| | - Jing Wang
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China
| | - Lei Shen
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China
| | - Dunting Tie
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China
| | - Minlan Yang
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China
| | - Yang Lin
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China
| | - Guoyu Song
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China
| | - Yibo Wang
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, PR China.
| | - Guoxi Shi
- School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China.
| |
Collapse
|
8
|
Panneerselvam D, Murugesan A, Raveendran SK, Kumar JS, Venkataraman P. Examining the hidden dangers: Understanding how microplastics affect pregnancy. Eur J Obstet Gynecol Reprod Biol 2025; 304:53-62. [PMID: 39580908 DOI: 10.1016/j.ejogrb.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Microplastics, a fast-growing environmental concern, play a crucial role in developing the major pollution crisis that affects nearly the entire surface of the planet. Microplastics are tiny particles, measuring less than 5 mm which are ubiquitous, in occurrence, and found in a wide array of products including plastic packaging, synthetic textiles, seafood, fruits, vegetables, salt, sugar, bottled water, and even personal care products. The presence of microplastics in our environment and the potential adverse health effects they may cause have made them a significant perturbation in recent years. Pregnancy is a potentially life-changing experience that entails several apprehensions and new responsibilities for women. For expectant mothers, it is imperative to be aware of the implications of microplastics during pregnancy. One threatened concern is the potential transfer of microplastics across the placenta, which could expose the developing fetus to these particles. Although research on the impact of microplastics on pregnancy is still in its early stages, preliminary findings indicate potential risks that expectant mothers should be aware of. The timing of exposure during pregnancy may play a significant role in the potential risks associated with these tiny particles. In this review, we will delve into the topic, exploring how microplastics enter the body and the potential mechanism by which they pose risks to pregnancy outcomes.
Collapse
Affiliation(s)
- Deboral Panneerselvam
- Department of Obstetrics and Gynaecology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Anuradha Murugesan
- Department of Obstetrics and Gynaecology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| | - Sajeetha Kumari Raveendran
- Department of Obstetrics and Gynaecology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Janardanan Subramonia Kumar
- Department of General Medicine, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - P Venkataraman
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
9
|
Traylor SD, Granek EF, Duncan M, Brander SM. From the ocean to our kitchen table: anthropogenic particles in the edible tissue of U.S. West Coast seafood species. FRONTIERS IN TOXICOLOGY 2024; 6:1469995. [PMID: 39776763 PMCID: PMC11703854 DOI: 10.3389/ftox.2024.1469995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Microplastics (MPs) and other anthropogenic particles (APs) are pervasive environmental contaminants found throughout marine and aquatic environments. We quantified APs in the edible tissue of black rockfish, lingcod, Chinook salmon, Pacific herring, Pacific lamprey, and pink shrimp, comparing AP burdens across trophic levels and between vessel-retrieved and retail-purchased individuals. Edible tissue was digested and analyzed under a microscope, and a subset of suspected APs was identified using spectroscopy (μFTIR). Anthropogenic particles were found in 180 of 182 individuals. Finfish contained 0.02-1.08 AP/g of muscle tissue. In pink shrimp (Pandalus jordani), the average AP/g was 10.68 for vessel-retrieved and 7.63 for retail-purchased samples; however, APs/g of tissue were higher in retail-purchased lingcod than vessel-retrieved lingcod, signaling possible added contamination during processing from ocean to market. Riverine young adult Pacific lamprey contained higher concentrations of APs (1 AP/g ±0.59) than ocean phase adults (0.60 AP/g ±0.80 and p = 0.08). Particle types identified were 82% fibers, 17% fragments, and 0.66% films. These findings suggest a need for further research into technologies and strategies to reduce microfiber pollution entering the environment.
Collapse
Affiliation(s)
- Summer D. Traylor
- Environmental Science and Management, Portland State University, Portland, OR, United States
| | - Elise F. Granek
- Environmental Science and Management, Portland State University, Portland, OR, United States
| | - Marilyn Duncan
- Environmental Science and Management, Portland State University, Portland, OR, United States
| | - Susanne M. Brander
- Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
10
|
Suleiman SB, Esa Y, Aziz D, Ani Azaman SN, Hassan NH, Syukri F. Exploring the detrimental effects of microplastics on Asian seabass (Lates calcarifer) fingerlings survival and health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125103. [PMID: 39401561 DOI: 10.1016/j.envpol.2024.125103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024]
Abstract
Microplastics (MPs) are widely used and disposed of indiscriminately, posing a potential threat to aquatic life. Herein, Asian seabass (Lates calcarifer) fingerlings were exposed to various concentrations (1, 10 and 100 ppt or g/kg) of dietary polyethylene MPs for 16 days. The results indicated a significant increase in mortality among the fish fed with dietary MPs compared to the control. Furthermore, histological analysis of the liver revealed moderate-to-severe morphological alterations, hepatocyte necrosis and vacuolisation as the concentration gradient of MPs increased. The severity of the alterations was highest at a concentration of 100 ppt, indicating a direct correlation between MP and liver damage. In addition, RNA sequencing and Gene Ontology term enrichment analysis revealed that a total of 4137 genes were significantly differentially expressed, with 1958 upregulated and 2179 downregulated genes. The significantly enriched terms included 'oxidoreductase activity', 'endocytosis', 'mitochondrial', 'immune system process' and 'lipid catabolic process'. Moreover, the Kyoto Encyclopaedia of Genes and Genomes enrichment analysis demonstrated that dietary MPs triggered oxidative stress, immune response and adaptive mechanism pathways in fish. Thus, MPs can induce metabolic disorders in L. calcarifer, highlighting their potential threat to aquatic organisms.
Collapse
Affiliation(s)
- Saadu Bala Suleiman
- Microalgae Biota Technology Group, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Fisheries, Faculty of Agriculture, University of Maiduguri, P.M.B. 1069, Maiduguri, Borno State, Nigeria
| | - Yuzine Esa
- Microalgae Biota Technology Group, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Dania Aziz
- Microalgae Biota Technology Group, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Siti Nor Ani Azaman
- Centre for Foundation Studies in Sciences of Universiti Putra Malaysia, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nadiatul Hafiza Hassan
- Centre for Foundation Studies in Sciences of Universiti Putra Malaysia, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Fadhil Syukri
- Microalgae Biota Technology Group, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
11
|
Matias RS, Monteiro M, Sousa V, Pinho B, Guilhermino L, Valente LMP, Gomes S. A multiple biomarker approach to understand the effects of microplastics on the health status of European seabass farmed in earthen ponds on the NE Atlantic coast. ENVIRONMENTAL RESEARCH 2024; 263:120208. [PMID: 39442660 DOI: 10.1016/j.envres.2024.120208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The occurrence of microplastics (MPs) in aquaculture environments is a growing concern due to their potential negative effects on fish health and, ultimately, on seafood safety. Earthen pond aquaculture, a prevalent aquaculture system worldwide, is typically located in coastal and estuarine areas thus vulnerable to MP contamination. The present study investigated the possible relation between MP levels of European seabass (Dicentrarchus labrax) farmed in an earthen pond and its health status. More precisely, two groups of fish were established based on the lowest and highest number of MPs found collectively in their gastrointestinal tract (GIT), liver, and dorsal muscle: fish with ≤2 MP/g and fish with ≥4 MP/g. The intestinal integrity and oxidative stress biomarkers in the liver and dorsal muscle were evaluated in the established groups. No significant differences in the biometric and organosomatic parameters between groups were observed. The results indicated a significant increase in the number of acid goblet cells (GC) in the rectum of fish with higher MP levels (p = 0.016). Increased acid GC number may constitute a first defence strategy against foreign particles to protect the intestinal epithelium. No significant differences in oxidative stress biomarkers between the two fish groups were observed, namely in the activity of superoxide dismutase, catalase, glutathione reductase, and glutathione S-transferase in the liver, or in lipid peroxidation levels in the liver and dorsal muscle. The overall results suggest that MP levels were possibly related to an intestinal response but its potential implications on the health status of pond-farmed seabass warrant further investigation. Monitoring MP occurrence across stages of aquaculture production could help to elucidate the potential threats of MPs to fish health.
Collapse
Affiliation(s)
- Ricardo S Matias
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Marta Monteiro
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Vera Sousa
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Bia Pinho
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Lúcia Guilhermino
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Luisa M P Valente
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Sónia Gomes
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
12
|
Micalizzi G, Chiaia V, Mancuso M, Bottari T, Mghili B, D'Angelo G, Falco F, Mondello L. Investigating the effects of microplastics on the metabolism of Trematomus bernacchii from the ross sea (Antarctica). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176766. [PMID: 39396787 DOI: 10.1016/j.scitotenv.2024.176766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Microplastic pollution is a growing environmental issue, even reaching remote areas like the Arctic and Antarctic, posing threats to biodiversity and food chains. The present research represents a pioneering endeavor aimed at exploring the relationship between lipids and microplastics in 20 wild specimens of Trematomus bernacchii from the Ross Sea (Antarctica). Fish were grouped in MPs-ingested and MPs-free based on whether they had ingested microplastics. Raman spectroscopy revealed that contaminated fish samples contained from one to three different types of polymeric fibers (1.4 items/specimen, ± = 0.7), specifically, polyester (PES), polypropylene (PP), and polyethylene terephthalate (PET). Gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID) techniques were employed for the study of the lipid composition in term of fatty acids methyl esters (FAMEs). Fifty different FAME compounds were identified and quantified in the lipid fraction extracted from the muscle tissues of the selected fish samples. Polyunsaturated fatty acids (PUFAs) are the most abundant family of fatty acids in T. bernacchii species with eicosapentaenoic (C20:5ω3) and docosahexaenoic (C22:6ω3) acids as main components. In detail, PUFA class accounted for 46.78 ± 6.82% and 44.62 ± 4.86% of the total fatty acid composition in MPs-ingested and MPs-free groups, respectively. The contents of the monounsaturated fatty acids (MUFAs) and saturated fatty acids (SFAs) varied from 27.93% to 31.15% and from 24.23% to 25.05% in MPs-ingested and MPs-free fish samples, respectively. Based on Mann-Whitney test results (p < 0.05), there was no significant difference from a statistical point of view between two groups of fishes. Additionally, nutritional quality indices exhibited comparable values between groups. Results showed that no significant differences were found in the fatty acids distribution between the two groups. This indicates that the lipid composition of wild fish that are naturally exposed to plastic pollution remains unchanged and could still have beneficial effects on human health.
Collapse
Affiliation(s)
- Giuseppe Micalizzi
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 - Messina, Italy
| | - Valentina Chiaia
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 - Messina, Italy
| | - Monique Mancuso
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Spianata S. Raineri, 86, 98122 Messina, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Teresa Bottari
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Spianata S. Raineri, 86, 98122 Messina, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Bilal Mghili
- LESCB, URL-CNRST N° 18, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93000, Morocco
| | - Giovanna D'Angelo
- Department of Mathematical and Computational Sciences, Physical Science and Earth Science, University of Messina, Italy; Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), Messina, Italy
| | - Francesca Falco
- Institute for Marine Biological Resources and Biotechnology (IRBIM) - CNR, L. Vaccara 69, 91026 Mazara del Vallo, Italy
| | - Luigi Mondello
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 - Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 - Messina, Italy
| |
Collapse
|
13
|
Jandang S, Alfonso MB, Nakano H, Phinchan N, Darumas U, Viyakarn V, Chavanich S, Isobe A. Possible sink of missing ocean plastic: Accumulation patterns in reef-building corals in the Gulf of Thailand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176210. [PMID: 39278501 DOI: 10.1016/j.scitotenv.2024.176210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Individual coral polyps contain three distinct components-the surface mucus layer, tissue, and skeleton; each component may exhibit varying extent of microplastic (MP) accumulation and serve as a short- or long-term repository for these pollutants. However, the literature on MP accumulation in wild corals, particularly with respect to the different components, is limited. In this study, we investigated the adhesion and accumulation of MPs in four coral species, including both large (Lobophyllia sp. and Platygyra sinensis) and small (Pocillopora cf. damicornis and Porites lutea) polyp corals collected from Si Chang Island in the upper Gulf of Thailand. The results revealed that MP accumulation varied significantly among the four coral species and their components. Specifically, P. cf. damicornis exhibited the highest degree of accumulation (2.28 ± 0.34 particles g-1 w.w.) [Tukey's honestly significant difference (HSD) test, p < 0.05], particularly in their skeleton (52.63 %) and with a notable presence of high-density MPs (Fisher's extract test, p < 0.05). The most common MP morphotype was fragment, accounting for 75.29 % of the total MPs found in the coral. Notably, the majority of MPs were black, white, or blue, accounting for 36.20 %, 15.52 %, and 11.49 % of the samples, respectively. The predominant size range of MP particles was 101-200 μm. Nylon, polyacetylene, and polyethylene terephthalate (PET) were the prevalent polymer types, accounting for 20.11 %, 14.37 %, and 9.77 % of the identified samples, respectively. In the large polyp corals, while MP shapes, colors, and sizes exhibited consistent patterns, remarkable differences were noted in the polymer types across the three components. The findings of this study improve the understanding of MP accumulation and its fate in coral reef ecosystems, underscoring the need for further investigation into MP-accumulation patterns in reef-building corals worldwide.
Collapse
Affiliation(s)
- Suppakarn Jandang
- Research Institute for Applied Mechanics, Kyushu University, Kasuga-Koen, Kasuga 816-8580, Japan; Center for Ocean Plastic Studies, Research Institute for Applied Mechanics, Kyushu University, CU Research Building 14th floor, Bangkok 10330, Thailand.
| | - María Belén Alfonso
- Research Institute for Applied Mechanics, Kyushu University, Kasuga-Koen, Kasuga 816-8580, Japan; Center for Ocean Plastic Studies, Research Institute for Applied Mechanics, Kyushu University, CU Research Building 14th floor, Bangkok 10330, Thailand
| | - Haruka Nakano
- Research Institute for Applied Mechanics, Kyushu University, Kasuga-Koen, Kasuga 816-8580, Japan; Center for Ocean Plastic Studies, Research Institute for Applied Mechanics, Kyushu University, CU Research Building 14th floor, Bangkok 10330, Thailand
| | - Nopphawit Phinchan
- Center for Ocean Plastic Studies, Research Institute for Applied Mechanics, Kyushu University, CU Research Building 14th floor, Bangkok 10330, Thailand
| | - Udomsak Darumas
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Voranop Viyakarn
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Aquatic Resources Research Institute, Chulalongkorn University, Institute Building No. 3, 9th floor, Pathumwan, Bangkok 10330, Thailand
| | - Suchana Chavanich
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Aquatic Resources Research Institute, Chulalongkorn University, Institute Building No. 3, 9th floor, Pathumwan, Bangkok 10330, Thailand
| | - Atsuhiko Isobe
- Research Institute for Applied Mechanics, Kyushu University, Kasuga-Koen, Kasuga 816-8580, Japan; Center for Ocean Plastic Studies, Research Institute for Applied Mechanics, Kyushu University, CU Research Building 14th floor, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Barboza LGA, Lourenço SC, Aleluia A, Senes GP, Otero XL, Guilhermino L. Are microplastics a new cardiac threat? A pilot study with wild fish from the North East Atlantic Ocean. ENVIRONMENTAL RESEARCH 2024; 261:119694. [PMID: 39068971 DOI: 10.1016/j.envres.2024.119694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Global environmental contamination by microplastics (MPs) is a growing problem with potential One Health impacts. The presence of MPs in vital organs, such as the heart, is of particular concern, but the knowledge is still limited. The goal of the present pilot study was to investigate the potential presence of MPs in the heart of wild specimens of three commercial fish species (Merluccius merluccius, Sardina pilchardus, and Trisopterus luscus) from the North East Atlantic Ocean. Heart samples from 154 fish were analysed for MP content (one heart sample per fish). A total of 44 MPs were recovered from heart samples from the three species. MPs had varied chemical composition (5 polymers), shapes (4) and colours (5). Differences in the profile of the MPs among species was observed (p ≤ 0.05). Thirty fish (19%) had MPs in their hearts, with a total mean (±SD) concentration of 0.286 ± 0.644 MPs/fish. S. pilchardus had the highest heart contamination (p ≤ 0.05). There were no significant (p > 0.05) differences between M. merluccius and T. luscus. These findings in fish with different biological and ecological traits together with literature data suggest that heart contamination likely is a disseminated phenomenon. Therefore, further research on the presence of MPs in the cardiovascular system and its potential health effects is very much needed.
Collapse
Affiliation(s)
- Luís Gabriel A Barboza
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sara Couto Lourenço
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alexandre Aleluia
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Giovanni Paolo Senes
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain
| | - Xosé L Otero
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain; REBUSC, Network of biological stations of the University of Santiago de Compostela, Marine Biology Station A Graña, Ferrol, Spain; RIAIDT, The Network of Infrastructures to Support Research and Technological Development of the University of Santiago de Compostela, Edificio Cactus, Campus Vida, Santiago de Compostela, 15782, Spain.
| | - Lúcia Guilhermino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
15
|
Mishra S, Ren Y, Sun X, Lian Y, Singh AK, Sharma N, Shikhar KC. Microplastics-biofilm in aquatic ecosystem: Formation, pollutants complexation, greenhouse gas emission and ecotoxicology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122930. [PMID: 39423625 DOI: 10.1016/j.jenvman.2024.122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The omnipresent microplastics (MPs) have gradually become a significant environmental problem due to its adverse consequences for ecological systems. MPs serve as substrates for biofilms colonization, which enhances adsorption of harmful contaminants on MPs surface in the aquatic ecosystem. The present study provides a critical discussion on the mechanism involved in MPs-biofilm formation, microbial colonization and the robust factors influencing the process in the aquatic ecosystem. Subsequently, the impact of MPs-biofilm on adsorption of inorganic and organic contaminants is explored. The ecological significance of MPs-biofilm associated pollutant complex for promoting greenhouse gases (GHGs) emissions from aquatic ecosystem is extensively discussed for understanding the climatic risk. Furthermore, the discussion is extended over ecotoxicological impact of MPs-biofilm on aquatic biodiversity and humans. The protective extracellular polymeric substances secreted by colonised bacteria over MPs during biofilm formation creates sticky MPs surface for heteroaggregates formation with swift adsorption of chemical compounds and microorganisms. MPs with functional aromatic groups facilitate the bacterial adhesion on the surface, but affect formation of biofilm. Alternatively, MPs-biofilm promotes the Mn and Fe hydrous oxides formation that can co-precipitate with heavy metal ions and facilitate in remediation measures. However, MPs biodegradation generates GHGs emission per unit mass, comparably more from freshwater than marine ecosystem. Considering the toxicity, MPs-biofilm induces the oxidative response in fishes, causing painful death and thus, destroys aquatic biodiversity. This study will be useful to address MPs-biofilm associated pollution scenario via trace, test and treat strategy involving future engineering research framework for ecological restoration.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yuling Ren
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Xiaonan Sun
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Anurag Kumar Singh
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - Niraj Sharma
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - K C Shikhar
- Institute of Water Resources and Hydropower, Hohai University, Nanjing, 210098, China
| |
Collapse
|
16
|
Dziobak MK, Fahlman A, Wells RS, Takeshita R, Smith C, Gray A, Weinstein J, Hart LB. First evidence of microplastic inhalation among free-ranging small cetaceans. PLoS One 2024; 19:e0309377. [PMID: 39413051 PMCID: PMC11482699 DOI: 10.1371/journal.pone.0309377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/09/2024] [Indexed: 10/18/2024] Open
Abstract
Plastic is a ubiquitous environmental contaminant, resulting in widespread exposure across terrestrial and marine spaces. In the environment, plastics can degrade into microparticles where exposure has been documented in a variety of fauna at all trophic levels. Human epidemiological studies have found relationships between inhaled microplastics and oxidative stress and inflammation. Previous studies of bottlenose dolphins (Tursiops truncatus) have reported prevalent exposure to plasticizing chemicals (e.g., phthalates) as well as particle loads in gastrointestinal tracts, but exposure from inhalation has not yet been studied. The objective of this study was to determine if inhalation is a viable route of microplastic exposure for free-ranging dolphins. Exhalation samples were opportunistically collected from dolphins residing in Sarasota Bay, Florida (n = 5) and Barataria Bay, Louisiana (n = 6) during catch-and-release health assessments to screen for microplastic particles. All dolphin samples contained at least one suspected microplastic particle, and polymer composition was determined for 100% of a subset (n = 17) of samples. Additional studies are warranted to better understand the extent of inhaled microplastics, as well as to explore impacts, given potential risks to lung function and health.
Collapse
Affiliation(s)
- Miranda K. Dziobak
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, United States of America
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States of America
| | - Andreas Fahlman
- Fundacion Oceanografic, Valencia, Spain
- Global Diving Research, Sanlucar de Barrameda, Spain
- IFM, Linkoping University, Linkoping, Sweden
| | - Randall S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Program, ℅ Mote Marine Laboratory, Sarasota, FL, United States of America
| | - Ryan Takeshita
- National Marine Mammal Foundation, San Diego, CA, United States of America
| | - Cynthia Smith
- National Marine Mammal Foundation, San Diego, CA, United States of America
| | - Austin Gray
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - John Weinstein
- Department of Biology, The Citadel, Charleston, SC, United States of America
| | - Leslie B. Hart
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, United States of America
| |
Collapse
|
17
|
Jabri NA, Abed RMM, Habsi AA, Ansari A, Barry MJ. The impacts of microplastics on zebrafish behavior depend on initial personality state. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104561. [PMID: 39233253 DOI: 10.1016/j.etap.2024.104561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Microplastic pollution is associated with inflammation, gut dysbiosis and behavioral changes in fish. Fish have distinct personality traits but the role of personality in behavioral toxicology is rarely considered. We classified zebrafish on four behavioral axes: boldness, anxiety, sociability and exploration tendency then exposed them to low- or high- concentrations of two types of polyethylene microplastics (low- and high-density) for 28 days. Behaviors, antioxidant enzymes (catalase and superoxide dismutase), and gut microbiome were then measured. There were direct effects of microplastics on boldness, anxiety and sociability. However, fish retained their initial behavioral tendencies. Exposure to all microplastic treatments reduced average swimming speed and decreased the time spent motionless. Microplastic exposure did not affect antioxidant enzymes but did cause significant changes in the composition of the gut microbiome. This study demonstrates that environmentally realistic concentrations of microplastics can alter fish behavior, but much of the variance in response can be explained by personality.
Collapse
Affiliation(s)
- Nawal Al Jabri
- Biology Department, Sultan Qaboos University, Muscat, Oman
| | - Raeid M M Abed
- Biology Department, Sultan Qaboos University, Muscat, Oman
| | - Aziz Al Habsi
- Biology Department, Sultan Qaboos University, Muscat, Oman
| | - Aliya Ansari
- Biology Department, Sultan Qaboos University, Muscat, Oman
| | | |
Collapse
|
18
|
Mohsen M, Su F, Lin J, Li X, Lu K, Zhang C. Microplastic Contamination in Aquafeed Ingredients Used as Protein and Carbohydrate Sources. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:41. [PMID: 39306604 DOI: 10.1007/s00128-024-03952-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
The current study aimed to evaluate the occurrence of microplastics in feed ingredients commonly used as protein and carbohydrate (energy) sources to understand and mitigate microplastic contamination. Microplastics average was 1.27, 0.69, 2.85, 0.55, 0.07, and 0.17 particle g- 1 in fishmeal, soybean meal, poultry by-products, rice bran, wheat bran, and wheat flour, respectively. Notably, poultry by-products demonstrated significantly higher microplastic levels than other ingredients (p < 0.05). The dominant microplastic shape was microfibers, with prevalent sizes ranging from 500 to 1000 μm. We estimated that packaging materials are a significant source of pollution due to the high presence of polypropylene and other polymers. Top aquaculture species with the greatest microplastic exposure risk include the Catla catla, Hypophthalmichthys nobilis, and Oreochromis niloticus. This research extends our knowledge of microplastic pathways, contributes to improving aquafeed quality, and provides the basis for determining the risk of microplastic exposure in aquafeed.
Collapse
Affiliation(s)
- Mohamed Mohsen
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen City, Fujian Province, 361021, People's Republic of China.
- Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Fashun Su
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen City, Fujian Province, 361021, People's Republic of China
| | - Jibin Lin
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen City, Fujian Province, 361021, People's Republic of China
| | - Xueshan Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen City, Fujian Province, 361021, People's Republic of China
| | - Kangle Lu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen City, Fujian Province, 361021, People's Republic of China
| | - Chunxiao Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen City, Fujian Province, 361021, People's Republic of China
| |
Collapse
|
19
|
Du L, Liu H, Song X, Feng X, Xu H, Tang W, Yang J. Developments in the field of intestinal toxicity and signaling pathways associated with rodent exposure to micro(nano)plastics. Toxicology 2024; 507:153883. [PMID: 38996996 DOI: 10.1016/j.tox.2024.153883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
The broad spread of micro(nano)plastics (MNPs) has garnered significant attention in recent years. MNPs have been detected in numerous human organs, indicating that they may also be hazardous to humans. The toxic effects of MNPs have been demonstrated in marine species and experimental animals. The primary pathway and target organ for MNPs entering the human body is the intestinal system, and increasing research has been done on the harmful effects and subsequent mechanisms of exposure to MNPs. Studies on how MNPs affect gut health in humans are scarce, nevertheless. Since rodents are frequently employed as animal models for human ailments, research on rodents exposed to MNPs can provide a more accurate representation of human circumstances. This study examined the effects of MNPs on intestinal microecology, inflammation, barrier function, and ion transport channels in rodents. It also reviewed the signal pathways involved, such as oxidative stress, nuclear factor (NF)-κB, Toll-like receptor (TLR) 4, inflammatory corpuscles, muscarinic acetylcholine receptors (mAChRs), mitogen-activated protein kinase (MAPK), and cell death. This review will offer a conceptual framework for the management and avoidance of associated illnesses.
Collapse
Affiliation(s)
- Lixia Du
- Department of Gastroenterology, Chengdu BOE Hospital, Chengdu 610219, China
| | - Hong Liu
- Department of Gastroenterology, The First People's Hospital of Shuangliu District (West China (Airport) Hospital of Sichuan University), Chengdu 610200, China.
| | - Xuan Song
- Center of Reproductive Medicine, Chengdu BOE Hospital, Chengdu 610219, China
| | - Xiaoqian Feng
- Department of Comprehensive Pediatric Internal Medicine, Chongqing University Three Gorges Hospital, Chongqing 404010, China
| | - Hui Xu
- Department of Gastroenterology, Chengdu BOE Hospital, Chengdu 610219, China
| | - Wei Tang
- Center of Endoscopy, Chengdu BOE Hospital, Chengdu 610219, China
| | - Jie Yang
- Center of Endoscopy, Chengdu BOE Hospital, Chengdu 610219, China
| |
Collapse
|
20
|
Debnath R, Prasad GS, Amin A, Malik MM, Ahmad I, Abubakr A, Borah S, Rather MA, Impellitteri F, Tabassum I, Piccione G, Faggio C. Understanding and addressing microplastic pollution: Impacts, mitigation, and future perspectives. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104399. [PMID: 39033703 DOI: 10.1016/j.jconhyd.2024.104399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Improper disposal of household and industrial waste into water bodies has transformed them into de facto dumping grounds. Plastic debris, weathered on beaches degrades into micro-particles and releases chemical additives that enter the water. Microplastic contamination is documented globally in both marine and freshwater environments, posing a significant threat to aquatic ecosystems. The small size of these particles makes them susceptible to ingestion by low trophic fauna, a trend expected to escalate. Ingestion leads to adverse effects like intestinal blockages, alterations in lipid metabolism, histopathological changes in the intestine, contributing to the extinction of vulnerable species and disrupting ecosystem balance. Notably, microplastics (MPs) can act as carriers for pathogens, potentially causing impaired reproductive activity, decreased immunity, and cancer in various organisms. Studies have identified seven principal sources of MPs, including synthetic textiles (35%) and tire abrasion (28%), highlighting the significant human contribution to this pollution. This review covers various aspects of microplastic pollution, including sources, extraction methods, and its profound impact on ecosystems. Additionally, it explores preventive measures, aiming to guide researchers in selecting techniques and inspiring further investigation into the far-reaching impacts of microplastic pollution, fostering effective solutions for this environmental challenge.
Collapse
Affiliation(s)
| | - Gora Shiva Prasad
- Faculty of Fishery Science, WBUAFS, Kolkata -700094, West Bengal, India
| | - Adnan Amin
- Division of Aquatic Environmental Management, Faculty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India
| | - Monisa M Malik
- Division of Aquatic Environmental Management, Faculty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India
| | - Ishtiyaq Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India.
| | - Adnan Abubakr
- Division of Aquatic Environmental Management, Faculty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India
| | - Simanku Borah
- Agricultural Research Service, ICAR-CIFRI Regional Centre, Guwahati, Assam, 781006, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India.
| | | | - Ifra Tabassum
- Division of Aquatic Environmental Management, Faculty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India.
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
21
|
Hasan AKMM, Hamed M, Hasan J, Martyniuk CJ, Niyogi S, Chivers DP. A review of the neurobehavioural, physiological, and reproductive toxicity of microplastics in fishes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116712. [PMID: 39002376 DOI: 10.1016/j.ecoenv.2024.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Microplastics (MPs) have emerged as widespread environmental pollutants, causing significant threats to aquatic ecosystems and organisms. This review examines the toxic effects of MPs on fishes, with a focus on neurobehavioural, physiological, and reproductive impacts, as well as the underlying mechanisms of toxicity. Evidence indicates that MPs induce a range of neurobehavioural abnormalities in fishes, affecting social interactions and cognitive functions. Altered neurotransmitter levels are identified as a key mechanism driving behavioural alterations following MP exposure. Physiological abnormalities in fishes exposed to MPs are also reported, including neurotoxicity, immunotoxicity, and oxidative stress. These physiological disruptions can compromise the individual health of aquatic organisms. Furthermore, reproductive abnormalities linked to MP exposure are discussed, with a particular emphasis on disruptions in endocrine signaling pathways. These disruptions can impair reproductive success in fish species, impacting population numbers. Here we explore the critical role of endocrine disruptions in mediating reproductive effects after exposure to MPs, focusing primarily on the hypothalamic-pituitary-gonadal axis. Our review highlights the urgent need for interdisciplinary research efforts aimed at elucidating the full extent of MP toxicity and its implications for aquatic ecosystems. Lastly, we identify knowledge gaps for future research, including investigations into the transgenerational impacts, if any, of MP exposure and quantifying synergetic/antagonistic effects of MPs with other environmental pollutants. This expanded knowledge regarding the potential risks of MPs to aquatic wildlife is expected to aid policymakers in developing mitigation strategies to protect aquatic species.
Collapse
Affiliation(s)
- A K M Munzurul Hasan
- Department of Biology, University of Saskatchewan, Saskatoon SK, S7N 5E2, Canada.
| | - Mohamed Hamed
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA
| | - Jabed Hasan
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon SK, S7N 5E2, Canada
| |
Collapse
|
22
|
Conger E, Dziobak M, McCabe EJB, Curtin T, Gaur A, Wells RS, Weinstein JE, Hart LB. An analysis of suspected microplastics in the muscle and gastrointestinal tissues of fish from Sarasota Bay, FL: exposure and implications for apex predators and seafood consumers. ENVIRONMENTS 2024; 11:185. [PMID: 39391169 PMCID: PMC11466323 DOI: 10.3390/environments11090185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Microplastics have been found in the gastrointestinal (GI) fluid of bottlenose dolphins (Tursiops truncatus), inhabiting Sarasota Bay, FL, suggesting exposure by ingestion, possibly via contaminated fish. To better understand the potential for trophic transfer, muscle and GI tissues from 11 species of dolphin prey fish collected from Sarasota Bay were screened for microplastics (particles <5 mm diameter). Suspected microplastics were found in 82% of muscle samples (n=89), and 97% of GI samples (n=86). Particle abundance and shapes varied by species (p<0.05) and foraging habit (omnivore vs. carnivore, p<0.05). Pinfish (Lagodon rhomboides) had the highest particle abundance for both tissue types (muscle: 0.38 particles/g; GI: 15.20 particles/g), which has implications for dolphins as they are a common prey item. Findings from this study support research demonstrating the ubiquity of estuarine plastic contamination and underscore the risks of ingestion exposure for wildlife and potentially seafood consumers.
Collapse
Affiliation(s)
- Eric Conger
- Department of Biology, School of Sciences, Mathematics, and Engineering, College of Charleston, Charleston, SC, USA
| | - Miranda Dziobak
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Elizabeth J Berens McCabe
- Sarasota Dolphin Research Program, Brookfield Zoo Chicago, c/o Mote Marine Laboratory, Sarasota, FL, USA
| | - Tita Curtin
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, USA
| | - Ayushi Gaur
- Department of Biology, School of Sciences, Mathematics, and Engineering, College of Charleston, Charleston, SC, USA
| | - Randall S Wells
- Sarasota Dolphin Research Program, Brookfield Zoo Chicago, c/o Mote Marine Laboratory, Sarasota, FL, USA
| | | | - Leslie B Hart
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, USA
| |
Collapse
|
23
|
Priyadharshini S, Jeyavani J, Al-Ghanim KA, Govindarajan M, Karthikeyan S, Vaseeharan B. Eco-toxicity assessment of polypropylene microplastics in juvenile zebrafish (Danio rerio). JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104415. [PMID: 39173506 DOI: 10.1016/j.jconhyd.2024.104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
In recent years, everyone has recognized microplastics as an emerging contaminant in aquatic ecosystems. Polypropylene is one of the dominant pollutants. The purpose of this study was to examine the effects of exposing zebrafish (Danio rerio) to water with various concentrations of polypropylene microplastics (11.86 ± 44.62 μm), including control (0 mg/L), group 1 (1 mg/L), group 2 (10 mg/L), and group 3 (100 mg/L) for up to 28 days (chronic exposure). The bioaccumulation of microplastics in the tract was noted after 28 days. From the experimental groups, blood and detoxifying organs of the liver and brain were collected. Using liver tissues evaluated the toxic effects by crucial biomarkers such as reactive oxygen species, anti-oxidant parameters, oxidative effects in protein & lipids, total protein content and free amino acid level. The study revealed that the bioaccumulation of microplastics in the organisms is a reflection of the oxidative stress and liver tissue damage experienced by the group exposed to microplastics. Also, apoptosis of blood cells was observed in the treated group as well as increased the neurotransmitter enzyme acetylcholine esterase activity based on exposure concentration-dependent manner. The overall results indicated bioaccumulation of microplastics in the gut, which led to increased ROS levels. This consequently affected antioxidant biomarkers, ultimately causing oxidation of biomolecules and liver tissue injury, as evidenced by histological analysis. This study concludes that chronic ingestion of microplastics causes considerable effects on population fitness in the aquatic environment, as well as other ecological complications, and is also critical to understand the magnitude of these contaminants' influence on ichthyofauna.
Collapse
Affiliation(s)
- Suresh Priyadharshini
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Jeyaraj Jeyavani
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Mycology, Parasitology, Tropical Medicine and Ecotoxicology, Department of Zoology, Annamalai University, Annamalainagar 608 002, TamilNadu, India; Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, TamilNadu, India
| | - Sivashanmugam Karthikeyan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tami Nadu 632,014, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
24
|
Nakakuni M, Nishida M, Nishibata R, Kishimoto K, Yamaguchi H, Ichimi K, Ishizuka M, Suenaga Y, Tada K. Convergence zones of coastal waters as hotspots for floating microplastic accumulation. MARINE POLLUTION BULLETIN 2024; 206:116691. [PMID: 39004057 DOI: 10.1016/j.marpolbul.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
This study examines microplastic (MP, 1-5 mm) densities in convergence zones in a coastal sea, the Seto Inland Sea, comparing them to those of non-convergence zones and other areas. Notably, Seto convergence zones exhibit MP densities 40 to 300 times higher than non-convergence zones, with an extraordinary density of 3.7 ± 6.3 pieces m-3, similar to densities found in Tokyo Bay as known a MP hotspot. The predominant polymer found was expanded polystyrene, varying seasonally and peaking in summer. Juvenile fish associated with driftweed in these convergence zones face a risk of long-term MP exposure, potentially up to four months. This large number of MPs found in coastal convergence zones is similar to accumulation zones formed in the gyres of open oceans, with strong implications for detrimental effects on coastal marine life. However, these MPs are autochthonous, and may be manageable through local marine plastic waste management.
Collapse
Affiliation(s)
- Masatoshi Nakakuni
- Seto Inland Sea Regional Research Center, Kagawa University, Saiwai, Takamatsu, Kagawa 760-0016, Japan; Clean Ocean Ensemble, Sakate, Shodoshima, Shozu, Kagawa 761-4425, Japan.
| | - Miharu Nishida
- Faculty of Agriculture, Kagawa University, Ikenobe, Miki, Kagawa 761-0701, Japan
| | - Ryosuke Nishibata
- Faculty of Agriculture, Kagawa University, Ikenobe, Miki, Kagawa 761-0701, Japan
| | - Koji Kishimoto
- Seto Inland Sea Regional Research Center, Kagawa University, Saiwai, Takamatsu, Kagawa 760-0016, Japan
| | - Hitomi Yamaguchi
- Faculty of Agriculture, Kagawa University, Ikenobe, Miki, Kagawa 761-0701, Japan
| | - Kazuhiko Ichimi
- Seto Inland Sea Regional Research Center, Kagawa University, Saiwai, Takamatsu, Kagawa 760-0016, Japan; Faculty of Agriculture, Kagawa University, Ikenobe, Miki, Kagawa 761-0701, Japan
| | - Masahide Ishizuka
- Faculty of Engineering, Kagawa University, Hayashi, Takamatsu, Kagawa 761-0396, Japan
| | - Yoshihiro Suenaga
- Seto Inland Sea Regional Research Center, Kagawa University, Saiwai, Takamatsu, Kagawa 760-0016, Japan; Faculty of Agriculture, Kagawa University, Ikenobe, Miki, Kagawa 761-0701, Japan
| | - Kuninao Tada
- Seto Inland Sea Regional Research Center, Kagawa University, Saiwai, Takamatsu, Kagawa 760-0016, Japan; Faculty of Agriculture, Kagawa University, Ikenobe, Miki, Kagawa 761-0701, Japan
| |
Collapse
|
25
|
Yang H, Ju J, Wang Y, Zhu Z, Lu W, Zhang Y. Micro-and nano-plastics induce kidney damage and suppression of innate immune function in zebrafish (Danio rerio) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172952. [PMID: 38703841 DOI: 10.1016/j.scitotenv.2024.172952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Aquatic environments serve as critical repositories for pollutants and have significantly accumulated micro- and nanoplastics (MNPs) due to the extensive production and application of plastic products. While the disease resistance and immunity of fish are closely linked to the condition of their aquatic habitats, the specific effects of nanoplastics (NPs) and microplastics (MPs) within these environments on fish immune functions are still not fully understood. The present study utilized zebrafish (Danio rerio) embryos and larvae as model organisms to examine the impacts of polystyrene NPs (100 nm) and MPs (5 μm) on fish immune responses. Our findings reveal that NPs and MPs tend to accumulate on the surfaces of embryos and within the intestines of larvae, triggering oxidative stress and significantly increasing susceptibility to Edwardsiella piscicida infection in zebrafish larvae. Transmission electron microscopy examined that both NPs and MPs inflicted damage to the kidney, an essential immune organ, with NPs predominantly inducing endoplasmic reticulum stress and MPs causing lipid accumulation. Transcriptomic analysis further demonstrated that both NPs and MPs significantly suppress the expression of key innate immune pathways, notably the C-type lectin receptor signaling pathway and the cytosolic DNA-sensing pathway. Within these pathways, the immune factor interleukin-1 beta (il1b) was consistently downregulated in both exposure groups. Furthermore, exposure to E. piscicida resulted in restricted upregulation of il1b mRNA and protein levels, likely contributing to diminished disease resistance in zebrafish larvae exposed to MNPs. Our findings suggest that NPs and MPs similarly impair the innate immune function of zebrafish larvae and weaken their disease resistance, highlighting the significant environmental threat posed by these pollutants.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jian Ju
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuting Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenyan Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
26
|
Zheng Y, Xu S, Liu J, Liu Z. The effects of micro- and nanoplastics on the central nervous system: A new threat to humanity? Toxicology 2024; 504:153799. [PMID: 38608860 DOI: 10.1016/j.tox.2024.153799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Given the widespread production and use of plastics, poor biodegradability, and inadequate recycling, micro/nanoplastics (MNPs) have caused widespread environmental pollution. As a result, humans inevitably ingest MNPs through various pathways. However, there is still no consensus on whether exposure to MNPs has adverse effects on humans. This article aims to provide a comprehensive overview of the knowledge of MNPs and the potential mechanisms of their impact on the central nervous system. Numerous in vivo and in vitro studies have shown that exposure to MNPs may pass through the blood-brain barrier (BBB) and lead to neurotoxicity through impairments in oxidative and inflammatory balance, neurotransmitter alternation, nerve conduction-related key enzymes, and impact through the gut-brain axis. It is worth noting that MNPs may act as carriers and have more severe effects on the body when co-exposed with other substances. MNPs of smaller sizes cause more severe harm. Despite the scarcity of reports directly relevant to humans, this review brings together a growing body of evidence showing that exposure to MNPs disturbs neurons and has even been found to alter the memory and behavior of organisms. This effect may lead to further potential negative influence on the central nervous system and contribute to the development of other diseases such as central nervous system inflammation and Parkinson 's-like neurodegenerative disorders. There is a need further to investigate the threat of MNPs to human health.
Collapse
Affiliation(s)
- Yanxu Zheng
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital, 87th Xiangya Road, Changsha, Hunan 410008, PR China
| | - Jingyu Liu
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, 87th Xiangya Road, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410013, PR China.
| |
Collapse
|
27
|
Compa M, Capó X, Alomar C, Deudero S, Sureda A. A meta-analysis of potential biomarkers associated with microplastic ingestion in marine fish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104414. [PMID: 38485101 DOI: 10.1016/j.etap.2024.104414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Over the past decade, global reports have shown a rise in the harmful effects of microplastics (MPs) on marine fish. This study analysed marine species' biochemical biomarker responses to microplastic exposure, finding that MPs can induce oxidative stress in marine fish through meta-regression results. Overall, exposure to MPs resulted in the activation of antioxidant defence mechanisms, such as superoxide dismutase, catalase and glutathione reductase, detoxification enzymes such as glutathione-S-transferase, the detection of malondialdehyde, and inhibition of acetylcholinesterase. Moreover, results highlight oxidative stress biomarkers were activated in wild species that had ingested MPs, indicating potential harm to marine fish, as confirmed in experimental studies. Furthermore, even though MPs' exposure is better regulated in an experimental setting, it is challenging to replicate actual exposure and environmental factors. The study's findings show the need for more investigation into the hazardous consequences of exposure to environmental MPs on species surveyed in the maritime environment.
Collapse
Affiliation(s)
- Montserrat Compa
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, Palma de Mallorca, Balearic Islands 07122, Spain.
| | - Xavier Capó
- Translational Research in aging and longevity (TRIAL) Group. Health Research Institute of Balearic Islands (IDISBA), Carretera de Valldemossa 79. Hospital Univeritari Son Espases. Edifici S., Palm, Balearic Islands 07120, Spain
| | - Carme Alomar
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente S/n, Palma de Mallorca 07015, Spain
| | - Salud Deudero
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente S/n, Palma de Mallorca 07015, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, Palma de Mallorca, Balearic Islands 07122, Spain; Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca 07120, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| |
Collapse
|
28
|
Mahmood M, Hussain SM, Sarker PK, Ali S, Arif MS, Nazish N, Riaz D, Ahmad N, Paray BA, Naeem A. Toxicological assessment of dietary exposure of polyethylene microplastics on growth, nutrient digestibility, carcass and gut histology of Nile Tilapia (Oreochromis niloticus) fingerlings. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:296-304. [PMID: 38498245 DOI: 10.1007/s10646-024-02749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
This study was conducted to ascertain the negative effects of dietary low-density polyethylene microplastics (LDPE-MPs) exposure on growth, nutrient digestibility, body composition and gut histology of Nile tilapia (Oreochromis niloticus). Six sunflower meal-based diets (protein 30.95%; fat 8.04%) were prepared; one was the control (0%) and five were incorporated with LDPE-MPs at levels of 2, 4, 6, 8 and 10% in sunflower meal-based diets. A total of eighteen experimental tanks, each with 15 fingerlings, were used in triplicates. Fish were fed at the rate of 5% biomass twice a day for 60 days. Results revealed that best values of growth, nutrient digestibility, body composition and gut histology were observed by control diet, while 10% exposure to LDPE-MPs significantly (P < 0.05) reduced weight gain (WG%, 85.04%), specific growth rate (SGR%, 0.68%), and increased FCR (3.92%). The findings showed that higher level of LDPE-MPs (10%) exposure in the diet of O. niloticus negatively affects nutrient digestibility. Furthermore, the results revealed that the higher concentration of LDPE-MPs (10%) had a detrimental impact on crude protein (11.92%) and crude fat (8.04%). A high number of histological lesions were seen in gut of fingerlings exposed to LDPE-MPs. Hence, LDPE-MPs potentially harm the aquatic health.
Collapse
Affiliation(s)
- Muhammad Mahmood
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Syed Makhdoom Hussain
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan.
| | - Pallab K Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Muhammad Saleem Arif
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Nadia Nazish
- Department of Zoology, University of Sialkot, Sialkot, Punjab, 51040, Pakistan
| | - Danish Riaz
- Department of Zoology, University of Education, Lahore, Punjab, 38000, Pakistan
| | - Nisar Ahmad
- Department of Zoology, University of Jhang, Jhang, Punjab, 35200, Pakistan
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Adan Naeem
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| |
Collapse
|
29
|
Munir M, Subechi M, Nurmanjaya A, Prasetya KE, Rindiyantono F, Chairuman, Pratama C, Yanto, Pujiyanto A, Setiawan H, Sarwono DA, Sarmini E, Fara ME, Suseno H. Development of a polystyrene-based microplastic model for bioaccumulation and biodistribution study using radiotracing and nuclear analysis method. MARINE POLLUTION BULLETIN 2024; 201:116283. [PMID: 38522338 DOI: 10.1016/j.marpolbul.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
The investigation of micro or nano plastics behavior in the environment is essential to minimize the hazards of such pollutants on humans. While the conventional method requires sophisticated procedures and a lot of animal subjects, the nuclear technique confers a sensitive, accurate, and real-time method using radiolabeled micro or nano plastics as a tracer. In this study, polystyrene sulfonate-based microplastic (PSM) was developed with a size of around 3.6 μm, followed by radiolabeling with iodine-131 (131I) or zinc-65 (65Zn) for microplastic radiotracer model. After a stability study in seawater, phosphate buffer saline (PBS), and human serum albumin (HSA) for fifteen days, PSM-131I remained stable (>90 %), except in HSA (50-60 % after day-9), while PSM-65Zn was unstable (<50 %).
Collapse
Affiliation(s)
- Miftakul Munir
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia.
| | - Moch Subechi
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Ahid Nurmanjaya
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Kukuh Eka Prasetya
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Fernanto Rindiyantono
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Chairuman
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Chaidir Pratama
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia; Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia
| | - Yanto
- Directorate of Laboratory Management, Research Facilities, and Science and Technology Park, Deputy for Research and Innovation Infrastructure, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Anung Pujiyanto
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Herlan Setiawan
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Daya Agung Sarwono
- Directorate of Nuclear Facility Management, Deputy for Research and Innovation Infrastructure, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Endang Sarmini
- Directorate of Nuclear Facility Management, Deputy for Research and Innovation Infrastructure, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| | - Meita Eka Fara
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia; Aquatic Resources Management Master Program, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jl. Prof. Jacub Rais, Tembalang, Semarang, Jawa Tengah 50275, Indonesia
| | - Heny Suseno
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, KST BJ Habibie, South Tangerang, Banten 15314, Indonesia
| |
Collapse
|
30
|
Alaraby M, Abass D, Farre M, Hernández A, Marcos R. Are bioplastics safe? Hazardous effects of polylactic acid (PLA) nanoplastics in Drosophila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170592. [PMID: 38354814 DOI: 10.1016/j.scitotenv.2024.170592] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
The expanded uses of bioplastics require understanding the potential health risks associated with their exposure. To address this issue, Drosophila melanogaster as a versatile terrestrial in vivo model was employed, and polylactic acid nanoplastics (PLA-NPLs), as a proxy for bioplastics, were tested as a material model. Effects were determined in larvae exposed for 4 days to different concentrations (25, 100, and 400 μg/mL) of 463.9 ± 129.4 nm PLA-NPLs. Transmission electron microscopy (TEM) and scanning electron microscope (SEM) approaches permitted the detection of PLA-NPLs in the midgut lumen of Drosophila larvae, interacting with symbiotic bacteria. Enzymatic vacuoles were observed as carriers, collecting PLA-NPLs and enabling the crossing of the peritrophic membrane, finally internalizing into enterocytes. Although no toxic effects were observed in egg-to-adult survival, cell uptake of PLA-NPLs causes cytological disturbances and the formation of large vacuoles. The translocation across the intestinal barrier was demonstrated by their presence in the hemolymph. PLA-NPL exposure triggered intestinal damage, oxidative stress, DNA damage, and inflammation responses, as evaluated via a wide set of marker genes. Collectively, these structural and molecular interferences caused by PLA-NPLs generated high levels of oxidative stress and DNA damage in the hemocytes of Drosophila larvae. The observed effects point out the need for further studies aiming to deepen the health risks of bioplastics before adopting their uses as a safe plastic alternative.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Zoology Department, Faculty of Sciences, Sohag University, 82524 Sohag, Egypt.
| | - Doaa Abass
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Zoology Department, Faculty of Sciences, Sohag University, 82524 Sohag, Egypt
| | - Marinella Farre
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034 Barcelona, Spain
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
31
|
Sun Z, Zhao L, Peng X, Yan M, Ding S, Sun J, Kang B. Tissue damage, antioxidant capacity, transcriptional and metabolic regulation of red drum Sciaenops ocellatus in response to nanoplastics exposure and subsequent recovery. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116175. [PMID: 38458070 DOI: 10.1016/j.ecoenv.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Nanoplastics are recognized as emerging contaminants that can cause severe toxicity to marine fishes. However, limited researches were focusing on the toxic effects of nanoplastics on marine fish, especially the post-exposure resilience. In this study, red drum (Sciaenops ocellatus) were exposed to 5 mg/L polystyrene nanoplastics (100 nm, PS-NPs) for a 7-day exposure experiment, and a 14-day recovery experiment that followed. The aim was to evaluate the dynamic alterations in hepatic and branchial tissue damage, hepatic antioxidant capacity, as well as hepatic transcriptional and metabolic regulation in the red drum during exposure and post-exposure to PS-NPs. Histopathological observation found that PS-NPs primarily triggered hepatic lipid droplets and branchial epithelial liftings, a phenomenon persistently discernible up to the 14 days of recovery. Although antioxidant capacity partially recovered during recovery periods, PS-NPs resulted in a sustained reduction in hepatic antioxidant activity, causing oxidative damage throughout the entire exposure and recovery phases, as evidenced by decreased total superoxide dismutase activities and increased malondialdehyde content. At the transcriptional and metabolic level, PS-NPs primarily induced lipid metabolism disorders, DNA damage, biofilm disruption, and mitochondrial dysfunction. In the gene-metabolite correlation interaction network, numerous CcO (cytochrome c oxidase) family genes and lipid metabolites were identified as key regulatory genes and metabolites in detoxification processes. Among them, the red drum possesses one additional CcO6B in comparison to human and zebrafish, which potentially contributes to its enhanced capacity for maintaining a stable and positive regulatory function in detoxification. This study revealed that nanoplastics cause severe biotoxicity to red drum, which may be detrimental to the survival of wild populations and affect the economics of farmed populations.
Collapse
Affiliation(s)
- Zhicheng Sun
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China; Fisheries College, Ocean University of China, Qingdao, China
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Xin Peng
- Marine Academy of Zhejiang Province, Hangzhou, China; Key Laboratory of Ocean Space Resource Management Technology, Hangzhou, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Shaoxiong Ding
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao, China.
| | - Bin Kang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China; Fisheries College, Ocean University of China, Qingdao, China.
| |
Collapse
|
32
|
Gholamhosseini A, Banaee M, Zeidi A, Multisanti CR, Faggio C. Individual and combined impact of microplastics and lead acetate on the freshwater shrimp (Caridina fossarum): Biochemical effects and physiological responses. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 262:104325. [PMID: 38428349 DOI: 10.1016/j.jconhyd.2024.104325] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Microplastics and heavy metals pollution is recognised as a major problem affecting aquatic ecosystems. For this reason, this study aims to assess the toxicity of different concentrations of polyethylene microplastics (PE-MPs) (0.0, 500, and 1000 μg L-1) with a mean size of 15-25 μm and lead acetate Pb(C2H3O2)2 (0.0, 2.5, and 5 mg L-1), both individually and in combination, through the exposure of the freshwater grass shrimp, Caridinia fossarum for 15 days, focusing on microplastic interaction with co-occurring contaminants. After being exposed to both contaminants, either individually or in combination, significant alterations in numerous biochemical markers were observed. Specifically, exposure to lead acetate alone resulted in significant changes across ALP, AST, ALT, LDH, GGT, and BChE enzyme activity levels indicating hepatotoxicity and neurotoxicity. Also, Pb exposure led to alterations in total antioxidant capacity, MDA, total lipids, and glycogen contents, signalling the onset of oxidative stress. Exposure to PE-MPs alone led to changes in ALP, LDH, GGT, and BChE enzyme levels, and in MDA, total lipids, and glycogen samples' contents. Remarkably, the study observed increased bioaccumulation of lead acetate in samples treated with the combination, emphasizing the synergistic impact of PE-MPs on the toxicity of lead acetate. This synergy was also evident in AST and ALT enzyme activity levels and MDA contents. This underscores the necessity for measures to address both microplastic pollution and heavy metal contamination, taking into account the synergistic behaviour of MPs in the presence of concurrent contaminants.
Collapse
Affiliation(s)
- Amin Gholamhosseini
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Mahdi Banaee
- Aquaculture of Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Amir Zeidi
- Aquaculture of Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
33
|
Suman A, Mahapatra A, Gupta P, Ray SS, Singh RK. Polystyrene microplastics induced disturbances in neuronal arborization and dendritic spine density in mice prefrontal cortex. CHEMOSPHERE 2024; 351:141165. [PMID: 38224746 DOI: 10.1016/j.chemosphere.2024.141165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
An increasing use of plastics in daily life leads to the accumulation of microplastics (MPs) in the environment, posing a serious threat to the ecosystem, including humans. It has been reported that MPs cause neurotoxicity, but the deleterious effect of polystyrene (PS) MPs on neuronal cytoarchitectural morphology in the prefrontal cortex (PFC) region of mice brain remains to be established. In the present study, Swiss albino male mice were orally exposed to 0.1, 1, and 10 ppm PS-MPs for 28 days. After exposure, we found a significant accumulation of PS-MPs with a decreased number of Nissl bodies in the PFC region of the entire treated group compared to the control. Morphometric analysis in the PFC neurons using Golgi-Cox staining accompanied by Sholl analysis showed a significant reduction in basal dendritic length, dendritic intersections, nodes, and number of intersections at seventh branch order in PFC neurons of 1 ppm treated PS-MPs. In neurons of 0.1 ppm treated mice, we found only decrease in the number of intersections at the seventh branch order. While 10 ppm treated neurons decreased in basal dendritic length, dendritic intersections, followed by the number of intersections at the third and seventh branch order were observed. As well, spine density on the apical secondary branches along with mRNA level of BDNF was significantly reduced in all the PS-MPs treated PFC neurons, mainly at 1 ppm versus control. These results suggest that PS-MPs exposure affects overall basal neuronal arborization, with the highest levels at 1 and 10 ppm, followed by 0.1 ppm treated neurons, which may be related to the down-regulation of BDNF expression in PFC.
Collapse
Affiliation(s)
- Anjali Suman
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Archisman Mahapatra
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priya Gupta
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shubhendu Shekhar Ray
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rahul Kumar Singh
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
34
|
Chen H, Wan L, Qiu Y, Qiu F, Wen C, Mao Y, He Z. Microplastics exposure induced and exacerbated the development of systemic lupus erythematosus in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168586. [PMID: 37981148 DOI: 10.1016/j.scitotenv.2023.168586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/12/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Environmental exposure may function as a contributing risk factor in the development of systemic lupus erythematosus (SLE). Recently, the global issue of microplastics (MPs) pollution has garnered increasing concern, yet its potential impact on SLE remains unexplored. This study seeks to elucidate the ramifications of MPs exposure on lupus manifestations in spontaneous lupus MRL/lpr mice and normal C57L/6 mice. MPs exposure demonstrated the capacity to induce lupus-like symptoms in C57BL/6 mice and exacerbate lupus symptoms in MRL/lpr mice. This was manifested by MPs triggering abnormal elevation of spleen DN T, plasma cells, serum anti-dsDNA, ANA, IL-6, and TNF-α, coupled with a reduction in spleen CD4+/CD8+ cell ratio, and impairment in renal pathology. Moreover, a 4D-DIA quantitative proteomic analysis was employed to unveil substantial alterations in renal proteins attributed to MPs exposure. The findings indicated that the KEGG pathways significantly enriched by MPs-associated different proteins in C57BL/6 mice were closely aligned with the enriched KEGG pathways associated with lupus. Unlike C57BL/6 mice, there were no significantly enriched KEGG pathways identified among the MPs-associated different proteins in MRL/lpr mice. In addition, proteins related to the SLE pathway illuminated that MPs exposure induced renal damage through activation of MHCII and histone H3, culminating in the production of MAC in both C57BL/6 and MRL/lpr mice. However, a specific elevation in cathepsin and elastase caused by MPs was observed in C57BL/6 mice but not in MRL/lpr mice. This study represents a significant stride in bridging the existing knowledge gap pertaining to the intricate relationship between MPs exposure and the development of SLE.
Collapse
Affiliation(s)
- Huinan Chen
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Wan
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yiwu Qiu
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fuhai Qiu
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chengping Wen
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yingying Mao
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Zhixing He
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
35
|
Yang H, Zhong J, Leng X, Wu J, Cheng P, Shen L, Wu J, Li P, Du H. Effectiveness assessment of using water environmental microHI to predict the health status of wild fish. Front Microbiol 2024; 14:1293342. [PMID: 38274749 PMCID: PMC10808811 DOI: 10.3389/fmicb.2023.1293342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Aquatic wildlife health assessment is critically important for aquatic wildlife conservation. However, the health assessment of aquatic wildlife (especially aquatic wild animals) is difficult and often accompanied by invasive survey activities and delayed observability. As there is growing evidence that aquatic environmental microbiota could impact the health status of aquatic animals by influencing their symbiotic microbiota, we propose a non-invasive method to monitor the health status of wild aquatic animals using the environmental microbiota health index (microHI). However, it is unknown whether this method is effective for different ecotype groups of aquatic wild animals. To answer this question, we took a case study in the middle Yangtze River and studied the water environmental microbiota and fish gut microbiota at the fish community level, population level, and ecotype level. The results showed that the gut microHI of the healthy group was higher than that of the unhealthy group at the community and population levels, and the overall gut microHI was positively correlated with the water environmental microHI, whereas the baseline gut microHI was species-specific. Integrating these variations in four ecotype groups (filter-feeding, scraper-feeding, omnivorous, and carnivorous), only the gut microHI of the carnivorous group positively correlated with water environmental microHI. Alcaligenaceae, Enterobacteriaceae, and Achromobacter were the most abundant groups with health-negative-impacting phenotypes, had high positive correlations between gut sample group and environment sample group, and had significantly higher abundance in unhealthy groups than in healthy groups of carnivorous, filter-feeding, and scraper-feeding ecotypes. Therefore, using water environmental microHI to indicate the health status of wild fish is effective at the community level, is effective just for carnivorous fish at the ecotype level. In the middle Yangtze River, Alcaligenaceae, Enterobacteriaceae (family level), and Achromobacter (genus level) were the key water environmental microbial groups that potentially impacted wild fish health status. Of course, more data and research that test the current hypothesis and conclusion are encouraged.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
36
|
Zhou T, Wu J, Liu Y, Xu A. Seawater Accelerated the Aging of Polystyrene and Enhanced Its Toxic Effects on Caenorhabditis elegans. Int J Mol Sci 2023; 24:17219. [PMID: 38139049 PMCID: PMC10743734 DOI: 10.3390/ijms242417219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Microplastics (MPs) are emerging pollutants and pose a significant threat to marine ecosystems. Although previous studies have documented the mechanisms and toxic effects of aging MPs in various environments, the impact of the marine environment on MPs remains unclear. In the present study, the aging process of polystyrene (PS) in seawater was simulated and the changes in its physicochemical properties were investigated. Our results showed that the surface of the PS eroded in the seawater, which was accompanied by the release of aged MPs with a smaller size. In situ optical photothermal infrared microspectroscopy revealed that the mechanism of PS aging was related to the opening of the carbonyl group and breaking of the bond between carbon and benzene removal. To verify the toxic effects of aged PS, Caenorhabditis elegans was exposed to PS. Aged PS resulted in a greater reduction in locomotion, vitality, and reproduction than virgin PS. Mechanistically, aged PS led to oxidative stress, high glutathione s-transferase activity, and high total glutathione in worms. Together, our findings provided novel information regarding the accelerated aging of PS in seawater and the increased toxicity of aged PS, which could improve our understanding of MPs' ecotoxicity in the marine environment.
Collapse
Affiliation(s)
- Tong Zhou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Graduate Students, University of Science and Technology of China, Hefei 230026, China
| | - Jiajie Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Graduate Students, University of Science and Technology of China, Hefei 230026, China
| | - Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Graduate Students, University of Science and Technology of China, Hefei 230026, China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Graduate Students, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
37
|
Chae B, Oh S, Lee DG. Is 5 mm still a good upper size boundary for microplastics in aquatic environments? Perspectives on size distribution and toxicological effects. MARINE POLLUTION BULLETIN 2023; 196:115591. [PMID: 37774461 DOI: 10.1016/j.marpolbul.2023.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
Plastic is everywhere as an essential component of industries' products, but accumulation and degradation of plastics into microplastics occurs continuously in aquatic environments. Despite numerous studies investigating the influence of microplastics, challenges remain when comparing comprehensive results due to the lack of agreement regarding microplastics sizes. Over 80 studies and reports were reviewed, revealing the inconsistencies in defining the upper size limit for microplastics, and are the basis of this exploration of the need to redefine the latter by focusing on pragmatic factors such as size distribution and toxicity endpoints in aquatic environments. Reviewed articles indicate a gap between recommendations for microplastics definitions and the current status of microplastics. We suggest initiating a discussion regarding downscaling the broadly accepted 5 mm upper limit to 1000 μm, considering environmentally realistic conditions and SI nomenclature. We encourage continued international discussion of redefining the upper size limit defining microplastics from this pragmatic view.
Collapse
Affiliation(s)
- Byeongmin Chae
- Department of Environmental Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - Soorim Oh
- Department of Environmental Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - Do Gyun Lee
- Department of Environmental Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, South Korea.
| |
Collapse
|
38
|
Chukwuka AV, Jerome FC, Hassan A, Ebonwu B, Adeogun AO. Redox-active metals and oxidative stress-mediated myopathies in Callinectes amnicola, blue crab populations from impacted sites of the Lagos Lagoon: inferences for adverse ecological outcomes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108565-108581. [PMID: 37752391 DOI: 10.1007/s11356-023-29912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
While oxidative stress pathways are associated with a wide variety of tissue pathologies, its applications for evaluating and discerning ecological risks are limited. This study seeks to associate trends of lipid peroxidation and oxidative stress to risks of muscle pathologies in blue crabs inhabiting regions of the Lagos Lagoon. Crab samples (n = 520) were selected from pollution-impacted sites of the lagoon at Iddo, Ajah, Okobaba, Makoko, and the mid-lagoon area (control site). Antioxidant enzyme capacity, i.e., superoxide dismutase, catalase, glutathione peroxidase (GPx), and glutathione-S-transferase, and lipid peroxidation were evaluated in the muscle tissue of the blue crabs. The study findings showed distinct patterns of metal uptake in muscle, with redox-active metals (Cu and Zn) and redox-inactive metals (Pb and Cd) exhibiting site-specific differences. Additionally, there were changes in antioxidant modulation, lipid peroxidation, and the presence of associated myopathies. Blue crabs from sites (Makoko and Ajah) with greater uptake of redox-active metals (Cu and Zn) in muscle tissue showed higher trends of lipid peroxidation and the most prevalence of severe regression-type myopathies. Sites with lower uptake of redox-active metals showed the predominance of circulatory-type myopathies. This study also provides evidence of severe necrosis and myositis associated with digenean parasite cysts in crab muscle. Pathological evidence of severe skeletal muscle deterioration in the presence of greater lipid peroxidation could have implications for motor-neuron activity and reduced force-generating capacity necessary for adaptive responses in the wild. We conclude that elevated uptake of redox metals could aggravate the onset of myopathies in wild populations.
Collapse
Affiliation(s)
- Azubuike Victor Chukwuka
- Conservation Unit, Environmental Quality Control Department, National Environmental Standards and Regulations Enforcement Agency (NESREA), Osogbo, Osun, Nigeria.
| | - Fisayo C Jerome
- Fisheries Resources Department, Marine Biology Section, Nigerian Institute for Oceanography and Marine Research, Lagos, Nigeria
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Adesola Hassan
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Benjamin Ebonwu
- Fisheries Resources Department, Aquaculture Section, Nigerian Institute for Oceanography and Marine Research, Lagos, Nigeria
| | - Aina O Adeogun
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
39
|
Bin-Jumah MN. Do functional traits and biochemical biomarkers of the nematode Oncholaimus campylocercoides De Coninck and Schuurmans Stekhoven, 1933 affected by fluoranthene and polystyrene microplastics? Results from a microcosm bioassay and molecular modeling. MARINE POLLUTION BULLETIN 2023; 194:115294. [PMID: 37506479 DOI: 10.1016/j.marpolbul.2023.115294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
The current experiment measured the multifaceted effects of polystyrene and fluoranthene, acting alone or in a mixture, on the meiobenthic nematode species Oncholaimus campylocercoides. This Oncholaimid was first experimentally selected from an entire nematode assemblage taken from the Jeddah coasts (Saudi Arabia). Several discernible changes were found in morphometry and functional traits after exposure to single and combined treatments. An increase in the activity of the biochemical biomarkers catalase and glutathione S-transferase was also observed following the exposure of males and gravid females of O. campylocercoides to 37.5 ng fluoranthene·g-1 dry weight (DW) and 62.5 mg polystyrene·kg-1 DW paralleled by a higher vulnerability of females. Moreover, the reproduction and feeding of this species were impaired, starting from 37.5 ng fluoranthene·g-1 and 62.5 mg polystyrene·kg-1, respectively. These results have been confirmed by good binding affinities and molecular interactions of fluoranthene and polystyrene with both GLD-3 and SDP receptors.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| |
Collapse
|
40
|
Choi JH, Kim JH. Toxic effects of sub-acute microplastic (polyamide) exposure on the accumulation, hematological, and antioxidant responses in crucian carp, Carassius carassius. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104199. [PMID: 37391052 DOI: 10.1016/j.etap.2023.104199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
The purpose of this study is to investigate the impact of microplastics (MPs) on fish and to confirm the toxic effects of MPs on fish, as well as to clarify the standard indicators. MPs are present in a large amount in the aquatic environment and can have various adverse effects on aquatic animals. Crucian carp, Carassius carassius (mean weight, 23.7 ± 1.6 g; mean length, 13.9 ± 1.4 cm), were exposed to PA (Polyamide) concentrations of 0, 4, 8, 16, 32 and 64 mg/L for 2 weeks. The PA accumulation profile in C. carassius decreased from the intestine to the gill to the liver. Hematological parameters such as red blood cell (RBC) counts, hemoglobin (Hb), and hematocrit (Ht) notably decreased at high levels of PA exposure. Plasma components such as calcium, magnesium, glucose, cholesterol, total protein, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) were significantly altered by PA exposure. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and glutathione (GSH) of liver, gill and intestine significantly increased following PA exposure. The results of this study suggest that MP exposure affects the hematological physiology and antioxidant responses in C. carassius as well as accumulation in specific tissues.
Collapse
Affiliation(s)
- Jae-Ho Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, the Republic of Korea
| | - Jun-Hwan Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
41
|
Grimmelpont M, Lefrançois C, Panisset Y, Jourdon G, Receveur J, Le Floch S, Boudenne JL, Labille J, Milinkovitch T. Avoidance behaviour and toxicological impact of sunscreens in the teleost Chelon auratus. MARINE POLLUTION BULLETIN 2023; 194:115245. [PMID: 37517278 DOI: 10.1016/j.marpolbul.2023.115245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
There is increasing evidence that sunscreen, more specifically the organic ultra-violet filters (O-UVFs), are toxic for aquatic organisms. In the present study, we simulated an environmental sunscreen exposure on the teleost fish, Chelon auratus. The first objective was to assess their spatial avoidance of environmental concentrations of sunscreen products (i.e. a few μg.L-1 of O-UVFs). Our results showed that the fish did not avoid the contaminated area. Therefore, the second objective was to evaluate the toxicological impacts of such pollutants after 35 days exposure to concentrations of a few μg.L-1 of O-UVFs. At the individual level, O-UVFs increased the hepatosomatic index which could suggest pathological alterations of the liver or the initiation of the detoxification processes. At the cellular level, a significant increase of malondialdehyde was measured in the muscle of fish exposed to O-UVFs which suggests a failure of antioxidant defences and/or an excess of reactive oxygen species.
Collapse
Affiliation(s)
- Margot Grimmelpont
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | - Christel Lefrançois
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | - Yannis Panisset
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Guilhem Jourdon
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Justine Receveur
- Centre de Documentation de Recherche et d'Expérimentations sur les Pollutions Accidentelles des Eaux (CEDRE), 715 rue Alain Colas, CS41836-F-29218 Brest Cedex 2, France.
| | - Stéphane Le Floch
- Centre de Documentation de Recherche et d'Expérimentations sur les Pollutions Accidentelles des Eaux (CEDRE), 715 rue Alain Colas, CS41836-F-29218 Brest Cedex 2, France.
| | | | - Jérôme Labille
- Aix Marseille Univ, CNRS, IRD, INRAe, Coll France, CEREGE, Aix-en-Provence, France.
| | - Thomas Milinkovitch
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| |
Collapse
|
42
|
Bellakhal M, Ishak S, Al-Hoshani N, Qurtam AA, Al-Zharani M, Pacioglu O, Boufahja F. The multifaceted effects of fluoranthene and polystyrene on the taxonomic composition and associated functional traits of marine meiofauna, by using single and mixture applications. MARINE POLLUTION BULLETIN 2023; 194:115390. [PMID: 37573818 DOI: 10.1016/j.marpolbul.2023.115390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
The current experiment measured the multifaceted effects of polystyrene and fluoranthene, acting alone or in a mixture on marine meiofauna, but with a special focus on nematodes' morphological and functional traits. The results showed changes in the abundances for all tested concentrations of both compounds. The nematode communities exposed to the highest concentrations of fluoranthene (30 ng.g-1 Dry Weight (DW)) and polystyrene (100 mg.kg-1 DW) alone or in a mixture, were significantly less diverse compared to control and were associated with significant changes in the percentage of taxonomic composition and feeding-guilds. The most sensitive taxa to fluoranthene comprised epistratum feeders, whereas the nematodes mostly affected by polystyrene were omnivores-carnivores. A new functional tool, the Index of Sensitivity (IOS), proved to be reliable in depicting the changes that occurred in the taxonomic and functional features of the nematofauna.
Collapse
Affiliation(s)
- Meher Bellakhal
- Higher Institute of Fishery and Aquaculture of Bizerte, University of Carthage, Tunisia
| | - Sahar Ishak
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ashraf A Qurtam
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammed Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Octavian Pacioglu
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| |
Collapse
|
43
|
Lin YD, Huang PH, Chen YW, Hsieh CW, Tain YL, Lee BH, Hou CY, Shih MK. Sources, Degradation, Ingestion and Effects of Microplastics on Humans: A Review. TOXICS 2023; 11:747. [PMID: 37755757 PMCID: PMC10534390 DOI: 10.3390/toxics11090747] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Celluloid, the predecessor to plastic, was synthesized in 1869, and due to technological advancements, plastic products appear to be ubiquitous in daily life. The massive production, rampant usage, and inadequate disposal of plastic products have led to severe environmental pollution. Consequently, reducing the employment of plastic has emerged as a pressing concern for governments globally. This review explores microplastics, including their origins, absorption, and harmful effects on the environment and humans. Several methods exist for breaking down plastics, including thermal, mechanical, light, catalytic, and biological processes. Despite these methods, microplastics (MPs, between 1 and 5 mm in size) continue to be produced during degradation. Acknowledging the significant threat that MPs pose to the environment and human health is imperative. This form of pollution is pervasive in the air and food and infiltrates our bodies through ingestion, inhalation, or skin contact. It is essential to assess the potential hazards that MPs can introduce. There is evidence suggesting that MPs may have negative impacts on different areas of human health. These include the respiratory, gastrointestinal, immune, nervous, and reproductive systems, the liver and organs, the skin, and even the placenta and placental barrier. It is encouraging to see that most of the countries have taken steps to regulate plastic particles. These measures aim to reduce plastic usage, which is essential today. At the same time, this review summarizes the degradation mechanism of plastics, their impact on human health, and plastic reduction policies worldwide. It provides valuable information for future research on MPs and regulatory development.
Collapse
Affiliation(s)
- Yan-Duan Lin
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-D.L.); (C.-Y.H.)
| | - Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No.4, Meicheng Road, Higher Education Park, Huai’an 223003, China;
| | - Yu-Wei Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Bao-Hong Lee
- Department of Horticulture, National Chiayi University, Chiayi 60004, Taiwan;
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-D.L.); (C.-Y.H.)
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 812301, Taiwan
| |
Collapse
|
44
|
Seta AS, Müller L, Tavella R, da Silva Júnior FMR, Pedrosa V, Romano LA, Wasielesky W, Josende ME, Ventura-Lima J. Oxidative effects of consuming microplastics in different tissues of white shrimp Litopenaeus vannamei. MARINE POLLUTION BULLETIN 2023; 193:115137. [PMID: 37307751 DOI: 10.1016/j.marpolbul.2023.115137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/13/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
In this study, we evaluated the effect of microplastic (MP, polystyrene, 1.1 μm) exposure through diet at two different levels (40 and 400 μg MP/kg of ration) in the shrimp Litopenaeus vannamei for seven days. After the exposure period, oxidative stress parameters, histological alterations, and MP accumulation in different shrimp tissues (gut, gills, hepatopancreas, and muscle) were also evaluated. The results showed that MP was detected in the gills, muscles, and hepatopancreas. In addition, in the gut, gills, and hepatopancreas, disruption in redox cells was observed. Also, lipid and DNA damage was evident in the hepatopancreas. Histopathological analysis revealed edema in the intestine, hepatopancreas, and in the muscle. Granuloma formation with infiltrated hemocytes occurred in the intestine and hepatopancreas. These results show that MP exposure can affect the health and welfare of L. vannamei and may also affect the final consumers once MP is accumulated.
Collapse
Affiliation(s)
- Andressa Suanes Seta
- Instituto de Ciências Biológicas (ICB) Universidade Federal de Rio Grande, FURG, Rio Grande, RS, Brazil; Programa de Pós Graduação em Ciências Fisiológicas (PPGCF), FURG, Rio Grande, RS, Brazil
| | - Larissa Müller
- Instituto de Ciências Biológicas (ICB) Universidade Federal de Rio Grande, FURG, Rio Grande, RS, Brazil; Programa de Pós Graduação em Ciências Fisiológicas (PPGCF), FURG, Rio Grande, RS, Brazil
| | - Ronan Tavella
- Programa de Pós Graduação em Ciências da saúde, FURG, Rio Grande, RS, Brazil
| | - Flávio Manoel Rodrigues da Silva Júnior
- Instituto de Ciências Biológicas (ICB) Universidade Federal de Rio Grande, FURG, Rio Grande, RS, Brazil; Programa de Pós Graduação em Ciências da saúde, FURG, Rio Grande, RS, Brazil
| | - Virgínia Pedrosa
- Programa de Pós-Graduação em Aquacultura, FURG, Rio Grande, Brazil
| | | | | | - Marcelo Estrella Josende
- Instituto de Ciências Biológicas (ICB) Universidade Federal de Rio Grande, FURG, Rio Grande, RS, Brazil; Programa de Pós Graduação em Ciências Fisiológicas (PPGCF), FURG, Rio Grande, RS, Brazil
| | - Juliane Ventura-Lima
- Instituto de Ciências Biológicas (ICB) Universidade Federal de Rio Grande, FURG, Rio Grande, RS, Brazil; Programa de Pós Graduação em Ciências Fisiológicas (PPGCF), FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Aquacultura, FURG, Rio Grande, Brazil.
| |
Collapse
|
45
|
König Kardgar A, Ghosh D, Sturve J, Agarwal S, Carney Almroth B. Chronic poly(l-lactide) (PLA)- microplastic ingestion affects social behavior of juvenile European perch (Perca fluviatilis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163425. [PMID: 37059150 DOI: 10.1016/j.scitotenv.2023.163425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Juvenile perch were exposed to 2 % (w/w) poly(l-lactide) (PLA) microplastic particles (90-150 μm) in food pellets, or 2 % (w/w) kaolin particles, and a non-particle control food over 6 months. Chronic ingestion of PLA microplastics significantly affected the social behavior of juvenile perch, evident as a significantly increased reaction to the vision of conspecifics. PLA ingestion did not alter life cycle parameters, or gene expression levels. In addition to reactions to conspecifics, fish that ingested microplastic particles showed tendencies to decrease locomotion, internal schooling distance, and active predator responses. The ingestion of natural particles (kaolin) significantly downregulated the expression of genes related to oxidative stress and androgenesis in the liver of juvenile perch, and we found tendencies to downregulated expression of genes related to xenobiotic response, inflammatory response, and thyroid disruption. The present study demonstrated the importance of natural particle inclusion and the potential behavioral toxicity of one of the commercially available biobased and biodegradable polymers.
Collapse
Affiliation(s)
- Azora König Kardgar
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Dipannita Ghosh
- Macromolecular Chemistry II, University of Bayreuth, Bayreuth, Germany.
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Seema Agarwal
- Macromolecular Chemistry II, University of Bayreuth, Bayreuth, Germany.
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
46
|
Cattaneo N, Zarantoniello M, Conti F, Frontini A, Chemello G, Dimichino B, Marongiu F, Cardinaletti G, Gioacchini G, Olivotto I. Dietary Microplastic Administration during Zebrafish ( Danio rerio) Development: A Comprehensive and Comparative Study between Larval and Juvenile Stages. Animals (Basel) 2023; 13:2256. [PMID: 37508033 PMCID: PMC10376277 DOI: 10.3390/ani13142256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
One of the main sources of MPs contamination in fish farms is aquafeed. The present study investigated, for the first time through a comparative approach, the effects of different-sized fluorescent MPs included in a diet intended for zebrafish (Danio rerio). A comparison based on fish developmental stage (larval vs. juvenile), exposure time, and dietary MPs' size and concentration was performed. Four experimental diets were formulated, starting from the control, by adding fluorescent polymer A (size range 1-5 µm) and B (size range 40-47 µm) at two different concentrations (50 and 500 mg/kg). Zebrafish were sampled at 20 (larval phase) and 60 dpf (juvenile stage). Whole larvae, intestine, liver and muscles of juveniles were collected for the analyses. Polymer A was absorbed at the intestinal level in both larvae and juveniles, while it was evidenced at the hepatic and muscular levels only in juveniles. Hepatic accumulation caused an increase in oxidative stress markers in juveniles, but at the same time significantly reduced the number of MPs able to reach the muscle, representing an efficient barrier against the spread of MPs. Polymer B simply transited through the gut, causing an abrasive effect and an increase in goblet cell abundance in both stages.
Collapse
Affiliation(s)
- Nico Cattaneo
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Federico Conti
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Giulia Chemello
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Beniamino Dimichino
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Fabio Marongiu
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Gloriana Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| |
Collapse
|
47
|
Gao D, Kong C, Liao H, Junaid M, Pan T, Chen X, Wang Q, Wang X, Wang J. Interactive effects of polystyrene nanoplastics and 6:2 chlorinated polyfluorinated ether sulfonates on the histomorphology, oxidative stress and gut microbiota in Hainan Medaka (Oryzias curvinotus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163307. [PMID: 37030384 DOI: 10.1016/j.scitotenv.2023.163307] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/27/2023]
Abstract
Nanoplastics adsorb surrounding organic contaminants in the environment, which alters the physicochemical properties of contaminants and affects associated ecotoxicological effects on aquatic life. The current work aims to explore the individual and combined toxicological implications of polystyrene nanoplastics (80 nm) and 6:2 chlorinated polyfluorinated ether sulfonate (Cl-PFAES, trade name: F-53B) in an emerging freshwater fish model Hainan Medaka (Oryzias curvinotus). Therefore, O. curvinotus were exposed to 200 μg/L of PS-NPs or 500 μg/L of F-53B in the single or mixture exposure for 7 days to investigate the effects on fluorescence accumulation, tissue damage, antioxidant capacity and intestinal flora. The PS-NPs fluorescence intensity was significantly higher in the single exposure treatment than it in combined exposure treatment (p < 0.01). Histopathological results showed that exposure to PS-NPs or F-53B inflicted varying degree of damages to the gill, liver, and intestine, and these damage were also present in the corresponding tissues of the combined treatment group, illustrating a stronger extent of destruction of these tissues by the combined treatment. Compared to the control group, combined exposure group elevated the malondialdehyde (MDA) content, superoxide dismutase (SOD) and catalase (CAT) activities except in the gill. In addition, the adverse contribution of PS-NPs and F-53B on the enteric flora in the single and combined exposure groups was mainly characterised in the form of reductions in the number of probiotic bacteria (Firmicutes) and this reduction was aggravated by the combined exposure group. Collectively, our results indicated that the toxicological effects of PS-NPs and F-53B on pathology, antioxidant capacity and microbiomics of medaka may be modulated by the interaction of two contaminants with mutually interactive effects. And our work offers fresh information on the combined toxicity of PS-NPs and F-53B to aquatic creatures along with a molecular foundation for the environmental toxicological mechanism.
Collapse
Affiliation(s)
- Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ting Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiuping Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China.
| |
Collapse
|
48
|
Banaee M, Faraji J, Amini M, Multisanti CR, Faggio C. Rainbow trout (Oncorhynchus mykiss) physiological response to microplastics and enrofloxacin: Novel pathways to investigate microplastic synergistic effects on pharmaceuticals. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106627. [PMID: 37393734 DOI: 10.1016/j.aquatox.2023.106627] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Enrofloxacin (ENR) is a broad-spectrum antibiotic widely used due to its efficacy against pathogens. Microplastics (MPs) may bind to ENR and reduce its efficiency, whereas there would be an increase in its toxicity, bioavailability, and bio-accumulation rates. Therefore, the hypothesis is that the interaction between MPs and ENR can alter their toxicity and bioavailability. The subjective of this study is to examine the toxicity of various concentrations of ENR (0, 1.35, and 2.7 ml Kg-1 diet) and MPs (0, 1000, and 2000 mg Kg-1 diet) alone and in combination for 21 days. The rainbow trout (Oncorhynchus mykiss) is an economic aquaculture species used as an experimental model in ecotoxicology studies. Blood biochemical analytes indicated that ENR and MPs combination led to increasing enzymatic activity of each biomarker, except for gamma-glutamyl-transferase (GGT). Alterations related to triglycerides, cholesterol, glucose, urea, creatinine, total protein, and albumin blood contents were observed. An elevation in the levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glucose 6-phosphate dehydrogenase (G6PDH) was found in the liver. In contrast, catalase (CAT) and glutathione peroxidase (GPx) levels decreased. Furthermore, a decline was observed in the cellular total antioxidant (ANT) levels. These findings suggested that ENR and MPs could affect fish health both independently and together. Consequently, the study determined that when both ENR and MPs were present in high concentrations, the toxicity of ENR was amplified, providing further evidence of the synergistic impact of MPs on ENR toxicity.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Javad Faraji
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mohammad Amini
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
49
|
Kessabi K, Abbassi A, Lahmar S, Casado M, Banni M, Piña B, Messaoudi I. Combined toxic effects of cadmium and environmental microplastics in Aphanius fasciatus (Pisces, Cyprinodontidae). MARINE ENVIRONMENTAL RESEARCH 2023; 189:106071. [PMID: 37390514 DOI: 10.1016/j.marenvres.2023.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Microplastics (MPs), plastic particles smaller than 5 mm in diameter, have received extensive attention as new environmental pollutants with still unexplored potential ecological risks. The main objective of the present study is to see if the concomitant exposure to MPs and Cd is more toxic than that to MPs or Cd separately in Aphanius fasciatus. Immature female were exposed to Cd and/or MPs for 21 days, and the subsequent effects were monitored by a combination of biochemical, histological and molecular toxicity markers. Exposure to Cd, but not to MPs, increased metallothioneins content and mRNA levels of the metallothioneins gene MTA both in liver and gills. In addition, we observed a significant oxidative stress response at histological, enzymatic (Catalase and Superoxide dismutase), non-enzymatic (proteins sulfhydryl and malondialdehyde) and gene expression levels to both toxicants in both tissues, particularly in gills, but no clear evidence for interaction between the two factors. Our results indicate a major effect of MPs on gills at different organizational levels. Finally, exposure to both MPs and Cd induced spinal deformities, although bone composition was only altered by the latter, whereas MTA mRNA bone levels were only increased realtive to controls in doubly-exposed samples. Interestingly, the simultaneous use of both pollutants produced the same effects as Cd and MPs alone, probably due to reduced bioavailability of this heavy metal.
Collapse
Affiliation(s)
- Kaouthar Kessabi
- LR11ES41: Laboratory of Genetic, Biodiversity and Valorization of Bioressources, Higher Institute of Biotechnology, University of Monastir, Monastir, 5000, Tunisia.
| | - Amira Abbassi
- LR11ES41: Laboratory of Genetic, Biodiversity and Valorization of Bioressources, Higher Institute of Biotechnology, University of Monastir, Monastir, 5000, Tunisia
| | - Samar Lahmar
- LR11ES41: Laboratory of Genetic, Biodiversity and Valorization of Bioressources, Higher Institute of Biotechnology, University of Monastir, Monastir, 5000, Tunisia
| | - Marta Casado
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Meriem, Sousse, Tunisia
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain
| | - Imed Messaoudi
- LR11ES41: Laboratory of Genetic, Biodiversity and Valorization of Bioressources, Higher Institute of Biotechnology, University of Monastir, Monastir, 5000, Tunisia
| |
Collapse
|
50
|
Del Piano F, Lama A, Piccolo G, Addeo NF, Iaccarino D, Fusco G, Riccio L, De Biase D, Mattace Raso G, Meli R, Ferrante MC. Impact of polystyrene microplastic exposure on gilthead seabream (Sparus aurata Linnaeus, 1758): Differential inflammatory and immune response between anterior and posterior intestine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163201. [PMID: 37011684 DOI: 10.1016/j.scitotenv.2023.163201] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
Plastics are the most widely discharged waste into the aquatic ecosystems, where they break down into microplastics (MPs) and nanoplastics (NPs). MPs are ingested by several marine organisms, including benthic and pelagic fish species, contributing to organ damage and bioaccumulation. This study aimed to assess the effects of MPs ingestion on gut innate immunity and barrier integrity in gilthead seabreams (Sparus aurataLinnaeus, 1758) fed for 21 days with a diet enriched with polystyrene (PS-MPs; 1-20 μm; 0, 25 or 250 mg /kg b.w./die). Physiological fish growth and health status were not impacted by PS-MPs treatments at the end of experimental period. Inflammation and immune alterations were revealed by molecular analyses in both anterior (AI) and posterior intestine (PI) and were confirmed by histological evaluation. PS-MPs triggered TLR-Myd88 signaling pathway with following impairment of cytokines release. Specifically, PS-MPs increased pro-inflammatory cytokines gene expression (i.e., IL-1β, IL-6 and COX-2) and decreased anti-inflammatory ones (i.e., IL-10). Moreover, PS-MPs also induced an increase in other immune-associated genes, such as Lys, CSF1R and ALP. TLR-Myd88 signaling pathway may also lead to the mitogen-activated protein kinases (MAPK) signaling pathway activation. Here, MAPK (i.e., p38 and ERK) were activated by PS-MPs in PI, following the disruption of intestinal epithelial integrity, as evidenced by reduced gene expression of tight junctions (i.e. ZO-1, Cldn15, Occludin, and Tricellulin), integrins (i.e., Itgb6) and mucins (i.e., Muc2-like and Muc13-like). Thus, all the obtained results suggest that the subchronic oral exposure to PS-MPs induces inflammatory and immune alterations as well as an impact on intestinal functional integrity in gilthead seabream, with a more evident effect in PI.
Collapse
Affiliation(s)
- Filomena Del Piano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via Federico Delpino 1, 80137 Naples, Italy
| | - Adriano Lama
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Giovanni Piccolo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via Federico Delpino 1, 80137 Naples, Italy
| | - Nicola Francesco Addeo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via Federico Delpino 1, 80137 Naples, Italy
| | - Doriana Iaccarino
- Zooprophylactic Institute of Southern Italy, via Salute 2, 80055 Portici, Italy
| | - Giovanna Fusco
- Zooprophylactic Institute of Southern Italy, via Salute 2, 80055 Portici, Italy
| | - Lorenzo Riccio
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via Federico Delpino 1, 80137 Naples, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Giuseppina Mattace Raso
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via Federico Delpino 1, 80137 Naples, Italy.
| |
Collapse
|