1
|
An L, Zhao L, Wei A, Shi K, Li M, Dawwam GE, Zheng S. Balancing application of plant growth-promoting bacteria and biochar in promoting selenium biofortification and remediating combined heavy metal pollution in paddy soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:80. [PMID: 39969601 DOI: 10.1007/s10653-025-02386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
Plant-growth-promoting bacteria (PGPB) and biochar have attracted increasing attention for remediating the combined pollution of arsenic (As) and cadmium (Cd) and promoting selenium (Se) biofortification. However, their differing effects on the bioavailability of As, Cd, and Se and their absorption by rice are still poorly understood. In this study, PGP Agrobacterium sp. T3F4 with Se- oxidizing capacity and corn straw biochar were applied to natively polluted paddy soil. Strain T3F4 reduced the bioavailability of As in soil but increased bioavailable Se, decreasing the As content in rice by 16.8% and improving the Se content of rice by 54.5% (p < .05). Application of 2.5% biochar stimulated iron (Fe) plaque formation of the root and immobilized As and Cd in the soil, decreasing the As and Cd absorption of rice by 14.7% and 40.3%, respectively (p < .05). Application of 5.0% biochar achieved similar mitigation effects for As and Cd but also decreased the Se content in rice by 60.6% by reducing bioavailability. This decrease in Se uptake was mitigated when 5.0% biochar was co-applied with strain T3F4. Notably, applying strain T3F4 also alleviated the oxidative stress on rice plants and enhanced soil enzyme activities, contributing to a substantial increase in grain yield in the polluted paddy soil. The adverse effects of 5.0% biochar on soil health and grain yield were mitigated by the co-application of strain T3F4. Our results provide new insights into applying PGPB and biochar for Se biofortification and As and Cd remediation in paddy soil.
Collapse
Affiliation(s)
- Lijin An
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Lipeng Zhao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Ao Wei
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Mingshun Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Ghada E Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Shixue Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| |
Collapse
|
2
|
Menhas S, Chen M, Jin H, Xu J, Zhu S, Lin D. Plant growth stage and melatonin concentration dependency together drive the metal-nutrient dynamics of rice in paddy soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:958-971. [PMID: 39907292 DOI: 10.1080/15226514.2025.2460504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Foliar application of melatonin shows promise in alleviating oxidative stress in rice, though its influence on metal-nutrient dynamics remains unclear. This study investigated the optimal dosage, timing, and concentration of melatonin for regulating elemental uptake, maintaining redox homeostasis, and managing nutrient dynamics in rice cultivated in cadmium (Cd) and selenium (Se)-enriched soils. Melatonin (50, 200 µM) was applied at vegetative stages: jointing (J) and tillering (T). At the J stage, melatonin improved biomass and photosynthetic pigments but inadequately regulated metal-nutrient dynamics due to incomplete redox homeostasis. However, applying 200 µM melatonin during the T stage significantly (p < 0.05) enhanced Se and iron (Fe) root uptake by 48% and 11%, respectively, while also improving shoot translocation. Notably, M200 reduced chromium (Cr) translocation to shoots by 82% (p < 0.05), thereby increasing root retention capacity. Additionally, 50 µM melatonin reduced root Cd uptake by 54% and increased its translocation to shoots by 53% (p < 0.05), alleviating root toxicity and enhancing the detoxification response in aerial tissues. Melatonin application reduced oxidative stress markers, increased proline levels, and enhanced antioxidative enzyme activities, with M200 at the T stage showing pronounced effects. This strategy represents a promising technological approach for managing elemental homeostasis in rice cultivation.
Collapse
Affiliation(s)
- Saiqa Menhas
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, China
- Zhejiang Ecological Civilization Academy, Anji, China
| | - Minjie Chen
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, China
| | - Hui Jin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, China
| | - Saiyong Zhu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, China
- Zhejiang Ecological Civilization Academy, Anji, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, China
- Zhejiang Ecological Civilization Academy, Anji, China
| |
Collapse
|
3
|
Wang W, Jiang H, Tan Z, Yu L, Chen J, Xiao Q, Rong Q, Zhou C. Selenium-Modified Biochar Synergistically Achieves the Safe Use of Selenium and the Inhibition of Heavy Metal Cadmium. Molecules 2025; 30:347. [PMID: 39860216 PMCID: PMC11767991 DOI: 10.3390/molecules30020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
To address cadmium pollution in China's cultivated land, chitosan, inorganic and organic selenium were used to modify rice husk charcoal for cadmium inhibition. Basic physicochemical properties of rice husk carbons were characterized (BET, FTIR, XRD, Zeta potential). Kinetic and isothermal adsorption experiments studied the adsorption of Cd2+ by modified biochar under different pH and dosages. A350 and C350 had pore changes, and B350 had a smoother surface. The polarity and Zeta potential of A350, B350, and C350 differed. B350 and C350's kinetic adsorption fit the pseudo second order model, A350's fit both the pseudo first and second order. Their isothermal adsorption fit Langmuir (B350, C350) and Freundlich (A350). Intraparticle diffusion was three-stage with single-layer chemical adsorption. The pH increase raised removal and adsorption of CK350, A350, B350, and C350. The dosage increase hiked removal but cut unit adsorption. A350 had the highest max adsorption (57.845 mg/g). All modifications enhanced Cd2+ adsorption, and the effect could be altered by adjusting pH and dosage.
Collapse
Affiliation(s)
- Wanjing Wang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haiyan Jiang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zebin Tan
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Luyao Yu
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jie Chen
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qingliang Xiao
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qinlei Rong
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| | - Chunhuo Zhou
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
4
|
Zheng S, Xu C, Zhu H, Huang D, Wang H, Zhang Q, Li X, Zhu Q. Foliar application of zinc and selenium regulates cell wall fixation, physiological and gene expression to reduce cadmium accumulation in rice grains. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136302. [PMID: 39471621 DOI: 10.1016/j.jhazmat.2024.136302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Zinc (Zn) and selenium (Se) are beneficial elements for crops, enhancing crop quality and alleviating heavy metal toxicity. However, there is limited research on the role of foliar Zn and Se in the mechanism of reducing cadmium (Cd) uptake in crops. A field experiment was conducted to investigate the effect on subcellular distribution, leaf antioxidant enzyme activities, and the transcriptional regulation in the process of Cd accumulation of rice grains after foliar applications of Zn, Se, and their mixed solutions (ZnSe). The results show that Zn and ZnSe reduced Cd content in the grains of three different rice (13.9 %-21.8 %/11.9 %-29.5 %) by enhancing the fixation capacity of Cd in the flag leaf by improving the binding efficiency between pectin and Cd in the cell wall. Increased flag leaf antioxidant enzyme activities further mitigated the toxic effects of Cd on rice, while Zn and ZnSe treatments upregulated genes related to metal-binding proteins and antioxidant enzymes and downregulated metal transport genes. This study systematically elucidates the mechanisms by which foliar application of ZnSe alleviates Cd toxicity through the regulation of gene expression and physiological functions, providing a theoretical basis for reducing Cd accumulation in rice and ensuring the safe production of food.
Collapse
Affiliation(s)
- Shen Zheng
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural Unifversity, Wuhan 430070, China
| | - Chao Xu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Hanhua Zhu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Daoyou Huang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Huajing Wang
- The Faculty Geography Resource Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Quan Zhang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiaoxue Li
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; The Faculty Geography Resource Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Qihong Zhu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
5
|
Zhang C, Guan DX, Williams PN, Lin GB, Chen XL, Ma LQ. DGT and kinetic analyses differentiate Se and Cd bioavailability in naturally enriched paddy soils. CHEMOSPHERE 2024; 368:143791. [PMID: 39577802 DOI: 10.1016/j.chemosphere.2024.143791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
Naturally selenium (Se)-rich soils often contain elevated cadmium (Cd) levels, complicating safe production of Se-enriched rice. This study employed diffusive gradients in thin-films (DGT) and DGT-induced fluxes in soils (DIFS) model to determine Se and Cd bioavailability in paddy soils. We investigated desorption kinetics and accumulation patterns in rice using paired rhizosphere and grain samples from 65 field sites in Guangxi, China, encompassing Se-enriched karst and non-karst soils. Despite greater total Se and Cd contents in karst soils, their elevated pH, along with greater soil organic matter and total Fe, Mn, and Ca contents, constrained Se and Cd bioavailability, resulting in similar accumulation levels in rice grains from both soil categories. DIFS-derived kinetic data revealed that Se was replenished 75.4 times faster than Cd, but Cd had an 83.2 times larger labile pool, leading to a stronger overall Cd resupply capacity. DGT-based labile Se:Cd molar ratios showed that rice Cd content declined sharply as the ratio increased from 0.7 to 4.0, stabilizing at its lowest level when exceeding 20. Moreover, DGT measurements demonstrated stronger correlations with grain Se and Cd concentrations compared to traditional methods. Our findings highlight the effectiveness of DGT and kinetic analyses in determining Se and Cd bioavailability in high-background paddy soils, offering insights for balancing Se fortification and Cd risk mitigation in rice production.
Collapse
Affiliation(s)
- Chao Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Paul N Williams
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT9 5DL, United Kingdom
| | - Guo-Bing Lin
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Lei Chen
- Engineering Technology Innovation Center for Ecological Evaluation and Restoration of Farmland of Plain District in Ministry of Natural Resources, Zhejiang Institute of Geosciences, Hangzhou, 311203, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
6
|
Huang S, Wang Q, Qi H, Liu Z, Tao Y, Fan Y, Wang Q, Li H, Wan Y. Selenate simultaneously alleviated cadmium and arsenic accumulation in rice (Oryza sativa L.) via regulating transport genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124725. [PMID: 39142427 DOI: 10.1016/j.envpol.2024.124725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
Cadmium (Cd) and arsenic (As) have contrasting biogeochemical behaviors in paddy soil, which posed an obstacle for reducing their accumulation in rice (Oryza sativa L.) simultaneously. In this study, selenate exhibited a more effective ability than selenite on simultaneous alleviation of Cd and As accumulation in rice under Cd-As co-exposure, and the mechanisms need to be further investigated. The results showed that selenate significantly decreased the root Cd and As contents by 59%-83% and 43%-72% compared to Cd-As compound exposure, respectively. Correspondingly, it significantly down-regulated the expression of uptake-related genes OsNramp5 (87.1%) and OsLsi1 (95.5%) in rice roots. Decreases in Cd (64.5%) and As (16.2%) contents in shoots were also found after selenate addition. Moreover, selenate may promoted the reduction of As(V) to As(Ⅲ) and As(III) efflux to the external medium, resulting in decreased As accumulation and As(Ⅲ) proportion in rice shoots and roots. In addition, selenate could promote the binding of Cd (by 14%-24%) and As (by 9%-15%) in the cell wall, and significantly reduced the oxidative stress by elevating levels of antioxidant enzymes (by 10%-105%) and thiol compounds (by 6%-210%). Additionally, selenate significantly down-regulated the expression of OsNramp1 (49.3%) and OsLsi2 (82.1%) associated with Cd and As transport in rice. These findings suggest selenate has the potential to be an effective material for the simultaneous reduction of Cd and As accumulation in rice under Cd-As co-contamination.
Collapse
Affiliation(s)
- Siyu Huang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qiqi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Hao Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhe Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yanjin Tao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yu Fan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
7
|
Zhang X, Sun T, Li F, Ji C, Liu H, Wu H. Combinatorial accumulation, stress response, detoxification and synaptic transmission effects of cadmium and selenium in clams Ruditapes philippinarum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107075. [PMID: 39244834 DOI: 10.1016/j.aquatox.2024.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/14/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
This study investigated the toxicological effects and mechanisms of cadmium (Cd) (5 and 50 μg/L) and selenium (Se) (3 and 30 μg/L) at environmentally relevant concentrations on the gills and digestive glands of clams Ruditapes philippinarum. Results indicated that Cd and Se could tissue-specifically impact osmoregulation, energy metabolism, and synaptic transmission in the gills and digestive glands of clams. After exposure to 50 μg/L Cd, the digestive glands of clams up-regulated the expression of methionine-gamma-lyase and metallothionein for detoxification. Clam digestive glands exposed to 3 μg/L Se up-regulated the expression of catalase and glutathione peroxidase to alleviate oxidative stress, and down-regulated the expression of selenide-water dikinase to reduce the conversion of inorganic Se. Additionally, the interaction mode between Cd and Se largely depended on their molar ratio, with a ratio of 11.71 (50 μg/L Cd + 3 μg/L Se) demonstrated to be particularly harmful, as manifested by significantly more lesions, oxidative stress, and detoxification demand in clams than those exposed to Cd or Se alone. Collectively, this study revealed the complex interaction patterns and mechanisms of Cd and Se on clams, providing a reference for exploring their single and combined toxicity.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Hongmei Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
8
|
Zhang H, Xie S, Du X, Bao Z, Xu F, Awadelseid SF, Yaisamut O. Effects and mechanisms of different exogenous organic matters on selenium and cadmium uptake by rice in natural selenium-cadmium-rich soil. Heliyon 2024; 10:e37740. [PMID: 39381237 PMCID: PMC11458970 DOI: 10.1016/j.heliyon.2024.e37740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Many natural selenium (Se)-rich rice plants are being polluted by cadmium (Cd). In this study, for reducing Cd concentrations in rice grains while maintaining Se concentrations, the effects of different exogenous organic matters (OMs), such as humic acid (HA), cow manure (CM), and vermicompost (VC), on Se and Cd uptake in rice growing in natural Se-Cd-rich paddy soils were investigated by pot experiments. The Se and Cd concentrations in the soil solution, their species in the soil, and their concentrations and translocations in rice tissues were determined. Results showed that different exogenous OMs exhibited distinct percentage changes in Se and Cd levels in rice grains with amplitudes of -19.42 % and -56.90 % (significant, p < 0.05) in the HA treatments, +10.79 % and -1.72 % in the CM treatments, and +15.83 % and -15.52 % in the VC treatments, respectively. Correlation analysis showed that the concentrations of Se and Cd in rice grains might be primarily influenced by their concentrations in the soil solution, rather than the Se/Cd molar ratios in the soil solution or their translocations in rice tissues. HA decreased Se and Cd bioavailability in soil by increasing HA-bound Se and residual Cd, respectively. Meanwhile, HA increased soil solution pH, which was negative for Cd bioavailability but positive for Se bioavailability. This additive effect made HA lowered Cd concentration more than Se concentration in both soil solution and grain. CM and VC did not have this additive effect and thus have limited effects on grain Se and Cd concentrations. In addition, according to grain Se and Cd concentrations, to prioritize reducing Cd in rice, use HA; to prioritize increasing Se in rice, use VC. This study enhances the understanding of Se and Cd uptake mechanisms in rice with the applications of various OMs and offers potential remediation methods for Se-Cd-rich paddy soils.
Collapse
Affiliation(s)
- Hongyu Zhang
- Hebei Key Laboratory of Strategic Critical Mineral Resources, College of Earth Sciences, Hebei GEO University, Shijiazhuang, 050031, China
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang, 725000, China
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Shuyun Xie
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoping Du
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang, 725000, China
| | - Zhengyu Bao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Feng Xu
- Ankang Se-Resources Hi-Tech Co., Ltd., Ankang, 725000, China
| | | | - Oraphan Yaisamut
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
- Department of Mineral Resources, Ministry of Natural Resources and Environment, 75/10 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| |
Collapse
|
9
|
Luo P, Wu J, Li TT, Shi P, Ma Q, Di DW. An Overview of the Mechanisms through Which Plants Regulate ROS Homeostasis under Cadmium Stress. Antioxidants (Basel) 2024; 13:1174. [PMID: 39456428 PMCID: PMC11505430 DOI: 10.3390/antiox13101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Cadmium (Cd2+) is a non-essential and highly toxic element to all organic life forms, including plants and humans. In response to Cd stress, plants have evolved multiple protective mechanisms, such as Cd2+ chelation, vesicle sequestration, the regulation of Cd2+ uptake, and enhanced antioxidant defenses. When Cd2+ accumulates in plants to a certain level, it triggers a burst of reactive oxygen species (ROS), leading to chlorosis, growth retardation, and potentially death. To counteract this, plants utilize a complex network of enzymatic and non-enzymatic antioxidant systems to manage ROS and protect cells from oxidative damage. This review systematically summarizes how various elements, including nitrogen, phosphorus, calcium, iron, and zinc, as well as phytohormones such as abscisic acid, auxin, brassinosteroids, and ethylene, and signaling molecules like nitric oxide, hydrogen peroxide, and hydrogen sulfide, regulate the antioxidant system under Cd stress. Furthermore, it explores the mechanisms by which exogenous regulators can enhance the antioxidant capacity and mitigate Cd toxicity.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jingjing Wu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Peihua Shi
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| |
Collapse
|
10
|
Arinzechi C, Dong C, Huang P, Zhao P, Liao Q, Li Q, Yang Z. Synergistic mitigation of cadmium stress in rice (Oryza sativa L.) through combined selenium, calcium, and magnesium supplementation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:435. [PMID: 39316186 DOI: 10.1007/s10653-024-02209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024]
Abstract
Rice is susceptible to cadmium (Cd) accumulation, which poses a threat to human health. Traditional methods for mitigating moderately contaminated soils can be impractical or prohibitively expensive, necessitating innovative approaches to reduce Cd uptake in rice. Nutrient management has emerged as a promising solution by leveraging the antagonistic interactions between nutrients and cadmium. However, the research on the synergistic effects of multiple nutrients on Cd toxicity in rice is limited. To address this limitation, pot experiments was utilized to investigate the combined effects of selenium (Se), calcium (Ca), and magnesium (Mg) denoted as (SeCM) on Cd uptake and translocation in rice. The synergistic application of SeCM reduced grain Cd levels by 55.0%, surpassing the individual effects of Se (42.1%) and CM (40.5%), and bringing Cd content below the safe consumption limits. SeCM treatment exhibited multiple beneficial effects: it decreased malondialdehyde (MDA) levels, enhanced catalase (CAT), peroxidase (POD) and glutathione (GSH) enzyme activities, limited Cd translocation from roots to shoots, promoted iron plaque formation, and reduced Cd transfer from soil to iron plaque and subsequently to rice grains. Correlation analysis revealed strong negative relationships between rice Cd content, Cd translocation factors, and the translocation factors of selenium, calcium, and magnesium. These findings suggest that selenium, calcium, and magnesium collaboratively mitigate Cd toxicity through antagonistic and competitive interactions. These nutrients enhance the uptake of beneficial elements, while competitively inhibiting the translocation and accumulation of Cd in rice plants. SeCM application offers a promising strategy for producing nutrient-rich, and Cd-safe rice in contaminated soils.
Collapse
Affiliation(s)
- Chukwuma Arinzechi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Chunhua Dong
- Soil and Fertilizer Institute of Hunan Province, Changsha, 410125, People's Republic of China
| | - Peicheng Huang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Pengwei Zhao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China.
| |
Collapse
|
11
|
Huang F, Chen L, Zhou Y, Huang J, Wu F, Hu Q, Chang N, Qiu T, Zeng Y, He H, White JC, Yang W, Fang L. Exogenous selenium promotes cadmium reduction and selenium enrichment in rice: Evidence, mechanisms, and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135043. [PMID: 38941835 DOI: 10.1016/j.jhazmat.2024.135043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Cadmium (Cd) accumulation in rice, a global environmental issue, poses a significant threat to human health due to its widespread presence and potential transfer through the food chain. Selenium (Se), an essential micronutrient for humans and plants, can reduce Cd uptake in rice and alleviate Cd-induced toxicity. However, the effects and mechanisms of Se supplementation on rice performance in Cd-contaminated soil remain largely unknown. Here, a global meta-analysis was conducted to evaluate the existing knowledge on the effects and mechanisms by which Se supplementation impacts rice growth and Cd accumulation. The result showed that Se supplementation has a significant positive impact on rice growth in Cd-contaminated soil. Specifically, Se supplementation decreased Cd accumulation in rice roots by 16.3 % (11.8-20.6 %), shoots by 24.6 % (19.9-29.1 %), and grain by 37.3 % (33.4-40.9 %), respectively. The grain Cd reduction was associated with Se dose and soil Cd contamination level but not Se type or application method. Se influences Cd accumulation in rice by regulating the expression of Cd transporter genes (OSLCT1, OSHMA2, and OSHMA3), enhancing Cd sequestration in the cell walls, and reducing Cd bioavailability in the soil. Importantly, Se treatment promoted Se enrichment in rice and alleviated oxidative damage associated with Cd exposure by stimulating photosynthesis and activating antioxidant enzymes. Overall, Se treatment mitigated the health hazard associated with Cd in rice grains, particularly in lightly contaminated soil. These findings reveal that Se supplementation is a promising strategy for simultaneous Cd reduction and Se enrichment in rice.
Collapse
Affiliation(s)
- Fengyu Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| | - Ying Zhou
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Jingqiu Huang
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Fang Wu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Qing Hu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Wenchao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
12
|
Ali MA, Nafees M, Waseem M, Alomrani SO, Al-Ghanim KA, Alshehri MA, Zheng H, Ali S, Li F. Modulation of Cd carriers by innovative nanocomposite (Ca+Mg) and Cd-resistance microbes ( Bacillus pumilus): a mechanistic approach to enhance growth and yield of rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1387187. [PMID: 39290730 PMCID: PMC11405208 DOI: 10.3389/fpls.2024.1387187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/12/2024] [Indexed: 09/19/2024]
Abstract
Cadmium (Cd) is a well-known pollutant in agricultural soil, affecting human health through the food chain. To combat this issue, Ca + Mg (25 mg L-1) nanocomposite and Bacillus pumilus, either alone or combined, were applied to rice plants under Cd (5 mg kg-1, 10 mg kg-1) contamination. In our study, growth and yield traits demonstrated the beneficial influence of Ca + Mg and B. pumilus application in improving rice defense mechanism by reducing Cd stress. Combined Ca + Mg and B. pumilus application increased SPAD (15), total chlorophyll (18), chlorophyll a (11), chlorophyll b (22), and carotenoids (21%) with Cd (10 mg kg-1), compared to the application alone. Combined Ca + Mg and B. pumilus application significantly regulated MDA (15), H2O2 (13), EL (10), and O2 •- (24%) in shoots under Cd (10 mg kg-1), compared to the application alone. Cd (10 mg kg-1) increased the POD (22), SOD (21), APX (12), and CAT (13%) in shoots with combined Ca + Mg and B. pumilus application, compared to the application alone. Combined Ca + Mg and B. pumilus application significantly reduced Cd accumulation in roots (22), shoots (13), and grains (20%) under Cd (10 mg kg-1), compared to the application alone. Consequently, the combined application of Ca + Mg and B. pumilus is a sustainable solution to enhance crop production under Cd stress.
Collapse
Affiliation(s)
- Muhammad Azhar Ali
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Muhammad Nafees
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Muhammad Waseem
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Sarah Owdah Alomrani
- Department of Biology, College of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
13
|
Huang P, Zou D, Dong C, Tang C, Li Q, Zhao P, Zhang P, Liao Q, Yang Z. Simultaneously inhibit cadmium and arsenic uptake in rice (Oryza sativa L.) by Selenium enhanced iron plaque: Performance and mechanism. CHEMOSPHERE 2024; 363:142903. [PMID: 39029704 DOI: 10.1016/j.chemosphere.2024.142903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Selenium (Se) fortification is witnessed to simultaneously inhibit absorbing Cadmium (Cd) and Arsenic (As) by rice plants, but the mechanism is unclear. Here, the effects of Se on the root morphology, iron plaque (IP) content, soil Fe2+ content, radial oxygen loss (ROL), and enzyme activities of the rice plants in the soil contaminated by Cd and As were intensively investigated through the hydroponic and soil experiments. Se effectively alleviated the toxic effects of Cd and As on the plants and the dry weight, root length, and root width were increased by 203.18%, 33.41%, and 52.81%, respectively. It also elucidated that ROL was one of the key factors to elevate IP formation by Se and the specific pathways of Se enhancing ROL were identified. ROL of the plants in the experiment group treated by Se was increased 36.76%, and correspondingly IP was magnified 50.37%, compared to the groups with Cd and As. It was owing to Se significantly increased the root porosity (62.11%), facilitating O2 transport to the roots. Additionally, Se enhanced the activities of catalase (CAT) and superoxide dismutase (SOD) to promote the catalytic degradation of ROS induced by Cd and As stress. It indirectly increased O2 release in the rhizosphere, which benefit to form more robust IP serve as stronger barrier to Cd and As. The results of our study provide a novel molecular level insight for Se promoting root IP to block Cd and As uptake by the rice plants.
Collapse
Affiliation(s)
- Peicheng Huang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Dan Zou
- Hengyang Academy of Agricultural Sciences, Hengyang, 421200, PR China
| | - Chunhua Dong
- Fertilizer Institute of Hunan Province, 410125, Changsha, PR China
| | - Chongjian Tang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Pengwei Zhao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Ping Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
14
|
Long HY, Feng GF, Fang J. In-situ remediation of cadmium contamination in paddy fields: from rhizosphere soil to rice kernel. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:404. [PMID: 39207539 DOI: 10.1007/s10653-024-02099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) has become an important heavy metal pollutant because of its strong migration and high toxicity. The industrial production process aggravated the Cd pollution in rice fields. Human exposure to Cd through rice can cause kidney damage, emphysema, and various cardiovascular and metabolic diseases, posing a grave threat to health. As modern technology develops, the Cd accumulation model in rice and in-situ remediation of Cd pollution in cornfields have been extensively studied and applied, so it is necessary to sort out and summarize them systematically. Therefore, this paper reviewed the primary in-situ methods for addressing heavy metal contamination in rice paddies, including chemical remediation (inorganic-organic fertilizer remediation, nanomaterials, and composite remediation), biological remediation (phytoremediation and microbial remediation), and crop management remediation technologies. The factors that affect Cd transformation in soil and Cd migration in crops, the advantages and disadvantages of remediation techniques, remediation mechanisms, and the long-term stability of remediation were discussed. The shortcomings and future research directions of in situ remediation strategies for heavily polluted paddy fields and genetic improvement strategies for low-cadmium rice varieties were critically proposed. To sum up, this review aims to enhance understanding and serve as a reference for the appropriate selection and advancement of remediation technologies for rice fields contaminated with heavy metals.
Collapse
Affiliation(s)
- Hai Yan Long
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guang Fu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
15
|
Yang Z, Xia H, Guo Z, Xie Y, Liao Q, Yang W, Li Q, Dong C, Si M. Development and application of machine learning models for prediction of soil available cadmium based on soil properties and climate features. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124148. [PMID: 38735457 DOI: 10.1016/j.envpol.2024.124148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Identifying the key influencing factors in soil available cadmium (Cd) is crucial for preventing the Cd accumulation in the food chain. However, current experimental methods and traditional prediction models for assessing available Cd are time-consuming and ineffective. In this study, machine learning (ML) models were developed to investigate the intricate interactions among soil properties, climate features, and available Cd, aiming to identify the key influencing factors. The optimal model was obtained through a combination of stratified sampling, Bayesian optimization, and 10-fold cross-validation. It was further explained through the utilization of permutation feature importance, 2D partial dependence plot, and 3D interaction plot. The findings revealed that pH, surface pressure, sensible heat net flux and organic matter content significantly influenced the Cd accumulation in the soil. By utilizing historical soil surveys and climate change data from China, this study predicted the spatial distribution trend of available Cd in the Chinese region, highlighting the primary areas with heightened Cd activity. These areas were primarily located in the eastern, southern, central, and northeastern China. This study introduces a novel methodology for comprehending the process of available Cd accumulation in soil. Furthermore, it provides recommendations and directions for the remediation and control of soil Cd pollution.
Collapse
Affiliation(s)
- Zhihui Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China
| | - Hui Xia
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Ziyun Guo
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Yanyan Xie
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Qi Liao
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China
| | - Weichun Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China
| | - Qingzhu Li
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China
| | - ChunHua Dong
- Soil and Fertilizer Institute of Hunan Province, 410125, Changsha, China
| | - Mengying Si
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China.
| |
Collapse
|
16
|
Cui B, Luo H, Yao X, Xing P, Deng S, Zhang Q, Yi W, Gu Q, Peng L, Yu X, Zuo C, Wang J, Wang Y, Tang X. Nanosized-Selenium-Application-Mediated Cadmium Toxicity in Aromatic Rice at Different Stages. PLANTS (BASEL, SWITZERLAND) 2024; 13:2253. [PMID: 39204689 PMCID: PMC11359265 DOI: 10.3390/plants13162253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) pollution restricts the rice growth and poses a threat to human health. Nanosized selenium (NanoSe) is a new nano material. However, the effects of NanoSe application on aromatic rice performances under Cd pollution have not been reported. In this study, a pot experiment was conducted with two aromatic rice varieties and a soil Cd concentration of 30 mg/kg. Five NanoSe treatments were applied at distinct growth stages: (T1) at the initial panicle stage, (T2) at the heading stage, (T3) at the grain-filling stage, (T1+2) at both the panicle initial and heading stages, and (T1+3) at both the panicle initial and grain-filling stages. A control group (CK) was maintained without any application of Se. The results showed that, compared with CK, the T1+2 and T1+3 treatments significantly reduced the grain Cd content. All NanoSe treatments increased the grain Se content. The grain number per panicle, 1000-grain weight, and grain yield significantly increased due to NanoSe application under Cd pollution. The highest yield was recorded in T3 and T1+3 treatments. Compared with CK, all NanoSe treatments increased the grain 2-acetyl-1-pyrroline (2-AP) content and impacted the content of pyrroline-5-carboxylic acid and 1-pyrroline which are the precursors in 2-AP biosynthesis. In conclusion, the foliar application of NanoSe significantly reduced the Cd content, increased the Se content, and improved the grain yield and 2-AP content of aromatic rice. The best amendment was applying NanoSe at both the panicle initial and grain-filling stages.
Collapse
Affiliation(s)
- Baoling Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Haowen Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xiangbin Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Pipeng Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Sicheng Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Qianqian Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Wentao Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Qichang Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Ligong Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xianghai Yu
- Green Huinong Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518107, China
| | - Changjian Zuo
- Green Huinong Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518107, China
| | - Jingjing Wang
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen 518000, China
| | - Yangbo Wang
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen 518000, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| |
Collapse
|
17
|
Nie X, Luo D, Ma H, Wang L, Yang C, Tian X, Nie Y. Different effects of selenium speciation on selenium absorption, selenium transformation and cadmium antagonism in garlic. Food Chem 2024; 443:138460. [PMID: 38295566 DOI: 10.1016/j.foodchem.2024.138460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/02/2024]
Abstract
Currently, planting selenium-rich crops using inorganic selenium such as selenate and selenite is used to address human selenium deficiency problems. In this paper, besides the above two traditional inorganic selenium speciation, we chose a new organic selenium speciation of potassium selenocyanoacetate to investigate the different effects of selenium speciation on selenium absorption, selenium transformation and cadmium antagonism via foliar application. Plantingexperiments showed that the selenium content of garlic bulbs treated with organic selenium was 1.8-3.9 times higher than that of inorganic selenium. Additionally, the absorption and transformation efficiency of organic selenium in garlic was also the highest, reaching over 95 %. Importantly, it was noteworthy that the cadmium content in bulbs treated with organic selenium was significantly lower than the Chinese food safety standard (0.2 mg/kg). Hence, this study provides an efficient organic selenium speciation which is beneficial to meet human selenium requirements and ensure safe utilization of cadmium-contaminated soils.
Collapse
Affiliation(s)
- Xueyu Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China
| | - Dongyue Luo
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China
| | - Huifen Ma
- Wuhan Tianyuan Environmental Protection Co., Ltd., Wuhan 430090, China
| | - Longyan Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China
| | - Chao Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China.
| |
Collapse
|
18
|
Zhou C, Zhu L, Zhao T, Dahlgren RA, Xu J. Fertilizer application alters cadmium and selenium bioavailability in soil-rice system with high geological background levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124033. [PMID: 38670427 DOI: 10.1016/j.envpol.2024.124033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The co-occurrence of cadmium (Cd) pollution and selenium (Se) deficiency commonly exists in global soils, especially in China. As a result, there is great interest in developing practical agronomic strategies to simultaneously achieve Cd remediation and Se mobilization in paddy soils, thereby enhancing food quality/safety. To this end, we conducted a field-plot trial on soils having high geological background levels of Cd (0.67 mg kg-1) and Se (0.50 mg kg-1). We explored 12 contrasting fertilizers (urea, potassium sulfate (K2SO4), calcium-magnesium-phosphate (CMP)), amendments (manure and biochar) and their combinations on Cd/Se bioavailability. Soil pH, total organic carbon (TOC), soil available Cd/Se, Cd/Se fractions and Cd/Se accumulation in different rice components were determined. No significant differences existed in mean grain yield among treatments. Results showed that application of urea and K2SO4 decreased soil pH, whereas the CMP fertilizer and biochar treatments increased soil pH. There were no significant changes in TOC concentrations. Three treatments (CMP, manure, biochar) significantly decreased soil available Cd, whereas no treatment affected soil available Se at the maturity stage. Four treatments (CMP, manure, biochar and manure+urea+CMP+K2SO4) achieved our dual goal of Cd reduction and Se enrichment in rice grain. Structural equation modeling (SEM) demonstrated that soil available Cd and root Cd were negatively affected by pH and organic matter (OM), whereas soil available Se was positively affected by pH. Moreover, redundancy analysis (RDA) showed strong positive correlations between soil available Cd, exchangeable Cd and reducible Cd with grain Cd concentration, as well as between pH and soil available Se with grain Se concentration. Further, there was a strong negative correlation between residual Cd/Se (non-available fraction) and grain Cd/Se concentrations. Overall, this study identified the primary factors affecting Cd/Se bioavailability, thereby providing new guidance for achieving safe production of Se-enriched rice through fertilizer/amendment management of Cd-enriched soils.
Collapse
Affiliation(s)
- Cheng Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Lianghui Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Tingting Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, 95616, CA, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Tu X, Wu N, Wan Y, Gan J, Liu Z, Song L. Association of dietary selenium intake and all-cause mortality of Parkinson's disease and its interaction with blood cadmium level: a retrospective cohort study. BMC Geriatr 2024; 24:415. [PMID: 38730347 PMCID: PMC11088170 DOI: 10.1186/s12877-024-05000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a slowly progressive neurodegenerating disease that may eventually lead to disabling condition and pose a threat to the health of aging populations. This study aimed to explore the association of two potential risk factors, selenium and cadmium, with the prognosis of Parkinson's disease as well as their interaction effect. METHODS Data were obtained from the National Health and Nutrition Examination Survey (NHANES) 2005-2006 to 2015-2016 and National Death Index (NDI). Participants were classified as Parkinson's patients by self-reported anti-Parkinson medications usage. Cox regression models and restricted cubic spline models were applied to evaluate the association between PD mortality and selenium intake level as well as blood cadmium level. Subgroup analysis was also conducted to explore the interaction between them. RESULTS A total of 184 individuals were included. In full adjusted cox regression model (adjusted for age, gender, race, hypertension, pesticide exposure, smoking status and caffeine intake), compared with participants with low selenium intake, those with normal selenium intake level were significantly associated with less risk of death (95%CI: 0.18-0.76, P = 0.005) while no significant association was found between low selenium intake group and high selenium group (95%CI: 0.16-1.20, P = 0.112). Restricted cubic spline model indicated a nonlinear relationship between selenium intake and PD mortality (P for nonlinearity = 0.050). The association between PD mortality and blood cadmium level was not significant (95%CI: 0.19-5.57, P = 0.112). However, the interaction term of selenium intake and blood cadmium showed significance in the cox model (P for interaction = 0.048). Subgroup analysis showed that the significant protective effect of selenium intake existed in populations with high blood cadmium but not in populations with low blood cadmium. CONCLUSION Moderate increase of selenium intake had a protective effect on PD mortality especially in high blood cadmium populations.
Collapse
Affiliation(s)
- Xinyu Tu
- School of Medicine, Shanghai Jiao Tong University, No.227 Chongqing Rd (S), Shanghai, China
| | - Na Wu
- Department of neurology, Xinhua Hospital, Shanghai Jiao tong University School of Medicine, No.1665 Kongjiang Rd, Shanghai, China
| | - Ying Wan
- Department of neurology, Xinhua Hospital, Shanghai Jiao tong University School of Medicine, No.1665 Kongjiang Rd, Shanghai, China
| | - Jing Gan
- Department of neurology, Xinhua Hospital, Shanghai Jiao tong University School of Medicine, No.1665 Kongjiang Rd, Shanghai, China
| | - Zhenguo Liu
- Department of neurology, Xinhua Hospital, Shanghai Jiao tong University School of Medicine, No.1665 Kongjiang Rd, Shanghai, China.
| | - Lu Song
- Department of neurology, Xinhua Hospital, Shanghai Jiao tong University School of Medicine, No.1665 Kongjiang Rd, Shanghai, China.
| |
Collapse
|
20
|
Ahmad A, Javad S, Iqbal S, Shahzadi K, Gatasheh MK, Javed T. Alleviation potential of green-synthesized selenium nanoparticles for cadmium stress in Solanum lycopersicum L: modulation of secondary metabolites and physiochemical attributes. PLANT CELL REPORTS 2024; 43:113. [PMID: 38573519 DOI: 10.1007/s00299-024-03197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 04/05/2024]
Abstract
KEY MESSAGE Selenium nanoparticles reduce cadmium absorption in tomato roots, mitigating heavy metal effects. SeNPs can efficiently help to enhance growth, yield, and biomolecule markers in cadmium-stressed tomato plants. In the present study, the effects of selenium nanoparticles (SeNPs) were investigated on the tomato plants grown in cadmium-contaminated soil. Nanoparticles were synthesized using water extract of Nigella sativa and were characterized for their size and shape. Two application methods (foliar spray and soil drench) with nanoparticle concentrations of 0, 100, and 300 mg/L were used to observe their effects on cadmium-stressed plants. Growth, yield, biochemical, and stress parameters were studied. Results showed that SeNPs positively affected plant growth, mitigating the negative effects of cadmium stress. Shoot length (SL), root length (RL), number of branches (NB), number of leaves per plant (NL), and leaf area (LA) were significantly reduced by cadmium stress but enhanced by 45, 51, 506, 208, and 82%, respectively, by soil drench treatment of SeNPs. Similarly, SeNPs increased the fruit yield (> 100%) and fruit weight (> 100%), and decreased the days to fruit initiation in tomato plants. Pigments were also positively affected by the SeNPs, particularly in foliar treatment. Lycopene content was also enhanced by the addition of NPs (75%). Furthermore, the addition of SeNPs improved the ascorbic acid, protein, phenolic, flavonoid, and proline contents of the tomato plants under cadmium stress, whereas stress enzymes also showed enhanced activities under cadmium stress. It is concluded from the present study that the addition of selenium nanoparticles enhanced the growth and yield of Cd-stressed plants by reducing the absorption of cadmium and increasing the stress management of plants.
Collapse
Affiliation(s)
- Asma Ahmad
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Sumera Javad
- Department of Botany, Lahore College for Women University, Lahore, Pakistan.
| | - Sumera Iqbal
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Kiran Shahzadi
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Talha Javed
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| |
Collapse
|
21
|
Ali W, Mao K, Shafeeque M, Aslam MW, Li W. Effects of selenium on biogeochemical cycles of cadmium in rice from flooded paddy soil systems in the alluvial Indus Valley of Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168896. [PMID: 38042182 DOI: 10.1016/j.scitotenv.2023.168896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
This study delves into the pollution status, assesses the effects of Se on Cd biogeochemical pathways, and explores their interactions in nutrient-rich paddy soil-rice ecosystems through 500 soil-rice samples in Pakistan. The results showed that 99.6 % and 12.8 % of soil samples exceeded the World Health Organization (WHO) allowable Se and Cd levels (7 and 0.35 mg/kg). In comparison, 23 % and 6 % of the grain samples exceeded WHO's allowable Se and Cd levels (0.3 and 0.2 mg/kg), respectively. Geographically Weighted Regression (GWR) model results further revealed spatial nonstationarity, confirming diverse associations between dependent variables (Se and Cd in rice grain) and independent variables from paddy soil and plant tissues (root and shoot), such as Soil Organic Matter (SOM), pH, Se, and Cd concentrations. High Se:Cd molar ratios (>1) and a negative correlation (r = -0.16, p < 0.01) between the Cd translocation factor (Cd in rice grain/Cd in root) and Se in roots suggest that increased root Se levels inhibit the transfer of Cd from roots to grains. The inverse correlation between Se and Cd in paddy grains was further characterized as Se deficiency, no risk, high Cd risk, Se risk, Cd risk, and Se-Cd co-exposure risk. There was no apparent risk for human co-consumption in 42.6 % of grain samples with moderate Se and low Cd. The remaining categories indicate differing degrees of risk. In the study area, 31 % and 20 % of grain samples with low Se and Cd indicate Se deficiency and risk, respectively. High Se and low Cd levels in rice samples suggest a potential hazard for severe Se exposure due to frequent rice consumption. This study not only systematically evaluates the pollution status of paddy-soil systems in Pakistan but also provides a reference to thoroughly contemplate the development of a scientific approach for evaluating human risks and the potential dangers associated with paddy soils and rice, specifically in regions characterized by low Se and low Cd concentrations, as well as those with moderate Se and high Cd concentrations. SYNOPSIS: This study is significant for understanding the effects of Se on Cd geochemical cycles and their interactions in paddy soil systems in Pakistan.
Collapse
Affiliation(s)
- Waqar Ali
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | | | - Muhammad Wajahat Aslam
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Li
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing 400045, China; Chongqing Field Observation Station for River and Lake Ecosystems, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
22
|
Gou Z, Liu C, Qi M, Zhao W, Sun Y, Qu Y, Ma J. Machine learning-based prediction of cadmium bioaccumulation capacity and associated analysis of driving factors in tobacco grown in Zunyi City, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132910. [PMID: 37926014 DOI: 10.1016/j.jhazmat.2023.132910] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Tobacco grown in areas with high-geochemical backgrounds exhibits considerably different cadmium (Cd) bioaccumulation abilities due to regional disparities and environmental changes. However, the impact of key factors on the Cd bioaccumulation ability of tobacco grown in the karst regions with high selenium (Se) geochemical backgrounds is unclear. Herein, 365 paired rhizospheric soil-grown tobacco samples and 321 topsoil samples were collected from typical karst tobacco-growing soil in southwestern China and analyzed for Cd and Se. XGBoost was used to predict and evaluate the Cd bioaccumulation ability of tobacco and potential influencing factors. Results showed that regional geochemical characteristics, such as soil Cd and Se contents, soil type, and lithology, have the highest influence on the Cd bioaccumulation ability of tobacco, accounting for 46.5% of the overall variation. Moreover, soil Se contents in high-geochemical background areas considerably affect Cd bioaccumulation in tobacco, with a threshold for the mutual suppression effects of Cd and Se at a soil Se content of 0.8 mg/kg. According to the results of bivariate local indicators of spatial association analysis, tobacco cultivated in the central, northeast, and southeast regions of Zunyi City carries a lower risk of soil Cd contamination. This study provides new insights for managing tobacco cultivation in karst regions.
Collapse
Affiliation(s)
- Zilun Gou
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Meng Qi
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhao Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yi Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yajing Qu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jin Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
23
|
Moulick D, Mukherjee A, Das A, Roy A, Majumdar A, Dhar A, Pattanaik BK, Chowardhara B, Ghosh D, Upadhyay MK, Yadav P, Hazra S, Sarkar S, Mahanta S, Santra SC, Choudhury S, Maitra S, Mishra UN, Bhutia KL, Skalicky M, Obročník O, Bárek V, Brestic M, Hossain A. Selenium - An environmentally friendly micronutrient in agroecosystem in the modern era: An overview of 50-year findings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115832. [PMID: 38141336 DOI: 10.1016/j.ecoenv.2023.115832] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
Agricultural productivity is constantly being forced to maintain yield stability to feed the enormously growing world population. However, shrinking arable and nutrient-deprived soil and abiotic and biotic stressor (s) in different magnitudes put additional challenges to achieving global food security. Though well-defined, the concept of macro, micronutrients, and beneficial elements is from a plant nutritional perspective. Among various micronutrients, selenium (Se) is essential in small amounts for the life cycle of organisms, including crops. Selenium has the potential to improve soil health, leading to the improvement of productivity and crop quality. However, Se possesses an immense encouraging phenomenon when supplied within the threshold limit, also having wide variations. The supplementation of Se has exhibited promising outcomes in lessening biotic and abiotic stress in various crops. Besides, bulk form, nano-Se, and biogenic-Se also revealed some merits and limitations. Literature suggests that the possibilities of biogenic-Se in stress alleviation and fortifying foods are encouraging. In this article, apart from adopting a combination of a conventional extensive review of the literature and bibliometric analysis, the authors have assessed the journey of Se in the "soil to spoon" perspective in a diverse agroecosystem to highlight the research gap area. There is no doubt that the time has come to seriously consider the tag of beneficial elements associated with Se, especially in the drastic global climate change era.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India; Plant Stress Biology and Metabolomics Laboratory, Department of Life Science & Bioinformatics, H.G. Khorana School of Life Sciences, Assam University, Silchar 788011, India.
| | - Arkabanee Mukherjee
- Indian Institute of Tropical Meteorology, Dr Homi Bhabha Rd, Panchawati, Pashan, Pune, Maharashtra 411008, India.
| | - Anupam Das
- Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, India.
| | - Anirban Roy
- School of Agriculture and Rural Development, Faculty Centre for IRDM, Ramakrishna Mission Vi-Vekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata 700103, India.
| | - Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Anannya Dhar
- School of Agriculture and Rural Development, Faculty Centre for IRDM, Ramakrishna Mission Vi-Vekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata 700103, India.
| | - Binaya Kumar Pattanaik
- Institute of Environment Education and Research, Bharati Vidyapeeth (Deemed to be University), Pune 411043, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies NH-52, Knowledge City, District- Namsai, Arunachal Pradesh 792103, India.
| | - Dibakar Ghosh
- Division of Agronomy, ICAR-Indian Institute of Water Management, Bhubaneswar 751023, Odisha, India.
| | - Munish Kumar Upadhyay
- Centre for Environmental Science & Engineering, Department of Civil Engineering, Indian Institute of Technology Kanpur, 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India.
| | - Swati Hazra
- School of Agricultural Sciences, Sharda University, Greater Noida, UP 201310, India.
| | - Sukamal Sarkar
- School of Agriculture and Rural Development, Faculty Centre for IRDM, Ramakrishna Mission Vi-Vekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata 700103, India.
| | - Subrata Mahanta
- Department of Chemistry, National Institute of Technology Jamshedpur, Adityapur, Jamshedpur, Jharkhand 831014, India.
| | - S C Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Shuvasish Choudhury
- Plant Stress Biology and Metabolomics Laboratory, Department of Life Science & Bioinformatics, H.G. Khorana School of Life Sciences, Assam University, Silchar 788011, India.
| | - Sagar Maitra
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Odisha 761211, India.
| | - Udit Nandan Mishra
- Department of Crop Physiology & Biochemistry, Faculty of Agriculture, Sri Sri University, Sri Sri Vihar, Bidyadharpur Arilo, Ward No-03, Cuttack, Odisha 754006, India.
| | - Karma L Bhutia
- Department of Agricultural Biotechnology & Molecular Biology, College of Basic Sciences and Humanities, Dr. Rajendra Prasad Central Agricultural University, Pusa (Samastipur), Bihar 848 125, India.
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czechia.
| | - Oliver Obročník
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia.
| | - Viliam Bárek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia.
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czechia; Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovak.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| |
Collapse
|
24
|
Shah T, Khan Z, Khan SR, Imran A, Asad M, Ahmad A, Ahmad P. Silicon inhibits cadmium uptake by regulating the genes associated with the lignin biosynthetic pathway and plant hormone signal transduction in maize plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123996-124009. [PMID: 37995035 DOI: 10.1007/s11356-023-31044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Cadmium (Cd) contamination in soil poses a severe threat to plant growth and development. In contrast, silicon (Si) has shown promise in enhancing plant resilience under Cd-induced stress. In this study, we conducted an integrated investigation employing morphological studies, gene expression analysis, and metabolomics to unravel the molecular mechanisms underlying Cd tolerance in maize plants. Our results demonstrate that Si biofortification significantly mitigated Cd stress by reducing Cd accumulation in plant tissues, increasing Si content, and enhancing maize biomass in Cd-stressed plants resulted in a substantial enhancement in shoot dry weight (+ 75%) and root dry weight (+ 30%). Notably, Si treatment upregulated key lignin-related genes (TaPAL, TaCAD, Ta4CL, and TaCOMT) and promoted the accumulation of metabolites (sinapyl alcohol, phenylalanine, p-coumaryl alcohol, cafeyl alcohol, and coniferaldehyde) essential for cell wall strength, particularly under Cd stress conditions. Si application enriched the signal transduction by hormones and increased resistance by induction of biosynthesis genes (TaBZR1, TaLOX3, and TaNCDE1) and metabolites (brassinolide, abscisic acid, and jasmonate) in the roots and leaves under Cd stress. Furthermore, our study provides a comprehensive view of the intricate molecular crosstalk between Si, Cd stress, and plant hormonal responses. We unveil a network of genetic and metabolic interactions that culminate in a multifaceted defense system, enabling maize plants to thrive even in the presence of Cd-contaminated soil. This knowledge not only advances our understanding of the protective role of Si but also highlights the broader implications for sustainable agricultural practices. By harnessing the insights gained from this research, we may pave the way for innovative strategies to fortify crops against environmental stressors, ultimately contributing to the goal of food security in an ever-changing world. In summary, our research offers valuable insights into the protective mechanisms facilitated by Si, which enhance plants' ability to withstand environmental stress, and holds promise for future applications in sustainable agriculture.
Collapse
Affiliation(s)
- Tariq Shah
- Plant Science Research Unit United States, Department for Agriculture, Agricultural Research Service, Raleigh, NC, USA
| | - Zeeshan Khan
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Shah Rukh Khan
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Ayesha Imran
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Asad
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
25
|
Lei D, Cao H, Zhang K, Mao K, Guo Y, Huang JH, Yang G, Zhang H, Feng X. Coupling of different antioxidative systems in rice under the simultaneous influence of selenium and cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122526. [PMID: 37683757 DOI: 10.1016/j.envpol.2023.122526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/10/2023]
Abstract
Selenium (Se) elevates the antioxidant ability of rice against cadmium (Cd) stress, but previous studies only focused on the variation in antioxidant enzymes or nonenzymatic substances induced by Se under Cd stress and ignored the relationships between different antioxidant parameters during the interaction. Here, hydroponic experiments with rice were performed by adding both Cd and Se at doses in the range of 0-50 μM to explore the physiological responses of rice and their relationships in the presence of different levels of Se and Cd. Exogenous Cd markedly promoted the activity of antioxidant enzymes with the exception of catalase (CAT) and the concentration of nonenzymatic substances in aerial parts. Se enhanced the antioxidant capacity by improving the activities of all the enzymes tested in this study and increasing the concentrations of nonenzymatic compounds. The couplings among different antioxidant substances within paddy rice were then determined based on cluster and linear fitting results and their metabolic process and physiological functions. The findings specifically highlight that couplings among the ascorbic acid (AsA)-glutathione (GSH) cycle, glutathione synthase (GS)-phytochelatin synthetase (PCS) coupling system and glutathione peroxidase (GPX)-superoxide dismutase (SOD) coupling system in aerial parts helps protect plants from Cd stress. These coupling systems form likely due to the fact that one enzyme generated a product that could be the substrate for another enzyme. Noticeably, such coupling systems do not emerge in roots because the stronger damage to roots than other organs activates the ascorbate peroxidase (APX)-GPX-CAT and PCS-GS-SOD systems with distinct functions and structures. This study provides new insights into the detoxification mechanisms of rice caused by the combined effect of Se and Cd.
Collapse
Affiliation(s)
- Da Lei
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kuankuan Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Yongkun Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Guili Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
26
|
Huang P, Yang W, Li Q, Liao Q, Si M, Shi M, Yang Z. A novel slow-release selenium approach for cadmium reduction and selenium enrichment in rice (Oryza sativa L.). CHEMOSPHERE 2023; 342:140183. [PMID: 37726061 DOI: 10.1016/j.chemosphere.2023.140183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
In this study, a novel slightly-soluble selenium (Se) fertilizer (SSF) was successfully applied to address the problems of Cd pollution in paddy soil and rice, and Se deficiency in human beings. The pot and field experiments showed that Cd content in the rice grains was reduced by 48.4%-82.89% and Se content was increased nearly by 30-fold comparing the control group. The application of SSF increased the soil pH and significantly reduced the DGT-extracted Cd in the soil. Moreover, DCB-extractable Fe content on the surface of roots was prompt by SSF, which formed a physical barrier, namely iron plaque (IP), to inhibit Cd translocation to the above-ground tissues of the rice plants. The Cd content in the IP was also decreased before the filling period, possibly contributing to the reduction in major Cd accumulation in the rice grains. In addition, the continuous Se increase and Cd reduction in the IP by the SSF gradually exceeded that of water-soluble Se during the three periods of rice plant growth. This suggests that SSF has high potential to be an effective Se fertilizer for inhibiting Cd uptake and enriching Se in rice.
Collapse
Affiliation(s)
- Peicheng Huang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Meiqing Shi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China.
| |
Collapse
|
27
|
Li N, Yang L, Chen K, Kang Y, Cao Y, Du H, Mou H, Sun H, Ao T, Chen W. Selenium improves the medicinal safety and quality of Bletilla striata by promoting the fixation of cadmium in root: Pot and field experiments. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132275. [PMID: 37579717 DOI: 10.1016/j.jhazmat.2023.132275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Soil cadmium (Cd) pollution poses a considerable threat to the safe production of traditional Chinese medicine (TCM) in China. The tubers of Bletilla striata, a precious TCM, are widely used to treat various ailments. However, the medicinal safety and quality of tubers are significantly affected by high Cd accumulation. While selenium (Se) is known to reduce Cd concentration in traditional crops, its impact on Cd content in medicinal parts and overall quality remains underexplored. To bridge the gap, a pot experiment and field validation were conducted to determine the effectiveness of foliar Se application. The results revealed that Se effectively counteracted Cd damage. Compared to Cd treatment alone, Se at 1.5 mg L-1 significantly decreased Cd content by 46.33 %, increased the biomass by 21.48 %, and raised the total phenolic, flavonoid, saponin, and polysaccharide contents by 46.31 %, 30.46 %, 27.08 %, and 29.01 %, respectively, in tubers. Furthermore, this study explored the mechanism of Se action. Se facilitated Cd accumulation in root cell walls and soluble fractions, enhanced the synthesis of phytochelatins (PC), and stored them in the form of PC-Cd complexes. These findings have profound implications for the cultivation of TCM, ensuring its safety, and promoting sustainable agricultural practices.
Collapse
Affiliation(s)
- Na Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Li Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China
| | - Kuiwei Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuchen Kang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuan Cao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Hengwei Du
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610065, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China
| | - Haiyan Mou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610065, China.
| | - Hui Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
28
|
Tang Y, Zhao Y, Zhou Y, Li S, Wu C, Shi G, Hu C, Zhao X. Se Ameliorates Cd Toxicity in Oilseed rape (Brassica napus L.) Seedlings by Inhibiting Cd Transporter Genes and Maintaining root Plasma Membrane Integrity. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:42. [PMID: 37715785 DOI: 10.1007/s00128-023-03804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023]
Abstract
Se (Selenium) has been reported to be an important protective agent to decreases Cd (Cadmium) induced toxic in plants. However, it remains unclear how Se mitigates the uptake of Cd and increased the resistance to Cd toxicity. Hydroponic experiments were arranged to investigate the changes of physiological properties, root cell membrane integrity and Cd-related transporter genes in rape seedlings. Comparison of the biomass between the addition of Se and the absence of Se under Cd exposure showed that the Cd-induced growth inhibition of rape seedlings was alleviated by Se. Cd decreased the photosynthetic rate (Pn), stomatal conductance (Gs) and photosynthetic pigment content including chlorophyll a, chlorophyll b and carotenoid. However, all these parameters were all significantly improved by Se addition. Moreover, exposure to Se resulted in a decrease in Cd concentration in both shoot and root, ranging from 4.28 to 27.2%. Notably, the application of Se at a concentration of 1 µmol L- 1 exhibited the best performance. Furthermore, Se enhanced cell membrane integrity and reduced superoxide anion levels, thereby contributing to the alleviation of cadmium toxicity in plants. More critically, Se decreased the expression levels of root Cd-related transporter genes BnIRT1, BnHMA2 and BnHMA4 under Cd stress, which are responsible for Cd transport and translocation. These results are important to increase crop growth and reduce Cd load in the food chain from metal toxicity management and agronomical point of view.
Collapse
Affiliation(s)
- Yanni Tang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Fujian Provincial Key Lab of Coastal Basin Environment (Fujian Polytechnic Normal Univeristy), Fuqing, 350300, China
| | - Yuanyuan Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingjie Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiqian Li
- Fujian Provincial Key Lab of Coastal Basin Environment (Fujian Polytechnic Normal Univeristy), Fuqing, 350300, China
| | - Chihhung Wu
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and Utilization, Sanming University, Sanming, 365004, China
| | - Guangyu Shi
- College of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
29
|
He S, Lian X, Zhang B, Liu X, Yu J, Gao Y, Zhang Q, Sun H. Nano silicon dioxide reduces cadmium uptake, regulates nutritional homeostasis and antioxidative enzyme system in barley seedlings (Hordeum vulgare L.) under cadmium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67552-67564. [PMID: 37115454 DOI: 10.1007/s11356-023-27130-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/16/2023] [Indexed: 05/25/2023]
Abstract
Cadmium (Cd) toxicity is one of the most severe environmental threats inhibiting crop growth and productivity. Strategies to mitigate the adverse effects of Cd stress on plants are under scrutiny. Nano silicon dioxide (nSiO2) is an emerging material and could protect plants against abiotic stress. Can nSiO2 alleviate Cd toxicity in barley, and the possible mechanisms are poorly understood. A hydroponic experiment was conducted to study the mitigation effects of nSiO2 on Cd toxicity in barley seedlings. The results showed that the application of nSiO2 (5, 10, 20, and 40 mg/L) increased barley plant growth and chlorophyll and protein content, improving photosynthesis, compared with Cd-treated alone. Specifically, 5-40 mg/L nSiO2 addition increased net photosynthetic rate (Pn) by 17.1, 38.0, 30.3, and - 9.7%, respectively, relative to the Cd treatment alone. Furthermore, exogenous nSiO2 reduced Cd concentration and balanced mineral nutrient uptake. The application of 5-40 mg/L nSiO2 decreased Cd concentration in barley leaves by 17.5, 25.4, 16.7, and 5.8%, respectively, relative to the Cd treatment alone. Moreover, exogenous nSiO2 lowered malondialdehyde (MDA) content by 13.6-35.0% in roots, and by 13.5-27.2% in leaves, respectively, compared with Cd-treated alone. Besides, nSiO2 altered antioxidant enzyme activities and alleviated detrimental effects on Cd-treated plants, attaining maximal values at 10 mg/L nSiO2. These findings revealed that exogenous nSiO2 application may be a viable option for addressing Cd toxicity of barley plants.
Collapse
Affiliation(s)
- Songjie He
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
- School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Xin Lian
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Bo Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Xianjun Liu
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Jia Yu
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Yifan Gao
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Qingmei Zhang
- School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Hongyan Sun
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China.
| |
Collapse
|
30
|
Wang L, Wu K, Liu Z, Li Z, Shen J, Wu Z, Liu H, You L, Yang G, Rensing C, Feng R. Selenite reduced uptake/translocation of cadmium via regulation of assembles and interactions of pectins, hemicelluloses, lignins, callose and Casparian strips in rice roots. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130812. [PMID: 36709735 DOI: 10.1016/j.jhazmat.2023.130812] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Selenium (Se) can reduce cadmium (Cd) uptake/translocation via regulating pectins, hemicelluloses and lignins of plant root cell walls, but the detailed molecular mechanisms are not clear. In this study, six hydroponic experiments were set up to explore the relationships of uptake/translocation inhibition of Cd by selenite (Se(IV)) with cell wall component (CWC) synthesis and/or interactions. Cd and Se was supplied (alone or combinedly) at 1.0 mg L-1 and 0.5 mg L-1, respectively, with the treatment without Cd and Se as the control. When compared to the Cd1 treatment, the Se0.5Cd1 treatment 1) significantly increased total sugar concentrations in pectins, hemicelluloses and callose, suggesting an enhanced capacity of binding Cd or blocking Cd translocation; 2) stimulated the deposition of Casparian strips (CS) in root endodermis and exodermis to block Cd translocation; 3) stimulated the release of C-O-C (-OH- or -O-) and CO (carboxyl, carbonyl, or amide) to combine Cd; 4) regulated differential expression genes (DEGs) and metabolites (DMs) correlated with synthesis and/or interactions of CWSs to affect cell wall net structure to affect root cell division, subsequent root morphology and finally elemental uptake; and 5) stimulated de-methylesterification of pectins via reducing expression abundances of many DMs and DEGs in the Yang Cycle to reduce supply of methyls to homogalacturonan, and regulated gene expressions of pectin methylesterase to release carboxyls to combine Cd; and 6) down-regulated gene expressions associated with Cd uptake/translocation.
Collapse
Affiliation(s)
- LiZhen Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - KongYuan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZiQing Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZengFei Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Jun Shen
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZiHan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| | - LeXing You
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - GuiDi Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| |
Collapse
|
31
|
Zhang H, Xie S, Wan N, Feng B, Wang Q, Huang K, Fang Y, Bao Z, Xu F. Iron plaque effects on selenium and cadmium stabilization in Cd-contaminated seleniferous rice seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22772-22786. [PMID: 36303005 DOI: 10.1007/s11356-022-23705-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Dietary intake of selenium (Se)-enriched rice has benefit for avoiding Se-deficient disease, but there is a risk of excessive cadmium (Cd) intake. Through hydroponic culture and adsorption-desorption experiments, this paper focused on Se and Cd uptake in rice seedlings associated with the interactive effects of Se (Se4+ or Se6+), Cd, and iron (Fe) plaque. The formation of Fe plaque was promoted by Fe2+ and inhibited by Cd but not related with Se species. Shoot Se (Se4+ or Se6+) uptake was not affected by Fe plaque in most treatments, except that shoot Se concentrations were decreased by Fe plaque when Se4+ and Cd co-exposure. Shoot Cd concentrations were always inhibited by Fe plaque, regardless of Se species. Inhibiting Cd adsorption onto root surface (Se4+ + Cd) or increased Cd retention in Fe plaque (Se6+ + Cd) is an important mechanism for Fe plaque to reduce Cd uptake by rice. However, we found that DCB Cd concentrations (Cd adsorbed by Fe plaque) were not always positively correlated with Fe plaque amounts and always negatively correlated with the distribution ratios of Cd mass in root to that in Fe plaque (abbreviated as DRCMRF; r = - 0.942**); meanwhile, with the increase of DCB Fe concentration, the directions of variations of DCB Cd concentration and DRCMRF were affected by Se species. It indicated that the root system is also an important factor to affect DCB Cd concentration and inhibit Cd uptake, which is mediated by Se species. This paper provides a new understanding of Fe plaque-mediated interactive effect of Se and Cd uptakes in rice, which is beneficial for the remediation of Cd-contaminated and Cd-contaminated seleniferous areas.
Collapse
Affiliation(s)
- Hongyu Zhang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Shuyun Xie
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China.
| | - Neng Wan
- WuHan Natural Resources and Planning Bureau, Wuhan, 430034, China
| | - Boxin Feng
- Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an, 710069, China
| | - Qi Wang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Kangjun Huang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Yang Fang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Zhengyu Bao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Feng Xu
- Ankang Se-Resources Hi-Tech Co., Ltd, Ankang, 725000, China
| |
Collapse
|
32
|
Zhao R, Huang L, Peng X, Fan L, Chen S, Qin P, Zhang J, Chen A, Huang H. Effect of different amounts of fruit peel-based activator combined with phosphate-solubilizing bacteria on enhancing phytoextraction of Cd from farmland soil by ryegrass. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120602. [PMID: 36379291 DOI: 10.1016/j.envpol.2022.120602] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
To improve the uptake of heavy metals by plants and increase the effectiveness of phytoextraction, chelating agents are employed to change the speciation of heavy metals in soil and increase their bioavailability. However, the effect of a single activator is limited. In recent years, compound activators have been applied widely to improve phytoextraction efficiency. In this study, a fruit peel-based activator (OG) was prepared, containing a mixture of orange peel extracts and tetrasodium glutamate diacetate (GLDA) (1.6% v/v) in a ratio of 1:1 (v/v). The pot experiment was used to investigate the effects of different amounts of OG combined with phosphate-solubilizing bacteria (Acinetobacter pitti, AP) on the extraction of Cd from farmland soil by ryegrass (Lolium perenne L). The results indicated that the addition of OG and AP increased the pH and EC of the soil and improved the content of nutrient elements in the soil. The optimal combination of the application rates of OG and AP improved the growth of ryegrass and enhanced the phytoextraction of Cd. Redundancy analysis (RDA) showed that total soil nitrogen had the greatest influence on phytoextraction, with a contribution rate of 85.3%, followed by pH, with a contribution rate of 7.7%. Total nitrogen, pH, available phosphorus, alkaline nitrogen, and total organic matter were correlated positively with plant Cd, soil Cd decrease ratio, and the bioaccumulation factor but negatively with total Cd and available Cd. Based on the findings of this study, it is feasible to apply the fruit peel-based activator (amended with GLDA) and phosphate-solubilizing bacteria to enhance phytoextraction of Cd, which will provide a valuable reference for the treatment of heavy metal-contaminated soils and the reutilization of fruit peel waste. When applying the compound activator, it is recommended to consider the influence of the additional amount of compound activator on the extraction efficiency.
Collapse
Affiliation(s)
- Rule Zhao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Liuhui Huang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xin Peng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lingjia Fan
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Shuofu Chen
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Pufeng Qin
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jiachao Zhang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Anwei Chen
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hongli Huang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
33
|
Yang R, Luo L, Zhao N, Guo F, Zhu M, Zan S, Yu T, Han FX, Huang J. Indigenous earthworms and gut bacteria are superior to chemical amendments in the remediation of cadmium-contaminated seleniferous soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114122. [PMID: 36183425 DOI: 10.1016/j.ecoenv.2022.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/10/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The natural selenium (Se)-rich areas in China are generally characterized by high geological background of cadmium (Cd) which poses potential risks to human health. Therefore, immobilization of Cd is the prerequisite to ensure the safe utilization of natural seleniferous soil resources. A pot experiment was conducted to compare the effects of indigenous earthworm (Amynthas hupeiensis) and its gut bacteria (Citrobacter freundii DS strain) on the remediation of Cd-contaminated seleniferous soil with two traditional chemical amendments. The results indicated that earthworms and DS strain decreased DGT-extractable Cd by 25.52 - 41.53% and reduced Cd accumulation in lettuce leaves by 20.83 - 37.50% compared with control through converting the exchangeable Cd (EX-Cd) into residual Cd (RE-Cd) fractions. Overall, earthworms and DS strain were more effective in Cd immobilization, growth and quality promotion, oxidative stress alleviation, Cd accumulation and bioaccessibility reduction in the soil-lettuce-human continuum than biochar and lime. Moreover, all amendments induced the antagonism between Se and Cd through increasing bioavailable Se/Cd molar ratios in soil. However, all the Cd concentrations in lettuce exceeded the maximum permissible limit of Cd for leaf vegetables, indicating that soil amendment alone could not ensure food safety. This study confirmed that biological amendments were superior to chemical amendments in the remediation of Cd-contaminated seleniferous soil.
Collapse
Affiliation(s)
- Ruyi Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China.
| | - Linfeng Luo
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Nan Zhao
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Fuyu Guo
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Meng Zhu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Shuting Zan
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Tianao Yu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Fengxiang X Han
- Jackson State University, Department of Chemistry, Physics and Atmospheric Sciences, Jackson, MS 39217, USA
| | - Jingxuan Huang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
34
|
Lai X, Yang X, Rao S, Zhu Z, Cong X, Ye J, Zhang W, Liao Y, Cheng S, Xu F. Advances in physiological mechanisms of selenium to improve heavy metal stress tolerance in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:913-919. [PMID: 35583793 DOI: 10.1111/plb.13435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Selenium (Se) is a metalloid mineral nutrient for human and animal health. Plants are the main foodstuff source of the Se intake of humans. For plants, the addition of an appropriate amount of Se could promotes growth and development, and improves the tolerance to environmental stress, especially stress from some of heavy metals (HM) stress, such as cadmium (Cd) and mercury (Hg). This paper mainly reviews and summarizes the physiological mechanism of Se in enhancing HM stress tolerance in plants. The antagonistic effect of Se on HM is a comprehensive effect that includes many physiological mechanisms. Se can promote the removal of excessive reactive oxygen species and reduce the oxidative damage of plant cells under HM elements stress. Se participates in the regulation of the transportation and distribution of HM ions in plants, and alleviates the damage caused by of HM stress. Moreover, Se combine with HM elements to form Se-HM complexes and promote the production of phytochelatins (PCs), thereby reducing the accumulation of HM ions in plants. Overall, Se plays an important role in plant response to HM stress, but current studies mainly focus on physiological mechanism, and further in-depth study on the molecular mechanism is essential to confirm the participation of Se in plant response to environmental stress. This review helps to comprehensively understand the physiological mechanism of Se in plant tolerance against to HM stress of plants, and provides important theoretical support for the practical application of Se in environmental remediation and agricultural development.
Collapse
Affiliation(s)
- X Lai
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - X Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - S Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Z Zhu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - X Cong
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
- Enshi Se-Run Health Tech Development Co., Ltd, Enshi, China
| | - J Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - W Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Y Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - S Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - F Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
35
|
He L, Huang DY, Liu B, Zhang Q, Zhu HH, Xu C, Zhu QH. Combined exogenous selenium and biochemical fulvic acid reduce Cd accumulation in rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50059-50069. [PMID: 35226268 DOI: 10.1007/s11356-022-19442-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Paddy soil Cd contamination and the related accumulation risk in rice grains have attracted global attention. The application of selenium and humic substances is considered to be a cost-effective Cd mitigation measure. However, the effect of a combined application of the two materials remains unclear. Therefore, a 2-season pot experiment was conducted, wherein sodium selenite (Se) and biochemical fulvic acid (BFA) were applied alone and together. Paddy soils with two levels of Cd contamination were used. The results indicate that Se application alone considerably decreased the rice grain Cd content by 36.1-48.7% compared to the control rice grain Cd concentration, which was above the food safety limit (0.2 mg kg-1). Although the application of BFA alone decreased the soil pH, it also increased the soil CaCl2 extractable Cd content by 0.2 to 19.3% and had a limited effect on Cd in the rice grains. The combined application of Se and BFA did not affect the soil pH or the CaCl2 extractable Cd, and more effectively reduced the Cd contents of the rice grains by 50.2 to 57.1%, except for the control rice grain Cd content, which was below the limit. The combined application of Se and BFA also inhibited Se accumulation in rice grains, maintaining the Se content at a safe level (0.33-0.58 mg kg-1) compared to Se application alone. The effects of reducing the Cd content of rice grains while safely increasing their Se contents could persist for at least two seasons. Therefore, the combined application of Se and BFA should be recommended to mitigate Cd contamination risks in Cd-contaminated paddy soil.
Collapse
Affiliation(s)
- Lei He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dao-You Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Bo Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Quan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Han-Hua Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Chao Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Qi-Hong Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China.
| |
Collapse
|
36
|
Li X, Teng L, Fu T, He T, Wu P. Comparing the effects of calcium and magnesium ions on accumulation and translocation of cadmium in rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41628-41639. [PMID: 35094265 DOI: 10.1007/s11356-021-17923-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Rice (Oryza sativa L.) is one of China's most important food crops, and it is considered the primary source of human exposure to cadmium (Cd) pollution. Adding calcium (Ca) and magnesium (Mg) to the plant nutrient solutions reduces the accumulation of Cd in the rice, but under the same condition, which one has the better effect remains unclear. Thus, hydroponic experiments were performed to compare the effects of Ca and Mg ions with concentration gradients (0.10, 0.25, and 0.50 g/L, respectively) on the absorption, distribution, and translocation of Cd in rice. The Cd contents of roots, stems, leaves, panicles, husks, and grains in different growth stages were determined. The results revealed that the supplementation of both Ca and Mg influenced the Cd accumulation and translocation in rice tissues. The Cd concentrations of different patterns were in the following order: roots > stems > leaves ≈ panicles ≈ husks > grains. Both of Ca and Mg had an apparent antagonism with Cd in different parts of the rice plant, and the antagonism was more obvious in the high Cd stress treatments. With the addition of 0.1 g/L Ca2+ and Mg2+ ions, the grain Cd contents increased, while the application of 0.25 and 0.5 g/L Ca2+ and Mg2+ ions reduced grains Cd by 19.08-38.99%, with the average value of 26.75%. Under the same concentrations, the grain Cd content of Ca treatments was lower than that of Mg treatments by 8.74%. In the Ca (Mg)-deficient and Ca (Mg)-sufficient conditions, the husks and panicles accumulated Cd to hinder Cd translocation, respectively. Altogether, the results of this study indicated that Ca had a greater effect for decreasing rice Cd accumulation and translocation than Mg, and the panicle and husk were the important parts for reducing Cd translocation to grain, and these might be a focal point for the future research. It was possible to plant and grow rice in Cd-polluted soil and that the accumulation and translocation of Cd in rice plants could be reduced by optimizing soil nutrient elements.
Collapse
Affiliation(s)
- Xiangying Li
- College of Resource And Environmental Engineering, Guizhou University, Guiyang, 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
| | - Lang Teng
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Tongren Agriculture and Rural Affairs Bureau, Tongren, 554300, China
| | - Tianling Fu
- College of Resource And Environmental Engineering, Guizhou University, Guiyang, 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
| | - Tengbing He
- Institute of New Rural Development, Guizhou University, Guiyang, 550025, China.
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Pan Wu
- College of Resource And Environmental Engineering, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Karst Georesources and Environmental, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
37
|
Yang L, Huang S, Liu Y, Zheng S, Liu H, Rensing C, Fan Z, Feng R. Selenate regulates the activity of cell wall enzymes to influence cell wall component concentration and thereby affects the uptake and translocation of Cd in the roots of Brassica rapa L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153156. [PMID: 35041952 DOI: 10.1016/j.scitotenv.2022.153156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Selenium (Se) can be used to counteract cadmium (Cd) toxicity in plants. However, mechanisms underlying the alleviation of Cd toxicity by Se have not been completely elucidated, especially those by which Se reduces Cd translocation. A hydroponic experiment was performed to illustrate the regulatory mechanisms of Cd transport by selenate (Se (VI)) in pakchoi (Brassica rapa L., LvYou 102). The results showed that this plant had a high accumulation capacity for Cd, and Se(VI) addition restricted Cd translocation from roots to shoots. Se(VI) exposure stimulated the concentrations of pectins and hemicellulose II but reduced the concentration of hemicellulose I in the roots. In many cases, the enzymes pectin methylesterase, polygalacturonase, and β-galactosidase were dose-dependently triggered by Se(VI) under Cd exposure, but root calcium concentration was significantly lowered (p < 0.05). Xyloglucan endoglycosidase (hydrolase) was triggered by Se(VI) under 2 mg L-1 Cd exposure and cellulase was generally activated by Se(VI) under Cd stress. The above results suggest that Se(VI) up-regulates pectin methylesterase activity, stimulates synthesis of pectins, and down-regulates root Ca concentration to release free carboxyl groups to combine Cd. In this study, the relationships between enzyme activity (e.g., peroxidase, superoxidase and β-galactosidase), hydrogen peroxide, cell wall structure strengthening/loosening, and Cd toxicity affected by Se(VI) were also discussed.
Collapse
Affiliation(s)
- Li Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ShuangQin Huang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Yang Liu
- Agricultural College, Guangxi University, Nanning, China
| | - ShunAn Zheng
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZhiLian Fan
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| |
Collapse
|
38
|
Chang C, Zhang H, Huang F, Feng X. Understanding the translocation and bioaccumulation of cadmium in the Enshi seleniferous area, China: Possible impact by the interaction of Se and Cd. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118927. [PMID: 35104557 DOI: 10.1016/j.envpol.2022.118927] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Selenium (Se) plays an indispensable role in minimizing cadmium (Cd) hazards for organisms. However, their potential interactions and co-exposure risk in the naturally Se-Cd enriched paddy field ecosystem are poorly understood. In this study, rice plants with rhizosphere soils sampled from the Enshi seleniferous region, China, were investigated to resolve this confusion. Here, translocation and bioaccumulation of Cd showed some abnormal patterns in the system of soil-rice plants. Roots had the highest bioaccumulation factors of Cd (range: 0.30-57.69; mean: 11.86 ± 14.32), and the biomass of Cd in grains (range: 1.44-127.70 μg, mean: 36.55 ± 36.20 μg) only accounted for ∼10% of the total Cd in whole plants (range: 14.67-1363.20 μg, mean: 381.25 ± 387.57 μg). The elevated soil Cd did not result in the increase of Cd concentrations in rice grains (r2 = 0.03, p > 0.05). Most interestingly, the opposite distribution between Se and Cd in rice grains was found (r2 = 0.24, p < 0.01), which is contrary to the positive correlation for Se and Cd in soil (r2 = 0.46, p < 0.01). It is speculated that higher Se (0.85-11.46 μg/g), higher Se/Cd molar ratios (mean: 5.42 ≫1; range: 1.50-12.87), and higher proportions of reductive Se species (IV, 0) of the Enshi acidic soil may have the stronger capacity of favoring the occurrence of Se binding to Cd ions by forming Cd-Se complexes (Se2- + Cd2+ =CdSe) under reduction conditions during flooding, and hence change the Cd translocation from soil to roots. Furthermore, the negative correlation (r2 = 0.25, p < 0.05) between the Cd translocation factor (TFwhole grains/root) and the roots Se indicates that Cd translocation from the roots to rice grains was suppressed, possibly by the interaction of Se and Cd. This study inevitably poses a challenge for the traditional risk assessment of Cd and Se in the soils-crops-consumers continuum, especially in the seleniferous area.
Collapse
Affiliation(s)
- Chuanyu Chang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
39
|
Foliar Spraying of Selenium Combined with Biochar Alleviates Cadmium Toxicity in Peanuts and Enriches Selenium in Peanut Grains. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063542. [PMID: 35329226 PMCID: PMC8952774 DOI: 10.3390/ijerph19063542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023]
Abstract
Cadmium (Cd) pollution in soil, particularly in peanut production, is a problem that has attracted global concern and needs solutions urgently. Selenium (Se) can alleviate Cd toxicity; however, the underlying mechanisms are not completely understood. Therefore, two varieties of peanut (Arachis hypogaea Linn.), “Huayu 23” and “Huayu 20”, were chosen as the target crops for this study. A pot experiment was conducted to investigate the effects of two Se application methods combined with biochar on the accumulation of Cd and Se, and the best application method was identified. In addition, the role of Se in alleviating Cd toxicity in peanuts was studied. The results indicated that both Se and biochar decreased the Cd content in peanuts and alleviated Cd toxicity. However, the combined application of foliar Se and biochar significantly increased the peanut biomass by 73.44–132.41%, increased the grain yield of Huayu 23 by 0.60–1.09 fold, and Huayu 20 by 2.38–3.48 fold. Additionally, Cd content in peanut grains was decreased by 32.81–50.07%, and Se content was increased by 31.57–99.75 folds. Biochar can decrease the absorption of Cd from the soil, while Se can increase the accumulation of Cd in cell vacuoles by increasing glutathione and phytochelatin to decrease the movement of Cd into the grains. Therefore, our results indicate that the combined application of foliar Se and biochar can effectively promote the enrichment of Se in peanuts and suppress Cd toxicity.
Collapse
|
40
|
Qin X, Zhao P, Liu H, Nie Z, Zhu J, Qin S, Li C. Selenium inhibits cadmium uptake and accumulation in the shoots of winte wheat by altering the transformation of chemical forms of cadmium in soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8525-8537. [PMID: 34491502 DOI: 10.1007/s11356-021-16290-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the effects of selenium application on cadmium absorption, transport, and soil cadmium forms of winter wheat at different stages. A pot experiment with one Cd application (6 mg·kg-1) and five Se application levels (0, 1, 2, 5, and 10 mg·kg-1) was conducted. The results showed that Se application increased the grain yield of winter wheat, especially at 5 mg·kg-1 under Cd stress. As Se was supplied at 5 (Se5) and 10 (Se10) mg·kg-1, the Cd concentrations in roots and shoots, including stems, spikes, glumes, and grains, decreased at different growth stages, and the decreases in grain were 46.1% and 70.9% respectively. Se5 and Se10 also significantly decreased the translocation factors of Cd from roots to shoots, roots to stems, stems to spikes, and glumes to grains, promoted the accumulation of Cd in roots, and inhibited the accumulation of Cd in shoots and final grains at different growth stages, and the accumulation of Cd in grains decreased by 16.9% and 68.1%, respectively. High levels of Se application (Se5 and Se10) decreased the concentrations and proportions of exchangeable Cd (EXC-Cd) and iron (Fe)-manganese (Mn) oxide-bound Cd (R2O3-Cd) but increased the concentration and proportion of residual Cd (RES-Cd) in both soils with wheat and fallow soil at different growth stages. Therefore, under Cd stress, high levels of Se application reduced the shoot Cd concentration by inhibiting the uptake and transport of Cd from roots to shoots, and decreased the bioavailability of Cd in both soil with wheat and fallow by enhancing the transformation and distribution of RES-Cd from EXC-Cd and R2O3-Cd.
Collapse
Affiliation(s)
- Xiaoming Qin
- Resources and Environment College, Henan Agricultural University, No.63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450002, Henan Province, China
| | - Peng Zhao
- Resources and Environment College, Henan Agricultural University, No.63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450002, Henan Province, China
| | - Hongen Liu
- Resources and Environment College, Henan Agricultural University, No.63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China.
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450002, Henan Province, China.
| | - Zhaojun Nie
- Resources and Environment College, Henan Agricultural University, No.63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China.
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450002, Henan Province, China.
| | - Jiaojiao Zhu
- Resources and Environment College, Henan Agricultural University, No.63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450002, Henan Province, China
| | - Shiyu Qin
- Resources and Environment College, Henan Agricultural University, No.63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450002, Henan Province, China
| | - Chang Li
- Resources and Environment College, Henan Agricultural University, No.63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450002, Henan Province, China
| |
Collapse
|
41
|
Sardar R, Ahmed S, Shah AA, Yasin NA. Selenium nanoparticles reduced cadmium uptake, regulated nutritional homeostasis and antioxidative system in Coriandrum sativum grown in cadmium toxic conditions. CHEMOSPHERE 2022; 287:132332. [PMID: 34563771 DOI: 10.1016/j.chemosphere.2021.132332] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 05/20/2023]
Abstract
Nanotechnology has become a valuable novel approach to manage several environmental challenges through providing innovative and effective solutions. Heavy metal stress is an important abiotic limiting factor. Seed priming with selenium (Se) alleviates various kinds of environmental stresses; yet, the potential of seed priming with selenium nanoparticles (SeNPs) under cadmium (Cd) stress for coriander crop has never been evaluated. This research work was designed to explore the effects of seed priming with three levels (0, 5, 10 and 15 mg L-1) of SeNPs solution on the physio-biochemical characteristics, nutrition, antioxidative defense system and growth of coriander under Cd stress. Cadmium toxicity reduced chlorophyll content, photosynthetic activity and growth of treated plants. Moreover, Cd stressed plants exhibited modulations in proline level, together with decreased water potential, and leaf osmotic potential. However, SeNPs increased growth attributes, chlorophyll content, total soluble sugars, leaf relative water content, and gas exchange parameters in treated plants which were conversely decreased by Cd toxicity. The seeds priming with SeNPs promoted antioxidant response by increasing catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POX) activity and safeguarding cellular structures through scavenging free radicals and reactive oxygen species. Furthermore, Cd stressed plants displayed an upper level of MDA (1.91 fold) while SeNPs improved membranous integrity through detoxification of hydrogen peroxide. Additionally, SeNPs enhanced nutrients contents (P, K, Ca, Mg, Zn), metal tolerance index and diminished Cd content in plants resulting in the improved growth and development of Cd affected coriander plants.
Collapse
Affiliation(s)
- Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, University of Narowal, Narowal, Pakistan
| | | |
Collapse
|
42
|
Nanoselenium transformation and inhibition of cadmium accumulation by regulating the lignin biosynthetic pathway and plant hormone signal transduction in pepper plants. J Nanobiotechnology 2021; 19:316. [PMID: 34641908 PMCID: PMC8507250 DOI: 10.1186/s12951-021-01061-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/25/2021] [Indexed: 11/21/2022] Open
Abstract
Selenium (Se) can promote the growth and resistance of agricultural crops as fertilizers, while the role of nano-selenium (nano-Se) against Cd remains unclear in pepper plants (Capsicum annuum L.). Biofortification with nano-Se observably restored Cd stress by decreasing the level of Cd in plant tissues and boosting the accumulation in biomass. The Se compounds transformed by nano-Se were primarily in the form of SeMet and MeSeCys in pepper tissues. Differential metabolites and the genes of plant signal transduction and lignin biosynthesis were measured by employing transcriptomics and determining target metabolites. The number of lignin-related genes (PAL, CAD, 4CL, and COMT) and contents of metabolites (sinapyl alcohol, phenylalanine, p-coumaryl alcohol, caffeyl alcohol, and coniferaldehyde) were remarkably enhanced by treatment with Cd1Se0.2, thus, maintaining the integrity of cell walls in the roots. It also enhanced signal transduction by plant hormones and responsive resistance by inducing the biosynthesis of genes (BZR1, LOX3, and NCDE1) and metabolites (brassinolide, abscisic acid, and jasmonic acid) in the roots and leaves. In general, this study can enable a better understanding of the protective mechanism of nano-Se in improving the capacity of plants to resist environmental stress. ![]()
Collapse
|
43
|
Yang R, He Y, Luo L, Zhu M, Zan S, Guo F, Wang B, Yang B. The interaction between selenium and cadmium in the soil-rice-human continuum in an area with high geological background of selenium and cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112516. [PMID: 34273847 DOI: 10.1016/j.ecoenv.2021.112516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Natural selenium (Se)-rich areas in China are generally characterized by high geological background of cadmium (Cd). However, the interaction between Se and Cd in the soil-rice-human continuum in such areas remains elusive. The concentrations, bioaccessibilities, and biomarkers of Se and Cd in a typical Se-Cd rich area were determined through chemical analysis, in vitro digestion model and cross-sectional study, respectively. The results showed that the molar ratio of available Se/Cd in the soil was averaged at 0.55 and soil Se did not reduce Cd accumulation and transportation in rice. Se bioaccessibility increased from the gastric phase to the intestinal phase, but the opposite was the case for Cd bioaccessibility. Moreover, bioaccessible concentration of Cd was positively correlated to corresponding total concentration in rice but negatively associated with the logarithm of molar ratio of Se/Cd. The risk of Cd-induced nephrotoxicity for the exposure group was not higher than the reference group, which could be ascribed to the mitigative effect of Se. Males and elders were at higher risk of Cd-induced injury owing to higher urinary Cd (U-Cd) and β2-microglobulin (U-β2-MG), and lower urinary Se (U-Se). Our results suggested that Cd-induced health risk should be assessed from a soil-rice-human perspective and the interaction between Se and Cd should be taken into account.
Collapse
Affiliation(s)
- Ruyi Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China.
| | - Yuhuan He
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Linfeng Luo
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Meng Zhu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Shuting Zan
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Fuyu Guo
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Bo Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Beibei Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|